

 Navigation

 	
 index

 	doc_webpack latest documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/doc-webpack/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/doc-webpack/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	doc_webpack latest documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 hot-module-replacement-with-webpack.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

 Note that Hot Module Replacement (HMR) is still an experimental feature.

Introduction

Hot Module Replacement (HMR) exchanges, adds, or removes modules while an application is running without a page reload.

Prerequirements

		Using Plugins: http://webpack.github.io/docs/using-plugins.html

		Code Splitting: http://webpack.github.io/docs/code-splitting.html

		webpack-dev-server: http://webpack.github.io/docs/webpack-dev-server.html

How does it work?

Webpacks adds a small HMR runtime to the bundle, during the build process, that runs inside your app. When the build completes, Webpack does not exit but stays active, watching the source files for changes. If Webpack detects a source file change, it rebuilds only the changed module(s). Depending on the settings, Webpack will either send a signal to the HMR runtime, or the HMR runtime will poll webpack for changes. Either way, the changed module is sent to the HMR runtime which then tries to apply the hot update. First it checks whether the updated module can self-accept. If not, it checks those modules that have required the updated module. If these too do not accept the update, it bubbles up another level, to the modules that required the modules that required the changed module. This bubbling-up will continue until either the update is accepted, or the app entry point is reached, in which case the hot update fails.

From the app view

The app code asks the HMR runtime to check for updates. The HMR runtime downloads the updates (async) and tells the app code that an update is available. The app code asks the HMR runtime to apply updates. The HMR runtime applies the update (sync). The app code may or may not require user interaction in this process (you decide).

From the compiler (webpack) view

In addition to the normal assets, the compiler needs to emit the “Update” to allow updating the previous version to the current version. The “Update” contains two parts:

		the update manifest (json)

		one or multiple update chunks (js)

The manifest contains the new compilation hash and a list of all update chunks (2.).

The update chunks contains code for all updated modules in this chunk (or a flag if a module was removed).

The compiler also makes sure that module and chunk ids are consistent between these builds. It uses a “records” json file to store them between builds (or it stores them in memory).

From the module view

HMR is an opt-in feature, so it only affects modules that contain HMR code. The documentation describes the API that is available in modules. In general, the module developer writes handlers that are called when a dependency of this module is updated. He can also write a handler that is called when this module is updated.

In most cases it’s not mandatory to write HMR code in every module. If a module has no HMR handlers the update bubbles up. This means a single handler can handle an update to a complete module tree. If a single module in this tree is updated, the complete module tree is reloaded (only reloaded not transferred).

From the HMR runtime view (technical)

For the module system runtime is additional code emitted to track module parents and children.

On the management side the runtime supports two methods: check and apply.

A check does an HTTP request to the update manifest. When this request fails, there is no update available. Otherwise the list of updated chunks is compared to the list of currently loaded chunks. For each loaded chunk the corresponding update chunk is downloaded. All module updates are stored in the runtime as update. The runtime switches into the ready state, meaning an update has been downloaded and is ready to be applied.

For each new chunk request in the ready state the update chunk is also downloaded.

The apply method flags all updated modules as invalid. For each invalid module there needs to be a update handler in the module or update handlers in every parent. Else the invalid module bundles up and marks all parents as invalid too. This process continues until no more “bubbling up” occurs. If it bubbles up from an entry point the process fails.

Now all invalid modules are disposed (dispose handler) and unloaded. Then the current hash is updated and all “accept” handlers are called. The runtime switches back to the idle state and everything continues as normal.

Generated files (technical)

The left side represents the initial compiler pass. The right side represents an additional pass with module 4 and 9 updated.

[image: generated update chunks]

What can I do with it?

You can use it in development as a replacement for LiveReload. Actually the webpack-dev-server supports a hot mode which tries to update with HMR before trying to reload the whole page. You only need to add the webpack/hot/dev-server entry point and call the dev-server with --hot.

webpack/hot/dev-server will reload the entire page if the HMR update fails. If you want to reload the page on your own [https://github.com/webpack/webpack/issues/418], you can add webpack/hot/only-dev-server to the entry point instead.

You can also use it in production as an updating mechanism. Here you would need to write your own management code that integrates HMR with your app.

Some loaders already generate modules that are hot-updateable (e.g. the style-loader can exchange a stylesheet). In these cases, you don’t need to do anything special.

What is needed to use it?

A module can only be updated if you “accept” it. So you need to module.hot.accept the module in the parents or the parents of the parents. For example, a router or a subview would be a good place.

If you only want to use it with the webpack-dev-server, just add webpack/hot/dev-server as entry point. Else you need some HMR management code that calls check and apply.

You need to enable records in the Compiler to track module id between processes. (watch mode and the webpack-dev-server keep records in memory, so you don’t need it for development)

You need to enable HMR in the Compiler to let it add the HMR runtime.

What makes it so cool?

		It’s like LiveReload but for every module, so to speak.

		You can use it in production.

		The updates respect your Code Splitting and only download updates for the changed parts of your app.

		You can use it for parts of your application and it doesn’t affect other modules.

		If HMR is disabled all HMR code is removed by the compiler (wrap it in if(module.hot))

Caveats

		It’s experimental and not tested thoroughly.

		Expect some bugs

		Theoretically usable in production, but it maybe too early to use it for something serious

		The module ids need to be tracked between compilations so you need to store them (records)

		Optimizer cannot optimize module ids anymore after the first compilation. Therefore the bundle size is affected a little bit.

		HMR runtime code increases bundle size.

		For production usage additional testing is required to test the HMR handlers. This could be pretty difficult.

Tutorial

To use hot code replacement with webpack you need four things:

		records (--records-path, recordsPath: ...)

		globally enable hot code replacement (HotModuleReplacementPlugin)

		hot replacement code in your code module.hot.accept

		hot replacement management code in your code module.hot.check, module.hot.apply

A small testcase:

/* style.css */
body {
 background: red;
}

/* entry.js */
require("./style.css");
document.write("<input type='text' />");

That’s enough to use hot code replacement with the dev-server.

npm install webpack webpack-dev-server -g
npm install webpack css-loader style-loader
webpack-dev-server ./entry --hot --inline --module-bind "css=style\!css"

The dev server provides in memory records, which is good for development.

The --hot switch enables hot code replacement.

This adds the HotModuleReplacementPlugin. Make sure to use either the --hot flag, or the HotModuleReplacementPlugin in your webpack.config.js, but never both at the same time as in that case, the HMR plugin will actually be added twice, breaking the setup.

There is special management code for the dev-server at webpack/hot/dev-server, which is automatically added by --inline. (You don’t have to add it to your webpack.config.js)

The style-loader already includes hot replacement code.

If you visit http://localhost:8080/bundle you should see the page with a red background and a input box. Type some text into the input box and edit style.css to have another background color.

Voilà... The background updates but without full page refresh. Text and selection in the input box should stay.

Read more about how to write you own hot replacement (management) code: [[hot module replacement]]

Check the example-app [http://webpack.github.io/example-app/] for a demo without coding. (Note: It’s a bit old, so don’t look at the source code, because the HMR API changed a bit in between)

 © Copyright 2016.
 Created using Sphinx 1.3.5.

hot-module-replacement.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

 “Hot Module Replacement” (HMR) is a feature to inject updated modules into the active runtime.

It’s like LiveReload for every module.

HMR is “opt-in”, so you need to put some code at chosen points of your application. The dependencies are handled by the module system.

I. e. you place your hot replacement code in module A. Module A requires module B and B requires C. If module C is updated, and module B cannot handle the update, modules B and C become outdated. Module A can handle the update and new modules B and C are injected.

Examples

Example 1: hot replace request handler of http server

var requestHandler = require("./handler.js");
var server = require("http").createServer();
server.on("request", requestHandler);
server.listen(8080);

// check if HMR is enabled
if(module.hot) {
 // accept update of dependency
 module.hot.accept("./handler.js", function() {
 // replace request handler of server
 server.removeListener("request", requestHandler);
 requestHandler = require("./handler.js");
 server.on("request", requestHandler);
 });
}

Example 2: hot replace css

// addStyleTag(css: string) => HTMLStyleElement
var addStyleTag = require("./addStyleTag");

var element = addStyleTag(".rule { attr: name }");
module.exports = null;

// check if HMR is enabled
if(module.hot) {

 // accept itself
 module.hot.accept();

 // removeStyleTag(element: HTMLStyleElement) => void
 var removeStyleTag = require("./removeStyleTag");

 // dispose handler
 module.hot.dispose(function() {
 // revoke the side effect
 removeStyleTag(element);
 });
}

API

If HMR is enabled for a module module.hot is an object containing these properties:

accept

accept(dependencies: string[], callback: (updatedDependencies) => void) => void
accept(dependency: string, callback: () => void) => void

Accept code updates for the specified dependencies. The callback is called when dependencies were replaced.

accept([errHandler]) => void

Accept code updates for this module without notification of parents. This should only be used if the module doesn’t export anything. The errHandler can be used to handle errors that occur while loading the updated module.

decline

decline(dependencies: string[]) => void
decline(dependency: string) => void

Do not accept updates for the specified dependencies. If any dependencies is updated, the code update fails with code "decline".

decline() => void

Flag the current module as not update-able. If updated the update code would fail with code "decline".

dispose/addDisposeHandler

dispose(callback: (data: object) => void) => void
addDisposeHandler(callback: (data: object) => void) => void

Add a one time handler, which is executed when the current module code is replaced. Here you should destroy/remove any persistent resource you have claimed/created. If you want to transfer state to the new module, add it to data object. The data will be available at module.hot.data on the new module.

removeDisposeHandler

removeDisposeHandler(callback: (data: object) => void) => void

Remove a handler.

This can useful to add a temporary dispose handler. You could i. e. replace code while in the middle of a multi-step async function.

Management API

Also on the module.hot object.

check

check([autoApply], callback: (err: Error, outdatedModules: Module[]) => void

Throws an exceptions if status() is not idle.

Check all currently loaded modules for updates and apply updates if found.

If no update was found, the callback is called with null.

If autoApply is truthy the callback will be called with all modules that were disposed. apply() is automatically called with autoApply as options parameter.

If autoApply is not set the callback will be called with all modules that will be disposed on apply().

apply

apply([options], callback: (err: Error, outdatedModules: Module[]) => void

If status() != "ready" it throws an error.

Continue the update process.

options can be an object containing these options:

		ignoreUnaccepted: If true the update process continues even if some modules are not accepted (and would bubble to the entry point).

status

status() => string

Return one of idle, check, watch, watch-delay, prepare, ready, dispose, apply, abort or fail.

idle

The HMR is waiting for your call the check(). When you call it the status will change to check.

check

The HMR is checking for updates. If it doesn’t find updates it will change back to idle.

If updates were found it will go through the steps prepare, dispose and apply. Than back to idle.

watch

The HMR is in watch mode and will automatically be notified about changes. After the first change it will change to watch-delay and wait for a specified time to start the update process. Any change will reset the timeout, to accumulate more changes. When the update process is started it will go through the steps prepare, dispose and apply. Than back to watch or watch-delay if changes were detected while updating.

prepare

The HMR is prepare stuff for the update. This may means that it’s downloading something.

ready

An update is available and prepared. Call apply() to continue.

dispose

The HMR is calling the dispose handlers of modules that will be replaced.

apply

The HMR is calling the accept handlers of the parents of replaced modules, than it requires the self accepted modules.

abort

A update cannot apply, but the system is still in a (old) consistent state.

fail

A update has thrown an exception in the middle of the process, and the system is (maybe) in a inconsistent state. The system should be restarted.

status/addStatusHandler

status(callback: (status: string) => void) => void
addStatusHandler(callback: (status: string) => void) => void

Register a callback on status change.

removeStatusHandler

removeStatusHandler(callback: (status: string) => void) => void

Remove a registered status change handler.

How to deal with ...

... a module without side effects (the standard case)

Nothing to do in the module. Any parent can accept it.

... a module with side effects

The module needs a dispose handler, then any parent can accept it.

... a module with only side effects and no exports

The module needs a dispose handler and can accept itself. No action is required in the parent.

If the module’s code is not in your hand, the parent can accept the module with some custom dispose logic.

... the application entry module

As it doesn’t export it can accept itself. A dispose handler can pass the application state on replacement.

... external module with not handleable side effects

In the nearest parent you decline the dependency. This makes your application throw on update. But as it’s an external module, an update is very rare.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

plugins.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

 For a high-level introduction to writing plugins, start with How to write a plugin [https://github.com/webpack/docs/wiki/How-to-write-a-plugin].

Many objects in Webpack extend the Tapable class, which exposes a plugin method. And with the plugin method, plugins can inject custom build steps. You will see compiler.plugin and compilation.plugin used a lot. Essentially, each one of these plugin calls binds a callback to fire at specific steps throughout the build process.

A plugin is installed once as Webpack starts up. Webpack installs a plugin by calling its apply method, and passes a reference to the Webpack compiler object. You may then call compiler.plugin to access asset compilations and their individual build steps. An example would look like this:

// MyPlugin.js

function MyPlugin(options) {
 // Configure your plugin with options...
}

MyPlugin.prototype.apply = function(compiler) {
 compiler.plugin("compile", function(params) {
 console.log("The compiler is starting to compile...");
 });

 compiler.plugin("compilation", function(compilation) {
 console.log("The compiler is starting a new compilation...");

 compilation.plugin("optimize", function() {
 console.log("The compilation is starting to optimize files...");
 });
 });

 compiler.plugin("emit", function(compilation, callback) {
 console.log("The compilation is going to emit files...");
 callback();
 });
};

module.exports = MyPlugin;

Then in webpack.config.js

 plugins: [
 new MyPlugin({options: 'nada'})
]

Note on interface types...

There are two types of plugin interfaces.

		Timing based
		sync (default): As seen above. Use return.

		async: Last parameter is a callback. Signature: function(err, result)

		parallel: The handlers are invoked parallel (async).

		Return value
		not bailing (default): No return value.

		bailing: The handlers are invoked in order until one handler returns something.

		parallel bailing: The handlers are invoked in parallel (async). The first returned value (by order) is significant.

		waterfall: Each handler gets the result value of the last handler as an argument.

The Compiler instance

Plugins need to have the apply method on their prototype chain (or bound to) in order to have access to the compiler instance.

//MyPlugin.js

function MyPlugin() {};
MyPlugin.prototype.apply = function (compiler) {
 //now you have access to all the compiler instance methods
}
module.exports = MyPlugin;

Something like this should also work

//MyFunction.js

function apply(options, compiler) {
 //now you have access to the compiler instance
 //and options
}

//this little trick makes it easier to pass and check options to the plugin
module.exports = function(options) {
 if (options instanceof Array) {
 options = {
 include: options
 };
 }

 if (!Array.isArray(options.include)) {
 options.include = [options.include];
 }

 return {
 apply: apply.bind(this, options)
 };
};

run(compiler: Compiler) async

The run method of the Compiler is used to start a compilation. This is not called in watch mode.

watch-run(watching: Watching) async

The watch method of the Compiler is used to start a watching compilation. This is not called in normal mode.

compilation(c: Compilation, params: Object)

A Compilation is created. A plugin can use this to obtain a reference to the Compilation object. The params object contains useful references.

normal-module-factory(nmf: NormalModuleFactory)

A NormalModuleFactory is created. A plugin can use this to obtain a reference to the NormalModuleFactory object.

compiler.plugin("normal-module-factory", function(nmf) {
 nmf.plugin("after-resolve", function(data) {
 data.loaders.unshift(path.join(__dirname, "postloader.js"));
 });
});

context-module-factory(cmf: ContextModuleFactory)

A ContextModuleFactory is created. A plugin can use this to obtain a reference to the ContextModuleFactory object.

compile(params)

The Compiler starts compiling. This is used in normal and watch mode. Plugins can use this point to modify the params object (i. e. to decorate the factories).

compiler.plugin("compile", function(params) {
 //you are now in the "compile" phase
});

make(c: Compilation) parallel

Plugins can use this point to add entries to the compilation or prefetch modules. They can do this by calling addEntry(context, entry, name, callback) or prefetch(context, dependency, callback) on the Compilation.

after-compile(c: Compilation) async

The compile process is finished and the modules are sealed. The next step is to emit the generated stuff. Here modules can use the results in some cool ways.

The handlers are not copied to child compilers.

emit(c: Compilation) async

The Compiler begins with emitting the generated assets. Here plugins have the last chance to add assets to the c.assets array.

after-emit(c: Compilation) async

The Compiler has emitted all assets.

done(stats: Stats)

All is done.

failed(err: Error)

The Compiler is in watch mode and a compilation has failed hard.

invalid()

The Compiler is in watch mode and a file change is detected. The compilation will be begin shortly (options.watchDelay).

after-plugins()

All plugins extracted from the options object are added to the compiler.

after-resolvers()

All plugins extracted from the options object are added to the resolvers.

The Compilation instance

The Compilation instance extends from the compiler. ie. compiler.compilation It is the literal compilation of all the objects in the require graph. This object has access to all the modules and their dependencies (most of which are circular references). In the compilation phase, modules are loaded, sealed, optimized, chunked, hashed and restored, etc. This would be the main lifecycle of any operations of the compilation.

compiler.plugin("compilation", function(compilation) {
 //the main compilation instance
 //all subsequent methods are derived from compilation.plugin
});

normal-module-loader

The normal module loader, is the function that actually loads all the modules in the module graph (one-by-one).

compilation.plugin('normal-module-loader', function(loaderContext, module) {
 //this is where all the modules are loaded
 //one by one, no dependencies are created yet
});

seal

The sealing of the compilation has started.

compilation.plugin('seal', function() {
 //you are not accepting any more modules
 //no arguments
});

optimize

Optimize the compilation.

compilation.plugin('optimize', function() {
 //webpack is begining the optimization phase
 // no arguments
});

optimize-tree(chunks, modules) async

Async optimization of the tree.

compilation.plugin('optimize-tree', function(chunks, modules) {

});

optimize-modules(modules: Module[])

Optimize the modules.

compilation.plugin('optimize-modules', function(modules) {
 //handle to the modules array during tree optimization
});

after-optimize-modules(modules: Module[])

Optimizing the modules has finished.

optimize-chunks(chunks: Chunk[])

Optimize the chunks.

//optimize chunks may be run several times in a compilation

compilation.plugin('optimize-chunks', function(chunks) {
 //unless you specified multiple entries in your config
 //there's only one chunk at this point
 chunks.forEach(function (chunk) {
 //chunks have circular references to their modules
 chunk.modules.forEach(function (module){
 //module.loaders, module.rawRequest, module.dependencies, etc.
 });
 });
});

after-optimize-chunks(chunks: Chunk[])

Optimizing the chunks has finished.

revive-modules(modules: Module[], records)

Restore module info from records.

optimize-module-order(modules: Module[])

Sort the modules in order of importance. The first is the most important module. It will get the smallest id.

optimize-module-ids(modules: Module[])

Optimize the module ids.

after-optimize-module-ids(modules: Module[])

Optimizing the module ids has finished.

record-modules(modules: Module[], records)

Store module info to the records.

revive-chunks(chunks: Chunk[], records)

Restore chunk info from records.

optimize-chunk-order(chunks: Chunk[])

Sort the chunks in order of importance. The first is the most important chunk. It will get the smallest id.

optimize-chunk-ids(chunks: Chunk[])

Optimize the chunk ids.

after-optimize-chunk-ids(chunks: Chunk[])

Optimizing the chunk ids has finished.

record-chunks(chunks: Chunk[], records)

Store chunk info to the records.

before-hash

Before the compilation is hashed.

after-hash

After the compilation is hashed.

before-chunk-assets

Before creating the chunk assets.

additional-chunk-assets(chunks: Chunk[])

Create additional assets for the chunks.

record(compilation, records)

Store info about the compilation to the records

optimize-chunk-assets(chunks: Chunk[]) async

Optimize the assets for the chunks.

The assets are stored in this.assets, but not all of them are chunk assets. A Chunk has a property files which points to all files created by this chunk. The additional chunk assets are stored in this.additionalChunkAssets.

Here’s an example that simply adds a banner to each chunk.

compilation.plugin("optimize-chunk-assets", function(chunks, callback) {
 chunks.forEach(function(chunk) {
 chunk.files.forEach(function(file) {
 compilation.assets[file] = new ConcatSource("\/**Sweet Banner**\/", "\n", compilation.assets[file]);
 });
 });
 callback();
});

after-optimize-chunk-assets(chunks: Chunk[])

The chunk assets have been optimized. Here’s an example plugin from @boopathi [https://github.com/boopathi] that outputs exactly what went into each chunk.

var PrintChunksPlugin = function() {};
PrintChunksPlugin.prototype.apply = function(compiler) {
 compiler.plugin('compilation', function(compilation, params) {
 compilation.plugin('after-optimize-chunk-assets', function(chunks) {
 console.log(chunks.map(function(c) {
 return {
 id: c.id,
 name: c.name,
 includes: c.modules.map(function(m) {
 return m.request;
 })
 };
 }));
 });
 });
};

optimize-assets(assets: Object{name: Source}) async

Optimize all assets.

The assets are stored in this.assets.

after-optimize-assets(assets: Object{name: Source})

The assets has been optimized.

build-module

Before a module build has started.

compilation.plugin('build-module', function(){
 console.log('build module');
});

succeed-module

A module has been built successfully.

compilation.plugin('succeed-module', function(){
 console.log('succeed module');
});

failed-module

The module build has failed.

compilation.plugin('failed-module', function(){
 console.log('failed module');
});

module-asset(module, filename)

An asset from a module was added to the compilation.

chunk-asset(chunk, filename)

An asset from a chunk was added to the compilation.

The MainTemplate instance

startup(source, module, hash)

 compilation.mainTemplate.plugin('startup', function(source, module, hash) {
 if (!module.chunks.length && source.indexOf('__ReactStyle__') === -1) {
 var originName = module.origins && module.origins.length ? module.origins[0].name : 'main';
 return ['if (typeof window !== "undefined") {',
 ' window.__ReactStyle__ = ' + JSON.stringify(classNames[originName]) + ';',
 '}'
].join('\n') + source;
 }
 return source;
 });

The Parser instance (compiler.parser)

The parser instance takes a String and callback and will return an expression when there’s a match.

compiler.parser.plugin("var rewire", function (expr) {
 //if you original module has 'var rewire'
 //you now have a handle on the expresssion object
 return true;
});

program(ast) bailing

General purpose plugin interface for the AST of a code fragment.

statement(statement: Statement) bailing

General purpose plugin interface for the statements of the code fragment.

call <identifier>(expr: Expression) bailing

abc(1) => call abc

a.b.c(1) => call a.b.c

expression <identifier>(expr: Expression) bailing

abc => expression abc

a.b.c => expression a.b.c

expression ?:(expr: Expression) bailing

(abc ? 1 : 2) => expression ?!

Return a boolean value to omit parsing of the wrong path.

typeof <identifier>(expr: Expression) bailing

typeof a.b.c => typeof a.b.c

statement if(statement: Statement) bailing

if(abc) {} => statement if

Return a boolean value to omit parsing of the wrong path.

label <labelname>(statement: Statement) bailing

xyz: abc => label xyz

var <name>(statement: Statement) bailing

var abc, def => var abc + var def

Return false to not add the variable to the known definitions.

evaluate <expression type>(expr: Expression) bailing

Evaluate an expression.

evaluate typeof <identifier>(expr: Expression) bailing

Evaluate the type of an identifier.

evaluate Identifier <identifier>(expr: Expression) bailing

Evaluate a identifier that is a free var.

evaluate defined Identifier <identifier>(expr: Expression) bailing

Evaluate a identifier that is a defined var.

evaluate CallExpression .<property>(expr: Expression) bailing

Evaluate a call to a member function of a successfully evaluated expression.

The NormalModuleFactory

before-resolve(data) async waterfall

Before the factory starts resolving. The data object has these properties:

		context The absolute path of the directory for resolving.

		request The request of the expression.

Plugins are allowed to modify the object or to pass a new similar object to the callback.

after-resolve(data) async waterfall

After the factory has resolved the request. The data object has this properties:

		request The resolved request. It acts as an identifier for the NormalModule.

		userRequest The request the user entered. It’s resolved, but does not contain pre or post loaders.

		rawRequest The unresolved request.

		loaders A array of resolved loaders. This is passed to the NormalModule and they will be executed.

		resource The resource. It will be loaded by the NormalModule.

		parser The parser that will be used by the NormalModule.

The ContextModuleFactory

before-resolve(data) async waterfall

after-resolve(data) async waterfall

alternatives(options: Array) async waterfall

Resolvers

		compiler.resolvers.normal Resolver for a normal module

		compiler.resolvers.context Resolver for a context module

		compiler.resolvers.loader Resolver for a loader

Any plugin should use this.fileSystem as fileSystem, as it’s cached. It only has async named functions, but they may behave sync, if the user uses a sync file system implementation (i. e. in enhanced-require).

To join paths any plugin should use this.join. It normalizes the paths. There is a this.normalize too.

A bailing async forEach implementation is available on this.forEachBail(array, iterator, callback).

To pass the request to other resolving plugins, use the this.doResolve(types: String|String[], request: Request, callback) method. types are multiple possible request types that are tested in order of preference.

interface Request {
 path: String // The current directory of the request
 request: String // The current request string
 query: String // The query string of the request, if any
 module: boolean // The request begins with a module
 directory: boolean // The request points to a directory
 file: boolean // The request points to a file
 resolved: boolean // The request is resolved/done
 // undefined means false for boolean fields
}

// Examples
// from /home/user/project/file.js: require("../test?charset=ascii")
{
 path: "/home/user/project",
 request: "../test",
 query: "?charset=ascii"
}
// from /home/user/project/file.js: require("test/test/")
{
 path: "/home/user/project",
 request: "test/test/",
 module: true,
 directory: true
}

resolve(context: String, request: String)

Before the resolving process starts.

resolve-step(types: String[], request: Request)

Before a single step in the resolving process starts.

module(request: Request) async waterfall

A module request is found and should be resolved.

directory(request: Request) async waterfall

A directory request is found and should be resolved.

file(request: Request) async waterfall

A file request is found and should be resolved.

The plugins may offer more extensions points

Here is a list what the default plugins in webpack offer. They are all (request: Request) async waterfall.

The process for normal modules and contexts is module -> module-module -> directory -> file.

The process for loaders is module -> module-loader-module -> module-module -> directory -> file.

module-module

A module should be looked up in a specified directory. path contains the directory.

module-loader-module (only for loaders)

Used before module templates are applied to the module name. The process continues with module-module.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

list-of-hints.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

Notes:

Not every hint apply to all apps. Some hints have positive and negative effects so it depends on your needs.

Hints are ordered by importance (most important comes first), but importance heavily depends on the app.

Hints are categorized by App, Developer and/or Build performance. Sometimes multiple categories apply.

App performance: Your app perform better. This affects the user of your app and/or the cost of serving the app to the user.

Developer performance: This makes it easier for your developers to write the app.

Build performance: The build of your app is faster and/or more stable.

App performance

		Minimize your bundle with the UglifyJsPlugin (App, for every app)

		Use Code Splitting: improves initial download size, at the cost of more requests (App, for big apps)
		Hint for React apps: Use the react-proxy-loader

		Add hashes to output files and enable Long Caching time on server: improves times for second visit (App, for every app)
		Hint: Use records to keep module/chunk ids as consistent as possible

		Hint for static HTML pages: Use the html-webpack-plugin

		Don’t delete no longer used assets immediately after they are no longer used. Wait a few weeks before deleting them from server. Result: No 404s for users that keep browser windows open for long time (App, for every app)

		Use the DefinePlugin to pass configuration from config to app: Embedded into bundle, Conditional code is removed with minimized (App, for apps with configuration)
		Use the EnvironmentPlugin to pass process.env from build to app

		Check bundle stats with analyse tool for problems: Improve total download size, Improve cohesion (App/Developer, for big apps)
		Hint: Use the stats-webpack-plugin or the --json CLI option to get the stats

		Hint: Use the profile option to gather more performance stats

		Extract common modules into separate script file: improves caching for switching between pages, at the cost of additional requests for the initial page (App, for app with multiple entry points)

		Remove duplication with npm dedupe/npm 4 and the DedupePlugin: improve total download size (App, for app using npm)

		Do CSS processing with webpack: (App/Developer, for every app)
		static assets (font/image/...) processing with webpack. (for every app)
		inline static assets with the url-loader: improves time to initial view (by reducing roundtrips), at the cost of total download size (for every app)

		Separate CSS file with the extract-text-webpack-plugin: eliminates FOUC for prerendered markup, improves time to initial view (by parallizing CSS and JS downloading) (for app with many CSS or prerendered content)

		Fit the chunking to your needs via many Code Splitting Points and the chunk optimization plugins (LimitChunkCountPlugin, MinChunkSizePlugin, AggressiveMergingPlugin,)

		Preload additional chunks by adding a script tag and deferring the chunk load: Faster initial view (App, for routed apps)

Developer performance

		Use a configuration file (webpack.config.js) instead of passing CLI options: Easier to maintain, more options (Developer, for every app)

		Don’t rewrite incompatible JS, but use imports-loader/exports-loader to make it compatible: Easier to upgrade to new version (Developer, for every app)

		Use webpack devtools for debugging in browser: Better debugging experience, real source code, real module names, at the cost of slower build and difference to production build (Developer, for every app)

		Write modules with ES6 module syntax: This is more future proof and allows more advanced optimizations (Developer/App/Build, for every app)
		Current Status: Use the babel-loader to transform ES6 module syntax to CommonJS

		Future: webpack 2 understand ES6 module syntax

		Future: webpack enables advanced optimizations

		Use output.library to build libraries that export stuff (Developer, for libraries)

		Use externals to declare dependencies of your bundle on the target environment (Developer, for libraries and apps)

		Enable Hot Module Replacement (HMR) for faster page updates (Developer, for every app)
		Hint for React apps: Use the react-hot-loader or react-transform

		Hint for CSS: Use the style-loader (without extract-text-webpack-plugin) for HMR

		Hint for custom routers: Write custom handlers for updates at least at router level

		Use Javascript in webpack config to share common configuration etc. (Developer, for every app)

		Use resolve.root to configure a path to your app modules: Allows shorter references to dependencies (Developer, for big apps)

		Use karma with karma-webpack to test modules in the browser (Developer, for every app)

		Use target to build for other environments than the browser (Developer, for non-browser apps)

		Use the BannerPlugin to add comments to the output assets: Licensing (Developer, for libraries)

		Use debug to switch loaders to debug mode which provide more debug information (if the loader supports it): Better debugging experience (Developer, for every app)

		Use include instead of exclude in module.loaders: less error prone and easier to add paths (Developer, for every app)

Build performance

		Use incremental compilation: faster second build (Build, for every app)
		Hint: Switch watching to polling with the watchOptions.poll option only if watching over network or inside of VMs

		Use in-memory compilation for development build: faster build, less disk usage, at the cost of memory usage (Build, for every app)
		Hint: Use the webpack-dev-server

		Use multiple entry points instead of running webpack multiple times: Faster build, entry points can share chunks (Build/App, for multi page apps)

		Pass an array of configurations to webpack to compile them in parallel while sharing disk cache and watchers: Faster builds and rebuilds, less problems with too many watchers (Build, for big apps with multiple configurations)

		Use module.noParse for big CommonJS files without dependencies: Faster build times (Build, for app with these modules)

Unsorted

Feel free to add more hints to any category. If you were to add it or in which order you can add it to the Unsorted section and some more experienced user will pick it up.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

TODO.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

wiki

[[hot-module-replacement-with-webpack]]

[[internal-webpack-plugins]]

imports-loader and window.jQuery

support for path-to-regexp

moment.js

so i have a couple of things i think should probably be in the docs: 1) best practice for shimming browser js (i.e. a jquery plugin), 2) how to configure for altjs languages, 3) how to configure webpack for browser package managers like bower.

