
doctrine-in-apigility-
docs𝑝𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

Versão latest

out 03, 2017

Table of Contents

1 Introduction 3
1.1 When should you use Doctrine in Apigility? . 3

2 About 5

3 Authentication 7

4 Authorization 9

5 OAuth2 Adapter 11
5.1 Entity Relationship Diagram . 11
5.2 Application Configuration . 12
5.3 Module Configuration . 13
5.4 User Entity Configuration . 14
5.5 Events . 14
5.6 zf-doctrine-apigility Integration . 15
5.7 Override Default Entities . 15
5.8 Multiple OAuth2 Instances . 16
5.9 Add-Ons . 16

6 OAuth2 Adapter Console Management 19
6.1 About . 19
6.2 Installation . 19
6.3 Console Routes . 19

7 Hydrator Strategies 21
7.1 Installation . 21
7.2 StrategyCollectionExtract . 21
7.3 StrategyCollectionLink . 21
7.4 StrategyEntityLink . 22
7.5 How to use these hydration strategies . 22

8 Filtering and Sorting 25

i

ii

doctrine-in-apigility-docs𝑝𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛, 𝑉 𝑒𝑟𝑠𝑜𝑙𝑎𝑡𝑒𝑠𝑡

This will document how to create an API with Doctrine and Apigility.

Table of Contents 1

doctrine-in-apigility-docs𝑝𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛, 𝑉 𝑒𝑟𝑠𝑜𝑙𝑎𝑡𝑒𝑠𝑡

2 Table of Contents

CAPÍTULO 1

Introduction

The landscape of API strategies grows every day. In the field of PHP there are strategies from simple REST-only
resources to fully Richardson Maturity Model Level 3 API engines. Apigility falls into the Level 3 category.

An API will serve data and Doctrine in Apigility tries, at it’s core, to map Doctrine entities to API resources. So a
Doctrine enabled resource in Apigility will provide GET, POST, PUT, PATCH, and DELETE. It also enables the ORM
entity relationships to embed related data in a HAL (Hypertext Application Language) response. This allows complex
joins between entities to be represented in the API response.

When should you use Doctrine in Apigility?

When you have a Doctrine project with properly mapped associations, metadata, between entities Doctrine in Apigility
will give you a powerful head-start toward building an API. Correct metadata is absolutly core to building an API with
this tool. To help design your ORM Skipper is strongly recommended.

You can use Doctrine in Apigility to serve pieces of your schema by filtering with hydrator strategies or you can serve
your entire schema in an “Open-schema API” where relationships between entities are fully explored in the HAL
_embedded data.

If you’re familiar with the benefits of ORM and will use it in your project and you require a fully-fledged API engine
than this API strategy may what you’re looking for.

3

https://martinfowler.com/articles/richardsonMaturityModel.html
https://skipper18.com

doctrine-in-apigility-docs𝑝𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛, 𝑉 𝑒𝑟𝑠𝑜𝑙𝑎𝑡𝑒𝑠𝑡

4 Capítulo 1. Introduction

CAPÍTULO 2

About

Much of this document was written by Tom H Anderson and some material was compiled from other sources in the
Apigility realm.

Tom was the original author of zfcampus/zf-apigility-doctrine and has created many supporting libraries for Doctrine
in Apigility. He contributed much to the early development of Apigility and continues to give to open source in PHP.

As soon as Apigility was announced developers were asking for Doctrine support though none of us really knew what
that ment. What was created serves as a strong platform for an ORM based API.

5

http://www.tomhanderson.com
https://github.com/zfcampus/zf-apigility-doctrine

doctrine-in-apigility-docs𝑝𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛, 𝑉 𝑒𝑟𝑠𝑜𝑙𝑎𝑡𝑒𝑠𝑡

6 Capítulo 2. About

CAPÍTULO 3

Authentication

The official Apigility documentation describes the lightweight authentication infrastructure included with Apigility
and how it is intended to be extended. Extending this infrastructure is exactly what is required for Doctrine in Apigility.

When building an API application the central authentication is usually done through an OAuth2 implicit and/or autho-
rization_code grant type. To support authorization you must redirect users to a login page when a user tries to authen-
ticate through these routes.

api-skeletons/zf-oauth2-doctrine-identity replaces the default AuthenticatedIdentity provided by Apigility. This class
->getIdentity() returns the AccessToken granted through OAuth2. From the Access Token you can fetch the
authenticated User entity and OAuth2 Client entity.

