

Python Documentation contents

	About these documents

About these documents

These documents are generated from reStructuredText [http://docutils.sf.net/rst.html] sources by Sphinx, a document processor
specifically written for the Python documentation.

In the online version of these documents, you can submit comments and suggest
changes directly on the documentation pages.

Development of the documentation and its toolchain takes place on the
docs@python.org mailing list. We’re always looking for volunteers wanting
to help with the docs, so feel free to send a mail there!

See reporting-bugs for information how to report bugs in Python itself.

Index

Style Guide

The Python documentation should follow the Apple Publications Style Guide [http://developer.apple.com/documentation/UserExperience/Conceptual/APStyleGuide/AppleStyleGuide2003.pdf]
wherever possible. This particular style guide was selected mostly because it
seems reasonable and is easy to get online.

Topics which are not covered in the Apple’s style guide will be discussed in
this document if necessary.

Footnotes are generally discouraged, though they may be used when they are the
best way to present specific information. When a footnote reference is added at
the end of the sentence, it should follow the sentence-ending punctuation. The
reST markup should appear something like this:

This sentence has a footnote reference. [#]_ This is the next sentence.

Footnotes should be gathered at the end of a file, or if the file is very long,
at the end of a section. The docutils will automatically create backlinks to the
footnote reference.

Footnotes may appear in the middle of sentences where appropriate.

Many special names are used in the Python documentation, including the names of
operating systems, programming languages, standards bodies, and the like. Most
of these entities are not assigned any special markup, but the preferred
spellings are given here to aid authors in maintaining the consistency of
presentation in the Python documentation.

Other terms and words deserve special mention as well; these conventions should
be used to ensure consistency throughout the documentation:

	CPU

	For “central processing unit.” Many style guides say this should be spelled
out on the first use (and if you must use it, do so!). For the Python
documentation, this abbreviation should be avoided since there’s no
reasonable way to predict which occurrence will be the first seen by the
reader. It is better to use the word “processor” instead.

	POSIX

	The name assigned to a particular group of standards. This is always
uppercase.

	Python

	The name of our favorite programming language is always capitalized.

	Unicode

	The name of a character set and matching encoding. This is always written
capitalized.

	Unix

	The name of the operating system developed at AT&T Bell Labs in the early
1970s.

The Python language reference

	Release:	2.6

	Date:	July 12, 2017

This reference manual describes the syntax and “core semantics” of the
language. It is terse, but attempts to be exact and complete. The semantics of
non-essential built-in object types and of the built-in functions and modules
are described in The Python standard library. For an informal introduction to the
language, see The Python tutorial. For C or C++ programmers, two additional
manuals exist: Extending and Embedding the Python Interpreter describes the high-level picture of how to
write a Python extension module, and the Python/C API Reference Manual describes the
interfaces available to C/C++ programmers in detail.

The Python tutorial

	Release:	2.6

	Date:	July 12, 2017

Python is an easy to learn, powerful programming language. It has efficient
high-level data structures and a simple but effective approach to
object-oriented programming. Python’s elegant syntax and dynamic typing,
together with its interpreted nature, make it an ideal language for scripting
and rapid application development in many areas on most platforms.

The Python interpreter and the extensive standard library are freely available
in source or binary form for all major platforms from the Python Web site,
http://www.python.org/, and may be freely distributed. The same site also
contains distributions of and pointers to many free third party Python modules,
programs and tools, and additional documentation.

The Python interpreter is easily extended with new functions and data types
implemented in C or C++ (or other languages callable from C). Python is also
suitable as an extension language for customizable applications.

This tutorial introduces the reader informally to the basic concepts and
features of the Python language and system. It helps to have a Python
interpreter handy for hands-on experience, but all examples are self-contained,
so the tutorial can be read off-line as well.

For a description of standard objects and modules, see the Python Library
Reference document. The Python Reference Manual gives a more formal definition
of the language. To write extensions in C or C++, read Extending and Embedding
the Python Interpreter and Python/C API Reference. There are also several books
covering Python in depth.

This tutorial does not attempt to be comprehensive and cover every single
feature, or even every commonly used feature. Instead, it introduces many of
Python’s most noteworthy features, and will give you a good idea of the
language’s flavor and style. After reading it, you will be able to read and
write Python modules and programs, and you will be ready to learn more about the
various Python library modules described in the Python Library Reference.

