
Docflow Documentation
Release 0.2 beta

Kiran Jonnalagadda

Sep 27, 2017

Contents

1 Introduction 3

2 Usage 5

3 API Documentation 9
3.1 Package docflow . 9

4 Indices and tables 13

i

ii

Docflow Documentation, Release 0.2 beta

This is the documentation for version 0.2, generated Sep 27, 2017.

Contents

• Welcome to Docflow’s documentation!

– Introduction

– Usage

– API Documentation

* Package docflow

– Indices and tables

Contents 1

Docflow Documentation, Release 0.2 beta

2 Contents

CHAPTER 1

Introduction

Docflow is an implementation of document workflows in Python. A workflow defines states and transitions. A state
is an “end point” associated with a document. A transition is a path from one state to another state (unidirectional).
Docflow was inspired by repoze.workflow but aspires to be a framework-independent implementation.

A document in Docflow is any Python object. The document’s workflow is defined separately from the document.
This is a useful distinction in MVC or MTV-based web applications where the model is kept distinct from the view.
The model is expected to be a dumb container of data while the view contains business logic. Workflows sit between
view and models, controlling the view’s view of the model.

3

http://docs.repoze.org/workflow/

Docflow Documentation, Release 0.2 beta

4 Chapter 1. Introduction

CHAPTER 2

Usage

Documents can be defined like any other Python object:

>>> class MyDocument:
... def __init__(self):
... self.status = 0
...
... doc1 = MyDocument()

Documents can be simple dictionaries:

>>> doc2 = {'title': 'My Document', 'status': 0}

Or complex entities such as SQLAlchemy models:

>>> from sqlalchemy import Column, Integer, String
>>> from sqlalchemy.ext.declarative import declarative_base
>>> Base = declarative_base()
>>> class DatabaseDocument(Base):
... __tablename__ = 'document'
... id = Column(Integer, primary_key=True)
... title = Column(String(200))
... status = Column(Integer)
...
>>> doc3 = DatabaseDocument()

The important part is that the object must have an attribute or key that holds the current state, like status in all three
examples. The state value can be any hashable Python object, typically an integer or string. The workflow defines all
possible states for this document, the value that represents this state, and the transitions between states:

from docflow import DocumentWorkflow, WorkflowState, WorkflowStateGroup

class MyDocumentWorkflow(DocumentWorkflow):
"""
Workflow for MyDocument
"""

5

Docflow Documentation, Release 0.2 beta

Optional name for this workflow
name = None

Attribute in MyDocument to store status in.
Use ``state_key`` if MyDocument is a dictionary,
as is typical with NoSQL JSON-based databases.
state_attr = 'status'

Define a state. First parameter is the state tracking value,
stored in state_attr.
draft = WorkflowState(0, title="Draft", description="Only owner can see it

→˓")
pending = WorkflowState(1, title="Pending", description="Pending review")
published = WorkflowState(2, title="Published", description="Published")
withdrawn = WorkflowState(3, title="Withdrawn", description="Withdrawn by owner")
rejected = WorkflowState(4, title="Rejected", description="Rejected by reviewer

→˓")

Define a state group (with either values or WorkflowState instances)
not_published = WorkflowStateGroup([0, pending], title="Not Published")

def permissions(self):
"""
Return permissions available to current user. A permission can be any

→˓hashable token.
"""
if self.context and self.context.get('is_admin'):

return ['can_publish']
else:

return []

Define a transition. There can be multiple transitions connecting any two
→˓states.

Parameters: newstate, permission, title, description
@draft.transition(pending, None, title='Submit')
def submit(self):

"""
Change workflow state from draft to pending.
"""
Do something here
...
pass # State will be changed automatically if we don't raise an exception

@pending.transition(published, 'can_publish', title="Publish")
@withdrawn.transition(published, 'can_publish', title="Publish")
def publish(self):

"""
Publish the document.
"""
Also do something here
...
pass

Workflows can extend other workflows to add additional states:

class MyDocumentWorkflowExtraState(MyDocumentWorkflow):
expired = WorkflowState(5, title="Expired")

6 Chapter 2. Usage

Docflow Documentation, Release 0.2 beta

Or override settings:

class MyDocumentWorkflowDict(MyDocumentWorkflow):
state_attr = None
state_key = 'status'

Workflows take an optional context parameter when being initialized with a document. This context is available to
the permissions() method to determine if the caller has permission to make the transition. Once a workflow has
been defined, usage is straightforward:

>>> wf = MyDocumentWorkflow(doc1)
>>> wf.state is wf.draft
True
>>> wf.submit() # Call a transition
>>> wf.state is wf.pending
True
>>> wf.draft() # Check if state is active
False
>>> wf.pending()
True