Authentication should occur every time a user tries to access a route they are not authorized for and the user is not
already Authenticated. To trigger Authentication you must have authorization setup for your resources.

7

https://apigility.org/documentation/auth/intro
https://github.com/API-Skeletons/zf-oauth2-doctrine-skeletons

doctrine-in-apigility-docs𝑝𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛, 𝑉 𝑒𝑟𝑠𝑜𝑙𝑎𝑡𝑒𝑠𝑡

8 Capítulo 3. Authentication

CAPÍTULO 4

Authorization

api-skeletons/zf-oauth2-doctrine-permissions-acl implements ACL resources for a User with a many-to-many rela-
tionship to a Role entity. It works in tandem with other zf-oauth2-doctrine libraries to create easy to implement
authorization in a Doctrine in Apigility API.

9

https://github.com/API-Skeletons/zf-oauth2-doctrine-permissions-acl

doctrine-in-apigility-docs𝑝𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛, 𝑉 𝑒𝑟𝑠𝑜𝑙𝑎𝑡𝑒𝑠𝑡

10 Capítulo 4. Authorization

CAPÍTULO 5

OAuth2 Adapter

api-skeletons/zf-oauth2-doctrine

This module provides a Doctrine adapter for zfcampus/zf-mvc-auth and zfcampus/zf-oauth2 and entity definitions for
all aspects of OAuth2 including Authorization Code, Access Tokens, Refresh Tokens, JWT & JTI, and Scopes.

A Skipper module is provided to embed in your Entity Relationship Diagram.

Entity Relationship Diagram

Entity Relationship Diagram created with Skipper

The ERD module is located at media/OAuth2-orm.module.xml and is intended to be embedded in the ERD for your
project.

Relations

The User entity is provided by your application and a dynamic join is made at runtime when the metadata is gathered
for Doctrine. There is a dynamic join with Client, AuthorizationCode, AccessToken and RefreshToken.

The central OAuth2 entity is the Client. There is a dynamic join from the Client entity to the configured User entity.
For every application owned by a User there will be a Client entry. The User referenced from a Client is the User who
owns that Client.

The AuthorizationCode entity is used when a User connects from an application using OAuth2. The reference to the
User entity from the AuthorizationCode entity is for the User that is trying to log into the Client referenced from the
AuthorizationCode entity. The same is true for the AccessToken and RefreshToken entities.

The Scope entities are many to many relationships for Client, AuthorizationCode, AccessToken and RefreshToken.
Scopes dictate what permissions a Client has into the API.

There is a one to one relationship from Client to PublicKey. This is because the encryption side of OAuth2 is less
common and to encapsulate the encryption fields into the PublicKey entity. The JWT and JTI entities provide full
support and their use in encryption falls outside the scope of this documentation.

11

https://github.com/api-skeletons/zf-oauth2-doctrine
https://github.com/zfcampus/zf-mvc-auth
https://github.com/zfcampus/zf-oauth2
https://skipper18.com
https://skipper18.com
https://github.com/API-Skeletons/zf-oauth2-doctrine/blob/master/media/OAuth2-orm.module.xml

doctrine-in-apigility-docs𝑝𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛, 𝑉 𝑒𝑟𝑠𝑜𝑙𝑎𝑡𝑒𝑠𝑡

Database Table Namespaces

All OAuth2 tables are suffixed with _OAuth2 such as Client_OAuth2. You can change these if you override. It is re-
commended your database table names match your entity names to provide canonical naming across your application.
See also bushbaby/zf-oauth2-doctrine-mutatetablenames.

Application Configuration

Installation

Installation of this module uses composer. For composer documentation, please refer to getcomposer.org.

composer require api-skeletons/zf-oauth2-doctrine "^1.0"

Add this module to your application’s configuration:

'modules' => [
...
'ZF\OAuth2\Doctrine',

],

Global Configuration

Copy config/oauth2.doctrine-orm.global.php.dist to your autoload directory and rename to
oauth2.doctrine-orm.global.php This config has multiple sections for multiple adapters. Out of the box
this module provides a default adapter. You will need to edit this file with at least your User entity, which is not
provided.

zfcampus/zf-mvc-auth Configuration

By default this module includes a oauth2.doctrineadapter.default adapter. The adapter is used to create storage from
services. Add this configuration to your config/autoload/zf-mvc-auth-oauth2-override.global.php:

'zf-mvc-auth' => array(
'authentication' => array(

'adapters' => array(
'oauth2_doctrine' => array(

'adapter' => 'ZF\\MvcAuth\\Authentication\\OAuth2Adapter',
'storage' => array(

'storage' => 'oauth2.doctrineadapter.default',
'route' => '/oauth',

),
),

),
),

),

zfcampus/zf-oauth2 Configuration

Add the default storage adapter to the zf-oauth default storage. zfcampus/zf-oauth2 provides an oauth2.
local.php file. This repository’s recommendation is to create a new config/autoload/oauth2.global.