		=> http://webpack.github.io/docs/shimming-modules.html

		=> How to write a loader; http://webpack.github.io/docs/using-loaders.html

		=> Vendor Modules
Some of them are still work in progress
dontkry may be a good start for 3)

Create a enhanced require function

var myRequire = require("enhanced-require")(module, {
 // options
});

// startup your application
myRequire("./startup");

Usage

Than you can use them:

// use loaders
var fileContent = require("raw!"+__filename);

// use loaders automatically
var template = require("./my-template.jade");
// you need to pass this options:
// { module: { loaders: [{ test: /\.jade$/, loader: "jade" }] } }

var html = template({content: fileContent});

// use require.context
var directoryRequire = require.context("raw!./subdir");
var txtFile = directoryRequire("./aFile.txt");

// use require.ensure
require.ensure(["./someFile.js"], function(require) {
 var someFile = require("./someFile.js");
});

// use AMD define
require.define(["./aDep"], function(aDep) {
 aDep.run();
});

// use AMD require
require(["./bDep"], function(bDep) {
 bDep.doSomething();
});

Hot Code Replacement

require("enhanced-require")(module, {
 hot: true, // enable hot code replacement
 watch: true // watch for changes
})("./startup");

For hot code reloading you need to follow the hot code reloading spec [https://github.com/webpack/enhanced-require/wiki/HCR-Spec].

Testing/Mocking

var er = require("enhanced-require");
it("should read the config option", function(done) {
 var subject = er(module, {
 substitutions: {
 // specify the exports of a module directly
 "../lib/config.json": {
 "test-option": { value: 1234 }
 }
 },
 substitutionFactories: {
 // specify lazy generated exports of a module
 "../lib/otherConfig.json": function(require) {
 // export the same object as "config.json"
 return require("../lib/config.json");
 }
 }
 })("../lib/subject");

 var result = subject.getConfigOption("test-option");
 should.exist(result);
 result.should.be.eql({ value: 1234 });
});

from commonjs

Differences between CommonJS and RequireJS

There are two main differences between CommonJS and RequireJS.

The first one is how modules are defined.
While CommonJS uses its own method (seen above), RequireJS implements
the AMD (Asynchronous Module Definitions) specification.

The second difference is how dependencies are loaded.
While CommonJS expects require calls to behave synchronously,
RequireJS loads its modules asynchronously, behaving more
accordingly as how the browser works.
This heavily marks where to use each of these two module systems,
CommonJS is used mainly in server JavaScript implementations (Nodejs),
while RequireJS is headed to be used in the browser.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

changelog.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

2.0.x beta

What’s new in webpack 2.0 [https://gist.github.com/sokra/27b24881210b56bbaff7]

1.12

(2015-11-20)

		CLI: config file can return a Promise

		BUG: made path to module module context-independent

		BUG: upgrade uglify-js version

		BUG: fixes for the CommonsChunkPlugin with multiple commons chunks

		API: added umdNamedDefine option for named AMD

		CLI: added --watch-stdin to watch for stdin closing

		API: emit empty argument list for AMD in UMD

		updated to esprima 2

		CI: Test on node.js and io.js, Test for beautify source code

1.11

		BUG: fix for incorrect order with extract-text-webpack-plugin and in output files

1.10

		API: added (experimental) NamedModulesPlugin

		API: added stats presets

		beautified source code and enforced beautified source code in CI

1.9

		BUG: fixed hashing problems

		CLI: allow webpack.config.babel.js

		CLI: fixed passing entries over CLI

		API: rename target atom to electron

		API: include/exclude for BannerPlugin

		API: added watchOptions (i. e. polling)

		API: sort by global order by default

		BUG: Support webpack bundles with externals in webpack bundles

1.8

(2015-04-29)

		API: added filtering option for SourceMapPlugin

		COMMUNITY: changed rules regarding issues and chat room.
Questions should move to stackoverflow

		BUG: stores records relative to context

		SUPPORT: support other compile-to-js langs for webpack config

		API: added cheap SourceMaps with line to line mappings

		API: more flexible SourceMap devtool configuration

		API: added crossOrginLoading option

		API: enable CSS SourceMaps by default

		API: error when using CommonsChunkPlugin wrongly

1.7

(2015-03-11)

		SUPPORT: added semicolon to end of bundle

		SUPPORT: added HMR management code for node.js (serverside)

		API: Watching.close callback is optional

		API: Added WatchIgnorePlugin

		API: added experimental cheap source-map mode, which will be faster in the future

		BUG: fixed nested objects in DefinePlugin

		BUG: fixed HMR bug which caused unaffected modules to reload

		API: allow functions as test in loaders list

		API: allow arrays in loaders list, in which only one matches

		API: allow “and” expressions in loaders list

1.6

(2015-02-24)

		API: allow more types in DefinePlugin

		API: console colors are automatically

		BUG: DedupePlugin is more reliable

		SUPPORT: added support for relative inlinded AMD modules

		TEST: more test cases

1.5

(2015-01-21)

		API: added async parameter to CommonsChunksPlugin to create a async loaded commons chunks

		SUPPORT: Symlinks while resolving

		API: added EnvironmentPlugin

		API: support loading of multiple chunks in a dependency block

		API: added node.Buffer option

		API: added node.setImmediate

1.4

(2014-12-28)

		API: added ‘hidden-sourcemap’ devtool

		API: added NoErrorsPlugin, which doesn’t emit a bundle on errors

		API: added hot-only dev-server, which doesn’t reload the page on unaccepted update

		API: more features for the CommonsChunkPlugin to process non-entry chunks

		API: support library with commons chunks

		API: added options parameter to module.hot.accept/check

		BUG: rewrite module reasons on module moving

		BUG: fixed bug, when extending Object.prototype

		API: expose sourceMap flag to loaders

		BUG: allow array in module.hot.accept

		API: expose id in context

		INTERNAL: moved placeholder replacing into plugin

1.3

(2014-08-25)

		API: plugin interface for all templates

		API: resolve path in NormalModuleReplacementPlugin

		API: added MultiCompiler (experimental)

		API: more params for the ContextReplacementPlugin

		API: added support for optional externals

		API: support multiple assets in assetsByChunkName

		API: better support for [name]

		API: better filenames in SourceMaps + options

		API: added API for error handing in self accepted modules

		API: added __webpack_hash__

		SUPPORT: Support browserify pre-built bundles with a warning

		SUPPORT: better AMD support

		BUG: fixed sourceMappingURL path

		TEST: tests run on linux and windows

		PERFORMANCE: more caching for main chunk

1.2

(2014-05-27)

		BUG: fixed some SourceMap issues

		API: added typeof support to the DefinePlugin

		BUG: fixed parser crash

1.1

(2014-05-17)

		API: added externals option

		API: cache is enabled by default

		SUPPORT: Generated require is now __webpack_require__

		SUPPORT: updates to node.js buildin replacements

		PERFORMANCE: more and more reliable caching

		API: support [hash] in output.path

		API: allow to overwrite default RegExp and warnings for contexts

		API: allow querystring on output files

		API: Warning about case-sensitive modules

		API: added access to outside require with __non_webpack_require__

		API: added node-webkit target

		SUPPORT: allow multiple webpack entry chunks on a page

		SUPPORT: .json is a default extension (similar to node.js)

		SUPPORT: ignore modules by browser field

		bug fixes

1.0

		API: The following options are now DEPRECATED and superseded by plugins:

		define -> DefinePlugin

		prefetch -> PrefetchPlugin

		provide -> ProvidePlugin

		hot -> HotModuleReplacementPlugin

		optimize.dedupe -> optimize.DedupePlugin

		optimize.minimize -> optimize.UglifyJsPlugin

		optimize.maxChunks -> optimize.LimitChunkCountPlugin

		optimize.minChunkSize -> optimize.MinChunkSizePlugin

		optimize.occurenceOrder -> optimize.OccurenceOrderPlugin

		Warnings are emitted when using deprecated options

		API: plugins are now exported by webpack: require("webpack").DefinePlugin

		API: Labeled Modules are now disabled by default, use the dependencies.LabeledModulesPlugin

		API: Internal plugin arguments simplified

		API: added ResolverPlugin

		API: added chunk origin tracking and resolve logging (for finding compile bugs)

		API: added eval-source-map devtool

		API: default configuration depends on target option

		API: changed filenames in SourceMaps

		API: ids for entry chunks need to longer have the id 0

		API: output as amd module

		API: allow to configure the indent of the source

		API: added AggressiveMergingPlugin and ResolverPlugin

		API: added --display-origins to show chunk origins

		API: added --display-error-details to show resolving log

		SUPPORT: Support for the browser-field [https://gist.github.com/defunctzombie/4339901]

		SUPPORT: free vars are tracked over IIFEs

		SUPPORT: allow to rename free vars

		SUPPORT: allow local named amd modules

		PERFORMANCE: Cache final module sources

		SIZE: no require.e if not needed

		bug fixes

0.11

		API: this in modules is now exports (if this breaks a library, try prefixing imports?this=>window!)

		API: added Hot Code Replacement --hot (web and node target) [experimental]

		API: added define option

		API: support new sourceMappingURL and sourceURL syntax

		API: added CommonsChunkPlugin

		API: --profile --progress now display process timings

		API: added loaderContext.loadModule

		PERFORMANCE: added unsafeCache and noParse option for performance

		SIZE: automatically remove require.ensure when no chunk was generated.

		SIZE: generate (sparse) array instead of object as module container when appropriate

		SUPPORT: extract dependencies from a bound callback

		SUPPORT: support evaluating of .replace and .split

		TEST: added many of the browsertest to the node.js tests

0.10

		SUPPORT: node 0.10 support

		PERFORMANCE: whole chunks can now be cached

		API: store state in json file (records) --records-path

		API: added --devtool source-map and --devtool inline-source-map

		SIZE: added option --optimize-occurence-order

		SIZE: added --optimize-dedupe

Small changes:

		PERFORMANCE: assets are only emitted if they changed

		API: added --profile

		PERFORMANCE: added --prefetch [experimental]

		API: added BannerPlugin

		API: added [chunkhash] [experimental]

		API: added hashDigestLength

		PERFORMANCE: increased filesystem caching to 60s

		PERFORMANCE: purge only changed files in watch mode

		PERFORMANCE: purge all files on compiling in not-watch mode

		SUPPORT: in-memory filesystem now supports windows-like paths too

		SIZE: merging chunk is more clever

0.9

...

0.8

		Updated to UglifyJs 2

		Query String are allowed for loaders and resources

		Updated many loaders to use query strings as parameters

		“jam” is no longer a default modules folder (still possible to add it per config)

		API: fixed typos: modulesDirectories, separable, library

		API: api of enhanced-resolve and enhanced-require changed.

		API: options.minimize and now be also a object, which is passed to UglifyJs2.Compressor

		API: added "web" to default package mains, added "webLoader" to default loader package mains

		API: removed "webpack" from default loader package mains

		added “node” template: bundle can run on node.js host (experimental)

0.7.6

		API: added experimental chunk merging via options.maxChunks

0.7

		API: loaderContext.depencency is more relaxed and don’t need to be called before reading

		API: loader.seperable cannot combined with

		loaderContext.emitFile and loaderContext.emitSubStats

		loaderContext.options.events

		loaderContext.options.resolve

		loaderContext.resolve and loaderContext.resolve.sync

		API: added loader.seperableIfResolve

		API: loader.seperableIfResolve cannot combined with

		loaderContext.emitFile and loaderContext.emitSubStats

		loaderContext.options.events

		API: added profile option (and --profile)

		API: added workers option (and --workers)

		API: added closeWorkers option

		API: if option workers is used:

		options must be JSON.stringify-able. Except options.events.

		Any error thrown in loader must be an object (i. e. an Error object). Only message, stack and value of toString is passed to main process.

		API: added workersNoResolve option. Workers should not used while resolving.

		API: The expected Cache object for options.cache has changed.

		API: event module is emited after the module is finished.

		API: event context is now named context-enum

		API: added event context which is emited after the context is finished.

		API: event dependency is removed. Use stats.dependencies for this.

		API: event loader is removed. Use stats.loaders for this.

		API: added stats.contexts as a list of contexts.

		API: added stats...modules[..].dependencies for as list of files which affect the module’s content.

		API: added stats...modules[..].loaders for as list of loaders which affect the module’s content.

		API: removed stats.modulesPerChunk, it is useless and was deprecated.

		API: added stats.chunkNameFiles which export the files for named chunks

		API: added stats.startTime, timestamp as number

		cmd: more colorful output to indicate caching and timing

		API: webpack in watch mode emits the event watch-end if watch mode have to end (i. e. loader changed). You may restart it after clearing require.cache.

		API: added loaderContext.loaderType as one of loader, preLoader or postLoader.

		API: added loaderContext.currentLoaders as list of all loader of the current type.

		API: added loaderContext.loaderIndex as index of current loader in loaderContext.currentLoaders.

		API: added loaderContext.loaders, loaderContext.preLoaders and loaderContext.postLoaders.

		API: added stats.fileModules...reasons[].async = true instead of “async xxx”

		API: added loaderContext.emitError and loaderContext.emitWarning

0.6

		internal: resolving logic moved into enhanced-resolve [https://github.com/webpack/enhanced-resolve].

		internal: moved loaders logic into enhanced-require [https://github.com/webpack/enhanced-require].

		API: removed require-polyfill, use enhanced-require [https://github.com/webpack/enhanced-require].

		API: removed deprecated script-src-prefix.

		API: removed deprecated direct compile into output, overwrite emitFile.

		API: parameter options is not longer optional.

		API: added loader.seperable (see spec [https://github.com/webpack/webpack/wiki/Loader-Specification]).

		API: loaderContext.resolve is now async, even in sync mode.

		API: added loaderContext.resolve.sync as sync version.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

list-of-plugins.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

config

NormalModuleReplacementPlugin

new webpack.NormalModuleReplacementPlugin(resourceRegExp, newResource)

Replace resources that matches resourceRegExp with newResource. If newResource is relative, it is resolve relative to the previous resource.
If newResource is a function, it is expected to overwrite the ‘request’ attribute of the supplied object.

ContextReplacementPlugin

new webpack.ContextReplacementPlugin(
 resourceRegExp,
 [newContentResource],
 [newContentRecursive],
 [newContentRegExp])

If the resource (directory) matches resourceRegExp, the plugin replaces the default resource, recursive flag or regExp generated by parsing with newContentResource, newContentRecursive or newContextRegExp respectively. If newContentResource is relative, it is resolve relative to the previous resource.
If newContentResource is a function, it is expected to overwrite the ‘request’ attribute of the supplied object.

IgnorePlugin

new webpack.IgnorePlugin(requestRegExp, [contextRegExp])

Don’t generate modules for requests matching the provided RegExp.

		requestRegExp A RegExp to test the request against.

		contextRegExp (optional) A RegExp to test the context (directory) against.

PrefetchPlugin

new webpack.PrefetchPlugin([context], request)

A request for a normal module, which is resolved and built even before a require to it occurs. This can boost performance. Try to profile the build first to determine clever prefetching points.

context a absolute path to a directory

request a request string for a normal module

ResolverPlugin

new webpack.ResolverPlugin(plugins, [types])

Apply a plugin (or array of plugins) to one or more resolvers (as specified in types).

plugins a plugin or an array of plugins that should be applied to the resolver(s).

types a resolver type or an array of resolver types (default: ["normal"], resolver types: normal, context, loader)

All plugins from enhanced-resolve [https://github.com/webpack/enhanced-resolve] are exported as properties for the ResolverPlugin.

Example:

new webpack.ResolverPlugin([
 new webpack.ResolverPlugin.DirectoryDescriptionFilePlugin("bower.json", ["main"])
], ["normal", "loader"])

ResolverPlugin.FileAppendPlugin

This plugin will append a path to the module directory to find a match, which can be useful if you have a module which has an incorrect “main” entry in its package.json/bower.json etc (e.g. "main": "Gruntfile.js"). You can use this plugin as a special case to load the correct file for this module. Example:

new webpack.ResolverPlugin([
 new webpack.ResolverPlugin.FileAppendPlugin(['/dist/compiled-moduled.js'])
])

output

BannerPlugin

new webpack.BannerPlugin(banner, options)

Adds a banner to the top of each generated chunk.

banner a string, it will be wrapped in a comment

options.raw if true, banner will not be wrapped in a comment

options.entryOnly if true, the banner will only be added to the entry chunks.

optimize

DedupePlugin

new webpack.optimize.DedupePlugin()

Search for equal or similar files and deduplicate them in the output. This comes with some overhead for the entry chunk, but can reduce file size effectively.

This doesn’t change the module semantics at all. Don’t expect to solve problems with multiple module instance. They won’t be one instance after deduplication.

Note: Don’t use it in watch mode. Only for production builds.

LimitChunkCountPlugin

new webpack.optimize.LimitChunkCountPlugin(options)

Limit the chunk count to a defined value. Chunks are merged until it fits.

options.maxChunks (number) max number of chunks

options.chunkOverhead (number) an additional overhead for each chunk in bytes (default 10000, to reflect request delay)

options.entryChunkMultiplicator (number) a multiplicator for entry chunks (default 10, entry chunks are merged 10 times less likely)

MinChunkSizePlugin

new webpack.optimize.MinChunkSizePlugin(options)

Merge small chunks that are lower than this min size (in chars). Size is approximated.

options.minChunkSize (number) chunks smaller than this number will be merged

OccurrenceOrderPlugin

new webpack.optimize.OccurrenceOrderPlugin(preferEntry)

Assign the module and chunk ids by occurrence count. Ids that are used often get lower (shorter) ids. This make ids predictable, reduces to total file size and is recommended.

preferEntry (boolean) give entry chunks higher priority. This make entry chunks smaller but increases the overall size. (recommended)

UglifyJsPlugin

new webpack.optimize.UglifyJsPlugin([options])

Minimize all JavaScript output of chunks. Loaders are switched into minimizing mode. You can pass an object containing UglifyJS options [https://github.com/mishoo/UglifyJS2#usage].

new webpack.optimize.UglifyJsPlugin({
 compress: {
 warnings: false
 }
})

Additional options:

sourceMap The plugin uses SourceMaps to map error message locations to modules. This slows down the compilation. (default true)

test, include, exclude RegExp or array of RegExps to filter processed files (default test: /\.js($|\?)/i)

Mangling names configuration

A specific configuration is about mangling variable names. By default the mangle option is on. But you can configure the plugin to avoid mangling specific variable names by passing an except list:

new webpack.optimize.UglifyJsPlugin({
 mangle: {
 except: ['$super', '$', 'exports', 'require']
 }
})

With this the plugin will not mangle any occurrence of ‘$super’, ‘$’, ‘exports’ or ‘require’.

ngAnnotatePlugin [https://github.com/jeffling/ng-annotate-webpack-plugin]

new ngAnnotatePlugin([options]);

Runs the ng-annotate [https://github.com/olov/ng-annotate] pre-minimizer to insert AngularJS dependency injection annotations.

CommonsChunkPlugin

new webpack.optimize.CommonsChunkPlugin(options)

		options.name or options.names (string|string[]): The chunk name of the commons chunk. An existing chunk can be selected by passing a name of an existing chunk. If an array of strings is passed this is equal to invoking the plugin multiple times for each chunk name. If omitted and options.async or options.children is set all chunks are used, otherwise options.filename is used as chunk name.

		options.filename (string): The filename template for the commons chunk. Can contain the same placeholder as output.filename. If omitted the original filename is not modified (usually output.filename or output.chunkFilename.

		options.minChunks (number|Infinity|function(module, count) -> boolean): The minimum number of chunks which need to contain a module before it’s moved into the commons chunk. The number must be greater than or equal 2 and lower than or equal to the number of chunks. Passing Infinity just creates the commons chunk, but moves no modules into it. By providing a function you can add custom logic. (Defaults to the number of chunks)

		options.chunks (string[]`): Select the source chunks by chunk names. The chunk must be a child of the commons chunk. If omitted all entry chunks are selected.

		options.children (boolean): If true all children of the commons chunk are selected

		options.async (boolean): If true a new async commons chunk is created as child of options.name and sibling of options.chunks. It is loaded in parallel with options.chunks.

		options.minSize (number): Minimum size of all common module before a commons chunk is created.

Examples:

1. Commons chunk for entries

Generate an extra chunk, which contains common modules shared between entry points.

new CommonsChunkPlugin({
 name: "commons",
 // (the commons chunk name)

 filename: "commons.js",
 // (the filename of the commons chunk)

 // minChunks: 3,
 // (Modules must be shared between 3 entries)

 // chunks: ["pageA", "pageB"],
 // (Only use these entries)
})

You must load the generated chunk before the entry point:

<script src="commons.js" charset="utf-8"></script>
<script src="entry.bundle.js" charset="utf-8"></script>

2. Explicit vendor chunk

Split your code into vendor and application.

entry: {
 vendor: ["jquery", "other-lib"],
 app: "./entry"
}
new CommonsChunkPlugin({
 name: "vendor",

 // filename: "vendor.js"
 // (Give the chunk a different name)

 minChunks: Infinity,
 // (with more entries, this ensures that no other module
 // goes into the vendor chunk)
})

<script src="vendor.js" charset="utf-8"></script>
<script src="app.js" charset="utf-8"></script>

Hint: In combination with long term caching you may need to use this plugin [https://github.com/diurnalist/chunk-manifest-webpack-plugin] to avoid that the vendor chunk changes. You should also use records to ensure stable module ids.

3. Move common modules into the parent chunk

With Code Splitting multiple child chunks of a chunk can have common modules. You can move these common modules into the parent (This reduces overall size, but has a negative effect on the initial load time. It can be useful if it is expected that a user need to download many sibling chunks).

new CommonsChunkPlugin({
 // names: ["app", "subPageA"]
 // (choose the chunks, or omit for all chunks)

 children: true,
 // (select all children of chosen chunks)

 // minChunks: 3,
 // (3 children must share the module before it's moved)
})

4. Extra async commons chunk

Similar to 3., but instead of moving common modules into the parent (which increases initial load time) a new async-loaded additional commons chunk is used. This is automatically downloaded in parallel when the additional chunk is downloaded.

new CommonsChunkPlugin({
 // names: ["app", "subPageA"]
 // (choose the chunks, or omit for all chunks)

 children: true,
 // (use all children of the chunk)

 async: true,
 // (create an async commons chunk)

 // minChunks: 3,
 // (3 children must share the module before it's separated)
})

AggressiveMergingPlugin

new webpack.optimize.AggressiveMergingPlugin(options)

A plugin for a more aggressive chunk merging strategy. Even similar chunks are merged if the total size is reduced enough. As an option modules that are not common in these chunks can be moved up the chunk tree to the parents.

options.minSizeReduce A factor which defines the minimal required size reduction for chunk merging. Defaults to 1.5 which means that the total size need to be reduce by 50% for chunk merging.

options.moveToParents When set, modules that are not in both merged chunks are moved to all parents of the chunk. Defaults to false.

options.entryChunkMultiplicator When options.moveToParents is set, moving to an entry chunk is more expensive. Defaults to 10, which means moving to an entry chunk is ten times more expensive than moving to an normal chunk.

DllPlugin

Output “dll” bundles. Dll bundles doesn’t execute any of your module’s code. They only include modules. A dll bundle exports a function which can be used to “require” modules by id (the internal require function). In addition to that a manifest json file is written to a specified location which contains mappings from real request to module id.

Combine this plugins with output.library option to expose the dll function i. e. into the global scope.

new DllPlugin({
 path: path.join(__dirname, "manifest.json"),
 name: "[name]_[hash]",
 context: __dirname
})

		path: absolute path to the manifest json file (output)

		name: name of the exposed dll function (keep consistent with output.library)

		context (optional): context of requests in the manifest file, defaults to the webpack context

Usage example [https://github.com/webpack/webpack/tree/master/examples/dll]

DllReferencePlugin

References a dll function which is expected to be available. A manifest file can be used to map names to module ids accessible by this dll function.

Can be used to consume a dll bundle + manifest created by the DllPlugin.

Can be used in two different modes:

Scoped mode

The content of the dll is accessible under a module prefix. i. e. with scope = "xyz" a file abc in the dll can be access via require("xyz/abc").

Mapped mode

The content of the dll is mapped to the current directory. If a required file matches a file in the dll (after resolving), then the file from the dll is used instead. Note: because this happens after resolving every file in the dll must be also available for the dll user at the same path. i. e. if the dll contains jquery and the file abc, require("jquery") and require("./abc") will be used from the dll.

new DllReferencePlugin({
 context: __dirname,
 scope: "xyz",
 manifest: require("./manifest.json"),
 name: "./my-dll.js",
 sourceType: "commonsjs2",
 content: { ... }
})

		context: (absolute path) context of requests in the manifest (or content property)

		scope (optional): prefix which is used for accessing the content of the dll

		minifest (object): an object containing content and name

		name (optional): the name where the dll is exposed (defaults to manifest.name) (see also externals)

		sourceType (optional): the type how the dll is exposed (defaults to "var") (see also externals)

		content (optional): the mappings from request to module id (defaults to manifest.content)

Usage example [https://github.com/webpack/webpack/tree/master/examples/dll-user]

Using dlls via <script> tags

Dll bundle: output.library = "[name]_[hash]" output.libraryTarget = "var" DllPlugin.name = "[name]_[hash]"

Dll consumer: DllReferencePlugin.sourceType = "var"

Using dlls via node.js

Dll bundle: output.libraryTarget = "commonjs2"

Dll consumer: DllReferencePlugin.sourceType = "commonjs2" DllReferencePlugin.name = "./path/to/dll.js"

AppCachePlugin [https://github.com/lettertwo/appcache-webpack-plugin]

Generates a HTML5 Application Cache manifest

OfflinePlugin [https://github.com/NekR/offline-plugin]

Plugin which brings offline support into your project. It generates ServiceWorker based on output files and chosen update strategy. AppCache is used as a fallback when ServiceWorker is not available.

module styles

LabeledModulesPlugin

new webpack.dependencies.LabeledModulesPlugin()

Support Labeled Modules.

ComponentPlugin [https://github.com/webpack/component-webpack-plugin]

Use component [https://github.com/component/component] with webpack. This project has been deprecated.

AngularPlugin [https://github.com/stackfull/angular-webpack-plugin]

Use angular.js modules with webpack.

dependency injection

DefinePlugin

new webpack.DefinePlugin(definitions)

Define free variables. Useful for having development builds with debug logging or adding global constants.

Example:

new webpack.DefinePlugin({
 VERSION: JSON.stringify("5fa3b9"),
 BROWSER_SUPPORTS_HTML5: true,
 TWO: "1+1",
 "typeof window": JSON.stringify("object")
})

console.log("Running App version " + VERSION);
if(!BROWSER_SUPPORTS_HTML5) require("html5shiv");

Each key passed into DefinePlugin is an identifier or multiple identifiers joined with ..

		If the value is a string it will be used as a code fragment.

		If the value isn’t a string, it will be stringified (including functions).

		If the value is an object all keys are defined the same way.

		If you prefix typeof to the key, it’s only defined for typeof calls.

The values will be inlined into the code which allows a minification pass to remove the redundant conditional.

Example:

if(DEBUG)
 console.log('Debug info')
if(PRODUCTION)
 console.log('Production log')

After passing through webpack with no minification results in:

if(false)
 console.log('Debug info')
if(true)
 console.log('Production log')

and then after a minification pass results in:

console.log('Production log')

ProvidePlugin

new webpack.ProvidePlugin(definitions)

Automatically loaded modules. Module (value) is loaded when the identifier (key) is used as free variable in a module. The identifier is filled with the exports of the loaded module.

Example:

new webpack.ProvidePlugin({
 $: "jquery"
})

// in a module
$("#item") // <= just works
// $ is automatically set to the exports of module "jquery"

RewirePlugin [https://github.com/jhnns/rewire-webpack]

Use rewire [https://github.com/jhnns/rewire] in webpack.

NgRequirePlugin [https://github.com/randing89/ngrequire-webpack-plugin]

Automatically require AngularJS modules without explicitly write require statement.

{
 plugins: [
 new ngRequirePlugin(['file path list for your angular modules. eg: src/**/*.js'])
]
}

localization

I18nPlugin [https://github.com/webpack/i18n-webpack-plugin]

new I18nPlugin(translations: Object, fnName = "__": String)

Create bundles with translations baked in. Then you can serve the translated bundle to your clients.

debugging

SourceMapDevToolPlugin

new webpack.SourceMapDevToolPlugin({
 // asset matching
 test: string | RegExp | Array,
 include: string | RegExp | Array,
 exclude: string | RegExp | Array,

 // file and reference
 filename: string,
 append: false | string,

 // sources naming
 moduleFilenameTemplate: string,
 fallbackModuleFilenameTemplate: string,

 // quality/performance
 module: bool,
 columns: bool,
 lineToLine: bool | object
})

Adds SourceMaps for assets.

test, include and exclude are used to determine which assets should be processed. Each one can be a RegExp (asset filename is matched), a string (asset filename need to start with this string) or a Array of those (any of them need to be matched). test defaults to .js files if omitted.

filename defines the output filename of the SourceMap. If no value is provided the SourceMap is inlined.

append is appended to the original asset. Usually the #sourceMappingURL comment. [url] is replaced with a URL to the SourceMap file. false disables the appending.

moduleFilenameTemplate and fallbackModuleFilenameTemplate see output.devtoolModuleFilenameTemplate.

module (defaults to true) When false loaders do not generate SourceMaps and the transformed code is used as source instead.

columns (defaults to true) When false column mappings in SorceMaps are ignored and a faster SourceMap implementation is used.

lineToLine (an object {test, include, exclude} which is matched against modules) matched modules uses simple (faster) line to line source mappings.

other

HotModuleReplacementPlugin

new webpack.HotModuleReplacementPlugin()

Enables Hot Module Replacement. (This requires records data if not in dev-server mode, recordsPath)

Generates Hot Update Chunks of each chunk in the records. It also enables the [[API | hot-module-replacement]] and makes __webpack_hash__ available in the bundle.

