
PROJECT_NAME Documentation
Release 0.1.0

AUTHOR

Feb 07, 2018

Contents

1 Contents 3
1.1 Quick Start . 3
1.2 Features . 4
1.3 Setup Options . 9
1.4 JBServer jbh-hooks . 11
1.5 API . 14

i

ii

PROJECT_NAME Documentation, Release 0.1.0

JBConnect - a tightly integrated analysis framework for JBrowse

JBrowse does not require JBConnect to operate.

JBConnect is a sails.js application and provides a job execution engine (kue).

JBConnect can be extended with jbh-hook modules that extend both server and client-ends in a single package. (see:
Installing JBServer jbh-hooks and JBServer jbh-hooks)

JBServer provides the following features:

Job queue execution engine (kue)
Tight Integration with JBrowse client
RESTful APIs (Blueprints)
Database ORM, Any Database, MySql, PostgreSQL Mongo, Redis, local (Waterline)
Express-based Compatible routes & Middleware
Socket.io - sub/pub, WebSockets, Auto Integrate Models
Passport.js - role-based security, access control, OAuth
Extensible plugin framework based on Sails.js Installable Hooks
Grunt Customizable asset workflow, LESS, SASS, Stylus

Contents 1

http://sailsjs.com/
https://www.npmjs.com/package/kue

PROJECT_NAME Documentation, Release 0.1.0

2 Contents

CHAPTER 1

Contents

1.1 Quick Start

The quick start instructions demonstrate installing JBServer with JBrowse loaded as a an NPM module (since JBServer
is generally intended to be a companion of JBrowse. JBrowse may also be installed in a separate directory. (See
JBrowse Installed In Separate Directory.)

1.1.1 Pre-Install

JBServer requires redis as a pre-requisite, which is only used by the queue framework (kue).

Install and run redis

yum install redis
redis-server

1.1.2 Install

Install the JBServer and JBrowse. jb_setup.js ensures the sample data is loaded.

git clone http://github.com/gmod/jbserver
cd jbserver
npm install

1.1.3 Run

Launch the server.

sails lift

From a web browser, access the application.

3

https://redis.io/
https://www.npmjs.com/package/kue

PROJECT_NAME Documentation, Release 0.1.0

http://localhost:1337/jbrowse

The default username/password: juser/password

1.2 Features

1.2.1 JBConnect is a Sails.js application

JBConnect utilizes Sails.js, provideing the following features:

Javascript (NODE-based)
Blueprints Auto-generate CRUD APIs, ESTful APIs, Socket.io (events)
Waterline ORM, Any Database, MySql, PostgreSQL Mongo, Redis, local
Express-based Compatible routes & Middleware
Socket.io sub/pub, WebSockets, Auto Integrate Models
Passport.js role-based security, access control, OAuth
Installable Hooks (jbh-*), Extensible plugin framework
Grunt Customizable asset workflow, LESS, SASS, Stylus
Front-End Agnostic Angular, backbone, bootstrap, ember, . . .

Directory Layout

JBConnect project
api Standard sails API layout
assets contains client accessible assets
bin Utilities
config Configuration files.

globals.js Config file for module
libroutes.js Library Routes

data Contains the local database file
localDiskDb.db Local database file

docs Documentation
genapi-rst jsdoc generated rst files

plugins Client-side Plugins
JBClient Client plugin

test Test
views View pages
Gruntfile.js Grunt config
jbutil JBServer Utility
package.json

jbutil Command

jbutil is a setup/configuration utility for JBConnect. jbh-hook can extend jbutil command options. (see: jbs-
hooks-extend)

This example shows that jbh-jblast adds a number of commands to jbutil

$./jbutil --help
Usage: jbutil [OPTION]

--config display merged config
--blastdbpath=PATH (jblast) existing database path

4 Chapter 1. Contents

PROJECT_NAME Documentation, Release 0.1.0

--setupworkflows (jblast) [install|<path>] "install" project wf, or specify .
→˓ga file

--setuptools (jblast) setup jblast tools for galaxy
--setupdata (jblast) setup data and samples
--setupindex (jblast) setup index.html in the jbrowse directory
--setuphistory setup history

-h, --help display this help

Queue Framework

JBConnect uses Kue as the basis for the queue framework. However, Kue is encapsulated in the Job model/controller.
Since Kue requires redis database, redis server must be running. An integrated job panel is available when the JBClient
plugin is active. (see: JBClient Plugin)

For diagnostic purposes, a Kue utility can be used to view/manage the Kue database content: http://
localhost:1337/kue

This route can be disabled with in config/http.js.