12 Capítulo 5. OAuth2 Adapter

https://github.com/basz/zf-oauth2-doctrine-mutatetablenames
http://getcomposer.org/

doctrine-in-apigility-docs𝑝𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛, 𝑉 𝑒𝑟𝑠𝑜𝑙𝑎𝑡𝑒𝑠𝑡

php file and set the following configuration as well as any OAuth2 server settings e.g. allow_implicit:

'zf-oauth2' => array(
'storage' => 'oauth2.doctrineadapter.default',

Module Configuration

Using Default Entities

Details for creating your database with the included entities are outside the scope of this project. Generally this is done
through doctrine/doctrine-orm-module with php public/index.php orm:schema-tool:create

By default this module uses the entities provided but you may use the adapter with your own entites (and map them in
the mapping config section) by toggling this flag:

'zf-oauth2-doctrine' => [
'default' => [

'enable_default_entities' => true,

Customizing Many to One Mapping

If you need to customize the call to mapManyToOne, which creates the dynamic
joins to the User entity from the default entites, you may add any parameters to the
['dynamic_mapping']['default_entity']['additional_mapping_data'] element. An
example for a User entity with a primary key of user_id which does not conform to the metadata naming strategy is
added to each entity:

'refresh_token_entity' => [
'entity' => 'ZF\OAuth2\Doctrine\Entity\RefreshToken',
'field' => 'refreshToken',
'additional_mapping_data' => [

'joinColumns' => [
[

'name' => 'user_id',
'referencedColumnName' => 'user_id',

],
],

],
],

Identity field on User entity

By default this Doctrine adapter retrieves the user by the username field on the configured User entity. If you need
to use a different or multiple fields you may do so via the auth_identity_fields key. For example, ZfcUser
allows users to authenticate by username and/or email fields.

An example to match ZfcUser auth_identity_fields configuration:

'zf-oauth2-doctrine' => [
'default' => [

'auth_identity_fields' => ['username', 'email'],

5.3. Module Configuration 13

https://github.com/bshaffer/oauth2-server-php/blob/develop/src/OAuth2/Server.php#L109
https://github.com/doctrine/DoctrineORMModule

doctrine-in-apigility-docs𝑝𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛, 𝑉 𝑒𝑟𝑠𝑜𝑙𝑎𝑡𝑒𝑠𝑡

User Entity Configuration

This repository supplies every entity you need to implement OAuth2 except the User entity. The reason is so the
User entity can be decoupled from the OAuth2 Doctrine repository instead to be linked dynamically at run time. This
allows, among other benefits, the ability to create an ERD without modifying the OAuth2-orm.module.xml module.

The User entity must implement ZF\OAuth2\Doctrine\Entity\UserInterface

The User entity for the unit test for this module is a good template to start from: https://github.com/api-skeletons/
zf-oauth2-doctrine/blob/master/test/asset/module/Doctrine/src/Entity/User.php

Events

Events are fully supported. Return values are used if propagation is stopped allowing you to write your own handlers
for any OAuth2 Adapter method. Each function which implements the OAuth2 interfaces may be attached to and
optionally overridden.

Example Event Attachment

Module.php onBootstrap:

$doctrineOAuth2Adapter = $e->getParam('application')
->getServiceManager()
->get('oauth2.doctrineadapter.default')
;

$listenerAggregate = new \Application\EventSubscriber\OAuth2AggregateListener(
→˓$objectManager);
$doctrineOAuth2Adapter->getEventManager()->attachAggregate($listenerAggregate);

ApplicationEventSubscriberOAuth2AggregateListener:

namespace Application\EventSubscriber;

use Zend\EventManager\Event;
use Zend\EventManager\AbstractListenerAggregate;
use Zend\EventManager\EventManagerInterface;

class OAuth2AggregateListener extends AbstractListenerAggregate
{

protected $handlers = array();
protected $logInAs;

public function attach(EventManagerInterface $events)
{

$this->handlers[] = $events->attach('checkUserCredentials', array($this,
→˓'checkUserCredentials'));