ExtendedAPIPlugin

new webpack.ExtendedAPIPlugin()

Adds useful free vars to the bundle.

__webpack_hash__ The hash of the compilation available as free var.

WARNING: Don’t combine it with the HotModuleReplacementPlugin. It would break and you don’t need it as the HotModuleReplacementPlugin export the same stuff.

NoErrorsPlugin

new webpack.NoErrorsPlugin()

When there are errors while compiling this plugin skips the emitting phase (and recording phase), so there are no assets emitted that include errors. The emitted flag in the stats is false for all assets. If you are using the CLI, the webpack process will not exit with an error code by enabling this plugin. If you want webpack to “fail” when using the CLI, please check out the bail option.

ProgressPlugin

new webpack.ProgressPlugin(function handler(percentage, msg) {/* ... */})

Hook into the compiler to extract progress information. The handler must have the signature function(percentage, message). It’s called with 0 <= percentage <= 1. percentage == 0 indicates the start. percentage == 1 indicates the end.

WatchIgnorePlugin

new webpack.WatchIgnorePlugin(paths)

Does not watch specified files matching provided paths or RegExps.

		paths (array) an array of RegExps or absolute paths to directories or files to test against

S3Plugin [https://github.com/MikaAK/s3-plugin-webpack]

S3Plugin = require('webpack-s3-plugin')
new S3Plugin({
 exclude: RegExp,
 s3Options: {
 accessKeyId: string,
 secretAccessKey: string,
 region: string
 },
 s3UploadOptions: {
 Bucket: string
 },
 cdnizerOptions: {
 defaultCDNBase: string
 }
})

Uploads your content to s3. Can also run your html files through cdnizer [https://www.npmjs.com/package/cdnizer] to change the url to match

BellOnBundlerErrorPlugin [https://github.com/senotrusov/bell-on-bundler-error-plugin]

var BellOnBundlerErrorPlugin = require('bell-on-bundler-error-plugin')

{
plugins: [
 new BellOnBundlerErrorPlugin()
]
}

Get notification on bundler build errors. On that occasion, a bell character will be written to STDERR output.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

stylesheets.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

embedded stylesheets

Through using the style-loader and the css-loader it’s possible to embed stylesheets into a webpack javascript bundle. This way you can modularize your stylesheets with your other modules. This way stylesheets are as easy as require("./stylesheet.css").

installation

Install the loaders from npm.

npm install style-loader css-loader --save-dev

configuration

Here is a configuration example that enables require() css:

{
 // ...
 module: {
 loaders: [
 { test: /\.css$/, loader: "style-loader!css-loader" }
]
 }
}

For compile-to-css languages see the according loaders for configuration examples. You can pipe them...

Keep in mind that it’s difficult to manage the execution order of modules, so design your stylesheets so that order doesn’t matter. (But you can rely on the order in one css file.)

using css

// in your modules just require the stylesheet
// This has the side effect that a <style>-tag is added to the DOM.
require("./stylesheet.css");

separate css bundle

In combination with the extract-text-webpack-plugin [https://github.com/webpack/extract-text-webpack-plugin] it’s possible to generate a native css output file.

With Code Splitting we can use two different modes:

		Create one css file per initial chunk (see [[Code Splitting]]) and embed stylesheets into additional chunks. (recommended)

		Create one css file per initial chunk which also contains styles from additional chunks.

The first mode is recommended because it’s optimal in regards to initial page loading time. In small apps with multiple entry points the second mode could be better because of HTTP request overheads and caching.

plugin installation

Install the plugin from npm.

npm install extract-text-webpack-plugin --save

general

To use the plugin you need to flag modules that should be moved into the css file with a special loader. After the compilation in the optimizing phase of webpack the plugin checks which modules are relevant for extraction (in the first mode only these that are in an initial chunk). These modules are compiled for node.js usage and executed to get the content. Additionally the modules are recompiled in the original bundle and replaced with an empty module.

A new asset is created for the extracted modules.

styles from initial chunks into separate css output file

This examples shows multiple entry points, but also works with a single entry point.

// webpack.config.js
var ExtractTextPlugin = require("extract-text-webpack-plugin");
module.exports = {
 // The standard entry point and output config
 entry: {
 posts: "./posts",
 post: "./post",
 about: "./about"
 },
 output: {
 filename: "[name].js",
 chunkFilename: "[id].js"
 },
 module: {
 loaders: [
 // Extract css files
 {
 test: /\.css$/,
 loader: ExtractTextPlugin.extract("style-loader", "css-loader")
 },
 // Optionally extract less files
 // or any other compile-to-css language
 {
 test: /\.less$/,
 loader: ExtractTextPlugin.extract("style-loader", "css-loader!less-loader")
 }
 // You could also use other loaders the same way. I. e. the autoprefixer-loader
]
 },
 // Use the plugin to specify the resulting filename (and add needed behavior to the compiler)
 plugins: [
 new ExtractTextPlugin("[name].css")
]
}

You’ll get these output files:

		posts.js posts.css

		post.js post.css

		about.js about.css

		1.js 2.js (contain embedded styles)

all styles in separate css output file

To use the second mode you just need to set the option allChunks to true:

// ...
module.exports = {
 // ...
 plugins: [
 new ExtractTextPlugin("style.css", {
 allChunks: true
 })
]
}

You’ll get these output files:

		posts.js posts.css

		post.js post.css

		about.js about.css

		1.js 2.js (don’t contain embedded styles)

styles in commons chunk

You can use a separate css file in combination with the CommonsChunkPlugin. In this case a css file for the commons chunk is emitted too.

// ...
module.exports = {
 // ...
 plugins: [
 new webpack.optimize.CommonsChunkPlugin("commons", "commons.js"),
 new ExtractTextPlugin("[name].css")
]
}

You’ll get these output files:

		commons.js commons.css

		posts.js posts.css

		post.js post.css

		about.js about.css

		1.js 2.js (contain embedded styles)

or with allChunks: true

		1.js 2.js (don’t contain embedded styles)

 © Copyright 2016.
 Created using Sphinx 1.3.5.

resolving.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

 The resolving process is pretty simple. We distinguish three types of requests:

		absolute path: require("/home/me/file") require("C:\Home\me\file")

		relative path: require("../src/file") require("./file")

		module path: require("module") require("module/lib/file")

Resolving an absolute path

We first check if the path points to a directory. For a directory we need to find the main file in this directory. Therefore the main field in the package.json is joined to the path. If there is no package.json or no main field, index is used as filename.

We have an absolute path to a file now. We try to append all extensions (configuration option resolve.extensions). The first existing file is used as result.

Resolving a relative path

The context directory is the directory of the resource file that contains the require statement. If there is no resource file the configuration option context is used as context directory. (This can occur for entry points or with loader-generated files).

The relative path is joined to the context directory and the resulting absolute file is resolved according to “Resolving an absolute path”.

Resolving a module path

For resolving a module we first gather all search directories for modules from the context directory. This process is similar to the node.js resolving process [http://nodejs.org/api/modules.html], but the search directories are configurable with the configuration option resolve.modulesDirectories. In addition to this the directories in the configuration option resolve.root are prepended and directories in the configuration option resolve.fallback are appended.

The module is looked up in each module directory and resolved according to “Resolving an absolute path”. If the first match has no success, the second is tried and so on.

Aliasing

There is a configuration option resolve.alias which renames modules.

When trying to “resolve a module path” the module name is matched to the resolve.alias option and when there is a match it gets replaced with the alias.

Caching

Every filesystem access is cached so that multiple parallel or serial requests to the same thing are merged. In watching mode only changed files are removed from cache (the watcher knows which files got changed). In non-watching mode the cache is purged before every compilation.

Unsafe caching

There is a configuration option resolve.unsafeCache which boosts performance by aggressive caching.

Every resolve process is cached and isn’t ever purged. This is correct in most cases, but incorrect in edge cases (what edge cases?).

Context

When trying to resolve a [[context]] “Resolving an absolute path” ends when a directory is found.

Loaders

For loaders the configuration options in resolveLoader are used.

In addition to that when trying to “resolve a module path” all module name variations in the configuration option resolveLoader.moduleTemplates are tried.

Asynchronous

The above description suggests a serial process, but in the implementation the process is completely asynchronous and parallel. This may cause more filesystem access than required.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

usage-with-bower.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

 To use components from bower you need to add two things to webpack:

		Let webpack look in the bower_components folder.

		Let webpack use the main field from the bower.json file.

Configuration

See [[configuration]] resolve.modulesDirectories and [[list of plugins]] ResolverPlugin.

var path = require("path");
var webpack = require("webpack");
module.exports = {
 resolve: {
 root: [path.join(__dirname, "bower_components")]
 },
 plugins: [
 new webpack.ResolverPlugin(
 new webpack.ResolverPlugin.DirectoryDescriptionFilePlugin(".bower.json", ["main"])
)
]
}

Prefer modules from npm over bower

In many cases modules from npm are better than the same module from bower. Bower mostly contain only concatenated/bundled files which are:

		More difficult to handle for webpack

		More difficult to optimize for webpack

		Sometimes only useable without a module system

So prefer to use the CommonJs-style module and let webpack build it.

Example react

bower package vs. npm package

Note: the bower package is built with browserify and envify (NODE_ENV = "production")

So we compare four configurations:

a) webpack + bower package (DefinePlugin makes no difference here as envify already removed debug code)

b) webpack + bower package + module.noParse for react

c) webpack + npm package

d) webpack + npm package + DefinePlugin with NODE_ENV = "production"

configuration	modules	bundle size	compilation time
—————	———	————-	——————
a)	1	136k	100%
b)	1	136k	73,6%
c)	136	130k	89,9%
d)	135	127k	85,3%

(webpack 1.3.0-beta8, react 0.10.0, bundle size minimized)

 © Copyright 2016.
 Created using Sphinx 1.3.5.

api-in-modules.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

 A quick summary of all methods and variables available in code compiled with webpack.

Basic

require CommonJs

require(dependency: String)

Returns the exports from a dependency. The call is sync. No request to the server is fired. The compiler ensures that the dependency is available.

Style: CommonJs

Example:

var $ = require("jquery");
var myModule = require("my-module");

define (with factory)

define([name: String], [dependencies: String[]], factoryMethod: function(...))

The name argument is ignored. If the dependencies array is provided, the factoryMethod will be called with the exports of each dependency (in the same order). If dependencies is not provided the factoryMethod is called with require, exports and module (for compatibility!). If the factoryMethod returns a value, this value is exported by the module. The call is sync. No request to the server is fired. The compiler ensures that each dependency is available.

Style: AMD

Example:

define(["jquery", "my-module"], function($, myModule) {
 // Do something with $ and myModule.
 // Export a function
 return function doSomething() {
 // Do something
 };
});

Note: Can NOT be used in an async function.

module.exports

This value is returned, when that module is required. It’s default value is a new object.

Style: CommonJs

Example:

module.exports = function doSomething() {
 // Do something
};

Note: Can NOT be used in an async function.

exports

The exported object. It’s the default value of module.exports. If module.exports gets overwritten, exports will no longer be exported.

Style: CommonJs

exports.someValue = 42;
exports.anObject = {
 x: 123
};
exports.aFunction = function doSomething() {
 // Do something
};

Note: Using it in an async function may not have the expected effect.

define (with value)

define(value: !Function)

Just exports the provided value. The value cannot be a function.

Style: AMD (for compatibility!)

Example:

define({
 answer: 42
});

Note: Can NOT be used in an async function.

export (label)

export: value

Export the defined value. The label can occur before a function declaration or a variable declaration. The function name or variable name is the identifier under which the value is exported.

Style: Labeled modules dependencies.LabeledModulesPlugin

Example:

export: var answer = 42;
export: function method(value) {
 // Do something
};

Note: Using it in an async function may not have the expected effect.

require label

require: "dependency"

Make all exports from the dependency available in the current scope. The require label can occur before a string. The dependency must export values with the export label. CommonJs or AMD modules cannot be consumed.

Style: Labeled modules dependencies.LabeledModulesPlugin

Example:

// in dependency
export: var answer = 42;
export: function method(value) {
 // Do something
};

require: "dependency";
method(answer);

require.resolve

require.resolve(dependency: String)

Returns the module id of a dependency. The call is sync. No request to the server is fired. The compiler ensures that the dependency is available.

The module id is a number in webpack (in contrast to node.js where it is a string, the filename).

Style: CommonJs

Example:

var id = require.resolve("dependency");
typeof id === "number";
id === 0 // if dependency is the entry point
id > 0 // elsewise

module.id

The module id of the current module.

Style: CommonJs

Example:

// in file.js
module.id === require.resolve("./file.js")

Advanced

require.cache

Multiple requires to the same module result in only one module execution and only one export. Therefore a cache in the runtime exists. Removing values from this cache cause new module execution and a new export. This is only needed in rare cases (for compatibility!).

Style: CommonJs

var d1 = require("dependency");
require("dependency") === d1
delete require.cache[require.resolve("dependency")];
require("dependency") !== d1

// in file.js
require.cache[module.id] === module
require("./file.js") === module.exports
delete require.cache[module.id];
require.cache[module.id] === undefined
require("./file.js") !== module.exports // in theory; in praxis this causes a stack overflow
require.cache[module.id] !== module

require.context

require.context(directory:String, includeSubdirs:Boolean /* optional, default true */, filter:RegExp /* optional */)

Example:

var context = require.context('components', true, /\.html$/);

var componentA = context.resolve('componentA');

Style: webpack

require.ensure

require.ensure(dependencies: String[], callback: function([require]), [chunkName: String])

Download additional dependencies on demand. The dependencies array lists modules that should be available. When they are, callback is called. If the callback is a function expression, dependencies in that source part are extracted and also loaded on demand. A single request is fired to the server, except if all modules are already available.

This creates a chunk. The chunk can be named. If a chunk with this name already exists, the dependencies are merged into that chunk and that chunk is used.

Style: CommonJs

Example:

// in file.js
var a = require("a");
require.ensure(["b"], function(require) {
 var c = require("c");
});
require.ensure(["d"], function() {
 var e = require("e");
}, "my chunk");
require.ensure([], function() {
 var f = require("f");
}, "my chunk");
/* This results in:
 * entry chunk
 - file.js
 - a
 * anonymous chunk
 - b
 - c
 * "my chunk"
 - d
 - e
 - f
*/

require AMD

require(dependencies: String[], [callback: function(...)])

Behaves similar to require.ensure, but the callback is called with the exports of each dependency in the dependencies array. There is no option to provide a chunk name.

Style: AMD

Example:

// in file.js
var a = require("a");
require(["b"], function(b) {
 var c = require("c");
});
/* This results in:
 * entry chunk
 - file.js
 - a
 * anonymous chunk
 - b
 - c
*/

require.include

require.include(dependency: String)

Ensures that the dependency is available, but don’t execute it. This can be use for optimizing the position of a module in the chunks.

Style: webpack

Example:

// in file.js
require.include("a");
require.ensure(["a", "b"], function(require) {
 // Do something
});
require.ensure(["a", "c"], function(require) {
 // Do something
});
/* This results in:
 * entry chunk
 - file.js
 - a
 * anonymous chunk
 - b
 * anonymous chunk
 - c
Without require.include "a" would be in both anonymous chunks.
The runtime behavior isn't changed.
*/

module.loaded

This is false if the module is currently executing, and false if the sync execution has finished.

Style: node.js (for compatibility!)

module.hot

See [[Hot Module Replacement]].

Style: webpack

global

See node.js global [http://nodejs.org/api/globals.html#globals_global]

Style: node.js

process

See node.js process [http://nodejs.org/api/process.html]

Style: node.js

__dirname

Depending on the config option node.__dirname:

		false: Not defined

		mock: equal “/”

		true: node.js __dirname [http://nodejs.org/api/globals.html#globals_dirname]

If used inside a expression that is parsed by the Parser, the config option is threaded as true.

Style: node.js (for compatibility!)

__filename

Depending on the config option node.__filename:

		false: Not defined

		mock: equal “/index.js”

		true: node.js __filename [http://nodejs.org/api/globals.html#globals_filename]

If used inside a expression that is parsed by the Parser, the config option is threaded as true.

Style: node.js (for compatibility!)

__resourceQuery

The resource query of the current module.

Style: webpack

Example:

// Inside "file.js?test":
__resourceQuery === "?test"

__webpack_public_path__

Equals the config options output.publicPath.

Style: webpack

__webpack_require__

The raw require function. This expression isn’t parsed by the Parser for dependencies.

Style: webpack

__webpack_chunk_load__

The internal chunk loading function. Takes two arguments:

		chunkId The id for the chunk to load.

		callback(require) A callback function called once the chunk is loaded.

Style: webpack

__webpack_modules__

Access to the internal object of all modules.

Style: webpack

require.resolveWeak

Like require.resolve, but doesn’t include the module into the bundle. It’s a weak dependency.

Style: webpack

Example:

if(__webpack_modules__[require.resolveWeak("module")]) {
 // do something when module is available
}
if(require.cache[require.resolveWeak("module")]) {
 // do something when module was loaded before
}

__webpack_hash__

Access to the hash of the compilation.

Only available with the HotModuleReplacementPlugin or the ExtendedAPIPlugin

Style: webpack

__non_webpack_require__

Generates a require function that is not parsed by webpack. Can be used to do cool stuff with a global require function if available.

Style: webpack

DEBUG

Equals the config option debug

Style: webpack

 © Copyright 2016.
 Created using Sphinx 1.3.5.

build-performance.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

Incremental builds

Make sure you don’t do a full rebuild. Webpack has a great caching layer that allows you to keep already compiled modules in memory. There are some tools that help to use it:

		[[webpack-dev-server]]: Serves all webpack assets from memory. Best performance.

		[[webpack-dev-middleware]]: The same performance as webpack-dev-server for advanced users.

		[[webpack –watch | cli]] or [[watch: true | node.js API]]: Caches stuff but write assets to disk. Ok performance.

Exclude modules from parsing

With noParse [http://webpack.github.io/docs/configuration.html#module-noparse] you can exclude big libraries from parsing, but this can break stuff.

Hints from build stats

There is an analyse tool [http://webpack.github.io/analyse/] which visualise your build and also provides some hint how build size and build performance can be optimized.

You can generate the required JSON file by running webpack --profile --json > stats.json

Chunks

Generating the source file from internal representation is expensive. Each chunk is cached on it’s own, but only if nothing changes in this chunk. Most chunks only depend on the included modules, but the entry chunk is also considered as dirty if the additional chunk name changes. So by using [hash] or [chunkhash] in filenames the entry chunks need to be regenerated on (nearly) every change.

By using HMR the entry chunk need to embed the hash of the compilation and is also considered as dirty on every compilation.

SourceMaps

Perfect SourceMaps are slow.

devtool: "source-map" cannot cache SourceMaps for modules and need to regenerate complete SourceMap for the chunk. It’s something for production.

devtool: "eval-source-map" is really as good as devtool: "source-map", but can cache SourceMaps for modules. It’s much faster for rebuilds.

devtool: "eval-cheap-module-source-map" offers SourceMaps that only maps lines (no column mappings) and are much faster.

devtool: "eval-cheap-source-map" is similar but doesn’t generate SourceMaps for modules (i.e., jsx to js mappings).

devtool: "eval" has the best performance, but it only maps to compiled source code per module. In many cases this is good enough. (Hint: combine it with output.pathinfo: true.)

The UglifyJsPlugin uses SourceMaps to map errors to source code. And SourceMaps are slow. As you should only use this in production, this is fine. If your production build is really slow (or doesn’t finish at all) you can disable it with new UglifyJsPlugin({ sourceMap: false }).

resolve.root vs resolve.modulesDirectories

Only use resolve.modulesDirectories [http://webpack.github.io/docs/configuration.html#resolve-modulesdirectories] for nested paths. Most paths should use resolve.root [http://webpack.github.io/docs/configuration.html#resolve-root]. This can give significant performance gains [https://github.com/webpack/webpack/issues/1574#issuecomment-157520561]. See also this discussion [https://github.com/webpack/webpack/issues/472#issuecomment-55706013].

Optimization plugins

Only use optimization plugins in production builds.

Prefetching modules

prefetch [http://webpack.github.io/docs/list-of-plugins.html#prefetchplugin]

Dynamic linked library

If you have a bunch of rarely changing modules (i. e. vendor libs) and chunking doesn’t give you enough performance (CommonsChunkPlugin), there are two plugins to create a bundle of these modules in a separate build step while still referencing these modules from the app bundle.

To create the DLL bundle beforehand you need to use the DllPlugin. Here is an example [https://github.com/webpack/webpack/tree/master/examples/dll]. This emits a public bundle and a private manifest file.

To use the DLL bundle from the app bundle you need to use the DllReferencePlugin. Here is an example [https://github.com/webpack/webpack/tree/master/examples/dll-user]. This stops following the dependency graph of your app when a module from the DLL bundle is found.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

webpack-dev-server.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

 The webpack-dev-server is a little node.js Express [http://expressjs.com/] server, which uses the [[webpack-dev-middleware]] to serve a webpack bundle. It also has a little runtime which is connected to the server via Socket.IO [http://socket.io/]. The server emits information about the compilation state to the client, which reacts to those events. You can choose between different modes, depending on your needs. So let’s say you have the following config file:

var path = require("path");
module.exports = {
 entry: {
 app: ["./app/main.js"]
 },
 output: {
 path: path.resolve(__dirname, "build"),
 publicPath: "/assets/",
 filename: "bundle.js"
 }
};

You have an app folder with your initial entry point that webpack will bundle into a bundle.js file in the build folder.

Content Base

The webpack-dev-server will serve the files in the current directory, unless you configure a specific content base.

$ webpack-dev-server --content-base build/

Using this config webpack-dev-server will serve the static files in your build folder. It’ll watch your source files for changes and when changes are made the bundle will be recompiled. This modified bundle is served from memory at the relative path specified in publicPath (see API). It will not be written to your configured output directory. Where a bundle already exists at the same url path the bundle in memory will take precedence (by default).

For example with the configuration above your bundle will be available at localhost:8080/assets/bundle.js

To load your bundled files, you will need to create an index.html file in the build folder from which static files are served (--content-base option). e.g:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Document</title>
</head>
<body>
 <script src="bundle.js"></script>
</body>
</html>

By default go to localhost:8080/ to launch your app. For example with the configuration above (with publicPath) go to localhost:8080/assets/.

Automatic Refresh

The webpack-dev-server supports multiple modes to automatic refresh the page:

		Iframe mode (page is embedded in an iframe and reloaded on change)

		Inline mode (a small webpack-dev-server client entry is added to the bundle which refresh the page on change)

Each mode also supports Hot Module Replacement in which the bundle is notified that a change happened instead of a full page reload. A Hot Module Replacement runtime could then load the updated modules and inject them into the running app.

Iframe mode

To use the iframe mode no additional configuration is needed. Just navigate the browser to http://<host>:<port>/webpack-dev-server/<path>. I. e. with the above configuration http://localhost:8080/webpack-dev-server/index.html.

		No configuration change needed.

		Nice information bar on top of your app.

		Url changes in the app are not reflected in the browsers url bar.

Inline mode

To use the inline mode, specify --inline on the command line (you cannot specify it in the configuration). This adds the webpack-dev-server client entry point to the webpack configuration. There is no change in the url required. Just navigate to http://<host>:<port>/<path>. I. e. with the above configuration http://localhost:8080/index.html.

		Command line flag needed.

		Status information in the browser log.

		Url changes in the app are reflected in the browsers url bar.

Inline mode with node.js API

There is no inline: true flag in the webpack-dev-server configuration, because the webpack-dev-server module has no access to the webpack configuration. Instead the user must add the webpack-dev-server client entry point to the webpack configuration.

To do this just add webpack-dev-server/client?http://<path>:<port>/ to (all) entry point(s). I. e. with the above configuration:

var config = require("./webpack.config.js");
config.entry.app.unshift("webpack-dev-server/client?http://localhost:8080/");
var compiler = webpack(config);
var server = new webpackDevServer(compiler, {...});
server.listen(8080);

Inline mode in HTML

There is also the option to add a reference to the webpack-dev-server client script to the HTML page:

<script src="http://localhost:8080/webpack-dev-server.js"></script>

Hot Module Replacement

To enable Hot Module Replacement with the webpack-dev-server specify --hot on the command line. This adds the HotModuleReplacementPlugin to the webpack configuration.

The easiest way to use Hot Module Replacement with the webpack-dev-server is to use the inline mode.

Hot Module Replacement with Inline mode on CLI

Nothing more is needed. --inline --hot does all the relevant work automatically. The CLI of the webpack-dev-server automatically adds the special webpack/hot/dev-server entry point to your configuration.

Just navigate to http://<host>:<port>/<path> and let the magic happen.

You should see the following messages in the browser log:

[HMR] Waiting for update signal from WDS...
[WDS] Hot Module Replacement enabled.

Messages prefixed with [HMR] originate from the webpack/hot/dev-server module. Messages prefixed with [WDS] originate from the webpack-dev-server client.

It’s important to specify a correct output.publicPath otherwise the hot update chunks cannot be loaded.

Hot Module Replacement with node.js API

Similar to the inline mode the user must make changes to the webpack configuration.

Three changes are needed:

		add an entry point to the webpack configuration: webpack/hot/dev-server.

		add the new webpack.HotModuleReplacementPlugin() to the webpack configuration.

		add hot: true to the webpack-dev-server configuration to enable HMR on the server.

I. e. with the above configuration:

var config = require("./webpack.config.js");
config.entry.app.unshift("webpack-dev-server/client?http://localhost:8080/", "webpack/hot/dev-server");
var compiler = webpack(config);
var server = new webpackDevServer(compiler, {
 hot: true
 ...
});
server.listen(8080);

Proxy

The Webpack dev server makes use of node-http-proxy [https://github.com/nodejitsu/node-http-proxy] to optionally proxy requests to a separate, possibly external, backend server. A sample configuration is below.

proxy: {
 '/some/path*': {
 target: 'https://other-server.example.com',
 secure: false,
 },
}

See the node-http-proxy Options documentation [https://github.com/nodejitsu/node-http-proxy#options] for available configuration.

Proxying some URLs can be useful for a variety of configurations. One example is to serve JavaScript files and other static assets from the local development server but still send API requests to an external backend development server. Another example is splitting requests between two separate backend servers such as an authentication backend and a application backend.

Bypass the Proxy

(Added in v1.13.0.) The proxy can be optionally bypassed based on the return from a function. The function can inspect the HTTP request, response, and any given proxy options. It must return either false or a URL path that will be served instead of continuing to proxy the request.

For example, the configuration below will not proxy HTTP requests that originate from a browser. This is similar to the historyApiFallback option: browser requests will receive the HTML file as normal but API requests will be proxied to the backend server.

proxy: {
 '/some/path*': {
 target: 'https://other-server.example.com',
 secure: false,
 bypass: function(req, res, proxyOptions) {
 if (req.headers.accept.indexOf('html') !== -1) {
 console.log('Skipping proxy for browser request.');
 return '/index.html';
 }
 }
}

Rewriting URLs of proxy request

(Added in v???) The request to the proxy can be optionally rewritten by providing a function. The function can inspect and change the HTTP request.

For example, the configuration below will rewrite the HTTP requests to remove the part /api at the beginning of the URL.

proxy: {
 '/api/*': {
 target: 'https://other-server.example.com',
 rewrite: function(req) {
 req.url = req.url.replace(/^\/api/, '');
 }
 }
}

webpack-dev-server CLI

$ webpack-dev-server <entry>

All webpack [[CLI|cli]] options are valid for the webpack-dev-server CLI too, but there is no <output> default argument. For the webpack-dev-server CLI a webpack.config.js (or the file passed by the --config option) is accepted as well.

There are some additional options:

		--content-base <file/directory/url/port>: base path for the content.

		--quiet: don’t output anything to the console.

		--no-info: suppress boring information.

		--colors: add some colors to the output.

		--no-colors: don’t used colors in the output.

		--host <hostname/ip>: hostname or IP.

		--port <number>: port.

		--inline: embed the webpack-dev-server runtime into the bundle.

		--hot: adds the HotModuleReplacementPlugin and switch the server to hot mode. Note: make sure you don’t add HotModuleReplacementPlugin twice.

		--hot --inline also adds the webpack/hot/dev-server entry.

		--lazy: no watching, compiles on request (cannot be combined with --hot).

		--https: serves webpack-dev-server over HTTPS Protocol. Includes a self-signed certificate that is used when serving the requests.

		--cert, --cacert, --key: Paths the certificate files.

		--open: opens the url in default browser.

		--history-api-fallback: enables support for history API fallback.

Additional configuration options

When using the CLI it’s possible to have the webpack-dev-server options in the configuration file under the key devServer. Options passed via CLI arguments override options in configuration file. For options under devServer see next section.

Example

module.exports = {
 // ...
 devServer: {
 hot: true
 }
}

API

var WebpackDevServer = require("webpack-dev-server");
var webpack = require("webpack");

var compiler = webpack({
 // configuration
});
var server = new WebpackDevServer(compiler, {
 // webpack-dev-server options

 contentBase: "/path/to/directory",
 // or: contentBase: "http://localhost/",

 hot: true,
 // Enable special support for Hot Module Replacement
 // Page is no longer updated, but a "webpackHotUpdate" message is send to the content
 // Use "webpack/hot/dev-server" as additional module in your entry point
 // Note: this does _not_ add the `HotModuleReplacementPlugin` like the CLI option does.