Introduction

Python’s documentation has long been considered to be good for a free
programming language. There are a number of reasons for this, the most
important being the early commitment of Python’s creator, Guido van Rossum, to
providing documentation on the language and its libraries, and the continuing
involvement of the user community in providing assistance for creating and
maintaining documentation.

The involvement of the community takes many forms, from authoring to bug reports
to just plain complaining when the documentation could be more complete or
easier to use.

This document is aimed at authors and potential authors of documentation for
Python. More specifically, it is for people contributing to the standard
documentation and developing additional documents using the same tools as the
standard documents. This guide will be less useful for authors using the Python
documentation tools for topics other than Python, and less useful still for
authors not using the tools at all.

If your interest is in contributing to the Python documentation, but you don’t
have the time or inclination to learn reStructuredText and the markup structures
documented here, there’s a welcoming place for you among the Python contributors
as well. Any time you feel that you can clarify existing documentation or
provide documentation that’s missing, the existing documentation team will
gladly work with you to integrate your text, dealing with the markup for you.
Please don’t let the material in this document stand between the documentation
and your desire to help out!

Macintosh Library Modules

	Release:	2.6

	Date:	July 12, 2017

This library reference manual documents Python’s extensions for the Macintosh.
It should be used in conjunction with The Python standard library, which documents the
standard library and built-in types.

This manual assumes basic knowledge about the Python language. For an informal
introduction to Python, see The Python tutorial; The Python language reference
remains the highest authority on syntactic and semantic questions. Finally, the
manual entitled Extending and Embedding the Python Interpreter describes how to add new extensions to
Python and how to embed it in other applications.

Extending and Embedding the Python Interpreter

	Release:	2.6

	Date:	July 12, 2017

This document describes how to write modules in C or C++ to extend the Python
interpreter with new modules. Those modules can define new functions but also
new object types and their methods. The document also describes how to embed
the Python interpreter in another application, for use as an extension language.
Finally, it shows how to compile and link extension modules so that they can be
loaded dynamically (at run time) into the interpreter, if the underlying
operating system supports this feature.

This document assumes basic knowledge about Python. For an informal
introduction to the language, see The Python tutorial. The Python language reference
gives a more formal definition of the language. The Python standard library documents
the existing object types, functions and modules (both built-in and written in
Python) that give the language its wide application range.

For a detailed description of the whole Python/C API, see the separate
Python/C API Reference Manual.

reStructuredText Primer

This section is a brief introduction to reStructuredText (reST) concepts and
syntax, to provide authors enough information to autor documents productively.
Since reST was designed to be a simple, unobtrusive markup language, this will
not take too long.

See also

The authoritative reStructuredText User
Documentation [http://docutils.sourceforge.net/rst.html].

Paragraphs

The most basic block a reST document is made of. Paragraphs are chunks of text
separated by one ore more blank lines. As in Python, indentation is significant
in reST, so all lines of a paragraph must be left-aligned.

Inline markup

The standard reST inline markup is quite simple: use

	one asterisk: *text* for emphasis (italics),

	two asterisks: **text** for strong emphasis (boldface), and

	backquotes: ``text`` for code samples.

If asterisks or backquotes appear in running text and could be confused with
inline markup delimiters, they have to be escaped with a backslash.

Be aware of some restrictions of this markup:

	it may not be nested,

	content may not start or end with whitespace: * text* is wrong,

	it must be separated from surrounding text by non-word characters. Use a
backslash escaped space to work around that: thisis\ *one*\ word.

These restrictions may be lifted in future versions of the docutils.

reST also allows for custom “interpreted text roles”’, which signify that the
enclosed text should be interpreted in a specific way. Sphinx uses this to
provide semantic markup and cross-referencing of identifiers, as described in
the appropriate section. The general syntax is :rolename:`content`.

Lists and Quotes

List markup is natural: just place an asterisk at the start of a paragraph and
indent properly. The same goes for numbered lists; they can also be
autonumbered using a # sign:

* This is a bulleted list.
* It has two items, the second
 item uses two lines.

#. This is a numbered list.
#. It has two items too.