}

/**
* Do work such as non-standard encrypted password checking

*/
public function checkUserCredentials(Event $e)
{

if ($e->getParams()['username'] == 'specialUser') {

14 Capítulo 5. OAuth2 Adapter

https://github.com/api-skeletons/zf-oauth2-doctrine/blob/master/test/asset/module/Doctrine/src/Entity/User.php
https://github.com/api-skeletons/zf-oauth2-doctrine/blob/master/test/asset/module/Doctrine/src/Entity/User.php

doctrine-in-apigility-docs𝑝𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛, 𝑉 𝑒𝑟𝑠𝑜𝑙𝑎𝑡𝑒𝑠𝑡

$e->stopPropagation();

return true;
}

}
}

zf-doctrine-apigility Integration

Validate zf-apigility-doctrine resources

To validate the OAuth2 session with Query Create Filters and Query Pro-
viders implement ZF\OAuth2\Doctrine\OAuth2ServerInterface and use
ZF\OAuth2\Doctrine\OAuth2ServerTrait. Then call $result =
$this->validateOAuth2($scope); in the filter function.

Override Default Entities

This example shows how to override default entities and modify them to use BIGINT. The same procedure is used for
any other time default entities will be overridden.

The default foreign keys and primary keys in zf-oauth2-doctrine are standard integers. Many times databases
will plan for the future and use BIGINT for these keys. It’s not possible to create referential integrity between an
INTEGER and a BIGINT. It is possible to quickly implement BIGINT integers in zf-oauth2-doctrine.

First you’ll need a new module for the modified xml. Call it OAuth2. Next copy the zf-oauth2-doctrine/
config/orm/*.xml into your new module OAuth2/config/orm (create this directory).

Edit the xml and change all integers to bigint. Next edit your oauth2.doctrine-orm.global.php file and set ‘ena-
ble_default_entities’ => false

Now in OAuth2/config/module.config.php add the Doctrine config and alias the xml:

'doctrine' => array(
'driver' => array(

'oauth2_driver' => array(
'class' => 'Doctrine\\ORM\\Mapping\\Driver\\XmlDriver',
'paths' => array(

0 => __DIR__ . '/orm',
),

),
'orm_default' => array(

'class' => 'Doctrine\\ORM\\Mapping\\Driver\\DriverChain',
'drivers' => array(

'ZF\\OAuth2\\Doctrine\\Entity' => 'oauth2_driver',
),

),
),

),

5.6. zf-doctrine-apigility Integration 15

doctrine-in-apigility-docs𝑝𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛, 𝑉 𝑒𝑟𝑠𝑜𝑙𝑎𝑡𝑒𝑠𝑡

Multiple OAuth2 Instances

You may have multiple sets of distinct OAuth2 servers on the same application instance. This describes how to create
a second OAuth2 server with it’s own entities.

Create a new module called SecondOAuth2 and copy the entities from zf-oauth2-doctrine into it’s
src/SecondOAuth2/Entity directory. Change all the namespaces to SecondOAuth2 and this includes autogenerated
fully qualified name spaces in the add and remove functions for collections.

Copy the ORM XML data from zf-oauth2-doctine to SecondOAuth2/config/orm and edit it for the new module. Be
sure to change the table names. Add doctrine config to module.config.php

Copy this code into the SecondOAuth2 Module.php ‘‘‘php

public function onBootstrap(MvcEvent $e) {

/** @var ServiceLocatorInterface $serviceManager */ $serviceMana-
ger = $e->getParam(‘application’)->getServiceManager(); $serviceManager-
>get(‘oauth2.doctrineadapter.second’)->bootstrap($e);

}

public function getServiceConfig() {

return [

‘factories’ => [

‘oauth2.doctrineadapter.second’ => function ($serviceManager) { /** @var
ServiceLocatorInterface | ContainerInterface $serviceManager / $globalConfig
= $serviceManager->get(‘Config’); $config = new Config($globalConfig[’zf-
oauth2-doctrine’][’second’]); /* @var DoctrineAdapterFactory $factory */
$factory = $serviceManager->get(DoctrineAdapterFactory::class); $factory-
>setConfig($config);

return $factory->createService($serviceManager);

}

],

];

}

‘‘‘ Create a copy of the default config in oauth2.doctrine-orm.global.php and name the block ‘second’. Create a new
User entity and assign that entity to the default group. There should not be a reason to have two OAuth2 servers
connected to the same User entity. Change namespaces as needed.

Finally follow the configuration section of this documentation to configure the second OAuth2 server.