 // Set this as true if you want to access dev server from arbitrary url.
 // This is handy if you are using a html5 router.
 historyApiFallback: false,

 // Set this if you want webpack-dev-server to delegate a single path to an arbitrary server.
 // Use "*" to proxy all paths to the specified server.
 // This is useful if you want to get rid of 'http://localhost:8080/' in script[src],
 // and has many other use cases (see https://github.com/webpack/webpack-dev-server/pull/127).
 proxy: {
 "*": "http://localhost:9090"
 },

 // webpack-dev-middleware options
 quiet: false,
 noInfo: false,
 lazy: true,
 filename: "bundle.js",
 watchOptions: {
 aggregateTimeout: 300,
 poll: 1000
 },
 publicPath: "/assets/",
 headers: { "X-Custom-Header": "yes" },
 stats: { colors: true },
});
server.listen(8080, "localhost", function() {});
// server.close();

See [[webpack-dev-middleware]] for documentation on middleware options.

Notice that webpack configuration is not passed to WebpackDevServer API, thus devServer option in webpack configuration is not used in this case. Also, there is no inline mode for WebpackDevServer API. <script src="http://localhost:8080/webpack-dev-server.js"></script> should be inserted to HTML page manually.

The historyApiFallback option

If you are using the HTML5 history API you probably need to serve your index.html in place of 404 responses, which can be done by setting historyApiFallback: true. However, if you have modified output.publicPath in your Webpack configuration, you need to specify the URL to redirect to. This is done using the historyApiFallback.index option:

// output.publicPath: '/foo-app/'
historyApiFallback: {
 index: '/foo-app/'
}

Combining with an existing server

You may want to run a backend server or a mock of it in development. You should not use the webpack-dev-server as a backend. Its only purpose is to serve static (webpacked) assets.

You can run two servers side-by-side: The webpack-dev-server and your backend server.

In this case you need to teach the webpack-generated assets to make requests to the webpack-dev-server even when running on a HTML-page sent by the backend server. On the other side you need to teach your backend server to generate HTML pages that include script tags that point to assets on the webpack-dev-server. In addition to that you need a connection between the webpack-dev-server and the webpack-dev-server runtime to trigger reloads on recompilation.

To teach webpack to make requests (for chunk loading or HMR) to the webpack-dev-server you need to provide a full URL in the output.publicPath option.

To make a connection between webpack-dev-server and its runtime best, use the inline mode with --inline. The webpack-dev-server CLI automatically includes an entry point which establishes a WebSocket connection. (You can also use the iframe mode if you point --content-base of the webpack-dev-server to your backend server. If you need a websocket connection to your backend server, you’ll have to use iframe mode.

When you use the inline mode just open the backend server URL in your web browsers. (If you use the iframe mode open the /webpack-dev-server/ prefixed URL of the webpack-dev-server.)

Summary and example:

		webpack-dev-server on port 8080.

		backend server on port 9090.

		generate HTML pages with <script src="http://localhost:8080/assets/bundle.js">.

		webpack configuration with output.publicPath = "http://localhost:8080/assets/".

		when compiling files for production, use --output-public-path /assets/.

		inline mode:
		--inline.

		open http://localhost:9090.

		or iframe mode:
		webpack-dev-server contentBase = "http://localhost:9090/" (--content-base).

		open http://localhost:8080/webpack-dev-server/.

Or use the proxy option...

 © Copyright 2016.
 Created using Sphinx 1.3.5.

webpack-for-browserify-users.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

Usage

Like browserify, webpack analyzes all the node-style require() calls in your app and builds a bundle that you can serve up to the browser using a <script> tag.

Instead of doing

$ browserify main.js > bundle.js

do

$ webpack main.js bundle.js

webpack doesn’t write to stdout. You need to specify a filename. It can’t write to stdout because, unlike browserify, it may generate multiple output files.

The best way to [[configure | configuration]] webpack is with a webpack.config.js file. It’s loaded from current directory, when running the [[executable | CLI]].

So

$ browserify --entry main.js --outfile bundle.js

maps to webpack with this config:

module.exports = {
 entry: "./main.js",
 output: {
 filename: "bundle.js"
 }
}

Note: A webpack.config.js should export the configuration, hence the module.exports = {...} in the above example.

outfile

If you want to emit the output files to another directory:

$ browserify --outfile js/bundle.js

{
 output: {
 path: path.join(__dirname, "js"),
 filename: "bundle.js"
 }
}

entry

$ browserify --entry a.js --entry b.js

{
 entry: [
 "./a.js",
 "./b.js"
]
}

transform

browserify uses transforms to preprocess files. webpack uses loaders. Loaders are functions that take source code as an argument and return (modified) source code. Like transforms they run in node.js, can be chained, and can be asynchronous. Loaders can take additional parameters by query strings. Loaders can be used from require() calls. Transforms can be specified in the package.json. browserify applies configured transforms for each module. Within the webpack configuration you select the modules by RegExp. In the common case you specify loaders in the webpack.config.js:

$ browserify --transform coffeeify

{
 module: {
 loaders: [
 { test: /\.coffee$/, loader: "coffee-loader" }
]
 }
}

Note: It’s possible to use browserify transforms with webpack and the transform-loader [https://github.com/webpack/transform-loader].

debug

$ browserify -d
Add inlined SourceMap

$ webpack --devtool inline-source-map
Add inlined SourceMaps

$ webpack --devtool source-map
Emit SourceMaps as separate file

$ webpack --devtool eval
Emit SourceUrls within evals (faster)

$ webpack --devtool eval-source-map
Emit inlined SourceMaps within evals

$ webpack --debug
Add more debugging information to the source

$ webpack --output-pathinfo
Add comments about paths to source code
(Useful when using no or the eval devtool)

$ webpack -d
= webpack --devtool source-map --debug --output-pathinfo

extension

$ browserify --extension coffee

{
 resolve: {
 extensions: ["", ".js", ".coffee"]
 }
}

standalone

browserify --standalone MyLibrary

{
 output: {
 library: "MyLibrary",
 libraryTarget: "umd"
 }
}
// webpack --output-library MyLibrary --output-library-target umd

ignore

$ browserify --ignore file.js

{
 plugins: [
 new webpack.IgnorePlugin(/file\.js$/)
]
}

node globals

$ browserify --insert-globals
$ browserify --detect-globals

You can enable/disable these node globals individually:

{
 node: {
 filename: true,
 dirname: "mock",
 process: false,
 global: true
 }
}

ignore-missing

$ browserify --ignore-missing

webpack prints errors for each missing dependency, but doesn’t fail to build a bundle. You are free to ignore these errors. The require call will throw an error on runtime.

noparse

$ browserify --noparse=file.js

module.exports = {
 module: {
 noParse: [
 /file\.js$/
]
 }
};

build info

$ browserify --deps
$ browserify --list

$ webpack --json

external requires

webpack does not support external requires. You cannot expose the require function to other scripts. Just use webpack for all scripts on a page or do it like this:

{
 output: {
 library: "require",
 libraryTarget: "this"
 }
}

// entry point
module.exports = function(parentRequire) {
 return function(module) {
 switch(module) {
 case "through": return require("through");
 case "duplexer": return require("duplexer");
 }
 return parentRequire(module);
 };
}(typeof __non_webpack_require__ === "function" ? __non_webpack_require__ : function() {
 throw new Error("Module '" + module + "' not found")
});

multiple bundles

With browserify you can create a commons bundle that you can use in combination with bundles on multiple pages. To generate these bundles you exclude the common stuff with the --exclude -x option. Here is the example from the browserify README:

$ browserify -r ./robot > static/common.js
$ browserify -x ./robot.js beep.js > static/beep.js
$ browserify -x ./robot.js boop.js > static/boop.js

webpack supports multi-page compilation and has a plugin for the automatic extraction of common modules:

var webpack = require("webpack");
{
 entry: {
 beep: "./beep.js",
 boop: "./boop.js",
 },
 output: {
 path: "static",
 filename: "[name].js"
 },
 plugins: [
 // ./robot is automatically detected as common module and extracted
 new webpack.optimize.CommonsChunkPlugin("common.js")
]
}

<script src="common.js"></script>
<script src="beep.js"></script>

API

No need to learn much more. Just pass the config object to the webpack API:

var webpack = require("webpack");

webpack({
 entry: "./main.js",
 output: {
 filename: "bundle.js"
 }
}, function(err, stats) {
 err // => fatal compiler error (rar)
 var json = stats.toJson() // => webpack --json
 json.errors // => array of errors
 json.warnings // => array of warnings
});

Third-party-tool mappings

browserify	webpack
————	———
watchify	webpack --watch
browserify-middleware	[[webpack-dev-middleware]]
beefy	[[webpack-dev-server]]
deAMDify	webpack
decomponentify	component-webpack-plugin [https://github.com/webpack/component-webpack-plugin]
list of source transforms	[[list of loaders]], transform-loader [https://github.com/webpack/transform-loader]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

FAQ.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

How do I use jQuery?

For versions of jQuery greater than or equal to 1.10, you shouldn’t need to do anything special: just make sure that webpack can find jQuery and require('jquery') in your modules.

If you’re using 1.9 or less, you’ll need to explicitly tell jQuery that webpack wants it to expose itself as an AMD module by adding this to your config:

{
 amd: {
 jQuery: true
 }
 ...
}

See the [[amd configuration option|configuration#amd]] for more information.

How do I use CoffeeScript (or other compile-to-js languages [https://github.com/jashkenas/coffee-script/wiki/List-of-languages-that-compile-to-JS])?

webpack can load altJS languages with special loaders. For example,

require('coffee-loader!mymodule.coffee')

However, you probably don’t want to specify a loader and extension every time you require your module. Avoiding that requires two steps: 1) configuring webpack to use a special loader for files of the given language and 2) configuring webpack to find modules written in that language. For CoffeeScript, that looks like this:

{
 module: {
 loaders: [
 {test: /\.coffee$/, loader: 'coffee-loader'}, // Use the CoffeeScript loader for *.coffee files
 ...
],
 ...
 },
 resolve: {
 extensions: ['', '.webpack.js', '.web.js', '.js', '.coffee'], // Look for *.coffee files when resolving modules
 ...
 },
 ...
}

A few things to note:

		The loaders are not bundled with webpack and must be installed separately.

		In order to retain the original resolution behavior, your extension array must include the default values (as shown above). See [[resolve.extensions|configuration#resolve-extensions]] for more details.

How do I integrate Webpack with Rails

Justin Gordon has created a detailed document describing how to integrate Webpack with Rails, including ReactJS and ES6, and deployment on Heroku: Fast Rich Client Rails Development With Webpack and the ES6 Transpiler [http://www.railsonmaui.com/blog/2014/10/02/integrating-webpack-and-the-es6-transpiler-into-an-existing-rails-project/].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment-close.png

search.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

motivation.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

 Today’s websites are evolving into web apps:

		More and more JavaScript is in a page.

		You can do more stuff in modern browsers.

		Fewer full page reloads → even more code in a page.

As a result there is a lot of code on the client side!

A big code base needs to be organized. Module systems offer the option to split your code base into modules.

Module system styles

There are multiple standards for how to define dependencies and export values:

		<script>-tag style (without a module system)

		CommonJs

		AMD and some dialects of it

		ES6 modules

		and more...

<script>-tag style

This is the way you would handle a modularized code base if you didn’t use a module system.

<script src="module1.js"></script>
<script src="module2.js"></script>
<script src="libraryA.js"></script>
<script src="module3.js"></script>

Modules export an interface to the global object, i. e. the window object. Modules can access the interface of dependencies over the global object.

Common problems

		Conflicts in the global object.

		Order of loading is important.

		Developers have to resolve dependencies of modules/libraries.

		In big projects the list can get really long and difficult to manage.

CommonJs: synchronous require

This style uses a synchronous require method to load a dependency and return an exported interface. A module can specify exports by adding properties to the exports object or setting the value of module.exports.

require("module");
require("../file.js");
exports.doStuff = function() {};
module.exports = someValue;

It’s used on server-side by node.js [http://nodejs.org].

Pros

		Server-side modules can be reused

		There are already many modules in this style (npm)

		very simple and easy to use.

Cons

		blocking calls do not apply well on networks. Network requests are asynchronous.

		No parallel require of multiple modules

Implementations

		node.js [http://nodejs.org/] - server-side

		browserify [https://github.com/substack/node-browserify]

		modules-webmake [https://github.com/medikoo/modules-webmake] - compile to one bundle

		wreq [https://github.com/substack/wreq] - client-side

AMD: asynchronous require

Asynchronous Module Definition [https://github.com/amdjs/amdjs-api/wiki/AMD]

Other module systems (for the browser) had problems with the synchronous require (CommonJs) and introduced an asynchronous version (and a way to define modules and exporting values):

require(["module", "../file"], function(module, file) { /* ... */ });
define("mymodule", ["dep1", "dep2"], function(d1, d2) {
 return someExportedValue;
});

Pros

		Fits to the asynchronous request style in networks.

		Parallel loading of multiple modules.

Cons

		Coding overhead. More difficult to read and write.

		Seems to be some kind of workaround.

Implementations

		require.js [http://requirejs.org/] - client-side

		curl [https://github.com/cujojs/curl] - client-side

Read more about [[CommonJs]] and [[AMD]].

ES6 modules

EcmaScript6 adds some language constructs to JavaScript, which form another module system.

import "jquery";
export function doStuff() {}
module "localModule" {}

Pros

		Static analysis is easy

		Future-proof as ES standard

Cons

		Native browser support will take time

		Very few modules in this style

Unbiased solution

Give the developer the choice of the module style. Allow existing code to work. Make it easy to add custom module styles.

Transferring

Modules should be executed on the client, so they must be transferred from the server to the browser.

There are two extremes on how to transfer modules:

		1 request per module

		all modules in one request

Both are used in the wild, but both are suboptimal:

		1 request per module
		Pro: only required modules are transferred

		Con: many requests means much overhead

		Con: slow application startup, because of request latency

		all modules in one request
		Pro: less request overhead, less latency

		Con: not (yet) required modules are transferred too

Chunked transferring

A more flexible transferring would be better. A compromise between the extremes is better in most cases.

→ While compiling all modules: Split the set of modules into multiple smaller batches (chunks).

We get multiple smaller requests. Chunks with modules that are not required initially are only requested on demand. The initial request doesn’t contain your complete code base and is smaller.

The “split points” are up to the developer and optional.

→ A big code base is possible!

Note: The idea is from Google’s GWT [https://developers.google.com/web-toolkit/doc/latest/DevGuideCodeSplitting].

Read more about [[Code Splitting]].

Why only JavaScript?

Why should a module system only help the developer with JavaScript? There are many other static resources that need to be handled:

		stylesheets

		images

		webfonts

		html for templating

		etc.

And also:

		coffeescript → javascript

		elm → javascript

		less stylesheets → css stylesheets

		jade templates → javascript which generates html

		i18n files → something

		etc.

This should be as easy as:

require("./style.css");

require("./style.less");
require("./template.jade");
require("./image.png");

Read more about [[Using loaders]] and [[Loaders]].

Static analysis

When compiling all the modules a static analysis tries to find dependencies.

Traditionally this could only find simple stuff without expression, but i.e. require("./template/" + templateName + ".jade") is a common construct.

Many libraries are written in different styles. Some of them are very weird...

Strategy

A clever parser would allow most existing code to run. If the developer does something weird it would try to find the most compatible solution.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

usage-with-gulp.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

 Using webpack with gulp is as easy as using the [[node.js API]].

Using webpack-stream [https://github.com/shama/webpack-stream]

var gulp = require('gulp');
var webpack = require('webpack-stream');
gulp.task('default', function() {
 return gulp.src('src/entry.js')
 .pipe(webpack())
 .pipe(gulp.dest('dist/'));
});

The above will compile src/entry.js into assets with webpack into dist/ with the output filename of [hash].js (webpack generated hash of the build).

Or just pass in your webpack.config.js:

return gulp.src('src/entry.js')
 .pipe(webpack(require('./webpack.config.js')))
 .pipe(gulp.dest('dist/'));

See webpack-stream [https://github.com/shama/webpack-stream] for more options and details.

Without webpack-stream

var gulp = require("gulp");
var gutil = require("gulp-util");
var webpack = require("webpack");
var WebpackDevServer = require("webpack-dev-server");

Normal compilation

gulp.task("webpack", function(callback) {
 // run webpack
 webpack({
 // configuration
 }, function(err, stats) {
 if(err) throw new gutil.PluginError("webpack", err);
 gutil.log("[webpack]", stats.toString({
 // output options
 }));
 callback();
 });
});

[[webpack-dev-server]]

Don’t be too lazy to integrate the webpack-dev-server into your development process. It’s an important tool for productivity.

gulp.task("webpack-dev-server", function(callback) {
 // Start a webpack-dev-server
 var compiler = webpack({
 // configuration
 });

 new WebpackDevServer(compiler, {
 // server and middleware options
 }).listen(8080, "localhost", function(err) {
 if(err) throw new gutil.PluginError("webpack-dev-server", err);
 // Server listening
 gutil.log("[webpack-dev-server]", "http://localhost:8080/webpack-dev-server/index.html");

 // keep the server alive or continue?
 // callback();
 });
});

Example

Take a look at an example gulpfile. It covers three modes:

		webpack-dev-server

		build - watch cycle

		production build

Example gulpfile [https://github.com/webpack/webpack-with-common-libs/blob/master/gulpfile.js]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

contents.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

		Getting Started
		[[Motivation]]

		[[What is webpack? | What is webpack]]

		[[Installation]]

		[[Usage]]

		Require Modules

		Vendor Modules

		[[Using Loaders]]

		[[Using Plugins]]

		[[Dev Tools]]

		[[Troubleshooting]]

		Tutorials and examples
		Getting started [http://webpack.github.io/docs/tutorials/getting-started/]

		[[List of tutorials]]

		[[examples]]

		Guides
		[[CommonJs]]

		[[AMD]]

		[[webpack for browserify users]]

		[[Code Splitting]]

		[[Stylesheets]]

		[[Optimization]]

		[[Long-term Caching]]

		[[How to write a loader]]

		[[How to write a plugin]]

		[[Multiple entry points]]

		[[Library and externals]]

		[[Shimming modules]]

		[[Testing]]

		[[Build performance]]

		[[Hot Module Replacement with webpack]]

		[[Comparison]]

		webpack with
		[[grunt | Usage with grunt]]

		[[gulp | Usage with gulp]]

		[[bower | Usage with bower]]

		[[karma | Usage with karma]]

		Lists
		[[loader conventions]]

		[[List of loaders]]

		[[List of plugins]]

		[[List of tutorials]]

		[[List of hints]]

		API
		[[Configuration]]

		[[CLI]]

		[[Node.js API]]

		[[API in modules]]

		[[Loaders]]

		[[Plugins]]

		[[Context]]

		[[Resolving]]

		[[Hot Module Replacement]]

		Dev Tools
		[[webpack-dev-server]]

		[[webpack-dev-middleware]]

		Development
		[[Changelog]]

		[[Roadmap]]

		[[Ideas]]

		Contributing

 © Copyright 2016.
 Created using Sphinx 1.3.5.

usage-with-grunt.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

 There is a grunt plugin for using webpack and the [[webpack-dev-server]]: grunt-webpack [https://github.com/webpack/grunt-webpack].

It’s pretty simple to use:

module.exports = function(grunt) {
 grunt.loadNpmTasks("grunt-webpack");
 grunt.initConfig({
 webpack: {
 options: {
 // configuration for all builds
 },
 build: {
 // configuration for this build
 }
 },
 "webpack-dev-server": {
 options: {
 webpack: {
 // configuration for all builds
 },
 // server and middleware options for all builds
 },
 start: {
 webpack: {
 // configuration for this build
 },
 // server and middleware options for this build
 }
 }
 });
};

Development

The best option for development is the [[webpack-dev-server]], but it requires spawning a server. If this is not possible or too complex the normal build - watch cycle is possible too.

Example

Take a look at an example Gruntfile. It covers three modes:

		webpack-dev-server

		build - watch cycle

		production build

Example Gruntfile [https://github.com/webpack/webpack-with-common-libs/blob/master/Gruntfile.js]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

installation.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

node.js

安装 node.js [http://nodejs.org].

node.js comes with a package manager called npm.

webpack

webpack can be installed through npm:

$ npm install webpack -g

webpack is now installed globally and the webpack command is available.

在项目中使用webpack

It’s the best to have webpack also as dependency in your project. Through this you can choose a local webpack version and will not be forced to use the single global one.

Add a package.json configuration file for npm with:

$ npm init

The answers to the questions are not so important if you don’t want to publish your project to npm.

Install and add webpack to the package.json with:

$ npm install webpack --save-dev

Versions

There are two versions of webpack available. The stable one and a beta version. The beta version is marked with a -beta in the version string. The beta version may contain fragile changes or experimental features and is less tested. See [[changelog]] for differences. For serious stuff you should use the stable version:

$ npm install webpack@1.2.x --save-dev

Dev Tools

If you want to use dev tools you should install it:

$ npm install webpack-dev-server --save-dev

Continue reading

You can continue reading [[Usage]].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

using-loaders.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

What are loaders?

Loaders are transformations that are applied on a resource file of your app. They are functions (running in node.js) that take the source of a resource file as the parameter and return the new source.

For example, you can use loaders to tell webpack to load CoffeeScript or JSX.

Loader features

		Loaders can be chained. They are applied in a pipeline to the resource. The final loader is expected to return JavaScript, the others can return arbitrary format (which is passed to the next loader)

		Loaders can be synchronous and asynchronous.

		Loaders run in node.js and can do everything that’s possible there.

		Loaders accept query parameters. This can be used to pass configuration to the loader.

		Loaders can be bound to extension / RegExps in the configuration.

		Loaders can be published / installed through npm.

		Normal modules can export a loader in addition to the normal main via package.json loader.

		Loaders can access the configuration.

		Plugins can give loaders more features.

		Loaders can emit additional arbitrary files.

		[[etc. | loaders]]

If you are interested in some loader examples head off to the [[list of loaders]].

Resolving loaders

Loaders are [[resolved similar to modules | resolving]]. A loader module is expected to export a function and to be written in node.js compatible JavaScript. In the common case you manage loaders with npm, but you can also have loaders as files in your app.

Referencing loaders

By convention, though not required, loaders are usually named as XXX-loader, where XXX is the context name. For example, json-loader.

You may reference loaders by its full (actual) name (e.g. json-loader), or by its shorthand name (e.g. json).

The loader name convention and precedence search order is defined by resolveLoader.moduleTemplates [http://webpack.github.io/docs/configuration.html#resolveloader-moduletemplates] within the webpack configuration API.

Loader name conventions may be useful, especially when referencing them within require() statements; see usage below.

Installing loaders

If the loader is available on npm you can install the loader via:

$ npm install xxx-loader --save

or

$ npm install xxx-loader --save-dev

Usage

There are multiple ways to use loaders in your app:

		explicit in the require statement

		configured via configuration

		configured via CLI

loaders in require

Note: Avoid using this, if at all possible, if you intend your scripts to be environment agnostic (node.js and browser). Use the configuration convention for specifying loaders (see next section).

It’s possible to specify the loaders in the require statement (or define, require.ensure, etc.). Just separate loaders from resource with !. Each part is resolved relative to the current directory.

It’s possible to overwrite any loaders in the configuration by prefixing the entire rule with !.

require("./loader!./dir/file.txt");
// => uses the file "loader.js" in the current directory to transform
// "file.txt" in the folder "dir".

require("jade!./template.jade");
// => uses the "jade-loader" (that is installed from npm to "node_modules")
// to transform the file "template.jade"
// If configuration has some transforms bound to the file, they will still be applied.

require("!style!css!less!bootstrap/less/bootstrap.less");
// => the file "bootstrap.less" in the folder "less" in the "bootstrap"
// module (that is installed from github to "node_modules") is
// transformed by the "less-loader". The result is transformed by the
// "css-loader" and then by the "style-loader".
// If configuration has some transforms bound to the file, they will not be applied.

[[Configuration]]

You can bind loaders to a RegExp via configuration:

{
 module: {
 loaders: [
 { test: /\.jade$/, loader: "jade" },
 // => "jade" loader is used for ".jade" files

 { test: /\.css$/, loader: "style!css" },
 // => "style" and "css" loader is used for ".css" files
 // Alternative syntax:
 { test: /\.css$/, loaders: ["style", "css"] },
]
 }
}

[[CLI]]

You can bind loaders to an extension via CLI:

$ webpack --module-bind jade --module-bind 'css=style!css'

This uses the loader “jade” for ”.jade” files and the loaders “style” and “css” for ”.css” files.

Query parameters

Loader can be passed query parameters via a query string (just like in the web). The query string is appended to the loader with ?. i.e. url-loader?mimetype=image/png.

Note: The format of the query string is up to the loader. See format in the loader documentation. Most loaders accept parameters in the normal query format (?key=value&key2=value2) and as JSON object (?{"key":"value","key2":"value2"}).

in require

require("url-loader?mimetype=image/png!./file.png");

Configuration

{ test: /\.png$/, loader: "url-loader?mimetype=image/png" }

or

{
 test: /\.png$/,
 loader: "url-loader",
 query: { mimetype: "image/png" }
}

CLI

webpack --module-bind "png=url-loader?mimetype=image/png"

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment.png

roadmap.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

2

(for the most up to date version see https://docs.google.com/document/d/1tRc0MzvRdGK7EbG2LRW8vSyoxKhR_EvRUz3AQRyFZso/edit?pli=1)

		native ES6 import, export and System.import

		Tree Shaking for ES6

		Needs Promise polyfill in old browsers

		chunk error handling

		Many plugins now take options objects instead of multiple parameters

		config can be a function and –env

		Removed deprecated argument configs (except with one argument shortcut if possible)

		loaders now match resourcePath instead of resource with query

		webpack config can return a Promise

		-p sets NODE_ENV = “production”

		the uglifyjs plugin no longer minimize other assets

		there is the LoaderOptionsPlugin now

		webpackfile.js is now also supported

		added HashedModuleIdsPlugin

1.1

		documentation

1.0

beta: end 2013, stable: early 2014

		Bugfixes

		updates to loaders

0.11 - 0.12

		Hot Code Replacement

		Some more cool features

 © Copyright 2016.
 Created using Sphinx 1.3.5.

multiple-entry-points.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

 Prerequirement: [[Code Splitting]]

If you need multiple bundles for multiple HTML pages you can use the “multiple entry points” feature. It will build multiple bundles at once. Additional chunks can be shared between these entry chunks and modules are only built once.

Hint: When you want to start an entry chunk from a module, you are doing something wrong. Use [[Code Splitting]] instead!

Every entry chunk contains the webpack runtime, so you can only load one entry chunk per page. (Hint: To bypass this limitation use the CommonsChunkPlugin to move the runtime into a single chunk.)

Configuration

To use multiple entry points you can pass an object to the entry option. Each value is threaded as entry point and the key represents the name of the entry point.

When using multiple entry point you must override the default output.filename option. Otherwise each entry point would write to the same output file. Use [name] to get the name of the entry point.

Minimal example configuration

{
 entry: {
 a: "./a",
 b: "./b",
 c: ["./c", "./d"]
 },
 output: {
 path: path.join(__dirname, "dist"),
 filename: "[name].entry.js"
 }
}

Examples

		multiple-entry-points [https://github.com/webpack/webpack/tree/master/examples/multiple-entry-points]

		multi-part-library [https://github.com/webpack/webpack/tree/master/examples/multi-part-library]

		multiple-commons-chunks [https://github.com/webpack/webpack/tree/master/examples/multiple-commons-chunks]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/minus.png

ideas.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

 A list of open ideas.

		Support globs in require statements so you can easily bundle static assets etc. Webpack-dev-server should monitor the glob for new files.

		Allow defining plugins in the webpack configuration file so you don’t need an extra file for trivial custom loaders

		Allow adding command line parameters to the webpack CLI from the configuration file so it’s easier to change the webpack configuration inside the configuration file.

		Allow the option of excluding of some paths (eg ‘node_modules’) from triggering warnings / errors. Example use case: ProtobufJS triggers a bunch of warnings - it’s not relevant to me.

		Allow watching of files in webpack-dev-server specifically (using glob). If using something like PostCSS or Sass, changes in @import-ed CSS files aren’t watched.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

Home.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

 Welcome to the documentation of webpack.

Browse the documentation website [http://webpack.github.io/docs/]

or read it in the github wiki: [[contents]]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

README.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

doc_webpack

这是官方的汉化

 © Copyright 2016.
 Created using Sphinx 1.3.5.

library-and-externals.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

 You developed a library and want to distribute it in compiled/bundled versions (in addition to the modularized version). You want to allow the user to use it in a <script>-tag or with a [[amd]] loader (i. e. require.js). Or you depend on various precompilations and want to take the pain for the user and distribute it as simple compiled [[commonjs]] module.

configuration options

webpack has three [[configuration]] options that are relevant for these use cases: output.library, output.libraryTarget and externals.

output.libraryTarget allows you to specify the kind to the output. I.e. CommonJs, AMD, for usage in a script tag or as UMD module.

output.library allows you to optionally specify a name of your library.

externals allows you to specify dependencies for your library that are not resolved by webpack, but become dependencies of the output. This means they are imported from the environment during runtime.

Examples

compile library for usage in a <script>-tag

		depends on "jquery", but jquery should not be included in the bundle.

		library should be available at Foo in the global context.

var jQuery = require("jquery");
var math = require("math-library");

function Foo() {}

// ...

module.exports = Foo;

Recommended configuration (only relevant stuff):

{
 output: {
 // export itself to a global var
 libraryTarget: "var",
 // name of the global var: "Foo"
 library: "Foo"
 },
 externals: {
 // require("jquery") is external and available
 // on the global var jQuery
 "jquery": "jQuery"
 }
}

Resulting bundle:

var Foo = (/* ... webpack bootstrap ... */
({
 0: function(...) {
 var jQuery = require(1);
 /* ... */
 },
 1: function(...) {
 module.exports = jQuery;
 },
 /* ... */
});

Applications and externals

You can use the externals options for applications too, when you want to import an existing API into the bundle. I.e. you want to use jquery from CDN (separate <script> tag) and still want to require("jquery") in your bundle. Just specify it as external: { externals: { jquery: "jQuery" } }.