Nested lists are possible, but be aware that they must be separated from the
parent list items by blank lines:

* this is
* a list

 * with a nested list
 * and some subitems

* and here the parent list continues

Definition lists are created as follows:

term (up to a line of text)
 Definition of the term, which must be indented

 and can even consist of multiple paragraphs

next term
 Description.

Paragraphs are quoted by just indenting them more than the surrounding
paragraphs.

Source Code

Literal code blocks are introduced by ending a paragraph with the special marker
::. The literal block must be indented, to be able to include blank lines:

This is a normal text paragraph. The next paragraph is a code sample::

 It is not processed in any way, except
 that the indentation is removed.

 It can span multiple lines.

This is a normal text paragraph again.

The handling of the :: marker is smart:

	If it occurs as a paragraph of its own, that paragraph is completely left
out of the document.

	If it is preceded by whitespace, the marker is removed.

	If it is preceded by non-whitespace, the marker is replaced by a single
colon.

That way, the second sentence in the above example’s first paragraph would be
rendered as “The next paragraph is a code sample:”.

Hyperlinks

External links

Use `Link text <http://target>`_ for inline web links. If the link text
should be the web address, you don’t need special markup at all, the parser
finds links and mail addresses in ordinary text.

Internal links

Internal linking is done via a special reST role, see the section on specific
markup, Cross-linking markup.

Sections

Section headers are created by underlining (and optionally overlining) the
section title with a punctuation character, at least as long as the text:

=================
This is a heading
=================

Normally, there are no heading levels assigned to certain characters as the
structure is determined from the succession of headings. However, for the
Python documentation, we use this convention:

	# with overline, for parts

	* with overline, for chapters

	=, for sections

	-, for subsections

	^, for subsubsections

	", for paragraphs

Explicit Markup

“Explicit markup” is used in reST for most constructs that need special
handling, such as footnotes, specially-highlighted paragraphs, comments, and
generic directives.

An explicit markup block begins with a line starting with .. followed by
whitespace and is terminated by the next paragraph at the same level of
indentation. (There needs to be a blank line between explicit markup and normal
paragraphs. This may all sound a bit complicated, but it is intuitive enough
when you write it.)

Directives

A directive is a generic block of explicit markup. Besides roles, it is one of
the extension mechanisms of reST, and Sphinx makes heavy use of it.

Basically, a directive consists of a name, arguments, options and content. (Keep
this terminology in mind, it is used in the next chapter describing custom
directives.) Looking at this example,

.. function:: foo(x)
 foo(y, z)
 :bar: no

 Return a line of text input from the user.

function is the directive name. It is given two arguments here, the
remainder of the first line and the second line, as well as one option bar
(as you can see, options are given in the lines immediately following the
arguments and indicated by the colons).

The directive content follows after a blank line and is indented relative to the
directive start.

Footnotes

For footnotes, use [#]_ to mark the footnote location, and add the footnote
body at the bottom of the document after a “Footnotes” rubric heading, like so:

Lorem ipsum [#]_ dolor sit amet ... [#]_

.. rubric:: Footnotes

.. [#] Text of the first footnote.
.. [#] Text of the second footnote.

Comments

Every explicit markup block which isn’t a valid markup construct (like the
footnotes above) is regared as a comment.

Source encoding

Since the easiest way to include special characters like em dashes or copyright
signs in reST is to directly write them as Unicode characters, one has to
specify an encoding:

All Python documentation source files must be in UTF-8 encoding, and the HTML
documents written from them will be in that encoding as well.

XXX: Gotchas

The Python standard library

	Release:	2.6

	Date:	July 12, 2017

While The Python language reference describes the exact syntax and semantics of the
language, it does not describe the standard library that is distributed with the
language, and which greatly enhances its immediate usability. This library
contains built-in modules (written in C) that provide access to system
functionality such as file I/O that would otherwise be inaccessible to Python
programmers, as well as modules written in Python that provide standardized
solutions for many problems that occur in everyday programming. Some of these
modules are explicitly designed to encourage and enhance the portability of
Python programs.

This library reference manual documents Python’s standard library, as well as
many optional library modules (which may or may not be available, depending on
whether the underlying platform supports them and on the configuration choices
made at compile time). It also documents the standard types of the language and
its built-in functions and exceptions, many of which are not or incompletely
documented in the Reference Manual.