Add-Ons

api-skeletons/zf-oauth2-doctrine-console

Console routes to manage OAuth2 entities. Add and list Clients, Scopes, and more from the command line.

16 Capítulo 5. OAuth2 Adapter

doctrine-in-apigility-docs𝑝𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛, 𝑉 𝑒𝑟𝑠𝑜𝑙𝑎𝑡𝑒𝑠𝑡

api-skeletons/zf-oauth2-doctrine-identity

This should have been a part of zf-oauth2-doctrine from the beginning but because zf-oauth2-doctrine is so mature
identity mapping has been implemented in this add-on repository. This will change the AuthenticatedIdentity of
[zfcampus/zf-mvc-auth](https://github.com/zfcampus/zf-mvc-auth) to a Doctrine enabled identity with quick access
to the User, Client, and AccessToken entities.

api-skeletons/zf-oauth2-doctrine-permissions-acl

ACL Permissions and Authenticated Identity management. This uses interfaces rather than defining entities to
create guards on resources based on [api-skeletons/zf-oauth2-doctrine-identity](https://github.com/API-Skeletons/
zf-oauth2-doctrine-identity)

bushbaby/zf-oauth2-doctrine-mutatetablenames

Allows configuration of the table names that this module uses without overriding default entities.

5.9. Add-Ons 17

https://github.com/zfcampus/zf-mvc-auth
https://github.com/API-Skeletons/zf-oauth2-doctrine-identity
https://github.com/API-Skeletons/zf-oauth2-doctrine-identity

doctrine-in-apigility-docs𝑝𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛, 𝑉 𝑒𝑟𝑠𝑜𝑙𝑎𝑡𝑒𝑠𝑡

18 Capítulo 5. OAuth2 Adapter

CAPÍTULO 6

OAuth2 Adapter Console Management

api-skeletons/zf-oauth2-doctrine-console

About

This repository provides console routes to manage a headless OAuth2 server.

Installation

Installation of this module uses composer. For composer documentation, please refer to getcomposer.org:

composer require api-skeletons/zf-oauth2-doctrine-console "*"

Add this module to your application’s configuration:

'modules' => array(
...
'ZF\OAuth2\Doctrine\Console',

),

Console Routes

• oauth2:client:create Create a new client with or without a user.

• oauth2:client:update Update a client.

• oauth2:client:delete Delete a client.

• oauth2:client:list List all clients.

• oauth2:scope:create Create a scope.

19

https://github.com/API-Skeletons/zf-oauth2-doctrine-console
http://getcomposer.org/

doctrine-in-apigility-docs𝑝𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛, 𝑉 𝑒𝑟𝑠𝑜𝑙𝑎𝑡𝑒𝑠𝑡

• oauth2:scope:update Update a scope.

• oauth2:scope:delete Delete a scope.

• oauth2:scope:list List all scopes.

• oauth2:public-key:create Create the public/private key record for the given client. This data is used
to sign JWT access tokens. Each client may have only one key pair.

• oauth2:public-key:delete Remove the key pair public key from a client.

• oauth2:jwt:create Create a new JWT for a given client. This JWT will be used by an oauth2 connection
requesting a grant_type of urn:ietf:params:oauth:grant-type:jwt-bearer. Creating the JWT
puts the oauth2 connection request’s public key in place in the OAuth2 tables.

• oauth2:jwt:delete Delete a JWT.

• oauth2:jwt:list List all JWT.

For the connecting side of JWT, zf-oauth2-client provides a command line tool to generate a JWT reqeust. See also
http://bshaffer.github.io/oauth2-server-php-docs/grant-types/jwt-bearer/

20 Capítulo 6. OAuth2 Adapter Console Management

https://github.com/API-Skeletons/zf-oauth2-client
http://bshaffer.github.io/oauth2-server-php-docs/grant-types/jwt-bearer/

CAPÍTULO 7

Hydrator Strategies

api-skeletons/zf-doctrine-hydrator

A collection of hydrator strategies for phpro/zf-doctrine-hydration-module written for use with zfcampus/zf-apigility-
doctrine

Installation

Installation of this module uses composer. For composer documentation, please refer to getcomposer.org:

composer require api-skeletons/zf-doctrine-hydrator "*"

Add this module to your application’s configuration:

'modules' => array(
...
'ZF\Doctrine\Hydrator',

),

StrategyCollectionExtract

Extract a collection. Often when this is used the entities in the collection have a many to one relationship with the
entity the collection belongs to. In this case it is recommended you use the EntityLink for the parent on the child.