Resolving and externals

Externals processing happens before resolving the request, which means you need to specify the unresolved request. Loaders are not applied to externals. You can (need to) externalize a request with loader: require("bundle!jquery") { externals: { "bundle!jquery": "bundledJQuery" } }

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

list-of-tutorials.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

Books

Pro React - Webpack Appendix [http://www.pro-react.com/materials/appendixA/]

SurviveJS - Webpack and React [http://survivejs.com/]

react-webpack-cookbook [https://github.com/christianalfoni/react-webpack-cookbook/wiki]

Book of Modern frontend tooling [http://tooling.github.io/book-of-modern-frontend-tooling/dependency-management/webpack/getting-started.html]

Webpack 中文指南 [http://zhaoda.net/webpack-handbook/]

Articles

Nitro Boost your workflow in Webpack [https://medium.com/@booleanhunter/webpack-for-the-fast-and-the-furious-bf8d3746adbd#.ptmeqb7gd]

2016-02-11 @booleanhunter

Webpack your bags [http://blog.madewithlove.be/post/webpack-your-bags/]

webpack crashcourse

2015-10-16 @Anahkiasen

Debugging Webpack applications in WebStorm [https://blog.jetbrains.com/webstorm/2015/09/debugging-webpack-applications-in-webstorm/]

2015-09-28 @prigara

How to Use Webpack for Killer Refactoring [https://snipcart.com/blog/how-to-use-webpack-for-killer-refactoring]

2015-09-08 @couellet

Unlocking ES2015 Features With Webpack And Babel [http://blog.xebia.com/2015/08/31/unlocking-es2015-features-with-webpack-and-babel/]

Integrate webpack with babel for ES2015 features. Plus SourceMaps for debugging.

2015-08-31 Marc Rooding

Building Modular JavaScript with Webpack [http://blog.librato.com/posts/webpack]

2015-08-20 @adamyonk

A Changing Of The Guard In Web Technology [https://underthehood.myob.com/changing-of-the-guard-in-web-technologies/]

Webpack + React + React router + Flux (Altjs)Beginner friendly introduction to Webpack to build a simple React + Alt.js example application.

2015-07-28 Chris Williams

Webpack vs Browserify [https://medium.com/@housecor/browserify-vs-webpack-b3d7ca08a0a9]

Comparison of Webpack and Browserify

2015-07-27 @coryhouse

Durandal And Webpack: Introduction [http://blog.craigsworks.com/durandal-and-webpack-introduction/]

How to utilise the power of the Webpack module bundler with an existing (or perhaps new) Durandal application

2015-07-26 @Craga89

The ultimate webpack setup [http://christianalfoni.com/articles/2015_04_19_The-ultimate-webpack-setup]

Using webpack with an express node server. Great for prototyping and generally good setup for any project.

2015-04 @christianalfoni

Webpack & Angular: 3 part series [http://shmck.com/webpack-angular-part-1/]

Setting up and understanding a webpack project with angular, handling dependencies & 6 ways to use ‘require’.

2015-04-15 @Sh_McK

Ditching RequireJS for Webpack: the reasons and lessons learned. [http://blog.player.me/ditching-requirejs-webpack-reasons-lessons-learned/]

A list of the steps I did, the roadblocks I have encoutered and the lessons learned.

2015-03-15 @maktouch

Creating a workflow with WebPack [http://christianalfoni.github.io/javascript/2014/12/13/did-you-know-webpack-and-react-is-awesome.html]

long guide for using react.js with webpack

2014-12-13 @christianalfoni

webpack 基本的な使い方 [http://aics-app.sakura.ne.jp/blog/2014/09/03/webpack-%E5%9F%BA%E6%9C%AC%E7%9A%84%E3%81%AA%E4%BD%BF%E3%81%84%E6%96%B9/]

basic sample and explanation of compiled bundle.js

2014-09-07 @tssubo

Integrating JSX live reload into your React workflow [http://gaearon.github.io/react-hot-loader/]

A guide how to migrate the react-tutorial to webpack and using the Hot Module Replacement and react-hot-loader for a live reloading react app.

2014-07-24 @gaearon

webpack-howto [https://github.com/petehunt/webpack-howto]

A no-BS cookbook for getting things done with webpack, taken from Instagram.com’s best practices

2014-07-17 @petehunt

Webpack 怎么用 [http://segmentfault.com/blog/jiyinyiyong/1190000002552008]

Chinese translation of Webpack-Howto above.2015-02-12 @jiyinyiyong

RequireJS等はもう古い。WebPackとは？ [http://ameblo.jp/ca-1pixel/entry-11884453208.html]

Introductory tutorial (with real world samples)

2014-06-26 @gunta

An introduction to webpack [http://cuttleblog.tumblr.com/post/63669845272/webpack]

Cross develop for Node and the Browser without forking around

2013-10-10 @davidgovea

Single Page Modules with Webpack [http://dontkry.com/posts/code/single-page-modules-with-webpack.html]

2013-09-27 @shama

How to use webpack with Rails [http://clarkdave.net/2015/01/how-to-use-webpack-with-rails/]

A comprehensive guide to integrating webpack with a Rails app

2015-01 @clarkdave

Webpack 入门指迷 [http://segmentfault.com/blog/jiyinyiyong/1190000002551952]

Basic guide and some use cases of using Webpack to bundle SPAs in Chinese.2015-02-12 @jiyinyiyong

How-to setup Webpack on an ES6 React Application with SASS? [http://www.jonathan-petitcolas.com/2015/05/15/howto-setup-webpack-on-es6-react-application-with-sass.html]

A step-by-step guide to configure Webpack for React, including a killer feature: React Hot Loader

2015-05-15 @jpetitcolas

Webpackin’ your ES 2015 / Angular 1.x SPA [http://scottaddie.com/2015/06/29/webpackin-your-es-2015-angular-1-x-spa/]

A basic walkthrough of Webpack setup & configuration for transpiling your Angular 1.x ES 2015 code to ES5 with Babel. Uses NPM exclusively for front-end dependencies.

2015-06-29 @Scott_Addie

TypeScript and webpack [http://www.jbrantly.com/typescript-and-webpack/]

A tutorial for integrating TypeScript with webpack.

2015-07-19 @jbrantly

Harnessing Webpack with Visual Studio Code [http://scottaddie.com/2015/10/07/harnessing-webpack-with-visual-studio-code/]

An explanation of integrating Webpack with the tasks.json file in Visual Studio Code.

2015-10-07 @Scott_Addie

Set up Webpack [http://alexhusakov.com/posts/Set-up-Webpack]

A tutorial for configuring a basic workflow.

2015-11-28 @zoomchik

A Practical Approach to Cache Busting with Webpack and ASP.NET Core 1.0 [http://scottaddie.com/2015/12/14/a-practical-approach-to-cache-busting-with-webpack-and-asp-net-5/]

A demonstration of implementing cache busting for client-side assets with Webpack in an ASP.NET MVC 6 application.

2015-12-14 @Scott_Addie

Compilando el Frontend con webpack [https://medium.com/@sergiodxa/compilando-el-frontend-con-webpack-d251f7a632ec]

2015-09-28 @sergiodxa

Talks

An Efficient Static Assets Pipeline with Webpack [https://www.youtube.com/watch?v=w1dAb_Umt8o]

This talk explains how to use Webpack to build an efficient static assets pipeline. The sample app [https://github.com/theasta/paris-webpack-react] and the slides [https://speakerdeck.com/theasta/an-efficient-static-assets-pipeline-with-webpack] are available online.

2015-02-27 @theasta

Webpack is Awesome [https://unindented.github.io/webpack-presentation/#/]

2014-12-31 @unindented

How instagram.com works [https://www.youtube.com/watch?v=VkTCL6Nqm6Y]

Instagram.com renders almost all of its UI in JavaScript. Pete Hunt has talked about how instagrams packaging and push systems work in great detail, which are clever combinations of existing open-source tools (webpack, React).

2014-09-04 @petehunt

Introduction to webpack [http://okonet.github.io/viennajs-webpack-introduction/]

2014-08-28 @okonetchnikov

Managing your front-end with webpack [http://peerigon.github.io/talks/2014-07-09-MNUG-webpack]

Comprehensive introduction to webpack, held at the MNUG (munich node.js user group) [http://mnug.de/]

video [https://www.youtube.com/watch?v=EBlUng3IU4E]

2014-07-09 @jhnns

webpack [http://ryanseddon.github.io/webpack-talk/]

22 Slides, short introduction

2014-06-11 @ryanseddon

Screencasts

Webpack screencast (russian language only) [https://www.youtube.com/playlist?list=PLDyvV36pndZHfBThhg4Z0822EEG9VGenn]

Complete webpack introduction on YouTube by Ilya Kantor, russian language only.

2015-12-14 @yaroslavya

Getting Started with webpack [https://www.youtube.com/watch?v=TaWKUpahFZM]

Quick screencast on YouTube about getting started with webpack by Kyle Robinson Young [https://twitter.com/shamakry]

2015-07-06 @shamakry

Intro to Webpack [https://egghead.io/lessons/javascript-intro-to-webpack]

Free Egghead.io lesson by Kent C. Dodds [https://twitter.com/kentcdodds]

2015-02-18 @kentcdodds

Angular with Webpack [https://egghead.io/series/angular-and-webpack-for-modular-applications]

Egghead.io series by Kent C. Dodds [https://twitter.com/kentcdodds]

2015-03-12 @kentcdodds

Testing with webpack and Mocha [https://www.youtube.com/watch?v=_sLLjPzOrXI]

2015-01-02 @jesseskinner

Trying webpack with React.js [https://www.youtube.com/watch?v=Ob1ruoUnc58]

2014-12-27 @jesseskinner

Webpack Screencast (in Russian) [https://learn.javascript.ru/webpack-screencast]

На русском языке.

40 series of in-depth webpack tutorials

2015-11-08 @iliakan

Demos, Examples and Starters

React Webpack Tutorial [http://jansoren.github.io/react-webpack-tutorial/]

This is a tutorial on how to get started developing a client side application using ReactJS, Webpack and Npm

Exercise Module Of Guanghe.tv On Mobile Device [https://github.com/lvBingo/exercises-module]

A large and complex project use React, Redux, webpack, React-root, ES6. No detailed code introduction, Need some development experience to Read.

Webpack Demos [https://github.com/ruanyf/webpack-demos]

a collection of simple demos of Webpack

webpack-step-by-step [https://github.com/abhijeetNmishra/webpack-step-by-step]

2016-01-16 @abhijeetNmishra

Learning Webpack [https://github.com/Code-by-practice/learning-webpack]

This training kit has been developed to learn the basics of Webpack module bundler

(Use the edit button at top right corner to add more)

 © Copyright 2016.
 Created using Sphinx 1.3.5.

how-to-write-a-plugin.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

 Plugins expose the full potential of the Webpack engine to third-party developers. Using staged build callbacks, developers can introduce their own behaviors into the Webpack build process. Building plugins is a bit more advanced than building loaders, because you’ll need to understand some of the Webpack low-level internals to hook into them. Be prepared to read some source code!

Compiler and Compilation

Among the two most important resources while developing plugins are the compiler and compilation objects. Understanding their roles is an important first step in extending the Webpack engine.

		The compiler object represents the fully configured Webpack environment. This object is built once upon starting Webpack, and is configured with all operational settings including options, loaders, and plugins. When applying a plugin to the Webpack environment, the plugin will receive a reference to this compiler. Use the compiler to access the main Webpack environment.

		A compilation object represents a single build of versioned assets. While running Webpack development middleware, a new compilation will be created each time a file change is detected, thus generating a new set of compiled assets. A compilation surfaces information about the present state of module resources, compiled assets, changed files, and watched dependencies. The compilation also provides many callback points at which a plugin may choose to perform custom actions.

These two components are an integral part of any Webpack plugin (especially a compilation), so developers will benefit by familiarizing themselves with these source files:

		Compiler Source [https://github.com/webpack/webpack/blob/master/lib/Compiler.js]

		Compilation Source [https://github.com/webpack/webpack/blob/master/lib/Compilation.js]

Basic plugin architecture

Plugins are instanceable objects with an apply method on their prototype. This apply method is called once by the Webpack compiler while installing the plugin. The apply method is given a reference to the underlying Webpack compiler, which grants access to compiler callbacks. A simple plugin is structured as follows:

function HelloWorldPlugin(options) {
 // Setup the plugin instance with options...
}

HelloWorldPlugin.prototype.apply = function(compiler) {
 compiler.plugin('done', function() {
 console.log('Hello World!');
 });
};

module.exports = HelloWorldPlugin;

Then to install the plugin, just include an instance in your Webpack config plugins array:

var HelloWorldPlugin = require('hello-world');

var webpackConfig = {
 // ... config settings here ...
 plugins: [
 new HelloWorldPlugin({options: true})
]
};

Accessing the compilation

Using the compiler object, you may bind callbacks that provide a reference to each new compilation. These compilations provide callbacks for hooking into numerous steps within the build process.

function HelloCompilationPlugin(options) {}

HelloCompilationPlugin.prototype.apply = function(compiler) {

 // Setup callback for accessing a compilation:
 compiler.plugin("compilation", function(compilation) {

 // Now setup callbacks for accessing compilation steps:
 compilation.plugin("optimize", function() {
 console.log("Assets are being optimized.");
 });
 });
});

module.exports = HelloCompilationPlugin;

For more information on what callbacks are available on the compiler, compilation, and other important objects, see the [[plugins API|plugins]] doc.

Async compilation plugins

Some compilation plugin steps are asynchronous, and pass a callback function that must be invoked when your plugin is finished running.

function HelloAsyncPlugin(options) {}

HelloAsyncPlugin.prototype.apply = function(compiler) {
 compiler.plugin("emit", function(compilation, callback) {

 // Do something async...
 setTimeout(function() {
 console.log("Done with async work...");
 callback();
 }, 1000);

 });
});

module.exports = HelloAsyncPlugin;

A simple example

Once we can latch onto the Webpack compiler and each individual compilations, the possibilities become endless for what we can do with the engine itself. We can reformat existing files, create derivative files, or fabricate entirely new assets.

Let’s write a simple example plugin that generates a new build file called filelist.md; the contents of which will list all of the asset files in our build. This plugin might look something like this:

function FileListPlugin(options) {}

FileListPlugin.prototype.apply = function(compiler) {
 compiler.plugin('emit', function(compilation, callback) {
 // Create a header string for the generated file:
 var filelist = 'In this build:\n\n';

 // Loop through all compiled assets,
 // adding a new line item for each filename.
 for (var filename in compilation.assets) {
 filelist += ('- '+ filename +'\n');
 }

 // Insert this list into the Webpack build as a new file asset:
 compilation.assets['filelist.md'] = {
 source: function() {
 return filelist;
 },
 size: function() {
 return filelist.length;
 }
 };

 callback();
 });
};

module.exports = FileListPlugin;

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/file.png

internal-webpack-plugins.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

 These is a list of plugins, which are internally used by webpack. You should only care about them if you are building a own compiler based on webpack, or introspect the internals.

categories of internal plugins:

		environment

		compiler

		entry

		output

		source

		optimize

environment

Plugins affecting the environment of the compiler.

node/NodeEnvironmentPlugin

Applies node.js style filesystem to the compiler.

compiler

Plugins affecting the compiler

CachePlugin([cache])

Adds a cache to the compiler, where modules are cached.

You can pass a cache object, where the modules are cached. Otherwise one is created per plugin instance.

ProgressPlugin(handler)

Hook into the compiler to extract progress information. The handler must have the signature function(percentage, message). It’s called with 0 <= percentage <= 1. percentage == 0 indicates the start. percentage == 1 indicates the end.

RecordIdsPlugin()

Saves and restores module and chunk ids from records.

entry

Plugins, which add entry chunks to the compilation.

SingleEntryPlugin(context, request, chunkName)

Adds a entry chunk on compilation. The chunk is named chunkName and contains only one module (plus dependencies). The module is resolved from request in context (absolute path).

MultiEntryPlugin(context, requests, chunkName)

Adds a entry chunk on compilation. The chunk is named chunkName and contains a module for each item in the requests array (plus dependencies). Each item in requests is resolved in context (absolute path).

PrefetchPlugin(context, request)

Prefetches request and dependencies to enables more parallel compilation. It doesn’t create any chunk. The module is resolved from request in context (absolute path).

output

FunctionModulePlugin(context, options)

Each emitted module is wrapped in a function.

options are the output options.

If options.pathinfo is set, each module function is annotated with a comment containing the module identifier shortened to context (absolute path).

JsonpTemplatePlugin(options)

Chunks are wrapped into JSONP-calls. A loading algorithm is included in entry chunks. It loads chunks by adding a <script> tag.

options are the output options.

options.jsonpFunction is the JSONP function.

options.publicPath is uses as path for loading the chunks.

options.chunkFilename is the filename under that chunks are expected.

node/NodeTemplatePlugin(options)

Chunks are wrapped into node.js modules exporting the bundled modules. The entry chunks loads chunks by requiring them.

options are the output options.

options.chunkFilename is the filename under that chunks are expected.

LibraryTemplatePlugin(name, target)

The entries chunks are decorated to form a library name of type type.

webworker/WebWorkerTemplatePlugin(options)

Chunks are loaded by importScripts. Else it’s similar to JsonpTemplatePlugin.

options are the output options.

EvalDevToolModulePlugin

Decorates the module template by wrapping each module in a eval annotated with // @sourceURL.

SourceMapDevToolPlugin(sourceMapFilename, sourceMappingURLComment, moduleFilenameTemplate, fallbackModuleFilenameTemplate)

Decorates the templates by generating a SourceMap for each chunk.

sourceMapFilename the filename template of the SourceMap. [hash], [name], [id], [file] and [filebase] are replaced. If this argument is missing, the SourceMap will be inlined as DataUrl.

NoHotModuleReplacementPlugin()

Defines module.hot as false to remove hot module replacement code.

HotModuleReplacementPlugin(options)

Add support for hot module replacement. Decorates the templates to add runtime code. Adds module.hot API.

options.hotUpdateChunkFilename The filename for hot update chunks

options.hotUpdateMainFilename The filename for the hot update manifest

options.hotUpdateFunction JSON function name for the hot update

source

Plugins affecting the source code of modules.

APIPlugin

Make __webpack_public_path__, __webpack_require__, __webpack_modules__, __webpack_chunk_load__ accessible. Ensures that require.valueOf and require.onError are not processed by other plugins.

CompatibilityPlugin

Currently useless. Ensures compatibility with other module loaders.

ConsolePlugin

Offers a pseudo console if it is not available.

ConstPlugin

Try to evaluate expressions in if(...) and replace it with true/false.

ProvidePlugin(name, request)

If name is used in a module it is filled by a module loaded by require(<request>).

NodeStuffPlugin(options, context)

Provide stuff that is normally available in node.js modules.

It also ensures that module is filled with some node.js stuff if you use it.

RequireJsStuffPlugin

Provide stuff that is normally available in require.js.

require[js].config is removed. require.version is 0.0.0. requirejs.onError is mapped to require.onError.

node/NodeSourcePlugin(options)

This module adds stuff from node.js that is not available in non-node.js environments.

It adds polyfills for process, console, Buffer and global if used. It also binds the built in Node.js replacement modules.

node/NodeTargetPlugin

The plugins should be used if you run the bundle in a node.js environment.

If ensures that native modules are loaded correctly even if bundled.

dependencies/AMDPlugin(options)

Provides AMD-style define and require to modules. Also bind require.amd, define.amd and __webpack_amd_options__ to the options passed as parameter.

dependencies/CommonJsPlugin

Provides CommonJs-style require to modules.

dependencies/LabeledModulesPlugin

Provide labels require: and exports: to modules.

dependencies/RequireContextPlugin(modulesDirectories, extensions)

Provides require.context. The parameter modulesDirectories and extensions are used to find alternative requests for files. It’s useful to provide the same arrays as you provide to the resolver.

dependencies/RequireEnsurePlugin

Provides require.ensure.

dependencies/RequireIncludePlugin

Provides require.include.

DefinePlugin(definitions)

Define constants for identifier.

definitions is an object.

optimize

optimize/LimitChunkCountPlugin(options)

Merge chunks limit chunk count is lower than options.maxChunks.

The overhead for each chunks is provided by options.chunkOverhead or defaults to 10000. Entry chunks sizes are multiplied by options.entryChunkMultiplicator (or 10).

Chunks that reduce the total size the most are merged first. If multiple combinations are equal the minimal merged size wins.

optimize/MergeDuplicateChunksPlugin

Chunks with the same modules are merged.

optimize/RemoveEmptyChunksPlugin

Modules that are included in every parent chunk are removed from the chunk.

optimize/MinChunkSizePlugin(minChunkSize)

Merges chunks until each chunk has the minimum size of minChunkSize.

optimize/FlagIncludedChunksPlugin

Adds chunk ids of chunks which are included in the chunk. This eliminates unnecessary chunk loads.

optimize/UglifyJsPlugin(options)

Minimizes the chunks with uglify.js.

options are uglifyjs options.

optimize/OccurenceOrderPlugin(preferEntry)

Order the modules and chunks by occurrence. This saves space, because often referenced modules and chunks get smaller ids.

preferEntry If true, references in entry chunks have higher priority

optimize/DedupePlugin

Deduplicates modules and adds runtime code.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

configuration.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

webpack is fed a configuration object. Depending on your usage of webpack there are two ways to pass this configuration object:

CLI

If you use the [[CLI]] it will read a file webpack.config.js (or the file passed by the --config option). This file should export the configuration object:

module.exports = {
 // configuration
};

node.js API

If you use the [[node.js API]] you need to pass the configuration object as parameter:

webpack({
 // configuration
}, callback);

multiple configurations

In both cases you can also use an array of configurations, which are processed in parallel. They share filesystem cache and watchers so this is more efficent than calling webpack multiple times.

configuration object content

Hint: Keep in mind that you don’t need to write pure JSON into the configuration. Use any JavaScript you want. It’s just a node.js module...

Very simple configuration object example:

{
 context: __dirname + "/app",
 entry: "./entry",
 output: {
 path: __dirname + "/dist",
 filename: "bundle.js"
 }
}

context

The base directory (absolute path!) for resolving the entry option. If output.pathinfo is set, the included pathinfo is shortened to this directory.

Default: process.cwd()

entry

The entry point for the bundle.

If you pass a string: The string is resolved to a module which is loaded upon startup.

If you pass an array: All modules are loaded upon startup. The last one is exported.

entry: ["./entry1", "./entry2"]

If you pass an object: Multiple entry bundles are created. The key is the chunk name. The value can be a string or an array.

{
 entry: {
 page1: "./page1",
 page2: ["./entry1", "./entry2"]
 },
 output: {
 // Make sure to use [name] or [id] in output.filename
 // when using multiple entry points
 filename: "[name].bundle.js",
 chunkFilename: "[id].bundle.js"
 }
}

NOTE: It is not possible to configure other options specific to entry points. If you need entry point specific configuration you need to use multiple configurations.

output

Options affecting the output of the compilation. output options tell Webpack how to write the compiled files to disk. Note, that while there can be multiple entry points, only one output configuration is specified.

If you use any hashing ([hash] or [chunkhash]) make sure to have a consistent ordering of modules. Use the OccurenceOrderPlugin or recordsPath.

output.filename

Specifies the name of each output file on disk. You must not specify an absolute path here! The output.path option determines the location on disk the files are written to, filename is used solely for naming the individual files.

single entry

{
 entry: './src/app.js',
 output: {
 filename: 'bundle.js',
 path: './built'
 }
}

// writes to disk: ./built/bundle.js

multiple entries

If your configuration creates more than a single “chunk” (as with multiple entry points or when using plugins like CommonsChunkPlugin), you should use substitutions below to ensure that each file has a unique name.

[name] is replaced by the name of the chunk.

[hash] is replaced by the hash of the compilation.

[chunkhash] is replaced by the hash of the chunk.

{
 entry: {
 app: './src/app.js',
 search: './src/search.js'
 },
 output: {
 filename: '[name].js',
 path: __dirname + '/built'
 }
}

// writes to disk: ./built/app.js, ./built/search.js

output.path

The output directory as absolute path (required).

[hash] is replaced by the hash of the compilation.

output.publicPath

The publicPath specifies the public URL address of the output files when referenced in a browser. For loaders that embed <script> or <link> tags or reference assets like images, publicPath is used as the href or url() to the file when it’s different then their location on disk (as specified by path). This can be helpful when you want to host some or all output files on a different domain or on a CDN. The Webpack Dev Server also uses this to determine the path where the output files are expected to be served from. As with path you can use the [hash] substitution for a better caching profile.

config.js

output: {
 path: "/home/proj/public/assets",
 publicPath: "/assets/"
}

index.html

<head>
 <link href="/assets/spinner.gif"/>
</head>

And a more complicated example of using a CDN and hashes for assets.

config.js

output: {
 path: "/home/proj/cdn/assets/[hash]",
 publicPath: "http://cdn.example.com/assets/[hash]/"
}

Note: In cases when the eventual publicPath of output files isn’t known at compile time, it can be left blank and set dynamically at runtime in the entry point file.
If you don’t know the publicPath while compiling you can omit it and set __webpack_public_path__ on your entry point.

 __webpack_public_path__ = myRuntimePublicPath

// rest of your application entry

output.chunkFilename

The filename of non-entry chunks as relative path inside the output.path directory.

[id] is replaced by the id of the chunk.

[name] is replaced by the name of the chunk (or with the id when the chunk has no name).

[hash] is replaced by the hash of the compilation.

[chunkhash] is replaced by the hash of the chunk.

output.sourceMapFilename

The filename of the SourceMaps for the JavaScript files. They are inside the output.path directory.

[file] is replaced by the filename of the JavaScript file.

[id] is replaced by the id of the chunk.

[hash] is replaced by the hash of the compilation.

Default: "[file].map"

output.devtoolModuleFilenameTemplate

Filename template string of function for the sources array in a generated SourceMap.

[resource] is replaced by the path used by Webpack to resolve the file, including the query params to the rightmost loader (if any).

[resource-path] is the same as [resource] but without the loader query params.

[loaders] is the list of loaders and params up to the name of the rightmost loader (only explict loaders).

[all-loaders] is the list of loaders and params up to the name of the rightmost loader (including automatic loaders).

[id] is replaced by the id of the module.

[hash] is replaced by the hash of the module identifier.

[absolute-resource-path] is replaced with the absolute filename.

Default (devtool=[inline-]source-map): "webpack:///[resource-path]"Default (devtool=eval): "webpack:///[resource-path]?[loaders]"Default (devtool=eval-source-map): "webpack:///[resource-path]?[hash]"

Can also be defined as a function instead of a string template.
The function will accept an info object parameter which exposes the following properties:

		identifier

		shortIdentifier

		resource

		resourcePath

		absoluteResourcePath

		allLoaders

		query

		moduleId

		hash

output.devtoolFallbackModuleFilenameTemplate

Similar to output.devtoolModuleFilenameTemplate, but used in the case of duplicate module identifiers.

Default: "webpack:///[resourcePath]?[hash]"

output.devtoolLineToLine

Enable line to line mapped mode for all/specified modules. Line to line mapped mode uses a simple SourceMap where each line of the generated source is mapped to the same line of the original source. It’s a performance optimization. Only use it if your performance needs to be better and you are sure that input lines match which generated lines.

true enables it for all modules (not recommended)

An object {test, include, exclude} similar to module.loaders enables it for specific files.

Default: disabled

output.hotUpdateChunkFilename

The filename of the Hot Update Chunks. They are inside the output.path directory.

[id] is replaced by the id of the chunk.

[hash] is replaced by the hash of the compilation. (The last hash stored in the records)

Default: "[id].[hash].hot-update.js"

output.hotUpdateMainFilename

The filename of the Hot Update Main File. It is inside the output.path directory.

[hash] is replaced by the hash of the compilation. (The last hash stored in the records)

Default: "[hash].hot-update.json"

output.jsonpFunction

The JSONP function used by webpack for asnyc loading of chunks.

A shorter function may reduce the filesize a bit. Use different identifier, when having multiple webpack instances on a single page.

Default: "webpackJsonp"

output.hotUpdateFunction

The JSONP function used by webpack for async loading of hot update chunks.

Default: "webpackHotUpdate"

output.pathinfo

Include comments with information about the modules.

require(/* ./test */23)

Do not use this in production.

Default: false

output.library

If set, export the bundle as library. output.library is the name.

Use this, if you are writing a library and want to publish it as single file.

output.libraryTarget

Which format to export the library:

"var" - Export by setting a variable: var Library = xxx (default)

"this" - Export by setting a property of this: this["Library"] = xxx

"commonjs" - Export by setting a property of exports: exports["Library"] = xxx

"commonjs2" - Export by setting module.exports: module.exports = xxx

"amd" - Export to AMD (optionally named - set the name via the library option)

"umd" - Export to AMD, CommonJS2 or as property in root

Default: "var"

If output.library is not set, but output.libraryTarget is set to a value other than var, every property of the exported object is copied (Except amd, commonjs2 and umd).

output.umdNamedDefine

If output.libraryTarget is set to umd and output.library is set, setting this to true will name the AMD module.

output.sourcePrefix

Prefixes every line of the source in the bundle with this string.

Default: "\t"

output.crossOriginLoading

This option enables cross-origin loading of chunks.

Possible values are:

false - Disable cross-origin loading.

"anonymous" - Cross-origin loading is enabled. When using anonymous no credentials will be send with the request.

"use-credentials" - Cross-origin loading is enabled and credentials will be send with the request.

For more information on cross-origin loading see MDN [https://developer.mozilla.org/en/docs/Web/HTML/Element/script#attr-crossorigin]

Default: false

module

Options affecting the normal modules (NormalModuleFactory)

module.loaders

An array of automatically applied loaders.

Each item can have these properties:

		test: A condition that must be met

		exclude: A condition that must not be met

		include: A condition that must be met

		loader: A string of “!” separated loaders

		loaders: An array of loaders as string

A condition may be a RegExp (tested against absolute path), a string containing the absolute path, a function(absPath): bool, or an array of one of these combined with “and”.

See more: [[loaders]]

IMPORTANT: The loaders here are resolved relative to the resource which they are applied to. This means they are not resolved relative to the configuration file. If you have loaders installed from npm and your node_modules folder is not in a parent folder of all source files, webpack cannot find the loader. You need to add the node_modules folder as absolute path to the resolveLoader.root option. (resolveLoader: { root: path.join(__dirname, "node_modules") })

Example:

module: {
 loaders: [
 {
 // "test" is commonly used to match the file extension
 test: /\.jsx$/,

 // "include" is commonly used to match the directories
 include: [
 path.resolve(__dirname, "app/src"),
 path.resolve(__dirname, "app/test")
],

 // "exclude" should be used to exclude exceptions
 // try to prefer "include" when possible

 // the "loader"
 loader: "babel-loader"
 }
]
}

module.preLoaders, module.postLoaders

Syntax like module.loaders.