Distributing Python Modules

	Release:	2.6

	Date:	July 12, 2017

This document describes the Python Distribution Utilities (“Distutils”) from
the module developer’s point of view, describing how to use the Distutils to
make Python modules and extensions easily available to a wider audience with
very little overhead for build/release/install mechanics.

Python/C API Reference Manual

	Release:	2.6

	Date:	July 12, 2017

This manual documents the API used by C and C++ programmers who want to write
extension modules or embed Python. It is a companion to Extending and Embedding the Python Interpreter,
which describes the general principles of extension writing but does not
document the API functions in detail.

Warning

The current version of this document is somewhat incomplete. However, most of
the important functions, types and structures are described.

The Sphinx build system

XXX: intro...

The build configuration file

The documentation root, that is the Doc subdirectory of the source
distribution, contains a file named conf.py. This file is called the “build
configuration file”, and it contains several variables that are read and used
during a build run.

These variables are:

	release : string

	A string that is used as a replacement for the |release| reST
substitution. It should be the full version string including
alpha/beta/release candidate tags, e.g. 2.5.2b3.

	version : string

	A string that is used as a replacement for the |version| reST
substitution. It should be the Python version the documentation refers to.
This consists only of the major and minor version parts, e.g. 2.5, even
for version 2.5.1.

	today_fmt : string

	A strftime format that is used to format a replacement for the
|today| reST substitution.

	today : string

	A string that can contain a date that should be written to the documentation
output literally. If this is nonzero, it is used instead of
strftime(today_fmt).

	unused_file : list of strings

	A list of reST filenames that are to be disregarded during building. This
could be docs for temporarily disabled modules or documentation that’s not
yet ready for public consumption.

	last_updated_format : string

	If this is not an empty string, it will be given to time.strftime() and
written to each generated output file after “last updated on:”.

	use_smartypants : bool

	If true, use SmartyPants to convert quotes and dashes to the typographically
correct entities.

	strip_trailing_parentheses : bool

	If true, trailing parentheses will be stripped from :func: etc.
crossreferences.

Documenting Python

The Python language has a substantial body of documentation, much of it
contributed by various authors. The markup used for the Python documentation is
reStructuredText [http://docutils.sf.net/rst.html], developed by the docutils [http://docutils.sf.net/] project, amended by custom
directives and using a toolset named Sphinx to postprocess the HTML output.

This document describes the style guide for our documentation, the custom
reStructuredText markup introduced to support Python documentation and how it
should be used, as well as the Sphinx build system.

If you’re interested in contributing to Python’s documentation, there’s no need
to write reStructuredText if you’re not so inclined; plain text contributions
are more than welcome as well.

Additional Markup Constructs

Sphinx adds a lot of new directives and interpreted text roles to standard reST
markup. This section contains the reference material for these facilities.
Documentation for “standard” reST constructs is not included here, though
they are used in the Python documentation.

XXX: file-wide metadata

Meta-information markup

	
sectionauthor

	Identifies the author of the current section. The argument should include
the author’s name such that it can be used for presentation (though it isn’t)
and email address. The domain name portion of the address should be lower
case. Example:

.. sectionauthor:: Guido van Rossum <guido@python.org>

Currently, this markup isn’t reflected in the output in any way, but it helps
keep track of contributions.

Module-specific markup

The markup described in this section is used to provide information about a
module being documented. Each module should be documented in its own file.
Normally this markup appears after the title heading of that file; a typical
file might start like this:

:mod:`parrot` -- Dead parrot access
===================================

.. module:: parrot
 :platform: Unix, Windows
 :synopsis: Analyze and reanimate dead parrots.
.. moduleauthor:: Eric Cleese <eric@python.invalid>
.. moduleauthor:: John Idle <john@python.invalid>

As you can see, the module-specific markup consists of two directives, the
module directive and the moduleauthor directive.

	
module

	This directive marks the beginning of the description of a module (or package
submodule, in which case the name should be fully qualified, including the
package name).