StrategyCollectionLink

This strategy will replace a collection with just a self link to the collection. It uses zfcampus/zf-doctrine-querybuilder
to create a query for just the collection data.

21

https://github.com/api-skeletons/zf-doctrine-hydrator
https://github.com/phpro/zf-doctrine-hydration-module
https://github.com/zfcampus/zf-apigility-doctrine)
https://github.com/zfcampus/zf-apigility-doctrine)
http://getcomposer.org/
https://github.com/API-Skeletons/zf-doctrine-querybuilder

doctrine-in-apigility-docs𝑝𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛, 𝑉 𝑒𝑟𝑠𝑜𝑙𝑎𝑡𝑒𝑠𝑡

StrategyEntityLink

Will replace an entity with just a self link to the entity. Use when a child is part of a collection referenced by the parent
and the parent is a property of the child.

How to use these hydration strategies

In your configuration for your Doctrine in Apigility API the doctrine-hydrator section add a strategy to an
entity. In this example an Artist is a member of a Band which, by example, is a many to one relationship (an artist can
only have one band):

'doctrine-hydrator' => array(
'DatabaseApi\\V1\\Rest\\Album\\SongHydrator' => array(

'entity_class' => 'Database\\Entity\\Song',
'object_manager' => 'doctrine.entitymanager.orm_default',
'by_value' => true,
'use_generated_hydrator' => true,

),
'DatabaseApi\\V1\\Rest\\Album\\AlbumHydrator' => array(

'entity_class' => 'Database\\Entity\\Album',
'object_manager' => 'doctrine.entitymanager.orm_default',
'by_value' => true,
'strategies' => array(

'artist' => 'ZF\Doctrine\Hydrator\Strategy\EntityLink',
'song' => 'ZF\Doctrine\Hydrator\Strategy\CollectionLink',

),
'use_generated_hydrator' => true,

),
'DatabaseApi\\V1\\Rest\\Artist\\ArtistHydrator' => array(

'entity_class' => 'Database\\Entity\\Artist',
'object_manager' => 'doctrine.entitymanager.orm_default',
'by_value' => true,
'strategies' => array(

'album' => 'ZF\Doctrine\Hydrator\Strategy\CollectionExtract',
),
'use_generated_hydrator' => true,

),

When an Artist is queried all Albums for the Artist will be returned. For each Album the Artist will be returned only
as a self link. The result of a call to https://api/artist/1 will look like:

{
"id": 1,
"name": "Soft Cell",
"_embedded": {

"album": [
{

"id": 1,
"name": "Non-Stop Erotic Cabaret",
"_embedded": {

"artist": {
"_links": {

"self": "https://api/artist/1"
}

},

22 Capítulo 7. Hydrator Strategies

doctrine-in-apigility-docs𝑝𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛, 𝑉 𝑒𝑟𝑠𝑜𝑙𝑎𝑡𝑒𝑠𝑡

"song": {
"_links": {

"self": "https://api/song?filter%5B0%5D%5Bfield%5D=album&
→˓filter%5B0%5D%5Btype%5D=eq&filter%5B0%5D%5Bvalue%5D=1"

}
}

},
"_links": {

"self": "https://api/album/1"
}

}
],

},
"_links": {

"self": "https://api/artist/1"
}

}

7.5. How to use these hydration strategies 23

doctrine-in-apigility-docs𝑝𝑡𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛, 𝑉 𝑒𝑟𝑠𝑜𝑙𝑎𝑡𝑒𝑠𝑡

24 Capítulo 7. Hydrator Strategies

CAPÍTULO 8

Filtering and Sorting

zfcampus/zf-doctrine-querybuilder

This library provides query builder directives from array parameters. This library was designed to apply filters from
an HTTP request to give an API fluent filter and order-by dialects.

This library implements rich filter and sorting access to developers implementing your API.

25

https://github.com/zfcampus/zf-doctrine-querybuilder

	Introduction
	When should you use Doctrine in Apigility?

	About
	Authentication
	Authorization
	OAuth2 Adapter
	Entity Relationship Diagram
	Application Configuration
	Module Configuration
	User Entity Configuration
	Events
	zf-doctrine-apigility Integration
	Override Default Entities
	Multiple OAuth2 Instances
	Add-Ons

	OAuth2 Adapter Console Management
	About
	Installation
	Console Routes

	Hydrator Strategies
	Installation
	StrategyCollectionExtract
	StrategyCollectionLink
	StrategyEntityLink
	How to use these hydration strategies

	Filtering and Sorting