Configuration

JBrowse configurations are in config/globals.js

jbrowse: {
jbrowseRest: "http://localhost:1337", // path accessible by web browser
jbrowsePath: jbPath, // or point to jbrowse directory (ie.

→˓"/var/www/jbrowse/")
routePrefix: "jbrowse", // jbrowse is accessed with http://

→˓<addr>/jbrowse
dataSet: [

{
dataPath: "sample_data/json/volvox" // registered datasets.

}
]

}

Client-Side Plugins

Client-side plugins are defined in the plugins directory. Plugins will automatically be accessible by the client side.
However, they need to be configured in the plugins: section of the particular dataset in JBrowse trackList.json.

Plugin routes are virtual routes With respect to the client side, they appear in the client-side’s plugin directory only
when the server is lifted.

Library Routes

libroutes maps dependancy routes for client-side access. These provide access to modules that are required for use by
the client-side plugins or other client-side code. The framework looks for libroutes.js in jbh- (hook modules), in their
respective config directories

For example: for the module jquery, The module is installed with ‘npm install jquery’ The mapping the mapping
‘jquery’: ‘/jblib/jquery’ makes the jquery directory accessible as /jblib/jquery from the client side.

1.2. Features 5

https://automattic.github.io/kue/
https://redis.io/

PROJECT_NAME Documentation, Release 0.1.0

Library Routes are virtual routes, in that they only exist when the server is lifted. They are virtually mapped to their
respective locations in the node_modules directory.

config/libroutes.js:

module.exports = {
lib: {

'jquery.mb.extruder': '/jblib/mb.extruder',
'jQuery-ui-Slider-Pips': '/jblib/slider-pips',
'jquery-ui-dist': '/jblib/jquery-ui'

}
};

Standalone Register / Login / Logout Routes

Stand-alone routes allow for basic register/login/logout functionality free from the JBrowse interface.

Stand-alone interfaces use bootstrap

Register: http://<address>:1337/register

Login: http://<address>:1337/login

6 Chapter 1. Contents

http://getbootstrap.com/

PROJECT_NAME Documentation, Release 0.1.0

Logout: http://<address>:1337/logout

Get Login State: http://<address>:1337/loginstate

The routes are defined in config/routes.js.

Login/Logout Panel

Login Panel

Loguot Panel

1.2. Features 7

PROJECT_NAME Documentation, Release 0.1.0

Job Queue Panel

JBConnect uses Kue as the queue framework. Since Kue requires redis database, redis server must be running. An
integrated job panel is available when the JBClient plugin is active. (see: JBClient Plugin)

Integrated Job Panel:

8 Chapter 1. Contents

PROJECT_NAME Documentation, Release 0.1.0

Jservice Framework

todo

Test Framework

Test framework uses

• Mocha for unit test

• Nightwatch for end-to-end, supporting phantomjs, selenium and online service such as browserstack.

• Istanbul for coverage

To execute

npm test

by default nightwatch is setup for phantomjs. Selenium requires running an additional selenium server

package.json:

"scripts": {
"test": "nyc node ./node_modules/mocha/bin/mocha test/bootstrap.test.js test/

→˓integration/**/*.test.js test/e2e/**/*.test.js --nightwatch-test phantomjs",
},

The option --nightwatch-test can be:

• phantomjs - runs client tests with phantomjs

• selenium - runs client tests with selenium

• browserstack - runs client test with selenium through remote browserstack account.

Documentation Framework

For integrated documentation, JSdoc3 is used to generate API docs from code with jsdoc-sphinx, a jsdoc template that
generates RestructuredText (RST) and Sphinx. This enables support for readthedocs.

See: RST/Sphinx Cheatsheet

npm run gendocs

1.3 Setup Options

1.3.1 JBrowse Installed In Separate Directory

The JBrowse directory can also be configured manually. (See jbs-globals-js)

1.3.2 Configuration Files

A number of configuration files are in the ./config directory. A few of the more important ones (ones that JB-
Sserver touches) are described mentioned in the table below. See Sails Configuration for a better description of the
configuration framework.