An array of applied pre and post loaders.

module.noParse

A RegExp or an array of RegExps. Don’t parse files matching.

It’s matched against the full resolved request.

This can boost the performance when ignoring big libraries.

The files are expected to have no call to require, define or similar. They are allowed to use exports and module.exports.

automatically created contexts defaults module.xxxContextXxx

There are multiple options to configure the defaults for an automatically created context. We differentiate three types of automatically created contexts:

		exprContext: An expression as dependency (i. e. require(expr))

		wrappedContext: An expression plus pre- and/or suffixed string (i. e. require("./templates/" + expr))

		unknownContext: Any other unparsable usage of require (i. e. require)

Four options are possible for automatically created contexts:

		request: The request for context.

		recursive: Subdirectories should be traversed.

		regExp: The RegExp for the expression.

		critical: This type of dependency should be consider as critical (emits a warning).

All options and defaults:

unknownContextRequest = ".", unknownContextRecursive = true, unknownContextRegExp = /^\.\/.*$/, unknownContextCritical = true

exprContextRequest = ".", exprContextRegExp = /^\.\/.*$/, exprContextRecursive = true, exprContextCritical = true

wrappedContextRegExp = /.*/, wrappedContextRecursive = true, wrappedContextCritical = false

Note: module.wrappedContextRegExp only refers to the middle part of the full RegExp. The remaining is generated from prefix and surfix.

Example:

{
 module: {
 // Disable handling of unknown requires
 unknownContextRegExp: /$^/,
 unknownContextCritical: false,

 // Disable handling of requires with a single expression
 exprContextRegExp: /$^/,
 exprContextCritical: false,

 // Warn for every expression in require
 wrappedContextCritical: true
 }
}

resolve

Options affecting the resolving of modules.

resolve.alias

Replace modules with other modules or paths.

Expected an object with keys being module names. The value is the new path. It’s similar to a replace but a bit more clever. If the the key ends with $ only the exact match (without the $) will be replaced.

If the value is a relative path it will be relative to the file containing the require.

Examples: Calling a require from /abc/entry.js with different alias settings.

alias:	require("xyz")	require("xyz/file.js")
—	—	—
{}	/abc/node_modules/xyz/index.js	/abc/node_modules/xyz/file.js
{ xyz: "/absolute/path/to/file.js" }	/absolute/path/to/file.js	/abc/node_modules/xyz/file.js
{ xyz$: "/absolute/path/to/file.js" }	/absolute/path/to/file.js	error
{ xyz: "./dir/file.js" }	/abc/dir/file.js	/abc/node_modules/xyz/file.js
{ xyz$: "./dir/file.js" }	/abc/dir/file.js	error
{ xyz: "/some/dir" }	/some/dir/index.js	/some/dir/file.js
{ xyz$: "/some/dir" }	/some/dir/index.js	/abc/node_modules/xyz/file.js
{ xyz: "./dir" }	/abc/dir/index.js	/abc/dir/file.js
{ xyz: "modu" }	/abc/node_modules/modu/index.js	/abc/node_modules/modu/file.js
{ xyz$: "modu" }	/abc/node_modules/modu/index.js	/abc/node_modules/xyz/file.js
{ xyz: "modu/some/file.js" }	/abc/node_modules/modu/some/file.js	error
{ xyz: "modu/dir" }	/abc/node_modules/modu/dir/index.js	/abc/node_modules/dir/file.js
{ xyz: "xyz/dir" }	/abc/node_modules/xyz/dir/index.js	/abc/node_modules/xyz/dir/file.js
{ xyz$: "xyz/dir" }	/abc/node_modules/xyz/dir/index.js	/abc/node_modules/xyz/file.js

index.js may resolve to another file if defined in the package.json.

/abc/node_modules may resolve in /node_modules too.

resolve.root

The directory (absolute path) that contains your modules. May also be an array of directories. This setting should be used to add individual directories to the search path.

It must be an absolute path! Don’t pass something like ./app/modules.

Example:

var path = require('path');

// ...
resolve: {
 root: [
 path.resolve('./app/modules'),
 path.resolve('./vendor/modules')
]
}

resolve.modulesDirectories

An array of directory names to be resolved to the current directory as well as its ancestors, and searched for modules. This functions similarly to how node finds “node_modules” directories. For example, if the value is ["mydir"], webpack will look in ”./mydir”, ”../mydir”, ”../../mydir”, etc.

Default: ["web_modules", "node_modules"]

Note: Passing "../someDir", "app", "." or an absolute path isn’t necessary here. Just use a directory name, not a path. Use only if you expect to have a hierarchy within these folders. Otherwise you may want to use the resolve.root option instead.

resolve.fallback

A directory (or array of directories absolute paths), in which webpack should look for modules that weren’t found in resolve.root or resolve.modulesDirectories.

resolve.extensions

An array of extensions that should be used to resolve modules. For example, in order to discover CoffeeScript files, your array should contain the string ".coffee".

Default: ["", ".webpack.js", ".web.js", ".js"]

IMPORTANT: Setting this option will override the default, meaning that webpack will no longer try to resolve modules using the default extensions. If you want modules that were required with their extension (e.g. require('./somefile.ext')) to be properly resolved, you must include an empty string in your array. Similarly, if you want modules that were required without extensions (e.g. require('underscore')) to be resolved to files with ”.js” extensions, you must include ".js" in your array.

resolve.packageMains

Check these fields in the package.json for suitable files.

Default: ["webpack", "browser", "web", "browserify", ["jam", "main"], "main"]

resolve.packageAlias

Check this field in the package.json for an object. Key-value-pairs are threaded as aliasing according to this spec [https://gist.github.com/defunctzombie/4339901]

Not set by default

Example: "browser" to check the browser field.

resolve.unsafeCache

Enable aggressive but unsafe caching for the resolving of a part of your files. Changes to cached paths may cause failure (in rare cases). An array of RegExps, only a RegExp or true (all files) is expected. If the resolved path matches, it’ll be cached.

Default: []

resolveLoader

Like resolve but for loaders.

// Default:
{
 modulesDirectories: ["web_loaders", "web_modules", "node_loaders", "node_modules"],
 extensions: ["", ".webpack-loader.js", ".web-loader.js", ".loader.js", ".js"],
 packageMains: ["webpackLoader", "webLoader", "loader", "main"]
}

Note that you can use alias here and other features familiar from resolve. For example { txt: 'raw-loader' } would shim txt!templates/demo.txt to use raw-loader.

resolveLoader.moduleTemplates

That’s a resolveLoader only property.

It describes alternatives for the module name that are tried.

Default: ["*-webpack-loader", "*-web-loader", "*-loader", "*"]

externals

Specify dependencies that shouldn’t be resolved by webpack, but should become dependencies of the resulting bundle. The kind of the dependency depends on output.libraryTarget.

As value an object, a string, a function, a RegExp and an array is accepted.

		string: An exact matched dependency becomes external. The same string is used as external dependency.

		object: If an dependency matches exactly a property of the object, the property value is used as dependency. The property value may contain a dependency type prefixed and separated with a space. If the property value is true the property name is used instead. If the property value is false the externals test is aborted and the dependency is not external. See example below.

		function: function(context, request, callback(err, result)) The function is called on each dependency. If a result is passed to the callback function this value is handled like a property value of an object (above bullet point).

		RegExp: Every matched dependency becomes external. The matched text is used as the request for the external dependency. Because the request is the exact code used to generate the external code hook, if you are matching a commonjs package (e.g. ‘../some/package.js’), instead use the function external strategy. You can import the package via callback(null, "require('" + request + "')", which generates a module.exports = require('../some/package.js');, using require outside of webpack context.

		array: Multiple values of the scheme (recursive).

Example:

{
 output: { libraryTarget: "commonjs" },
 externals: [
 {
 a: false, // a is not external
 b: true, // b is external (require("b"))
 "./c": "c", // "./c" is external (require("c"))
 "./d": "var d" // "./d" is external (d)
 },
 // Every non-relative module is external
 // abc -> require("abc")
 /^[a-z\-0-9]+$/,
 function(context, request, callback) {
 // Every module prefixed with "global-" becomes external
 // "global-abc" -> abc
 if(/^global-/.test(request))
 return callback(null, "var " + request.substr(7));
 callback();
 },
 "./e" // "./e" is external (require("./e"))
]
}

type	value	resulting import code
————-	———————	———————–
“var”	"abc"	module.exports = abc;
“var”	"abc.def"	module.exports = abc.def;
“this”	"abc"	(function() { module.exports = this["abc"]; }());
“this”	["abc", "def"]	(function() { module.exports = this["abc"]["def"]; }());
“commonjs”	"abc"	module.exports = require("abc");
“commonjs”	["abc", "def"]	module.exports = require("abc").def;
“amd”	"abc"	define(["abc"], function(X) { module.exports = X; })
“umd”	"abc"	everything above

Enforcing amd or umd in a external value will break if not compiling as amd/umd target.

Note: If using umd you can specify an object as external value with property commonjs, commonjs2, amd and root to set different values for each import kind.

target

		"web" Compile for usage in a browser-like environment (default)

		"webworker" Compile as WebWorker

		"node" Compile for usage in a node.js-like environment (use require to load chunks)

		"async-node" Compile for usage in a node.js-like environment (use fs and vm to load chunks async)

		"node-webkit" Compile for usage in webkit, uses jsonp chunk loading but also supports builtin node.js modules plus require(“nw.gui”) (experimental)

		"electron" Compile for usage in Electron [http://electron.atom.io/] – supports require-ing Electron-specific modules.

bail

Report the first error as a hard error instead of tolerating it.

profile

Capture timing information for each module.

Hint: Use the analyze tool [http://webpack.github.io/analyse] to visualize it. --json or stats.toJson() will give you the stats as JSON.

cache

Cache generated modules and chunks to improve performance for multiple incremental builds.

This is enabled by default in watch mode.

You can pass false to disable it.

You can pass an object to enable it and let webpack use the passed object as cache. This way you can share the cache object between multiple compiler calls. Note: Don’t share the cache between calls with different options.

debug

Switch loaders to debug mode.

devtool

Choose a developer tool to enhance debugging.

eval - Each module is executed with eval and //@ sourceURL.

source-map - A SourceMap is emitted. See also output.sourceMapFilename.

hidden-source-map - Same as source-map, but doesn’t add a reference comment to the bundle.

inline-source-map - A SourceMap is added as DataUrl to the JavaScript file.

eval-source-map - Each module is executed with eval and a SourceMap is added as DataUrl to the eval.

cheap-source-map - A SourceMap without column-mappings. SourceMaps from loaders are not used.

cheap-module-source-map - A SourceMap without column-mappings. SourceMaps from loaders are simplified to a single mapping per line.

Prefixing @, # or #@ will enforce a pragma style. (Defaults to #, recommended)

Combinations are possible. hidden, inline, eval and pragma style are exclusive.

i. e. cheap-module-inline-source-map, cheap-eval-source-map, #@source-map

Hint: If your modules already contain SourceMaps you’ll need to use the source-map-loader [https://github.com/webpack/source-map-loader] to merge it with the emitted SourceMap.

devtool	build speed	rebuild speed	production supported	quality
——————————	————-	—————	———————-	————————-
eval	+++	+++	no	generated code
cheap-eval-source-map	+	++	no	transformed code (lines only)
cheap-source-map	+	o	yes	transformed code (lines only)
cheap-module-eval-source-map	o	++	no	original source (lines only)
cheap-module-source-map	o	-	yes	original source (lines only)
eval-source-map	–	+	no	original source
source-map	–	–	yes	original source

Example:

{
 devtool: "#inline-source-map"
}
// =>
//# sourceMappingURL=...

Note: With the next major version the default for -d will change to cheap-module-eval-source-map

devServer

Can be used to configure the behaviour of webpack-dev-server [https://github.com/webpack/webpack-dev-server] when the webpack config is passed to webpack-dev-server CLI.

Example:

{
 devServer: {
 contentBase: "./build",
 }
}

node

Include polyfills or mocks for various node stuff:

		console: true or false

		global: true or false

		process: true, "mock" or false

		Buffer: true or false

		__filename: true (real filename), "mock" ("/index.js") or false

		__dirname: true (real dirname), "mock" ("/") or false

		<node buildin>: true, "mock", "empty" or false

// Default:
{
 console: false,
 global: true,
 process: true,
 Buffer: true,
 __filename: "mock",
 __dirname: "mock",
 setImmediate: true
}

amd

Set the value of require.amd and define.amd.

Example: amd: { jQuery: true } (for old 1.x AMD versions of jquery)

loader

Custom values available in the loader context.

recordsPath, recordsInputPath, recordsOutputPath

Store/Load compiler state from/to a json file. This will result in persistent ids of modules and chunks.

An absolute path is expected. recordsPath is used for recordsInputPath and recordsOutputPath if they left undefined.

This is required, when using Hot Code Replacement between multiple calls to the compiler.

plugins

Add additional plugins to the compiler.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/plus.png

webpack-dev-middleware.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

Note: The webpack-dev-middleware is for advanced users. See [[webpack-dev-server]] for a ready-to-use solution.

The webpack-dev-middleware [https://github.com/webpack/webpack-dev-middleware] is a small middleware for a connect-based middleware stack. It uses webpack to compile assets in-memory and serve them. When a compilation is running every request to the served webpack assets is blocked until we have a stable bundle.

You can use it in two modes:

		watch mode (default): The compiler recompiles on file change.

		lazy mode: The compiler compiles on every request to the entry point.

API

var webpackDevMiddleware = require("webpack-dev-middleware");
var webpack = require("webpack");

var compiler = webpack({
 // configuration
 output: { path: '/' }
});

app.use(webpackDevMiddleware(compiler, {
 // options
}));

options

noInfo

Display no info to console (only warnings and errors)

Default: false

quiet

Display nothing to the console

Default: false

lazy

Switch into lazy mode.

Default: false

filename

In lazy mode: Switch request should trigger the compilation.

In most cases this equals the webpack configuration option output.filename.

watchOptions.aggregateTimeout

Delay the rebuilt after the first change. Value is a time in ms.

Default: 300

watchOptions.poll

true: use polling

number: use polling with specified interval

Default: undefined

publicPath (required)

The path where to bind the middleware to the server.

In most cases this equals the webpack configuration option output.publicPath.

headers

Add custom headers. i. e. { "X-Custom-Header": "yes" }

stats

Output options for the stats. See [[node.js API]].

middleware.invalidate()

Manually invalidate the compilation. Useful if stuff of the compiler has changed.

middleware.fileSystem

A readable (in-memory) filesystem that can access the compiled data.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

troubleshooting.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

resolving

general resolving issues

		--display-error-details give you more details.

		Read [[Configuration]] regarding resolving starting at resolve
		loaders have their own resolving configuration resolveLoader

npm linked modules don’t find their dependencies

The node.js module resolving algorithm is pretty simple: module dependencies are looked up in node_modules folders in every parent directory of the requiring module. When you npm link modules with peer dependencies that are not in your root directory, modules can no longer be found. (You probably want to consider peerDependencies with npm link as broken by design in node.js.) Note that a dependency to the application (even if this is not the perfect design) is also a kind of peerDependency even if it’s not listed as such in the module’s package.json.

But you can easily workaround that in webpack: Add the node_modules folder of your application to the resolve paths. There are two config options for this: resolve.fallback and resolveLoader.fallback.

Here is a config example:

module.exports = {
 resolve: { fallback: path.join(__dirname, "node_modules") },
 resolveLoader: { fallback: path.join(__dirname, "node_modules") }
};

Watching

webpack doesn’t recompile on change while watching

Not enough watchers

Verify that if you have enough available watchers in your system. If this value is too low, the file watcher in Webpack won’t recognize the changes:

cat /proc/sys/fs/inotify/max_user_watches

Arch users, add fs.inotify.max_user_watches=524288 to /etc/sysctl.d/99-sysctl.conf and then execute sysctl --system. Ubuntu users (and possibly others): echo fs.inotify.max_user_watches=524288 | sudo tee -a /etc/sysctl.conf && sudo sysctl -p.

OS-X fsevents bug

On OS-X folders can get corrupted. See this article:

OS X FSEvents bug may prevent monitoring of certain folders [http://feedback.livereload.com/knowledgebase/articles/86239-os-x-fsevents-bug-may-prevent-monitoring-of-certai]

Windows paths

webpack expects absolute paths for many config options. __dirname + "/app/folder" is wrong, because windows uses \ as path separator. This breaks some stuff.

Use the correct separators. I.e. path.resolve(__dirname, "app/folder") or path.join(__dirname, "app", "folder").

Vim

On some machines Vim is preconfigured with the backupcopy option [http://vimdoc.sourceforge.net/htmldoc/options.html#’backupcopy’] set to auto. This could potentially cause problems with the system’s file watching mechanism. Switching this option to yes will make sure a copy of the file is made and the original one overwritten on save.

:set backupcopy=yes

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/down.png

shimming-modules.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

 In some cases webpack cannot parse some file, because it has a unsupported module format or isn’t even in a module format. Therefore you have many options to convert the file into a module.

[[Using loaders]]

On this page all examples with loaders are inlined into require calls. This is just for demonstration. You may want to configure them in your webpack config instead. Read [[Using loaders]] for more details how to do this.

Importing

Useful when a file has dependencies that are not imported via require().

imports-loader [https://github.com/webpack/imports-loader]

This loader allows you to put some modules or arbitrary JavaScript onto a local variable of the file.

Examples:

file.js expect a global variable $ and you have a module jquery that should be used.

require("imports?$=jquery!./file.js")

file.js expect its configuration on a global variable xConfig and you want it to be {value:123}.

require("imports?xConfig=>{value:123}!./file.js")

file.js expect that this is the global context.

require("imports?this=>window!./file.js") or require("imports?this=>global!./file.js")

[[plugin | list of plugins]] ProvidePlugin

This plugin makes a module available as variable in every module. The module is required only if you use the variable.

Example: Make $ and jQuery available in every module without writing require("jquery").

new webpack.ProvidePlugin({
 $: "jquery",
 jQuery: "jquery",
 "window.jQuery": "jquery"
})

Exporting

The file doesn’t export its value.

exports-loader [https://github.com/webpack/exports-loader]

This loader exports variables from inside the file.

Examples:

The file sets a variable in the global context with var XModule =

var XModule = require("exports?XModule!./file.js")

The file sets multiple variables in the global context with var XParser, Minimizer.

var XModule = require("exports?Parser=XParser&Minimizer!./file.js"); XModule.Parser; XModule.Minimizer

The file sets a global variable with XModule =

require("imports?XModule=>undefined!exports?XModule!./file.js") (import to not leak to the global context)

The file sets a property on window window.XModule =

require("imports?window=>{}!exports?window.XModule!./file.js

Fixing broken module styles

Some files use a module style wrong. You may want to fix this by teaching webpack to not use this style.

Disable some module styles

Examples:

Broken AMD

require("imports?define=>false!./file.js")

Broken CommonJs

require("imports?require=>false!./file.js")

[[configuration]] option module.noParse

This disables parsing by webpack. Therefore you cannot use dependencies. This may be useful for prepackaged libraries.

Example:

{
 module: {
 noParse: [
 /XModule[\\\/]file\.js$/,
 path.join(__dirname, "web_modules", "XModule2")
]
 }
}

Note: exports and module are still available and usable. You may want to undefine them with the imports-loader.

script-loader [https://github.com/webpack/script-loader]

This loader evaluates code in the global context, just like you would add the code into a script tag. In this mode every normal library should work. require, module, etc. are undefined.

Note: The file is added as string to the bundle. It is not minimized by webpack, so use a minimized version. There is also no dev tool support for libraries added by this loader.

Exposing

There are cases where you want a module to export itself to the global context.

Don’t do this unless you really need this. (Better use the ProvidePlugin)

expose-loader [https://github.com/webpack/expose-loader]

This loader exposes the exports to a module to the global context.

Example:

Expose file.js as XModule to the global context

require("expose?XModule!./file.js")

Order of loaders

In rare cases when you have to apply more than one technique, you need to use the correct order of loaders:

inlined: expose!imports!exports, configuration: expose before imports before exports.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

long-term-caching.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

 To effectively cache your files, they should have a hash or version in their URL. You can emit or move the output files manually in a folder called v1.3. But this has several disadvantages: Extra work for the developer and unchanged files aren’t loaded from cache.

Webpack can add hashes for the files to the filename. Loaders that emit files (worker-loader, file-loader) already do this. For the chunks you have to enable it. There are two levels:

		Compute a hash of all chunks and add it.

		Compute a hash per chunk and add it.

Option 1: One hash for the bundle

Option 1 is enabled by adding [hash] to the filename config options:

webpack ./entry output.[hash].bundle.js

{
 output: {
 path: path.join(__dirname, "assets", "[hash]"),
 publicPath: "assets/[hash]/",
 filename: "output.[hash].bundle.js",
 chunkFilename: "[id].[hash].bundle.js"
 }
}

Option 2: One hash per chunk

Option 2 is enabled by adding [chunkhash] to the chunk filename config option

--output-chunk-file [chunkhash].js

output: { chunkFilename: "[chunkhash].bundle.js" }

Note that you need to reference the entry chunk with its hash in your HTML. You may want to extract the hash or the filename from the stats.

In combination with Hot Code Replacement you must use option 1, but not on the publicPath config option.

Get filenames from stats

You probably want to access the final filename of the asset to embed it into your HTML. This information is available in the webpack stats. If you are using the CLI you can run it with --json to get the stats as JSON to stdout.

You can add a plugin such as assets-webpack-plugin [https://www.npmjs.com/package/assets-webpack-plugin] to your configuration which allows you to access the stats object. Here is an example how to write it into a file:

plugins: [
 function() {
 this.plugin("done", function(stats) {
 require("fs").writeFileSync(
 path.join(__dirname, "...", "stats.json"),
 JSON.stringify(stats.toJson()));
 });
 }
]

The stats JSON contains a useful property assetsByChunkName which is a object containing chunk name as key and filename(s) as value.

Note: It’s an array if you are emitting multiple assets per chunk. I. e. a JavaScript file and a SourceMap. The first one is your JavaScript source.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

dev-tools.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

 WIP

		devtool [[configuration]] option

		[[webpack-dev-server]]

		[[webpack-dev-middleware]]

		koa-webpack-dev [https://www.npmjs.org/package/koa-webpack-dev]: serve bundle + Hot Module Replacement in Koa.js development server

 © Copyright 2016.
 Created using Sphinx 1.3.5.

commonjs.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

 The CommonJS group defined a module format to solve
JavaScript scope issues by making sure each module
is executed in its own namespace.

This is achieved by forcing modules to explicitly export
those variables it wants to expose to the “universe”,
and also by defining those other modules required to
properly work.

To achieve this CommonJS give you two tools:

		the require() function, which allows to import a given module into the current scope.

		the module object, which allows to export something from the current scope.

The mandatory hello world example:

Plain Simple JavaScript

Here is an example without CommonJS:

We will define a value in a script file named salute.js.
This script will contain just a value that will be used in other scripts:

// salute.js
var MySalute = "Hello";

Now, in a second file named world.js, we are
going to use the value defined in salute.js.

// world.js
var Result = MySalute + " world!";

Module definitions

As it is, world.js will not work as MySalute is not defined.
We need to define each script as a module:

// salute.js
var MySalute = "Hello";
module.exports = MySalute;

// world.js
var Result = MySalute + "world!";
module.exports = Result;

Here we make use of the special object module and place a reference of our
variable into module.exports so the CommonJS module system knows this is
the object of our module we want to show to the world.
salute.js discloses MySalute, and world.js discloses Result.

Module dependency

We’re near but there’s still a step missing: dependency definition.
We’ve already defined every script as an independent module, but world.js
still needs to know who defines MySalute:

// salute.js
var MySalute = "Hello";
module.exports = MySalute;

// world.js
var MySalute = require("./salute");
var Result = MySalute + "world!";
module.exports = Result;

Note that we didn’t use the full filename salute.js but ./salute when calling
require, so you can omit the extension of your scripts. ./ means that the salute module is in the same directory as the world module.

Examples

Functions

// moduleA.js
module.exports = function(value){
 return value*2;
}

// moduleB.js
var multiplyBy2 = require('./moduleA');
var result = multiplyBy2(4);

 © Copyright 2016.
 Created using Sphinx 1.3.5.

cli.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

Installation

$ npm install webpack -g

The webpack command is now available globally.

Pure CLI

webpack <entry> <output>

entry

Pass a file or a request string. You can pass multiple entries (every entry is loaded on startup).

If you pass a pair in the form <name>=<request> you can create an additional entry point.

It will be mapped to the configuration option entry.

output

Pass a path to a file.

It will be mapped to the configuration options output.path and output.filename.

Configuration options

Many configuration options are mapped from CLI options. I. e. --debug maps to debug: true, or --output-library-target to output.libraryTarget.

You see a list of all options, if you don’t pass any option.

Plugins

Some plugins are mapped to CLI options. I. e. --define <string>=<string> maps to the DefinePlugin.

You see a list of all options, if you don’t pass any option.

Development shortcut -d

Equals to --debug --devtool source-map --output-pathinfo

Production shortcut -p

Equals to --optimize-minimize --optimize-occurence-order

Watch mode --watch

Watches all dependencies and recompile on change.

Configuration file --config example.config.js

Specifies a different configuration file to pick up. Use this if you want to specify something different than webpack.config.js, which is the default.

Display options

--progress

Display a compilation progress to stderr.

--json

Write JSON to stdout instead of a human readable format.

Hint: Try to put the result into the analyse tool [http://webpack.github.com/analyse].

--no-color

Disable colors to display the statistics.

--sort-modules-by, --sort-chunks-by, --sort-assets-by

Sort the modules/chunks/assets list by a column.

--display-chunks

Display the separation of the modules into chunks.

--display-reasons

Show more information about the reasons why a module is included.

--display-error-details

Show more information about the errors. I. e. this shows which paths are tried while resolving a module.

--display-modules

Show hidden modules. Modules are hidden from output by default when they live inside directories called ["node_modules", "bower_components", "jam", "components"]

Profiling

If you wish to have a more in-depth idea of what is taking how long, you can use the --profile switch. This will cause WebPack to display more detailed timing informations. Combine this with the switches above to get a very detailed message and information set, which will contain the timings of your modules.

The timing “keys”

		factory: The time it took to build the module information.

		building: The time that was spent building the module (loaders, for example).

		dependencies: The time that was spent gathering and connecting the dependencies.

Additional configuration options

When using the CLI it’s possible to have the following options in the configuration file. They passed in other ways when using the node.js API.

watch

Enter watch mode, which rebuilds on file change.

watchOptions.aggregateTimeout

Delay the rebuilt after the first change. Value is a time in ms.

Default: 300

watchOptions.poll

true: use polling

number: use polling with specified interval

Default: undefined

stats

Display options. See [[node.js API]] Stats.toString() for more details.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

context.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

dynamic requires

A context is created if your request contains expressions, so the exact module is not known on compile time.

Example:

require("./template/" + name + ".jade");

webpack parses the require statement and extracts some information:

		Directory: ./template

		Regular expression: /^.*\.jade$/

context module

A context module is generated. It contains references to all modules in that directory that can be required with a request matching the regular expression. The context module contains a map which translates requests to module ids.

Example:

{
 "./table.jade": 22,
 "./table-row.jade": 23,
 "./directory/folder.jade": 24
}

The context module also contains a bit runtime logic to access the map.

dynamic require rewriting

The original require statement gets rewritten by the compiler to access the context module: (assuming the context module gets the module id 21)

Example:

// original statement
require("./template/" + name + ".jade");

// rewritten statement
require(21)("./" + name + ".jade");

parser evaluation

Not every expression results in a context. The parser has a small evaluation engine to evaluate simple expressions. Here are some examples:

require(expr ? "a" : "b"); // => require(expr ? 25 : 26)
require("a" + "b"); // => require(27)
require("not a".substr(4).replace("a", "b")); // => require(26)
// ...

require.context

You can create your own context with the require.context function. It allow to pass a directory, regular expression and a flag if subdirectories should be used too.

require.context(directory, useSubdirectories = false, regExp = /^\.\//)

Examples:

require.context("./test", false, /Test$/)
// a context with all files from the test directory that can be
// required with a request endings with "Test"

require.context("..", true, /^grunt-[^\/]+\/tasks/[^\/]+$/)
// all grunt task that are in a modules directory of the parent folder

context module API

A context module exports a (require) function that takes one argument: the request.

The exported function has a property resolve which is a function and returns the module id of the parsed request.

The exported function has another property keys which is a function that returns all possible requests that the context module can handle.

And the exported function has another property id which is the module id of the context module. This may be useful for module.hot.accept.

Examples:

var req = require.context("./templates", true, /^\.\/.*\.jade$/);

var tableTemplate = req("./table.jade");
// tableTemplate === require("./templates/table.jade");

var tableTemplateId = req.resolve("./table.jade");
// tableTemplateId === require.resolve("./templates/table.jade");

req.keys();
// is ["./table.jade", "./table-row.jade", "./directory/folder.jade"]

req.id;
// is i. e. 42

or

function requireAll(requireContext) {
 return requireContext.keys().map(requireContext);
}
// requires and returns all modules that match

var modules = requireAll(require.context("./spec", true, /^\.\/.*\.js$/));
// is an array containing all the matching modules

Note: keys depends on Object.keys. You may need to polyfill it for older browsers.

ContextReplacementPlugin

This plugin can overwrite the details for a context (i. e. the RegExp). See [[list of plugins]].

Critical dependencies

If the module source contains a require that cannot be statically analyzed, the context is the current directory.

In this case a Critical dependencies warning is emitted. You need to use the ContextReplacementPlugin in most cases.

Examples: someFn(require) require.bind(null)

Example

See an example here [https://github.com/webpack/webpack/tree/master/examples/require.context#examplejs].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

loaders.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

Introduction

Loaders allow you to preprocess files as you require() or “load” them. Loaders are kind of like “tasks” are in other build tools, and provide a powerful way to handle frontend build steps. Loaders can transform files from a different language like, CoffeeScript to JavaScript, or inline images as data URLs. Loaders even allow you to do things like require() css files right in your JavaScript!