As a convenience mechanism, workflows can be linked to document classes, making it easier to retrieve the workflow
for a given document:

class MyDocument(object):
def __init__(self):

self.status = 0

class MyDocumentWorkflow(DocumentWorkflow):
state_attr = 'status'

MyDocumentWorkflow.apply_on(MyDocument)

After this, the workflow for a document becomes available with the workflow method:

doc = MyDocument()
wf = doc.workflow()
wf = doc.workflow('workflow-name')

The workflow method does not provide a way to supply a context, so it must be added later, if required:

wf = doc.workflow()
wf.context = context

The apply_on() method raises WorkflowException if the target class already has a workflow with the same
name.

7

Docflow Documentation, Release 0.2 beta

8 Chapter 2. Usage

CHAPTER 3

API Documentation

Package docflow

class DocumentWorkflow(document)
The following attributes and methods must be overriden by subclasses of DocumentWorkflow .

name
The name of this workflow, default None. Workflows can be referred to by name when multiple workflows
exist for a single document class.

state_attr
Refers to the attribute on the document that contains the state value. Default None.

state_key
If state_attr is None, state_key refers to the dictionary key in the document containing the state
value. Default None.

state_get(document)

state_set(document, value)
If both state_attr and state_key are None, the state_get() and state_set() methods
are called with the document as a parameter.

state
Currently active workflow state.

permissions([context])
Permissions available to caller in the given context, returned as a list of tokens.

all_states()
Standard method: returns a dictionary of all states in this workflow.

transitions([context])
Standard method: returns a dictionary of available transitions out of the current state.

9

Docflow Documentation, Release 0.2 beta

apply_on(docclass)
Class method. Applies this workflow to the specified document class. The workflow can then be retrieved
by calling the workflow method on the document.

class WorkflowState(value[, title, description])
Define a workflow state as an attribute on a DocumentWorkflow .

Parameters

• value – Value representing this workflow state. Can be any hashable Python object. Usu-
ally an integer or string

• title – Optional title for this workflow state

• description – Optional description for this workflow state

transition(tostate, permission[, title, description])
Decorator for a method on DocumentWorkflow that handles the transition from this state to another.
The decorator will test for correct state and permission, and will transition the document’s state if the
method returns without raising an exception.

The method must take context as its first parameter. The context is passed to permissions() to
check for permission.

Parameters

• tostate – Destination WorkflowState

• permission – Token representing permission required to call the transition. Must be
present in the list returned by permissions()

• title – Optional title for this transition

• description – Optional description for this transition

Raises

• WorkflowTransitionException – If this transition is called when in some other
state

• WorkflowPermissionException – If permission is not in permissions()

class WorkflowStateGroup(values[, title, description])
Like WorkflowState but lists more than one value. Useful to test for the current state being one of many.
For example:

>>> class MyWorkflow(DocumentWorkflow):
... draft = WorkflowState(0, title="Draft")
... pending = WorkflowState(1, title="Pending")
... published = WorkflowState(2, title="Published")
... not_published = WorkflowStateGroup([0, pending], title="Not Published")
...
>>> wf = MyWorkflow(doc)
>>> wf.draft()
True
>>> wf.pending()
False
>>> wf.published()
False
>>> wf.not_published()
True

WorkflowStateGroup instances cannot have transitions.

10 Chapter 3. API Documentation

Docflow Documentation, Release 0.2 beta

Parameters

• values (list) – Status values or instances of WorkflowState

• title – Optional title for this workflow state

• description – Optional description for this workflow state

3.1. Package docflow 11

Docflow Documentation, Release 0.2 beta

12 Chapter 3. API Documentation

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

13

Docflow Documentation, Release 0.2 beta

14 Chapter 4. Indices and tables

Index

A
all_states() (DocumentWorkflow method), 9
apply_on() (DocumentWorkflow method), 9

D
DocumentWorkflow (built-in class), 9

N
name (DocumentWorkflow attribute), 9

P
permissions() (DocumentWorkflow method), 9

S
state (DocumentWorkflow attribute), 9
state_attr (DocumentWorkflow attribute), 9
state_get() (DocumentWorkflow method), 9
state_key (DocumentWorkflow attribute), 9
state_set() (DocumentWorkflow method), 9

T
transition() (WorkflowState method), 10
transitions() (DocumentWorkflow method), 9

W
WorkflowState (built-in class), 10
WorkflowStateGroup (built-in class), 10

15

	Introduction
	Usage
	API Documentation
	Package docflow

	Indices and tables