The platform option, if present, is a comma-separated list of the
platforms on which the module is available (if it is available on all
platforms, the option should be omitted). The keys are short identifiers;
examples that are in use include “IRIX”, “Mac”, “Windows”, and “Unix”. It is
important to use a key which has already been used when applicable.

The synopsis option should consist of one sentence describing the
module’s purpose – it is currently only used in the Global Module Index.

	
moduleauthor

	The moduleauthor directive, which can appear multiple times, names the
authors of the module code, just like sectionauthor names the author(s)
of a piece of documentation. It too does not result in any output currently.

Note

It is important to make the section title of a module-describing file
meaningful since that value will be inserted in the table-of-contents trees
in overview files.

Information units

There are a number of directives used to describe specific features provided by
modules. Each directive requires one or more signatures to provide basic
information about what is being described, and the content should be the
description. The basic version makes entries in the general index; if no index
entry is desired, you can give the directive option flag :noindex:. The
following example shows all of the features of this directive type:

.. function:: spam(eggs)
 ham(eggs)
 :noindex:

 Spam or ham the foo.

The signatures of object methods or data attributes should always include the
type name (.. method:: FileInput.input(...)), even if it is obvious from the
context which type they belong to; this is to enable consistent
cross-references. If you describe methods belonging to an abstract protocol,
such as “context managers”, include a (pseudo-)type name too to make the
index entries more informative.

The directives are:

	
cfunction

	Describes a C function. The signature should be given as in C, e.g.:

.. cfunction:: PyObject* PyType_GenericAlloc(PyTypeObject *type, Py_ssize_t nitems)

This is also used to describe function-like preprocessor macros. The names
of the arguments should be given so they may be used in the description.

Note that you don’t have to backslash-escape asterisks in the signature,
as it is not parsed by the reST inliner.

	
cmember

	Describes a C struct member. Example signature:

.. cmember:: PyObject* PyTypeObject.tp_bases

The text of the description should include the range of values allowed, how
the value should be interpreted, and whether the value can be changed.
References to structure members in text should use the member role.

	
cmacro

	Describes a “simple” C macro. Simple macros are macros which are used
for code expansion, but which do not take arguments so cannot be described as
functions. This is not to be used for simple constant definitions. Examples
of its use in the Python documentation include :cmacro:`PyObject_HEAD` and
:cmacro:`Py_BEGIN_ALLOW_THREADS`.

	
ctype

	Describes a C type. The signature should just be the type name.

	
cvar

	Describes a global C variable. The signature should include the type, such
as:

.. cvar:: PyObject* PyClass_Type

	
data

	Describes global data in a module, including both variables and values used
as “defined constants.” Class and object attributes are not documented
using this environment.

	
exception

	Describes an exception class. The signature can, but need not include
parentheses with constructor arguments.

	
function

	Describes a module-level function. The signature should include the
parameters, enclosing optional parameters in brackets. Default values can be
given if it enhances clarity. For example:

.. function:: Timer.repeat([repeat=3[, number=1000000]])

Object methods are not documented using this directive. Bound object methods
placed in the module namespace as part of the public interface of the module
are documented using this, as they are equivalent to normal functions for
most purposes.

The description should include information about the parameters required and
how they are used (especially whether mutable objects passed as parameters
are modified), side effects, and possible exceptions. A small example may be
provided.

	
class

	Describes a class. The signature can include parentheses with parameters
which will be shown as the constructor arguments.

	
attribute

	Describes an object data attribute. The description should include
information about the type of the data to be expected and whether it may be
changed directly.

	
method

	Describes an object method. The parameters should not include the self
parameter. The description should include similar information to that
described for function.

	
opcode

	Describes a Python bytecode instruction.

There is also a generic version of these directives:

	
describe

	This directive produces the same formatting as the specific ones explained
above but does not create index entries or cross-referencing targets. It is
used, for example, to describe the directives in this document. Example:

.. describe:: opcode

 Describes a Python bytecode instruction.

Showing code examples

Examples of Python source code or interactive sessions are represented using
standard reST literal blocks. They are started by a :: at the end of the
preceding paragraph and delimited by indentation.