To tell Webpack to transform a module with a loader, you can specify the loader in the module request, such as in a require call.

var moduleWithOneLoader = require("my-loader!./my-awesome-module");

Notice the ! syntax separating the loader from the module path? Loaders, like modules can also be specified with a relative path (as if you were requiring it) instead of the loader name:

require("./loaders/my-loader!./my-awesome-module");

Loaders can be also be chained together by separating loaders with the !. This is helpful for applying multiple transformations to a file in a pipeline.

require("style-loader!css-loader!less-loader!./my-styles.less");

When chaining loaders, they are applied right to left (from the file, back). In the above example, my-styles.less will be transformed first by the less-loaderconverting it to css, and then passed to the css-loader where urls, fonts, and other resources are processed, and then finally passed to style-loader to be transformed into a <style> tag.

parameters

Loaders can accept query parameters:

require("loader?with=parameter!./file");

The format of the query string is up to the loader, so check the loaders documentation to find out about the parameters the loader accept, but generally most loaders support the traditional query string format.

loaders by config

Specifing loaders in each module request can be brittle and repetitive. Webpack provides a way to specify which loaders apply to different file types in your Webpack [[configuration]] file. Specifying loaders in the configuration is the recommended approach in most cases as it doesn’t add any build specific syntax to the code, making it more reusable.

{
 module: {
 loaders: [
 { test: /\.coffee$/, loader: "coffee-loader" }
],
 preLoaders: [
 { test: /\.coffee$/, loader: "coffee-hint-loader" }
]
 }
};

See the [[configuration]] page for more information about configuring loaders.

loader order

After the file is read from the filesystem, loaders are executed against it in the
following order.

		preloaders specified in the [[configuration]]

		loaders specified in the [[configuration]]

		loaders specified in the request (e.g. require('raw!./file.js'))

		postLoaders specified in the [[configuration]]

You can also override the configuration loader order in the module request to suit special cases.

		adding ! to a request will disable configured preLoaders
		require("!raw!./script.coffee")

		adding !! to a request will disable all loaders specified in the configuration
		require("!!raw!./script.coffee")

		adding -! to a request will disable configured preLoaders and loaders but not the postLoaders
		require("-!raw!./script.coffee")

recommendations

It is recommended that the result is JavaScript after step 2.

It is recommended to apply non-JavaScript to JavaScript transformations in step 1 (or step 2 when they don’t apply globally).

It is recommended to stay in the same language in pre and post loaders.

Source code that want to override the non-js to js transformation should use the ! prefix. (i. e. to transform it in another way)

Using the !! and -! prefix to disable loaders is not recommended except from another loader.

		Example for a preLoader: Image compression

		Example for a loader (in config): coffee-script transformation

		Example for a loader (in request): bundle loader

		Example for a postLoader: Code coverage instrumenting

Writing a loader

Writing a loader is pretty simple. A loader is just a file that exports a function. The compiler calls this function and passes the result of the previous loader or the resource file into it. The this context of the function is filled-in by the compiler with some useful methods that allow the loader to, among other things, change its invocation style to async or get query parameters. The first loader is passed one argument: the content of the resource file. The compiler expects a result from the last loader. The result should be a String or a Buffer (which is converted to a string), representing the JavaScript source code of the module. An optional SourceMap result (as JSON object) may also be passed.

A single result can be returned in sync mode. For multiple result the this.callback must be called. In async mode this.async() must be called. It returns this.callback if async mode is allowed. Then the loader must return undefined and call the callback.

Errors can be thrown in sync mode or the this.callback can be called with the error.

webpack allows async mode in every case.

enhanced-require allows async mode only with require.ensure or AMD require.

For more detailed instructions and guidelines, check out [[How to write a loader]].

examples

sync loader

module.exports = function(content) {
 return someSyncOperation(content);
};

async loader

module.exports = function(content) {
 var callback = this.async();
 if(!callback) return someSyncOperation(content);
 someAsyncOperation(content, function(err, result) {
 if(err) return callback(err);
 callback(null, result);
 });
};

Note: It’s recommended to give an asynchronous loader a fall back to synchronous mode. This isn’t required for webpack, but allows to run the loader sync using enhanced-require.

raw loader

By default the resource file is treated as utf-8 string and passed as String to the loader. By setting raw to true the loader is passed the raw Buffer.

Every loader is allowed to deliver its result as String or as Buffer. The compiler converts them between loaders.

module.exports = function(content) {
 assert(content instanceof Buffer);
 return someSyncOperation(content);
 // return value can be a Buffer too
 // This is also allowed if loader is not "raw"
};
module.exports.raw = true;

pitching loader

The loaders are called from right to left. But in some cases loaders do not care about the results of the previous loader or the resource. They only care for metadata. The pitch method on the loaders is called from left to right before the loaders are called. If a loader delivers a result in the pitch method the process turns around and skips the remaining loaders, continuing with the calls to the more left loaders. data can be passed between pitch and normal call.

module.exports = function(content) {
 return someSyncOperation(content, this.data.value);
};
module.exports.pitch = function(remainingRequest, precedingRequest, data) {
 if(someCondition()) {
 // fast exit
 return "module.exports = require(" + JSON.stringify("-!" + remainingRequest) + ");";
 }
 data.value = 42;
};

loader context

This stuff is available on this in a loader.

For the example this require call is used:

In /abc/file.js:

require("./loader1?xyz!loader2!./resource?rrr");

version

Loader API version. Currently 1.

context

A string. The directory of the module. Can be used as context for resolving other stuff.

In the example: /abc because resource.js is in this directory

request

The resolved request string.

In the example: "/abc/loader1.js?xyz!/abc/node_modules/loader2/index.js!/abc/resource.js?rrr"

query

A string. The query of the request for the current loader.

In the example: in loader1: "?xyz", in loader2: ""

data

A data object shared between the pitch and the normal phase.

cacheable

cacheable(flag = true: boolean)

Make this loader result cacheable. By default it’s not cacheable.

A cacheable loader must have a deterministic result, when inputs and dependencies haven’t changed. This means the loader shouldn’t have other dependencies than specified with this.addDependency. Most loaders are deterministic and cacheable.

loaders

loaders = [{request: string, path: string, query: string, module: function}]

An array of all the loaders. It is writeable in the pitch phase.

In the example:

[
 { request: "/abc/loader1.js?xyz",
 path: "/abc/loader1.js",
 query: "?xyz",
 module: [Function]
 },
 { request: "/abc/node_modules/loader2/index.js",
 path: "/abc/node_modules/loader2/index.js",
 query: "",
 module: [Function]
 }
]

loaderIndex

The index in the loaders array of the current loader.

In the example: in loader1: 0, in loader2: 1

resource

The resource part of the request, including query.

In the example: "/abc/resource.js?rrr"

resourcePath

The resource file.

In the example: "/abc/resource.js"

resourceQuery

The query of the resource.

In the example: "?rrr"

emitWarning

emitWarning(message: string)

Emit a warning.

emitError

emitError(message: string)

Emit an error.

exec

exec(code: string, filename: string)

Execute some code fragment like a module.

Hint: Don’t use require(this.resourcePath), use this function to make loaders chainable!

resolve

resolve(context: string, request: string, callback: function(err, result: string))

Resolve a request like a require expression.

resolveSync

resolveSync(context: string, request: string) -> string

Resolve a request like a require expression.

addDependency

addDependency(file: string)
dependency(file: string) // shortcut

Add a file as dependency of the loader result.

addContextDependency

addContextDependency(directory: string)

Add a directory as dependency of the loader result.

clearDependencies

clearDependencies()

Remove all dependencies of the loader result. Even initial dependencies and these of other loaders. Consider using pitch.

values (out)

Pass values to the next loaders inputValues. If you know what your result exports if executed as module, set this value here (as a only element array).

inputValues

Passed from the last loader. If you would execute the input argument as module, consider reading this variable for a shortcut (for performance).

options

The options passed to the Compiler.

debug

A boolean flag. It is set when in debug mode.

minimize

Should the result be minimized.

sourceMap

Should a SourceMap be generated.

target

Target of compilation. Passed from configuration options.

Example values: "web", "node"

webpack

Set to true when this is compiled by webpack.

emitFile

emitFile(name: string, content: Buffer|String, sourceMap: {...})

Emit a file. This is webpack-specific

_compilation

Hacky access to the Compilation object of webpack.

_compiler

Hacky access to the Compiler object of webpack.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

what-is-webpack.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

 webpack is a module bundler.

webpack takes modules with dependencies and generates static assets representing those modules.

[image: modules with dependencies ---webpack---> static assets]

Why another module bundler?

Existing module bundlers are not well suited for big projects (big single page applications). The most pressing reason for developing another module bundler was [[Code Splitting]] and that static assets should fit seamlessly together through modularization.

I tried to extend existing module bundlers, but it wasn’t possible to achieve all goals.

Goals

		Split the dependency tree into chunks loaded on demand

		Keep initial loading time low

		Every static asset should be able to be a module

		Ability to integrate 3rd-party libraries as modules

		Ability to customize nearly every part of the module bundler

		Suited for big projects

How is webpack different?

[[Code Splitting]]

webpack has two types of dependencies in its dependency tree: sync and async. Async dependencies act as split points and form a new chunk. After the chunk tree is optimized, a file is emitted for each chunk.

Read more about [[Code Splitting]].

[[Loaders]]

webpack can only process JavaScript natively, but loaders are used to transform other resources into JavaScript. By doing so, every resource forms a module.

Read more about [[Using loaders]] and [[Loaders]].

Clever parsing

webpack has a clever parser that can process nearly every 3rd party library. It even allows expressions in dependencies like so require("./templates/" + name + ".jade"). It handles the most common module styles: [[CommonJs]] and [[AMD]].

Read more about [[expressions in dependencies | Context]], [[CommonJs]] and [[AMD]].

[[Plugin system | plugins]]

webpack features a rich plugin system. Most internal features are based on this plugin system. This allows you to customize webpack for your needs and distribute common plugins as open source.

Read more about [[Plugins]].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

code-splitting.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

 For big web apps it’s not efficient to put all code into a single file, especially if some blocks of code are only required under some circumstances.
Webpack has a feature to split your codebase into “chunks” which are loaded on demand. Some other bundlers call them “layers”, “rollups”, or “fragments”. This feature is called “code splitting”.

It’s an opt-in feature. You can define split points in your code base. Webpack takes care of the dependencies, output files and runtime stuff.

To clarify a common misunderstanding: Code Splitting is not just about extracting common code into a shared chunk. The more notable feature is that Code Splitting can be used to split code into an on demand loaded chunk. This can keep the initial download small and downloads code on demand when requested by the application.

Defining a split point

AMD and CommonJs specify different methods to load code on demand. Both are supported and act as split points:

CommonJs: require.ensure

require.ensure(dependencies, callback)

The require.ensure method ensures that every dependency in dependencies can be synchronously required when calling the callback. callback is called with the require function as parameter.

Example:

require.ensure(["module-a", "module-b"], function(require) {
 var a = require("module-a");
 // ...
});

Note: require.ensure only loads the modules, it doesn’t evaluate them.

AMD: require

The AMD spec defines an asynchronous require method with this definition:

require(dependencies, callback)

When called, all dependencies are loaded and the callback is called with the exports of the loaded dependencies.

Example:

require(["module-a", "module-b"], function(a, b) {
 // ...
});

Note: AMD require loads and evaluate the modules. In webpack modules are evaluated left to right.

Note: It’s allowed to omit the callback.

ES6 Modules

tldr: Webpack doesn’t support es6 modules, use require.ensure or require directly depending on which module format your transpiler creates.

Webpack 1.x.x (coming in 2.0.0!) does not natively support or understand ES6 modules. However, you can get around that by using a transpiler, like Babel, to turning the ES6 import syntax into CommonJs or AMD modules. This approach is effective but has one important caveat for dynamic loading.

The module syntax addition (import x from 'foo') is intentionally designed to be statically analyzable, which means that you cannot do dynamic imports.

// INVALID!!!!!!!!!
['lodash', 'backbone'].forEach(name => import name)

Luckily, there is a JavaScript API “loader” specification being written to handle the dynamic use case: System.load (or System.import). This API will be the native equivalent to the above require variations. However, most transpilers do not support converting System.load calls to require.ensure so you have to do that directly if you want to make use of dynamic code splitting.

//static imports
import _ from 'lodash'

// dynamic imports
require.ensure([], function(require) {
 let contacts = require('./contacts')
})

Chunk content

All dependencies at a split point go into a new chunk. Dependencies are also recursively added.

If you pass a function expression (or bound function expression) as callback to the split point, webpack automatically puts all dependencies required in this function expression into the chunk too.

Chunk optimization

If two chunks contain the same modules, they are merged into one. This can cause chunks to have multiple parents.

If a module is available in all parents of a chunk, it’s removed from that chunk.

If a chunk contains all modules of another chunk, this is stored. It fulfills multiple chunks.

Chunk loading

Depending on the configuration option target a runtime logic for chunk loading is added to the bundle. I. e. for the web target chunks are loaded via jsonp. A chunk is only loaded once and parallel requests are merged into one. The runtime checks for loaded chunks whether they fulfill multiple chunks.

Chunk types

Entry chunk

An entry chunk contains the runtime plus a bunch of modules. If the chunk contains the module 0 the runtime executes it. If not, it waits for chunks that contains the module 0 and executes it (every time when there is a chunk with a module 0).

Normal chunk

A normal chunk contains no runtime. It only contains a bunch of modules. The structure depends on the chunk loading algorithm. I. e. for jsonp the modules are wrapped in a jsonp callback function. The chunk also contains a list of chunk id that it fulfills.

Initial chunk (non-entry)

An initial chunk is a normal chunk. The only difference is that optimization treats it as more important because it counts toward the initial loading time (like entry chunks). That chunk type can occur in combination with the CommonsChunkPlugin.

Split app and vendor code

To split your app into 2 files, say app.js and vendor.js, you can require the vendor files in vendor.js. Then pass this name to the CommonsChunkPlugin as shown below.

var webpack = require("webpack");

module.exports = {
 entry: {
 app: "./app.js",
 vendor: ["jquery", "underscore", ...],
 },
 output: {
 filename: "bundle.js"
 },
 plugins: [
 new webpack.optimize.CommonsChunkPlugin(/* chunkName= */"vendor", /* filename= */"vendor.bundle.js")
]
};

This will remove all modules in the vendor chunk from the app chunk. The bundle.js will now contain just your app code, without any of its dependencies. These are in vendor.bundle.js.

In your HTML page load vendor.bundle.js before bundle.js.

<script src="vendor.bundle.js"></script>
<script src="bundle.js"></script>

Multiple entry chunks

It’s possible to [[configure | configuration]] multiple entry points that will result in multiple entry chunks. The entry chunk contains the runtime and there must only be one runtime on a page (there are exceptions).

Running multiple entry points

With the CommonsChunkPlugin the runtime is moved to the commons chunk. The entry points are now in initial chunks. While only one initial chunk can be loaded, multiple entry chunks can be loaded. This exposes the possibility to run multiple entry points in a single page.

Example:

var webpack = require("webpack");
module.exports = {
 entry: { a: "./a", b: "./b" },
 output: { filename: "[name].js" },
 plugins: [new webpack.optimize.CommonsChunkPlugin("init.js")]
}

<script src="init.js"></script>
<script src="a.js"></script>
<script src="b.js"></script>

Commons chunk

The CommonsChunkPlugin can move modules that occur in multiple entry chunks to a new entry chunk (the commons chunk). The runtime is moved to the commons chunk too. This means the old entry chunks are initial chunks now. See all options in the [[list of plugins]].

Optimization

There are optimizing plugins that can merge chunks depending on specific criteria. See [[list of plugins]].

		LimitChunkCountPlugin

		MinChunkSizePlugin

		AggressiveMergingPlugin

Named chunks

The require.ensure function accepts an additional 3rd parameter. This must be a string. If two split point pass the same string they use the same chunk.

require.include

require.include(request)

require.include is a webpack specific function that adds a module to the current chunk, but doesn’t evaluate it (The statement is removed from the bundle).

Example:

require.ensure(["./file"], function(require) {
 require("./file2");
});

// is equal to

require.ensure([], function(require) {
 require.include("./file");
 require("./file2");
});

require.include can be useful if a module is in multiple child chunks. A require.include in the parent would include the module and the instances of the modules in the child chunks would disappear.

Examples

		Simple [https://github.com/webpack/webpack/tree/master/examples/code-splitting]

		with bundle-loader [https://github.com/webpack/webpack/tree/master/examples/code-splitting-bundle-loader]

		with context [https://github.com/webpack/webpack/tree/master/examples/code-splitted-require.context]

		with amd and context [https://github.com/webpack/webpack/tree/master/examples/code-splitted-require.context-amd]

		with deduplication [https://github.com/webpack/webpack/tree/master/examples/code-splitted-dedupe]

		named-chunks [https://github.com/webpack/webpack/tree/master/examples/named-chunks]

		multiple entry chunks [https://github.com/webpack/webpack/tree/master/examples/multiple-entry-points]

		multiple commons chunks [https://github.com/webpack/webpack/tree/master/examples/multiple-commons-chunks]

For a running demo see the example-app [http://webpack.github.io/example-app/]. Check Network in DevTools.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

examples.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

简单的例子

Basic usage

		CommonJs [https://github.com/webpack/webpack/tree/master/examples/commonjs]

Code Splitting

		Code Splitting [https://github.com/webpack/webpack/tree/master/examples/code-splitting]

		Code Splitting with the bundle-loader [https://github.com/webpack/webpack/tree/master/examples/code-splitting-bundle-loader]

multiple entry points

		multiple entry points [https://github.com/webpack/webpack/tree/master/examples/multiple-entry-points]

module styles

		labeled modules [https://github.com/webpack/webpack/tree/master/examples/labeled-modules]

		CommonJs, AMD and labeled modules mixed [https://github.com/webpack/webpack/tree/master/examples/mixed]

		Component modules [https://github.com/webpack/webpack/tree/master/examples/component]

library and externals

		library option with multiple entry points and UMD [https://github.com/webpack/webpack/tree/master/examples/multi-part-library]

		using stuff from other scripts [https://github.com/webpack/webpack/tree/master/examples/externals]

loaders

		using loaders [https://github.com/webpack/webpack/tree/master/examples/loader]

		using coffee-script [https://github.com/webpack/webpack/tree/master/examples/coffee-script]

context

		dynamic require [https://github.com/webpack/webpack/tree/master/examples/require.context]

		dynamic require with a single chunk [https://github.com/webpack/webpack/tree/master/examples/code-splitted-require.context]

		dynamic require with a single chunk (AMD) [https://github.com/webpack/webpack/tree/master/examples/code-splitted-require.context-amd]

		TODO: dynamic require with a chunk per module

i18n

		using the i18n plugin [https://github.com/webpack/webpack/tree/master/examples/i18n]

advanced examples

advanced CommonJs

		require.resolve [https://github.com/webpack/webpack/tree/master/examples/require.resolve]

advanced Code Splitting

		aggressive merging of chunks [https://github.com/webpack/webpack/tree/master/examples/agressive-merging]

		moving modules between chunks [https://github.com/webpack/webpack/tree/master/examples/move-to-parent]

		routing with multiple entry points and Code Splitting [https://github.com/webpack/webpack/tree/master/examples/hybrid-routing]

multi compiler

		using multiple configurations [https://github.com/webpack/webpack/tree/master/examples/multi-compiler]

deduplication

		using the deduplication plugin [https://github.com/webpack/webpack/tree/master/examples/dedupe]

		deduplication with Code Splitting [https://github.com/webpack/webpack/tree/master/examples/code-splitted-dedupe]

commons chunk plugin

		using the a commons chunk [https://github.com/webpack/webpack/tree/master/examples/multiple-commons-chunks]

stylesheet

		extracting a stylesheet for the css modules [https://github.com/webpack/webpack/tree/master/examples/css-bundle]

		+ Code Splitting [https://github.com/webpack/webpack/tree/master/examples/code-splitted-css-bundle]

		+ commons chunk [https://github.com/webpack/webpack/tree/master/examples/multiple-entry-points-commons-chunk-css-bundle]

WebWorker

		using the webworker-loader [https://github.com/webpack/webpack/tree/master/examples/web-worker]

named chunks

		merging chunks with naming [https://github.com/webpack/webpack/tree/master/examples/named-chunks]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

how-to-write-a-loader.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

 A loader is a node module exporting a function.

This function is called when a resource should be transformed by this loader.

In the simple case, when only a single loader is applied to the resource, the loader is called with one parameter: the content of the resource file as string.

The loader can access the [[loader API | loaders]] on the this context in the function.

A sync loader that only wants to give a one value can simply return it. In every other case the loader can give back any number of values with the this.callback(err, values...) function. Errors are passed to the this.callback function or thrown in a sync loader.

The loader is expected to give back one or two values. The first value is a resulting JavaScript code as string or buffer. The second optional value is a SourceMap as JavaScript object.

In the complex case, when multiple loaders are chained, only the last loader gets the resource file and only the first loader is expected to give back one or two values (JavaScript and SourceMap). Values that any other loader give back are passed to the previous loader.

Examples

// Identity loader
module.exports = function(source) {
 return source;
};

// Identity loader with SourceMap support
module.exports = function(source, map) {
 this.callback(null, source, map);
};

Guidelines

(Ordered by priority, first one should get the highest priority)

Loaders should

do only a single task

Loaders can be chained. Create loaders for every step, instead of a loader that does everything at once.

This also means they should not convert to JavaScript if not necessary.

Example: Render HTML from a template file by applying the query parameters

I could write a loader that compiles the template from source, execute it and return a module that exports a string containing the HTML code. This is bad.

Instead I should write loaders for every task in this use case and apply them all (pipeline):

		jade-loader: Convert template to a module that exports a function.

		apply-loader: Takes a function exporting module and returns raw result by applying query parameters.

		html-loader: Takes HTML and exports a string exporting module.

generate modules that are modular

Loader generated modules should respect the same design principles like normal modules.

Example: That’s a bad design: (not modular, global state, ...)

require("any-template-language-loader!./xyz.atl");

var html = anyTemplateLanguage.render("xyz");

flag itself cacheable if possible

Most loaders are cacheable, so they should flag itself as cacheable.

Just call cacheable in the loader.

// Cacheable identity loader
module.exports = function(source) {
 this.cacheable();
 return source;
};

not keep state between runs and modules

A loader should be independent of other modules compiled (expect of these issued by the loader).

A loader should be independent of previous compilations of the same module.

mark dependencies

If a loader uses external resources (i. e. by reading from filesystem), they must tell about that. This information is used to invalidate cacheable loaders and recompile in watch mode.

// Loader adding a header
var path = require("path");
module.exports = function(source) {
 this.cacheable();
 var callback = this.async();
 var headerPath = path.resolve("header.js");
 this.addDependency(headerPath);
 fs.readFile(headerPath, "utf-8", function(err, header) {
 if(err) return callback(err);
 callback(null, header + "\n" + source);
 });
};

resolve dependencies

In many languages there is some schema to specify dependencies. i. e. in css there is @import and url(...). These dependencies should be resolved by the module system.

There are two options to do this:

		Transform them to requires.

		Use the this.resolve function to resolve the path

Example 1 css-loader: The css-loader transform dependencies to requires, by replacing @imports with a require to the other stylesheet (processed with the css-loader too) and url(...) with a require to the referenced file.

Example 2 less-loader: The less-loader cannot transform @imports to requires, because all less files need to be compiled in one pass to track variables and mixins. Therefore the less-loader extends the less compiler with a custom path resolving logic. This custom logic uses this.resolve to resolve the file with the configuration of the module system (aliasing, custom module directories, etc.).

If the language only accept relative urls (like css: url(file) always means ./file), there is the ~-convection to specify references to modules:

url(file) -> require("./file")
url(~module) -> require("module")

extract common code

don’t generate much code that is common in every module processed by that loader. Create a (runtime) file in the loader and generate a require to that common code.

should not embed absolute paths

don’t put absolute paths in to the module code. They break hashing when the root for the project is moved. There is a method stringifyRequest in loader-utils [https://github.com/webpack/loader-utils#stringifyrequest] which converts an absolute path to an relative one.

Example:

var loaderUtils = require("loader-utils");
return "var runtime = require(" +
 loaderUtils.stringifyRequest(this, "!" + require.resolve("module/runtime")) +
 ");";

use a library as peerDependencies when they wrap it

using a peerDependency allows the application developer to specify the exact version in package.json if desired. The dependency should be relatively open to allow updating the library without needing to publish a new loader version.

"peerDependencies": {
 "library": "^1.3.5"
}

programmable objects as query-option

there are situations where your loader requires programmable objects with functions which cannot stringified as query-string. The less-loader, for example, provides the possibility to specify LESS-plugins [https://github.com/webpack/less-loader#less-plugins]. In these cases, a loader is allowed to extend webpack’s options-object to retrieve that specific option. In order to avoid name collisions, however, it is important that the option is namespaced under the loader’s camelCased npm-name.

Example:

// webpack.config.js
module.exports = {
 ...
 lessLoader: {
 lessPlugins: [
 new LessPluginCleanCSS({advanced: true})
]
 }
};

The loader should also allow to specify the config-key (e.g. lessLoader) via query. See discussion [https://github.com/webpack/less-loader/pull/40] and example implementation [https://github.com/webpack/less-loader/blob/39f742b4624fceae6d9cf266e9554d07a32a9c14/index.js#L49-51].

be added to the [[list of loaders]]

Read more

Read more about [[loaders]].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

testing.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

 There are two ways to test web applications:

		In-browsers: You get a more realistic test, but you need some more complex infrastructure and the test usually take longer. You can test DOM access.

		with node.js: You cannot test DOM access, but testing is usually faster.

In-browser testing

mocha-loader

The mocha-loader executes your code with the mocha framework. If you run the code it’ll show the results in the web page.

Hint: when using ! in the bash command line, you must escape it by prepending a \

webpack 'mocha!./test.js' testBundle.js
index.html is a HTML page which loads testBundle.js
open index.html

webpack-dev-server

The webpack-dev-server will automatically create a HTML page which loads the script. It also re-executes the tests when files have changed.

webpack-dev-server 'mocha!./test.js' --hot --inline --output-filename test.js
open http://localhost:8080/test

Hint: Use --hot and it’ll only execute tests which have changed or have changed dependencies.

karma and webpack

You can use webpack with karma. Add "webpack" as preprocessor [https://github.com/webpack/karma-webpack] to your karma config.

node.js testing

CommonJs only

If you write your web app only in CommonJs and don’t use loaders or other webpack-specific features, you can test it in node.js. Just use a node.js testing framework, i. e. mocha [http://visionmedia.github.io/mocha/].

mocha test/*

Compile and test

If you use webpack-specific features it may not be possible to run the code with node.js. webpack allows to configure a target system: i. e. you can compile code so that it can run in node.js (configuration option target: "node"). Then use a node.js testing framework to run the bundle.

webpack test.js /tmp/testBundle.js --target node
mocha /tmp/testBundle.js

Hint: You can use the null-loader for stylesheets instead of the style-loader!css-loader. style-loader doesn’t work in node.js as it requires a DOM.

To make debugging tests easier, you can add source map support using node-source-map-support [https://github.com/evanw/node-source-map-support]:

webpack test.js /tmp/testBundle.js --target node
mocha --require source-map-support/register /tmp/testBundle.js

Make sure to configure the devtool [http://webpack.github.io/docs/configuration.html#devtool] option to output the source map.

enhanced-require

TODO

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/up.png

_static/up-pressed.png

usage.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

 WIP

Meanwhile, recommended reading: Webpack your bags [http://blog.madewithlove.be/post/webpack-your-bags/] by Maxime Fabre [https://twitter.com/anahkiasen] - a very good introduction on how to setup a real-world project using Webpack.

		see [[CLI]] for the command line interface.

		see [[node.js API]] for the node.js interface.

		see [[Configuration]] for the configuration options.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

optimization.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

Minimize

To minimize your scripts (and your css, if you use the css-loader) webpack supports a simple option:

--optimize-minimize resp. new webpack.optimize.UglifyJsPlugin() [http://webpack.github.io/docs/list-of-plugins.html#uglifyjsplugin]

That’s a simple but effective way to optimize your web app.

As you already know (if you’ve read the remaining docs) webpack gives your modules and chunks ids to identify them. Webpack can vary the distribution of the ids to get the smallest id length for often used ids with a simple option:

--optimize-occurence-order resp. new webpack.optimize.OccurenceOrderPlugin()

The entry chunks have higher priority for file size.

Deduplication

If you use some libraries with cool dependency trees, it may occur that some files are identical. Webpack can find these files and deduplicate them. This prevents the inclusion of duplicate code into your bundle and instead applies a copy of the function at runtime. It doesn’t affect semantics. You can enable it with:

--optimize-dedupe resp. new webpack.optimize.DedupePlugin()

This feature adds some overhead to the entry chunk.

Chunks

While writing your code, you may have already added many code split points to load stuff on demand. After compiling you might notice that there are too many chunks that are too small - creating larger HTTP overhead. Luckily, Webpack can post-process your chunks by merging them. You can provide two options:

		Limit the maximum chunk count with --optimize-max-chunks 15 new webpack.optimize.LimitChunkCountPlugin({maxChunks: 15})

		Limit the minimum chunk size with --optimize-min-chunk-size 10000 new webpack.optimize.MinChunkSizePlugin({minChunkSize: 10000})

Webpack will take care of it by merging chunks (it will prefer merging chunk that have duplicate modules). Nothing will be merged into the entry chunk, so as not to impact initial page loading time.

Single-Page-App

A Single-Page-App is the type of web app webpack is designed and optimized for.

You may have split the app into multiple chunks, which are loaded at your router. The entry chunk only contains the router and some libraries, but no content. This works great while your user is navigating through your app, but for initial page load you need 2 round trips: One for the router and one for the current content page.

If you use the HTML5 History API to reflect the current content page in the URL, your server can know which content page will be requested by the client code. To save round trips the server can include the content chunk in the response: This is possible by just adding it as script tag. The browser will load both chunks parallel.

<script src="entry-chunk.js" type="text/javascript" charset="utf-8"></script>
<script src="3.chunk.js" type="text/javascript" charset="utf-8"></script>

You can extract the chunk filename from the stats. (stats-webpack-plugin [https://www.npmjs.com/package/stats-webpack-plugin] could be used for exports the build stats)

Multi-Page-App

When you compile a (real) multi page app, you want to share common code between the pages. In fact this is really easy with webpack: Just compile with multiple entry points:

webpack p1=./page1 p2=./page2 p3=./page3 [name].entry-chunk.js

module.exports = {
 entry: {
 p1: "./page1",
 p2: "./page2",
 p3: "./page3"
 },
 output: {
 filename: "[name].entry.chunk.js"
 }
}

This will generate multiple entry chunks: p1.entry.chunk.js, p2.entry.chunk.js and p3.entry.chunk.js. But additional chunks can be shared by them.