1.3. Setup Options 9

http://usejsdoc.org/
https://readthedocs.org/
http://openalea.gforge.inria.fr/doc/openalea/doc/_build/html/source/sphinx/rest_syntax.html
http://sailsjs.com/documentation/reference/configuration

PROJECT_NAME Documentation, Release 0.1.0

jbs-globals-js global configuration file
http.js custom middleware and /jbrowse route is setup here.
passport.js, poli-
cies.js

passport framework and auth policies config

routes.js various route config
connections.js choice of database - local, mongo, mysql, . . . (we use local by default.) The DB file is in the

./data/localDiskDb.db.

globals.js

Modify the configuration file as necessary.

To view aggregate configuration: ./jbutil --config

The aggregate config file is the merged config of JBServer and its installed jbh- (hook) modules.

Edit config file: nano config/globals.js

jbrowse: {
jbrowseRest: "http://localhost:1337", // path accessible by web browser
jbrowsePath: jbPath, // or point to jbrowse directory (ie.

→˓"/var/www/jbrowse/")
routePrefix: "jbrowse", // jbrowse is accessed with http://

→˓<addr>/jbrowse
dataSet: [

{
dataPath: "sample_data/json/volvox" // datasets.

}
]

}

1.3.3 Installing JBServer jbh-hooks

A ‘JBServer Hook’ is basically an installable sails hook with specific methods for extending JBServer. JBServer
hooks must have the prefix jbh- prepended to the name. For example: jbh-jblast. When the hook is installed (i.e.
npm install jbh-jblast). JBServer will automatically integrate a number of features of the hook directly into
JBServer upon sails lift.

The jbh- hook can extend JBServer in the following ways:

• Extend models, controllers, policies and services

• Integrated client-side JBrowse plugins injection

• Integrated client-side npm module injection

• Integrated configuration tool (jbutil)

• Aggregated configurations

Installing a hook:

npm install jbh-<hook name> (i.e. jbh-jblast)

For detailed info on jbh-hooks, see: JBServer jbh-hooks

10 Chapter 1. Contents

PROJECT_NAME Documentation, Release 0.1.0

1.3.4 JBClient Plugin

JBrowse GUI intetrated interfaces are available when the JBClient plugin is configured on in the JBrowse client.

To enable integrated features within the JBrowse app, modify the dataset’s trackList.json, adding JBClient
plugin to the configuration.

Note: the JBClient plugin is not physically in the JBrowse plugin directory. It is available as a route.

"plugins": [
"JBClient", <-----
"NeatHTMLFeatures",
"NeatCanvasFeatures",
"HideTrackLabels"

],

1.3.5 Jservice Configuration

Jservices are a special type of service that are used to extend RESTful api service and serve processing for job opera-
tions.

Configuration is defined in config/globals under the jbrowse section under service.

A definition: <indexname>: {name: <servicename>, type:<type>, alias:<alias> }

where:

• indexname - is the reference name service (generally the same as servicename)

• servicename - is the name of the service reference the service code in api/services.

• type - is the type of service. either “workflow” or “service”

• alias - (optional) if specified, the service can also be referenced by the alias name.

jservice type:

• workflow - service can serve job execution

• service - service only serves RESTful interfaces

// list of services that will get registered.
services: {

'basicWorkflowService': {name: 'basicWorkflowService', type: 'workflow',
→˓alias: "jblast"},

'filterService': {name: 'filterService', type: 'service'},
'entrezService': {name: 'entrezService', type: 'service'}

},

1.4 JBServer jbh-hooks

A ‘JBServer jbh-hook’ is an installable sails hook with specific methods for extending JBServer. jbh-hooks must have
the prefix jbh- prepended to the name. For example: jbh-jblast. When the hook is installed (i.e. npm install
jbh-jblast). JBServer will automatically integrate a number of features of the hook directly into JBServer upon
sails lift.

1.4. JBServer jbh-hooks 11

http://sailsjs.com/documentation/concepts/extending-sails/hooks/installable-hooks

PROJECT_NAME Documentation, Release 0.1.0

jbh-* Integration * Models, Controller, Policies, Services (via marlinspikes) * jbutil command extensions * client-side
plugin exposure, and client module dependencies * routes via jservice framework or via controllers * job jservice
framework

These features are described below.

