

Welcome to Docflow’s documentation!

This is the documentation for version 0.2, generated Sep 27, 2017.

Contents

	Welcome to Docflow’s documentation!
	Introduction

	Usage

	API Documentation
	Package docflow

	Indices and tables

Introduction

Docflow is an implementation of document workflows in Python. A workflow
defines states and transitions. A state is an “end point” associated with
a document. A transition is a path from one state to another state
(unidirectional). Docflow was inspired by repoze.workflow [http://docs.repoze.org/workflow/] but aspires
to be a framework-independent implementation.

A document in Docflow is any Python object. The document’s workflow is
defined separately from the document. This is a useful distinction in MVC or
MTV-based web applications where the model is kept distinct from the view.
The model is expected to be a dumb container of data while the view contains
business logic. Workflows sit between view and models, controlling the view’s
view of the model.

Usage

Documents can be defined like any other Python object:

>>> class MyDocument:
... def __init__(self):
... self.status = 0
...
... doc1 = MyDocument()

Documents can be simple dictionaries:

>>> doc2 = {'title': 'My Document', 'status': 0}

Or complex entities such as SQLAlchemy models:

>>> from sqlalchemy import Column, Integer, String
>>> from sqlalchemy.ext.declarative import declarative_base
>>> Base = declarative_base()
>>> class DatabaseDocument(Base):
... __tablename__ = 'document'
... id = Column(Integer, primary_key=True)
... title = Column(String(200))
... status = Column(Integer)
...
>>> doc3 = DatabaseDocument()

The important part is that the object must have an attribute or key that
holds the current state, like status in all three examples. The state
value can be any hashable Python object, typically an integer or string. The
workflow defines all possible states for this document, the value that
represents this state, and the transitions between states:

from docflow import DocumentWorkflow, WorkflowState, WorkflowStateGroup

class MyDocumentWorkflow(DocumentWorkflow):
 """
 Workflow for MyDocument
 """

 # Optional name for this workflow
 name = None

 # Attribute in MyDocument to store status in.
 # Use ``state_key`` if MyDocument is a dictionary,
 # as is typical with NoSQL JSON-based databases.
 state_attr = 'status'

 # Define a state. First parameter is the state tracking value,
 # stored in state_attr.
 draft = WorkflowState(0, title="Draft", description="Only owner can see it")
 pending = WorkflowState(1, title="Pending", description="Pending review")
 published = WorkflowState(2, title="Published", description="Published")
 withdrawn = WorkflowState(3, title="Withdrawn", description="Withdrawn by owner")
 rejected = WorkflowState(4, title="Rejected", description="Rejected by reviewer")

 # Define a state group (with either values or WorkflowState instances)
 not_published = WorkflowStateGroup([0, pending], title="Not Published")

 def permissions(self):
 """
 Return permissions available to current user. A permission can be any hashable token.
 """
 if self.context and self.context.get('is_admin'):
 return ['can_publish']
 else:
 return []

 # Define a transition. There can be multiple transitions connecting any two states.
 # Parameters: newstate, permission, title, description
 @draft.transition(pending, None, title='Submit')
 def submit(self):
 """
 Change workflow state from draft to pending.
 """
 # Do something here
 # ...
 pass # State will be changed automatically if we don't raise an exception

 @pending.transition(published, 'can_publish', title="Publish")
 @withdrawn.transition(published, 'can_publish', title="Publish")
 def publish(self):
 """
 Publish the document.
 """
 # Also do something here
 # ...
 pass

Workflows can extend other workflows to add additional states:

class MyDocumentWorkflowExtraState(MyDocumentWorkflow):
 expired = WorkflowState(5, title="Expired")

Or override settings:

class MyDocumentWorkflowDict(MyDocumentWorkflow):
 state_attr = None
 state_key = 'status'

Workflows take an optional context parameter when being initialized
with a document. This context is available to the
permissions() method to determine if the
caller has permission to make the transition. Once a workflow has been
defined, usage is straightforward:

>>> wf = MyDocumentWorkflow(doc1)
>>> wf.state is wf.draft
True
>>> wf.submit() # Call a transition
>>> wf.state is wf.pending
True
>>> wf.draft() # Check if state is active
False
>>> wf.pending()
True

As a convenience mechanism, workflows can be linked to document classes,
making it easier to retrieve the workflow for a given document:

class MyDocument(object):
 def __init__(self):
 self.status = 0

class MyDocumentWorkflow(DocumentWorkflow):
 state_attr = 'status'

MyDocumentWorkflow.apply_on(MyDocument)

After this, the workflow for a document becomes available with the
workflow method:

doc = MyDocument()
wf = doc.workflow()
wf = doc.workflow('workflow-name')

The workflow method does not provide a way to supply a
context, so it must be added later, if required:

wf = doc.workflow()
wf.context = context

The apply_on() method raises
WorkflowException if the target class
already has a workflow with the same name.