Representing an interactive session requires including the prompts and output
along with the Python code. No special markup is required for interactive
sessions. After the last line of input or output presented, there should not be
an “unused” primary prompt; this is an example of what not to do:

>>> 1 + 1
2
>>>

Syntax highlighting is handled in a smart way:

	There is a “highlighting language” for each source file. Per default,
this is 'python' as the majority of files will have to highlight Python
snippets.

	Within Python highlighting mode, interactive sessions are recognized
automatically and highlighted appropriately.

	The highlighting language can be changed using the highlightlang
directive, used as follows:

.. highlightlang:: c

This language is used until the next highlightlang directive is
encountered.

	The valid values for the highlighting language are:

	python (the default)

	c

	rest

	none (no highlighting)

	If highlighting with the current language fails, the block is not highlighted
in any way.

Longer displays of verbatim text may be included by storing the example text in
an external file containing only plain text. The file may be included using the
standard include directive with the literal option flag. For example,
to include the Python source file example.py, use:

.. include:: example.py
 :literal:

Inline markup

As said before, Sphinx uses interpreted text roles to insert semantic markup in
documents.

The default role is var, as that was one of the most common macros used in
the old LaTeX docs. That means that you can use `var` to refer to a
variable named “var”.

For all other roles, you have to write :rolename:`content`.

The following roles refer to objects in modules and are possibly hyperlinked if
a matching identifier is found:

	
mod

	The name of a module; a dotted name may be used. This should also be used for
package names.

	
func

	The name of a Python function; dotted names may be used. The role text
should include trailing parentheses to enhance readability. The parentheses
are stripped when searching for identifiers.

	
data

	The name of a module-level variable.

	
const

	The name of a “defined” constant. This may be a C-language #define
or a Python variable that is not intended to be changed.

	
class

	A class name; a dotted name may be used.

	
meth

	The name of a method of an object. The role text should include the type
name, method name and the trailing parentheses. A dotted name may be used.

	
attr

	The name of a data attribute of an object.

	
exc

	The name of an exception. A dotted name may be used.

The name enclosed in this markup can include a module name and/or a class name.
For example, :func:`filter` could refer to a function named filter in
the current module, or the built-in function of that name. In contrast,
:func:`foo.filter` clearly refers to the filter function in the foo
module.

A similar heuristic is used to determine whether the name is an attribute of
the currently documented class.

The following roles create cross-references to C-language constructs if they
are defined in the API documentation:

	
cdata

	The name of a C-language variable.

	
cfunc

	The name of a C-language function. Should include trailing parentheses.

	
cmacro

	The name of a “simple” C macro, as defined above.

	
ctype

	The name of a C-language type.

The following role does possibly create a cross-reference, but does not refer
to objects:

	
token

	The name of a grammar token (used in the reference manual to create links
between production displays).

The following roles don’t do anything special except formatting the text
in a different style:

	
command

	The name of an OS-level command, such as rm.

	
dfn

	Mark the defining instance of a term in the text. (No index entries are
generated.)

	
envvar

	An environment variable. Index entries are generated.

	
file

	The name of a file or directory.

	
guilabel

	Labels presented as part of an interactive user interface should be marked
using guilabel. This includes labels from text-based interfaces such as
those created using curses or other text-based libraries. Any label
used in the interface should be marked with this role, including button
labels, window titles, field names, menu and menu selection names, and even
values in selection lists.

	
kbd

	Mark a sequence of keystrokes. What form the key sequence takes may depend
on platform- or application-specific conventions. When there are no relevant
conventions, the names of modifier keys should be spelled out, to improve
accessibility for new users and non-native speakers. For example, an
xemacs key sequence may be marked like :kbd:`C-x C-f`, but without
reference to a specific application or platform, the same sequence should be
marked as :kbd:`Control-x Control-f`.

	
keyword

	The name of a keyword in a programming language.

	
mailheader

	The name of an RFC 822-style mail header. This markup does not imply that
the header is being used in an email message, but can be used to refer to any
header of the same “style.” This is also used for headers defined by the
various MIME specifications. The header name should be entered in the same
way it would normally be found in practice, with the camel-casing conventions
being preferred where there is more than one common usage. For example:
:mailheader:`Content-Type`.

	
makevar

	The name of a make variable.

	
manpage

	A reference to a Unix manual page including the section,
e.g. :manpage:`ls(1)`.

	
menuselection

	Menu selections should be marked using the menuselection role. This is
used to mark a complete sequence of menu selections, including selecting
submenus and choosing a specific operation, or any subsequence of such a
sequence. The names of individual selections should be separated by
-->.