1.4.1 Directory Layout

This is the standard directory layout of a jbh- module

jbh- hook project
api Standard Sails modules layout

controllers
hooks

Myhook
index.js The main hook

models
policies
services

bin
jbutil-ext.js jbutil extension module

config
globals.js Config file for module
libroutes.js Library Routes

plugins Client-side Plugins
PluginA

Gruntfile.js
package.json

1.4.2 package.json

Standard sails hooks should contain the following section in the package.json

"sails": {
"isHook": true,
"hookName": "jblast"

}

1.4.3 Configurations (globals.js)

This file contains config options that are specific to the hook module. These config options are merged with other jbh-
hooks and the JBServer globals.js.

From JBServer, use ./jbutil --config to see the aggregated config.

1.4.4 Configuration (config.js)

This config file resides in the root of the app and can override config/globals.js and any config/globals.js from hooks
that may be installed.

12 Chapter 1. Contents

PROJECT_NAME Documentation, Release 0.1.0

1.4.5 Library Routes (libroutes)

libroutes maps dependancy routes for client-side access. These are routes to modules that are required for use by the
client-side plugins or other client-side code. The framework looks for libroutes.js in jbh- (hook modules), in their
respective config directories

For example: for the module jquery, The module is installed with ‘npm install jquery’ The mapping the mapping
‘jquery’: ‘/jblib/jquery’ makes the jquery directory accessible as /jblib/jquery from the client side.

libroutes.js

module.exports = {
lib: {

'jquery.mb.extruder': '/jblib/mb.extruder',
'jQuery-ui-Slider-Pips': '/jblib/slider-pips',
'jquery-ui-dist': '/jblib/jquery-ui'

}
};

1.4.6 Client-Side Plugins

Client-side plugins in this directory are made available on the JBrowse client side as routes in the JBrowse plugin
directories upon sails lift.

1.4.7 Extending jbutil

jbutil-ext.js is the file that is read by JBServer and integrates additional command options into jbutil (the JBServer
utility).

• it extends new command line options

• it extends the help (i.e. ./jbutil --help)

1.4.8 Sails Module Layout

This is the standard sails directory layout for modules of a sails hook. The framework uses marlinspike to integrate
controllers, models, policies, and services into JBServer.

ref: marlinspike

jbh- project
api Standard Sails modules layout

controllers
hooks
models
policies
services

1.4.9 The Main Hook

index.js should not be modified.

This core fragment starts the initialization of JBConnect.

1.4. JBServer jbh-hooks 13

PROJECT_NAME Documentation, Release 0.1.0

1.4.10 config Directory

This directory contain config files for the hook. If the name matches it’s counterpart file in JBServer’s config directory,
the configurations similar files will be merged.

1.4.11 JService Framework

todo

1.5 API

1.5.1 Module: TrackController

Local Navigation

• Description

• Function: get

• Function: add

• Function: modify

• Function: remove

Description

REST interaces for TrackController

this is a inline code: a = b + c and txt after it.

Test italics and bold and monspaced text.

Function: get

enumerate tracks or search track list.

Get all tracks:

GET /track/get

Get filtered tracks by dataset:

GET /track/get?id=1 where id is the dataset id

GET /track/get?pat=sample_data/json/volvox, where path is the dataset path

get(req, res)

Arguments

• req (object) – punctuary

• res (object) – postuary

14 Chapter 1. Contents

PROJECT_NAME Documentation, Release 0.1.0

Function: add

This is a description wonderful eggs hatch into lovely swans that lay golden eggs.

A B
C D

This is a italics in a function description:

{
var x = 1;
function abc(z) {

console.log("z=",z);
}

}

add(req, res)

Arguments

• req (object) – zingle mingle

Code block in param description:

{
wifi: "sparkle",
swindle: true

}

Arguments

• res (object) – sizzle

codeblock 2:

{
apple: "crunch",
pear: "green"

}

Function: modify

Description of Modify

var x = 1;

modify(req, res)

Arguments

• req (object) – very interesting

A B
C D

Arguments

1.5. API 15

PROJECT_NAME Documentation, Release 0.1.0

• res (object) – nothing else follows

Function: remove

A fine thing to remove

A link to remember: Stack Overflow.

method 2 - Test hyperlink: SO.

method 3 - A hyper link in a new tab: .

remove(req, res)

Arguments

• req (object) – fizzle

• res (object) – frazzle

16 Chapter 1. Contents

http://stackoverflow.com/
http://stackoverflow.com/

Index

A
add() (built-in function), 15

G
get() (built-in function), 14

M
modify() (built-in function), 15

R
remove() (built-in function), 16

17

	Contents
	Quick Start
	Features
	Setup Options
	JBServer jbh-hooks
	API