API Documentation

Package docflow

	
class DocumentWorkflow(document)

	The following attributes and methods must be overriden by subclasses of
DocumentWorkflow.

	
name

	The name of this workflow, default None. Workflows can be referred
to by name when multiple workflows exist for a single document class.

	
state_attr

	Refers to the attribute on the document that contains the state value.
Default None.

	
state_key

	If state_attr is None, state_key refers to the
dictionary key in the document containing the state value. Default
None.

	
state_get(document)

	

	
state_set(document, value)

	If both state_attr and state_key are None, the
state_get() and state_set() methods are called with
the document as a parameter.

	
state

	Currently active workflow state.

	
permissions([context])

	Permissions available to caller in the given context, returned
as a list of tokens.

	
all_states()

	Standard method: returns a dictionary of all states in this workflow.

	
transitions([context])

	Standard method: returns a dictionary of available transitions out of
the current state.

	
apply_on(docclass)

	Class method. Applies this workflow to the specified document class.
The workflow can then be retrieved by calling the workflow method
on the document.

	
class WorkflowState(value[, title, description])

	Define a workflow state as an attribute on a DocumentWorkflow.

	Parameters:	
	value – Value representing this workflow state. Can be any
hashable Python object. Usually an integer or string

	title – Optional title for this workflow state

	description – Optional description for this workflow state

	
transition(tostate, permission[, title, description])

	Decorator for a method on DocumentWorkflow that handles the
transition from this state to another. The decorator will test for
correct state and permission, and will transition the document’s state
if the method returns without raising an exception.

The method must take context as its first parameter. The
context is passed to permissions() to check
for permission.

	Parameters:	
	tostate – Destination WorkflowState

	permission – Token representing permission required to call the
transition. Must be present in the list returned by
permissions()

	title – Optional title for this transition

	description – Optional description for this transition

	Raises:	
	WorkflowTransitionException – If this transition is called
when in some other state

	WorkflowPermissionException – If permission is not in
permissions()

	
class WorkflowStateGroup(values[, title, description])

	Like WorkflowState but lists more than one value. Useful to
test for the current state being one of many. For example:

>>> class MyWorkflow(DocumentWorkflow):
... draft = WorkflowState(0, title="Draft")
... pending = WorkflowState(1, title="Pending")
... published = WorkflowState(2, title="Published")
... not_published = WorkflowStateGroup([0, pending], title="Not Published")
...
>>> wf = MyWorkflow(doc)
>>> wf.draft()
True
>>> wf.pending()
False
>>> wf.published()
False
>>> wf.not_published()
True

WorkflowStateGroup instances cannot have transitions.

	Parameters:	
	values (list) – Status values or instances of WorkflowState

	title – Optional title for this workflow state

	description – Optional description for this workflow state

Indices and tables

	Index

	Module Index

	Search Page

Index

 A
 | D
 | N
 | P
 | S
 | T
 | W

A

 	
 	all_states() (DocumentWorkflow method)

 	
 	apply_on() (DocumentWorkflow method)

D

 	
 	DocumentWorkflow (built-in class)

N

 	
 	name (DocumentWorkflow attribute)

P

 	
 	permissions() (DocumentWorkflow method)

S

 	
 	state (DocumentWorkflow attribute)

 	state_attr (DocumentWorkflow attribute)

 	
 	state_get() (DocumentWorkflow method)

 	state_key (DocumentWorkflow attribute)

 	state_set() (DocumentWorkflow method)

T

 	
 	transition() (WorkflowState method)

 	
 	transitions() (DocumentWorkflow method)

W

 	
 	WorkflowState (built-in class)

 	
 	WorkflowStateGroup (built-in class)

 nav.xhtml

 Table of Contents

 		Welcome to Docflow's documentation!

_static/comment-close.png

_static/down-pressed.png

_static/comment-bright.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/minus.png

_static/file.png