For example, to mark the selection “Start > Programs”, use this markup:

:menuselection:`Start --> Programs`

When including a selection that includes some trailing indicator, such as the
ellipsis some operating systems use to indicate that the command opens a
dialog, the indicator should be omitted from the selection name.

	
mimetype

	The name of a MIME type, or a component of a MIME type (the major or minor
portion, taken alone).

	
newsgroup

	The name of a Usenet newsgroup.

	
option

	A command-line option to an executable program. The leading hyphen(s) must
be included.

	
program

	The name of an executable program. This may differ from the file name for
the executable for some platforms. In particular, the .exe (or other)
extension should be omitted for Windows programs.

	
regexp

	A regular expression. Quotes should not be included.

	
var

	A Python or C variable or parameter name.

The following roles generate external links:

	
pep

	A reference to a Python Enhancement Proposal. This generates appropriate
index entries. The text “PEP number” is generated; in the HTML output,
this text is a hyperlink to an online copy of the specified PEP.

	
rfc

	A reference to an Internet Request for Comments. This generates appropriate
index entries. The text “RFC number” is generated; in the HTML output,
this text is a hyperlink to an online copy of the specified RFC.

Note that there are no special roles for including hyperlinks as you can use
the standard reST markup for that purpose.

Cross-linking markup

To support cross-referencing to arbitrary sections in the documentation, the
standard reST labels are “abused” a bit: Every label must precede a section
title; and every label name must be unique throughout the entire documentation
source.

You can then reference to these sections using the :ref:`label-name` role.

Example:

.. _my-reference-label:

Section to cross-reference

This is the text of the section.

It refers to the section itself, see :ref:`my-reference-label`.

The :ref: invocation is replaced with the section title.

Paragraph-level markup

These directives create short paragraphs and can be used inside information
units as well as normal text:

	
note

	An especially important bit of information about an API that a user should be
aware of when using whatever bit of API the note pertains to. The content of
the directive should be written in complete sentences and include all
appropriate punctuation.

Example:

.. note::

 This function is not suitable for sending spam e-mails.

	
warning

	An important bit of information about an API that a user should be very aware
of when using whatever bit of API the warning pertains to. The content of
the directive should be written in complete sentences and include all
appropriate punctuation. This differs from note in that it is recommended
over note for information regarding security.

	
versionadded

	This directive documents the version of Python which added the described
feature to the library or C API. When this applies to an entire module, it
should be placed at the top of the module section before any prose.

The first argument must be given and is the version in question; you can add
a second argument consisting of a brief explanation of the change.

Example:

.. versionadded:: 2.5
 The `spam` parameter.

Note that there must be no blank line between the directive head and the
explanation; this is to make these blocks visually continuous in the markup.

	
versionchanged

	Similar to versionadded, but describes when and what changed in the named
feature in some way (new parameters, changed side effects, etc.).

	
seealso

	Many sections include a list of references to module documentation or
external documents. These lists are created using the seealso directive.

The seealso directive is typically placed in a section just before any
sub-sections. For the HTML output, it is shown boxed off from the main flow
of the text.

The content of the seealso directive should be a reST definition list.
Example:

.. seealso::

 Module :mod:`zipfile`
 Documentation of the :mod:`zipfile` standard module.

 `GNU tar manual, Basic Tar Format <http://link>`_
 Documentation for tar archive files, including GNU tar extensions.

	
rubric

	This directive creates a paragraph heading that is not used to create a
table of contents node. It is currently used for the “Footnotes” caption.

	
centered

	This directive creates a centered boldfaced paragraph. Use it as follows:

.. centered::

 Paragraph contents.

Table-of-contents markup

Since reST does not have facilities to interconnect several documents, or split
documents into multiple output files, Sphinx uses a custom directive to add
relations between the single files the documentation is made of, as well as
tables of contents. The toctree directive is the central element.

	
toctree

	This directive inserts a “TOC tree” at the current location, using the
individual TOCs (including “sub-TOC trees”) of the files given in the
directive body. A numeric maxdepth option may be given to indicate the
depth of the tree; by default, all levels are included.

Consider this example (taken from the library reference index):

.. toctree::
 :maxdepth: 2

 intro.rst
 strings.rst
 datatypes.rst
 numeric.rst
 (many more files listed here)

This accomplishes two things:

	Tables of contents from all those files are inserted, with a maximum depth
of two, that means one nested heading. toctree directives in those
files are also taken into account.

	Sphinx knows that the relative order of the files intro.rst,
strings.rst and so forth, and it knows that they are children of the
shown file, the library index. From this information it generates “next
chapter”, “previous chapter” and “parent chapter” links.

In the end, all files included in the build process must occur in one
toctree directive; Sphinx will emit a warning if it finds a file that is
not included, because that means that this file will not be reachable through
standard navigation.

The special file contents.rst at the root of the source directory is the
“root” of the TOC tree hierarchy; from it the “Contents” page is generated.

Index-generating markup

Sphinx automatically creates index entries from all information units (like
functions, classes or attributes) like discussed before.

However, there is also an explicit directive available, to make the index more
comprehensive and enable index entries in documents where information is not
mainly contained in information units, such as the language reference.

The directive is index and contains one or more index entries. Each entry
consists of a type and a value, separated by a colon.

For example:

.. index::
 single: execution!context
 module: __main__
 module: sys
 triple: module; search; path

This directive contains five entries, which will be converted to entries in the
generated index which link to the exact location of the index statement (or, in
case of offline media, the corresponding page number).

The possible entry types are:

	single

	Creates a single index entry. Can be made a subentry by separating the
subentry text with a semicolon (this is also used below to describe what
entries are created).

	pair

	pair: loop; statement is a shortcut that creates two index entries,
namely loop; statement and statement; loop.

	triple

	Likewise, triple: module; search; path is a shortcut that creates three
index entries, which are module; search path, search; path, module and

path; module search.

	module, keyword, operator, object, exception, statement, builtin

	These all create two index entries. For example, module: hashlib creates
the entries module; hashlib and hashlib; module.

Grammar production displays

Special markup is available for displaying the productions of a formal grammar.
The markup is simple and does not attempt to model all aspects of BNF (or any
derived forms), but provides enough to allow context-free grammars to be
displayed in a way that causes uses of a symbol to be rendered as hyperlinks to
the definition of the symbol. There is this directive:

	
productionlist

	This directive is used to enclose a group of productions. Each production is
given on a single line and consists of a name, separated by a colon from the
following definition. If the definition spans multiple lines, each
continuation line must begin with a colon placed at the same column as in the
first line.

Blank lines are not allowed within productionlist directive arguments.

The definition can contain token names which are marked as interpreted text
(e.g. sum ::= `integer` "+" `integer`) – this generates cross-references
to the productions of these tokens. Note that vertical bars used to indicate
alternatives must be escaped with backslashes because otherwise they would
indicate a substitution reference to the reST parser.

The following is an example taken from the Python Reference Manual:

.. productionlist::
 try_stmt: try1_stmt \| try2_stmt
 try1_stmt: "try" ":" :token:`suite`
 : ("except" [:token:`expression` ["," :token:`target`]] ":" :token:`suite`)+
 : ["else" ":" :token:`suite`]
 : ["finally" ":" :token:`suite`]
 try2_stmt: "try" ":" :token:`suite`
 : "finally" ":" :token:`suite`

Substitutions

The documentation system provides three substitutions that are defined by default.
They are set in the build configuration file, see The build configuration file.

	
|release|

	Replaced by the Python release the documentation refers to. This is the full
version string including alpha/beta/release candidate tags, e.g. 2.5.2b3.

	
|version|

	Replaced by the Python version the documentation refers to. This consists
only of the major and minor version parts, e.g. 2.5, even for version
2.5.1.

	
|today|

	Replaced by either today’s date, or the date set in the build configuration
file. Normally has the format April 14, 2007.

 _static/comment-close.png

_static/comment-bright.png

_static/minus.png

nav.xhtml

 Table of Contents

 		Python Documentation contents

 		About these documents

_static/file.png

_static/plus.png

_static/comment.png

_static/down.png

_static/up.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/up-pressed.png