If your entry chunks have some modules in common, there is a cool plugin for this. The CommonsChunkPlugin identifies common modules and put them into a commons chunk. You need to add two script tags to your page, one for the commons chunk and one for the entry chunk.

var CommonsChunkPlugin = require("webpack/lib/optimize/CommonsChunkPlugin");
module.exports = {
 entry: {
 p1: "./page1",
 p2: "./page2",
 p3: "./page3"
 },
 output: {
 filename: "[name].entry.chunk.js"
 },
 plugins: [
 new CommonsChunkPlugin("commons.chunk.js")
]
}

This will generate multiple entry chunks: p1.entry.chunk.js, p2.entry.chunk.js and p3.entry.chunk.js, plus one commons.chunk.js. First load commons.chunk.js and then one of the xx.entry.chunk.js.

You can generate multiple commons chunks, by selecting the entry chunks. And you can nest commons chunks.

var CommonsChunkPlugin = require("webpack/lib/optimize/CommonsChunkPlugin");
module.exports = {
 entry: {
 p1: "./page1",
 p2: "./page2",
 p3: "./page3",
 ap1: "./admin/page1",
 ap2: "./admin/page2"
 },
 output: {
 filename: "[name].js"
 },
 plugins: [
 new CommonsChunkPlugin("admin-commons.js", ["ap1", "ap2"]),
 new CommonsChunkPlugin("commons.js", ["p1", "p2", "admin-commons.js"])
]
};
// <script>s required:
// page1.html: commons.js, p1.js
// page2.html: commons.js, p2.js
// page3.html: p3.js
// admin-page1.html: commons.js, admin-commons.js, ap1.js
// admin-page2.html: commons.js, admin-commons.js, ap2.js

Advanced hint: You can run code inside the commons chunk:

var CommonsChunkPlugin = require("webpack/lib/optimize/CommonsChunkPlugin");
module.exports = {
 entry: {
 p1: "./page1",
 p2: "./page2",
 commons: "./entry-for-the-commons-chunk"
 },
 plugins: [
 new CommonsChunkPlugin("commons", "commons.js")
]
};

See also multiple-entry-points example [https://github.com/webpack/webpack/tree/master/examples/multiple-entry-points] and advanced multiple-commons-chunks example [https://github.com/webpack/webpack/tree/master/examples/multiple-commons-chunks].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

usage-with-karma.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

 https://github.com/webpack/karma-webpack

karma-webpack

Installation

npm install --save-dev karma-webpack

Usage

// Karma configuration

module.exports = function(config) {
 config.set({
 // ... normal karma configuration

 files: [
 // all files ending in "_test"
 'test/*_test.js',
 'test/**/*_test.js'
 // each file acts as entry point for the webpack configuration
],

 preprocessors: {
 // add webpack as preprocessor
 'test/*_test.js': ['webpack'],
 'test/**/*_test.js': ['webpack']
 },

 webpack: {
 // karma watches the test entry points
 // (you don't need to specify the entry option)
 // webpack watches dependencies

 // webpack configuration
 },

 webpackMiddleware: {
 // webpack-dev-middleware configuration
 // i. e.
 noInfo: true
 },

 plugins: [
 require("karma-webpack")
]

 });
};

Alternative usage

This configuration is more performant, but you cannot run single test anymore (only the complete suite).

The above configuration generates a webpack bundle for each test. For many testcases this can result in many big files. The alterative configuration creates a single bundle with all testcases.

 files: [
 // only specify one entry point
 // and require all tests in there
 'test/test_index.js'
],

 preprocessors: {
 // add webpack as preprocessor
 'test/test_index.js': ['webpack']
 },

// test/test_index.js

// require all modules ending in "_test" from the
// current directory and all subdirectories
var testsContext = require.context(".", true, /_test$/);
testsContext.keys().forEach(testsContext);

Every test file is required using the require.context [http://webpack.github.io/docs/context.html#require-context] and compiled with webpack into one test bundle.

Source Maps

You can use the karma-sourcemap-loader to get the source maps generated for your test bundle.

npm install --save-dev karma-sourcemap-loader

And then add it to your preprocessors

preprocessors: {
 'test/test_index.js': ['webpack', 'sourcemap']
}

And tell webpack to generate sourcemaps

webpack: {
 // ...
 devtool: 'inline-source-map'
}

Options

This is the full list of options you can specify in your Karma config.

webpack

Webpack configuration.

webpackMiddleware

Configuration for webpack-dev-middleware.

License

Copyright 2014-2015 Tobias Koppers

MIT [http://www.opensource.org/licenses/mit-license.php]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

Usage-with-Visual-Studio.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

Usage with Visual Studio

For users of Visual Studio 2015, there’s an extension available for Task Runner Explorer here [https://visualstudiogallery.msdn.microsoft.com/5497fd10-b1ba-474c-8991-1438ae47012a]. For older versions of Visual Studio, it is a simple task to integrate Visual Studio with Webpack. All you need to do is use the external tool feature. After following the instructions below, you’ll see a new command button on the ribbon within the IDE. Clicking the button will toggle Webpack’s watch mode on and off. When turned on, a change to any bundle dependencies will trigger the Webpack build process. The output will appear within Visual Studio’s Output window.

You can add an external tool to the Tools menu.

		Open the External Tools dialog box and click Add.

		Title: webpack

		Command: The path to the webpack.cmd file. Assuming Webpack was installed globally with npm, the path is:
C:\Users\{{username}}\AppData\Roaming\npm\webpack.cmd

		Arguments: -w (can also specify other CLI options [http://webpack.github.io/docs/cli.html], such as --display-modules)

		Check Use Output window

[image: Visual Studio External Tool]

Now add to your toolbar

		On the menu bar, right click and select Customize....

		Click on the Commands tab and click on ToolBar radio button to select the newly created external tool.
[image: Visual Studio customize toolbar]

		Select Standard and click on Add Command ... button.

		On the left lit item, select Tools and than select the External Command X item where X is the index of your tool that appears in the Tools menu (starting index => 1). In my example External Command 6.
[image: Visual Studio customize toolbar]

		Click Ok and then Close.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

using-plugins.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

 Use plugins to add functionality typically related to bundles in webpack. For example, the BellOnBundlerErrorPlugin [https://github.com/senotrusov/bell-on-bundler-error-plugin] will notify you of an error in the bundler build process.

Built-in plugins

Plugins are included in your module by using the plugins property in the webpack config.

// webpack should be in the node_modules directory, install if not.
var webpack = require("webpack");

module.exports = {
 plugins: [
 new webpack.ResolverPlugin([
 new webpack.ResolverPlugin.DirectoryDescriptionFilePlugin("bower.json", ["main"])
], ["normal", "loader"])
]
};

Other plugins

Plugins that are not built-in may be installed via npm if published there, or by other means if not:

npm install component-webpack-plugin

which can then be used as follows:

var ComponentPlugin = require("component-webpack-plugin");
module.exports = {
 plugins: [
 new ComponentPlugin()
]
}

When installing third party plugins via npm it is advised to use this tool:
https://www.npmjs.com/package/webpack-load-plugins

It checks for all third party plugins installed in your dependencies and lazyloads them when you need them.

See also

		[[list of plugins]]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

list-of-loaders.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

basic

		json [https://github.com/webpack/json-loader]: Loads file as JSON

		hson [https://github.com/kentcdodds/hson-loader]: Loads HanSON file (JSON for Humans) as JSON object

		raw [https://github.com/webpack/raw-loader]: Loads raw content of a file (as utf-8)

		val [https://github.com/webpack/val-loader]: Executes code as module and consider exports as JavaScript code

		to-string [https://github.com/gajus/to-string]: Executes code as a module, casts output to a string and exports it

		imports [https://github.com/webpack/imports-loader]: Imports stuff to the module

		exports [https://github.com/webpack/exports-loader]: Exports stuff from the module

		expose [https://github.com/webpack/expose-loader]: Expose exports from a module to the global context

		script [https://github.com/webpack/script-loader]: Executes a JavaScript file once in global context (like in script tag), requires are not parsed.

		apply [https://github.com/mogelbrod/apply-loader]: Executes a exported JavaScript function, optionally with arguments, and exports its return value.

		callback [https://github.com/Kreozot/callback-loader]: Parses your JS, calls specified functions (which you implement in webpack context) and replaces them with the results

		if-loader [https://github.com/friskfly/if-loader]: This is a preprocesser for the webpack module bundler. It support the if directive,similar to C #ifdef .

		source-map [https://github.com/webpack/source-map-loader]: Extract sourceMappingURL comments from modules and offer it to webpack

		checksum [https://github.com/naturalatlas/checksum-loader]: Computes the checksum of a file

		null [https://github.com/webpack/null-loader]: Emits an empty module.

		cowsay [https://github.com/nelix/cowsay-loader]: Emits a module with a cowsay header.

		dsv [https://github.com/wbkd/dsv-loader]: Loads csv/tsv files.

		glsl [https://github.com/makio64/shader-loader]: Loads glsl files and support glsl-chunks.

		render-placement [https://github.com/zackify/render-placement-loader]: Adds React.render to your component for you (not very practical in most cases)

		xml [https://github.com/gisikw/xml-loader]: Loads XML as JSON.

		svg-react [https://github.com/jhamlet/svg-react-loader]: Load SVG files as JSX-ified React.createClass declarations.

		base64 [https://github.com/antelle/base64-loader]: Loads file content as base64 string

		ng-annotate [https://github.com/huston007/ng-annotate-loader]: A loader to annotate dependency injections in Angular.js applications.

		node [https://github.com/webpack/node-loader]: Loads .node files that are produced using node-gyp.

		required [https://www.npmjs.com/package/required-loader]: Require a whole directory of trees in bulk. Require JS, Import CSS and imports stuff in it.

		icons [https://www.npmjs.com/package/icons-loader] Generates iconfont from .svg files (uses gulp-iconfont)

		block-loader [https://www.npmjs.com/package/block-loader] Generic loader for rewriting only parts of files, based on content start/end delimiters.

		bundler-configuration [https://www.npmjs.com/package/bundler-configuration-loader] Bundler configuration loader, a tool to include bundler configuration in the resulting build.

packaging

		file [https://github.com/webpack/file-loader]: Emits the file into the output folder and returns the (relative) url.

		url [https://github.com/webpack/url-loader]: The url loader works like the file loader, but can return a Data Url if the file is smaller than a limit.

		extract [https://github.com/peerigon/extract-loader]: Prepares HTML and CSS modules to be extracted into a separate file (lean alternative to the ExtractTextWebpackPlugin).

		worker [https://github.com/webpack/worker-loader]: The worker loader creates a WebWorker for the provided file. The bundling of dependencies of the Worker is transparent.

		shared-worker [https://github.com/mrtnbroder/shared-worker-loader]: Like the worker loader, but for Shared Workers [https://developer.mozilla.org/de/docs/Web/API/SharedWorker].

		serviceworker [https://github.com/markdalgleish/serviceworker-loader]: Like the worker loader, but designed for Service Workers [http://www.w3.org/TR/service-workers].

		bundle [https://github.com/webpack/bundle-loader]: Wraps request in a require.ensure block (callback)

		promise [https://github.com/gaearon/promise-loader]: Wraps request in a require.ensure block (promise)

		async-module [https://github.com/NekR/async-module-loader]: Same as bundle, but provides a way to handle script loading errors. Wraps request in a require.ensure block (callback, errback)

		react-proxy [https://github.com/webpack/react-proxy-loader]: Code Splitting for react components.

		react-hot [https://github.com/gaearon/react-hot-loader]: Allows to live-edit React components while keeping them mounted and preserving their state.

		image [https://github.com/tcoopman/image-webpack-loader]: Compresses your images. Ideal to use together with file or url.

		img [https://github.com/thetalecrafter/img-loader]: Load and compress images with imagemin.

		responsive [https://github.com/herrstucki/responsive-loader]: Create multiple resized images for use with srcset and CSS media queries

		svgo [https://github.com/pozadi/svgo-loader]: Compresses SVG images using svgo [https://github.com/svg/svgo] library

		svg-sprite [https://github.com/kisenka/webpack-svg-sprite-loader]: Like style-loader but for SVG: it creates a single SVG sprite from a set of images, appends it to DOM and returns relative symbol url to be used with svg’s <use>.

		line-art [https://github.com/tptee/line-art-loader]: Inlines SVG files, converting all of its nodes to paths. Useful for line art animations in React components.

		baggage [https://github.com/deepsweet/baggage-loader]: Automatically require any resources related to the required one

		polymer [https://github.com/JonDum/polymer-loader]: Process HTML & CSS with preprocessor of choice and require() Web Components like first-class modules.

		uglify [https://github.com/bestander/uglify-loader]: Uglify contents of a module. Unlike uglify plugin you can minify with mangling only your application files and not the libraries

		html-minify [https://github.com/bestander/html-minify-loader]: Minifies HTML using minimize [https://github.com/Moveo/minimize]

		vue [https://github.com/vuejs/vue-loader]: Load single-file Vue.js components as modules, with loader-support for preprocessors.

		tojson [https://github.com/timoxley/tojson-loader] Serialize module exports as JSON. Cache generated static data as JSON at build time.

		zip-it [https://github.com/bmagnantb/zip-it-loader] Convert files and directories to zip. Great with file.

		lzstring [https://github.com/nickdeis/lzstring-loader] Compresses large strings inline using lz-string, and decompresses them at runtime

		modernizr [https://github.com/peerigon/modernizr-loader] Get your modernizr build bundled with webpack

		s3 [https://github.com/benderTheCrime/s3-loader] Pull assets from s3 based on filename, path, and desired environment.

dialects

		coffee [https://github.com/webpack/coffee-loader]: Loads coffee-script like JavaScript

		coffee-jsx [https://github.com/jsifalda/coffee-jsx-loader]: Loads coffee-script with JSX like JavaScript

		coffee-redux [https://github.com/webpack/coffee-redux-loader]: Loads coffee-script like JavaScript

		json5 [https://github.com/webpack/json5-loader]: Like json, but not so strict.

		es6 [https://github.com/shama/es6-loader]: Loads ES6 modules. (old)

		esnext [https://github.com/conradz/esnext-loader]: Transpile ES6 code using esnext [https://github.com/esnext/esnext].

		babel [https://github.com/babel/babel-loader]: Turn ES6 code into vanilla ES5 using Babel [https://github.com/babel/babel].

		regenerator [https://github.com/pjeby/regenerator-loader]: Use ES6 generators via Facebook’s Regenerator [http://facebook.github.io/regenerator/] module.

		livescript [https://github.com/appedemic/livescript-loader]: Loads LiveScript like JavaScript

		sweetjs [https://github.com/jlongster/sweetjs-loader]: Use sweetjs macros.

		traceur [https://github.com/jupl/traceur-loader]: Use future JavaScript features with Traceur [https://github.com/google/traceur-compiler].

		ts [https://github.com/TypeStrong/ts-loader]: Loads TypeScript like JavaScript.

		typescript [https://github.com/andreypopp/typescript-loader]: Loads TypeScript like JavaScript.

		awesome-typescript [https://github.com/s-panferov/awesome-typescript-loader]: Loads TypeScript like JavaScript with watching support. Works with TypeScript 1.5-alfa

		webpack-typescript [https://github.com/denvned/webpack-typescript]: Loads TypeScript like JavaScript. Supports watch mode and source maps. Works with TypeScript 1.5, 1.6, and nightly builds of TypeScript 1.7 and 1.8.

		purs [https://www.npmjs.com/package/purs-loader]: Loads PureScript [http://www.purescript.org/] like JavaScript.

		oj [https://github.com/DragonsInn/oj-loader]: Loads OJ [https://github.com/musictheory/oj] (an Objective-C like language) files and compiles them to plain JavaScript.

		elm-webpack [https://github.com/rtfeldman/elm-webpack-loader]: Loads Elm [http://elm-lang.org/] files and compiles them to plain JavaScript.

		miel [https://github.com/collardeau/miel-loader]: Loads Miel [https://github.com/collardeau/miel] syntax and compiles to JavaScript.

		wisp [https://github.com/girvo/wisp-loader]: Loads Wisp [https://github.com/Gozala/wisp] modules and compiles them to JavaScript.

		sibilant [https://github.com/jbr/sibilant-webpack-loader]: Loads Sibilant [https://github.com/jbr/sibilant] files and compiles them to JavaScript.

templating

		html [https://github.com/webpack/html-loader]: Exports HTML as string, require references to static resources.

		dom [https://github.com/Wizcorp/dom-loader]: Exports HTML in a DOM element container.

		riot [https://github.com/esnunes/riotjs-loader]: Load RiotJS tags and convert them to javascript.

		jade [https://github.com/webpack/jade-loader]: Loads jade template and returns a function

		jade-html [https://github.com/bline/jade-html-loader]: Loads jade template and returns generated HTML

		jade-react [https://github.com/halhenke/jade-react-loader]: Uses jade templates for React rendering instead of JSX

		virtual-jade [https://github.com/tdumitrescu/virtual-jade-loader]: Use jade templates to produce virtual-dom [https://github.com/Matt-Esch/virtual-dom] hyperscript output

		template-html [https://github.com/jtangelder/template-html-loader]: Loads any template with consolidate.js and returns generated HTML

		handlebars [https://github.com/altano/handlebars-loader]: Loads handlebars template and returns a function

		handlebars-template-loader [https://github.com/emaphp/handlebars-template-loader]: Loads handlebars template and returns a function (alternative)

		dust [https://github.com/avaly/dust-loader]: Loads dust template and returns a function

		ractive [https://github.com/rstacruz/ractive-loader]: Pre-compiles Ractive templates for interactive DOM manipulation

		jsx [https://github.com/petehunt/jsx-loader]: Transform jsx code for React [http://facebook.github.io/react/] to js code.

		react-templates [https://github.com/AlexanderPavlenko/react-templates-loader]: Loads react-template and returns a function

		em [https://github.com/yoshdog/emblem-loader]: Compiles Emblem [http://emblemjs.com/] to Handlebars.js

		ejs [https://github.com/okonet/ejs-loader]: Loads EJS (underscore [http://underscorejs.org/#template](templating engine) template and returns a pre-compiled function

		ejs-html [https://github.com/akim-mcmath/ejs-html-loader]: Loads EJS [http://ejs.co/] templates and returns generated HTML.

		mustache [https://github.com/deepsweet/mustache-loader]: Pre-compiles Mustache templates with Hogan.js [https://github.com/twitter/hogan.js] and returns a function

		yaml [https://github.com/okonet/yaml-loader]: Converts YAML to JSON

		front-matter [https://github.com/elliottsj/front-matter-loader]: Extracts YAML frontmatter

		markdown [https://github.com/peerigon/markdown-loader]: Compiles Markdown to HTML

		remarkable [https://github.com/unindented/remarkable-loader]: Compiles Markdown to HTML using the Remarkable parser

		markdown-it [https://github.com/unindented/markdown-it-loader]: Compiles Markdown to HTML using the markdown-it parser

		markdownattrs [https://github.com/pikulev/markdownattrs-loader]: Compiles Markdown to HTML using the markdown-it-attrs parser that allows you to set classes, identifiers and attributes to your markdown.

		ng-cache [https://github.com/teux/ng-cache-loader]: Puts HTML partials in the Angular’s $templateCache

		ngtemplate [https://github.com/WearyMonkey/ngtemplate-loader]: Bundles your AngularJS templates and Pre-loads the template cache.

		hamlc [https://github.com/ericdfields/hamlc-loader]: Compiles haml-coffee templates (.hamlc) and returns a function.

		haml [https://github.com/AlexanderPavlenko/haml-loader]: Renders haml-coffee templates (.html.hamlc) and returns a string.

		jinja [https://github.com/pierreant-p/jinja-loader]: Precompiles nunjucks and jinja2 templates

		nunjucks [https://github.com/at0g/nunjucks-loader]: Precompiles nunjucks templates

		soy [https://github.com/bendman/soy-loader]: Compiles Google Closure templates and returns the namespace with render functions

		smarty [https://github.com/zhiyan/smarty-loader]: Pre-compiles php smarty templates and returns a function

		template-string [https://github.com/bradbenvenuti/template-string-loader]: Use ES6 template strings for html templates

		ect [https://github.com/cusspvz/ect-loader]: Compile ectjs [http://ectjs.com/] templates

		tmodjs [https://github.com/xosuperpig/tmodjs-loader]: Load art-template [https://github.com/aui/artTemplate] , a template-engine that is widely used in China.

		layout [https://github.com/uxnow/layout-loader]: You can use require directly in html now!

		swig [https://github.com/coditorium/nodejs-swig-loader]: Webpack Swig loader

		twig [https://github.com/zimmo-be/twig-loader]: Webpack Twig.js loader

styling

		bootstrap-webpack [https://github.com/gowravshekar/bootstrap-webpack]: Loads a configuration file for Twitter Bootstrap integration using Less. Allows complete customisation via Less.

		font-awesome-webpack [https://github.com/gowravshekar/font-awesome-webpack]: Loads a configuration file for Font Awesome integration using Less. Allows complete customisation via Less.

		bootstrap-sass [https://github.com/shakacode/bootstrap-sass-loader]: Deprecated. See bootstrap [https://github.com/shakacode/bootstrap-loader].

		bootstrap [https://github.com/shakacode/bootstrap-loader]: Loads a configuration file for Twitter Bootstrap integration using Sass. Allows complete customization via Sass. Supports CSS modules and both Bootstrap 3 and 4.

		font-awesome [https://github.com/shakacode/font-awesome-loader]: Easy integration of font-awesome with customization via Sass.

		style [https://github.com/webpack/style-loader]: Add exports of a module as style to DOM

		isomorphic-style [https://github.com/kriasoft/isomorphic-style-loader]: Ad-hoc replacement to style-loader adding support of isomorphic apps and critical path CSS

		css [https://github.com/webpack/css-loader]: Loads css file with resolved imports and returns css code

		less [https://github.com/webpack/less-loader]: Loads and compiles a less file

		sass [https://github.com/jtangelder/sass-loader]: Loads and compiles a scss file

		stylus [https://github.com/shama/stylus-loader]: Loads and compiles a stylus file

		rework [https://github.com/okonet/rework-loader]: Post-process CSS with Rework [https://github.com/reworkcss/rework] and returns CSS code

		postcss [https://github.com/postcss/postcss-loader]: Post-process CSS with Autoprefixer and other PostCSS plugins [https://github.com/postcss/postcss#built-with-postcss]

		autoprefixer [https://github.com/passy/autoprefixer-loader]: Add vendor prefixes to CSS rules using values from Can I Use

		namespace-css [https://github.com/jeffling/namespace-css-loader]: Namespace your css with a given selector (for encapsulating all rules in one subset of your site)

		fontgen [https://www.npmjs.com/package/fontgen-loader]: Create your own webfont with proper CSS on-the-fly and include it into WebPack.

		classnames [https://github.com/itsmepetrov/classnames-loader]: Automatically bind css-modules [https://github.com/css-modules/css-modules] to classnames [https://github.com/JedWatson/classnames].

translation

		po [https://github.com/perchlayer/po-loader]: Loads a PO gettext file and returns JSON

		format-message [https://github.com/thetalecrafter/format-message-loader]: Compiles translations to ICU Message Format strings in formatMessage [https://github.com/thetalecrafter/format-message] calls

		jsxlate [https://github.com/drd/jsxlate-loader]: Transform React source code for use with jsxlate [https://github.com/drd/jsxlate]

		angular-gettext [https://github.com/princed/angular-gettext-loader] Compiles .po files as Angular.js module or json to be used with angular-gettext.

		webpack-angular-translate [https://github.com/DatenMetzgerX/webpack-angular-translate]: Extracts angular-translate [https://angular-translate.github.io] translation id’s and default text’s

		angular-gettext-extract [https://github.com/wombleton/angular-gettext-extract-loader] Extracts strings for translation into a nominated .pot file.

		gettext [https://github.com/mrblueblue/gettext-loader]: Compiles a Gettext PO file from code source.

		preprocessor [https://github.com/artificialtrends/preprocess-loader]: The preprocessor-loader provides the ability to preprocess source files through user defined regular expressions, macros, and callback routines. All user defined logic can be applied to line scope or source scope.

		amdi18n-loader [https://github.com/TooBug/webpack-amdi18n-loader]: I18n loader similar to require.js i18n plugin. The language packs support AMD/CommonJS module and can be written in .json / .js / .coffee files.

support

		mocha [https://github.com/webpack/mocha-loader]: do tests with mocha in browser or node.js

		coverjs [https://github.com/webpack/coverjs-loader]: PostLoader to code coverage with CoverJs

		istanbul-instrumenter [https://github.com/deepsweet/istanbul-instrumenter-loader]: Istanbul [https://github.com/gotwarlost/istanbul] postLoader to code coverage with karma-webpack [https://github.com/webpack/karma-webpack] and karma-coverage [https://github.com/karma-runner/karma-coverage]

		isparta-instrumenter [https://github.com/ColCh/isparta-instrumenter-loader]: Isparta [https://github.com/douglasduteil/isparta] preLoader to code coverage with karma-webpack [https://github.com/webpack/karma-webpack] and douglasduteil/karma-coverage#next [https://github.com/douglasduteil/karma-coverage]

		ibrik-instrumenter [https://github.com/vectart/ibrik-instrumenter-loader]: Ibrik [https://github.com/Constellation/ibrik] preLoader to CoffeeScript code coverage with karma-webpack [https://github.com/webpack/karma-webpack] and douglasduteil/karma-coverage [https://github.com/douglasduteil/karma-coverage]

		eslint [https://github.com/MoOx/eslint-loader]: PreLoader for linting code using ESLint.

		jshint [https://github.com/webpack/jshint-loader]: PreLoader for linting code.

		jscs [https://github.com/unindented/jscs-loader]: PreLoader for style checking.

		standard [https://github.com/timoxley/standard-loader]: Conform to standard [https://github.com/feross/standard] code style.

		inject [https://github.com/plasticine/inject-loader]: A Webpack loader for injecting code into modules via their dependencies

		injectable [https://github.com/jauco/webpack-injectable]: Allow to inject dependencies into modules

		transform [https://github.com/webpack/transform-loader]: Use browserify transforms as loader.

		falafel [https://github.com/wombleton/falafel-loader]: Use falafel AST transforms as a loader.

		image-size [https://github.com/patcoll/image-size-loader]: Loads an image and returns its dimensions and type

		csslint [https://github.com/hyungjs/csslint-loader]: PreLoader for linting code using CSSLint

		coffeelint [https://github.com/bline/coffeelint-loader]: PreLoader for linting CoffeeScript [http://coffeescript.org/].

		tslint [https://github.com/wbuchwalter/tslint-loader]: PreLoader for linting TypeScript using TSLint [https://github.com/palantir/tslint]

		parker [https://github.com/tanem/parker-loader]: Output a stylesheet analysis report using parker [https://github.com/katiefenn/parker].

		sjsp [https://github.com/3100/sjsp-loader]: Inject some codes for profiling using node-sjsp [https://github.com/45deg/node-sjsp].

		amdcheck [https://github.com/mehdishojaei/amdcheck-loader]: Uses AST to find and remove unused dependencies in AMD modules using amdextract [https://github.com/mehdishojaei/amdextract].

		manifest [https://github.com/RinconStrategies/manifest-loader]: A loader to generate JSON asset manifests to pass to preloading systems.

		gulp-rev [https://github.com/adjavaherian/gulp-rev-loader]: Use in tandem with gulp-rev to replace assets from rev-manifest.

		html-test [https://github.com/wombleton/html-test-loader] Test your html templates (for example) for analytics.

		stylelint [https://github.com/adrianhall/stylelint-loader] Preloader for linting SASS and SCSS with stylelint

 © Copyright 2016.
 Created using Sphinx 1.3.5.

amd.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

 AMD (Asynchronous Module Definition) was the response to those who thought the CommonJS Module system was not ready for the browser because its nature was synchronous.

AMD specifies a standard for modular JavaScript such that modules can load their dependencies asynchronously, solving the problems associated with synchronous loading.

Specification

Modules are defined using the define function.

define

The define function is how modules are defined with AMD. It is just a function that has this signature

define(id?: String, dependencies?: String[], factory: Function|Object);

id

Specifies the module name. It is optional.

dependencies

This argument specifies which module dependencies the module being defined has.
It is an array containing module identifiers.
It is optional, but if omitted, it defaults to [“require”, “exports”, “module”].

factory

The last argument is the one who defines the module. It can be a function (which should be called once), or an object.
If the factory is a function, the value returned will be the exported value for the module.

Examples

Let’s see some examples:

Named module

Defines a module named myModule that requires jQuery.

define('myModule', ['jquery'], function($) {
 // $ is the export of the jquery module.
 $('body').text('hello world');
});
// and use it
require(['myModule'], function(myModule) {});

Note: In webpack a named module is only locally available. In Require.js a named module is globally available.

Anonymous module

Define a module without specifying its id.

define(['jquery'], function($) {
 $('body').text('hello world');
});

Multiple dependencies

Define a module with multiple dependencies. Note that each dependency export will be passed to the factory function.

define(['jquery', './math.js'], function($, math) {
 // $ and math are the exports of the jquery module.
 $('body').text('hello world');
});

Export value

Define a module that exports itself.

define(['jquery'], function($) {

 var HelloWorldize = function(selector){
 $(selector).text('hello world');
 };

 return HelloWorldize;
});

Using require to load dependencies

define(function(require) {
 var $ = require('jquery');
 $('body').text('hello world');
});

 © Copyright 2016.
 Created using Sphinx 1.3.5.

comparison.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

Feature	webpack/webpack	jrburke/requirejs	substack/node-browserify	jspm/jspm-cli	rollup/rollup
———	—————–	——————-	————————–	—————	—————
CommonJs require	yes	only wrapping in define	yes	yes	commonjs-plugin [https://github.com/rollup/rollup-plugin-commonjs]
CommonJs require.resolve	yes	no	no	no	no
CommonJs exports	yes	only wrapping in define	yes	yes	commonjs-plugin [https://github.com/rollup/rollup-plugin-commonjs]
AMD define	yes	yes	deamdify [https://github.com/jaredhanson/deamdify]	yes	no
AMD require	yes	yes	no	yes	no
AMD require loads on demand	yes	with manual configuration	no	yes	no
ES2015 import/export	no	no	no	yes	yes
Generate a single bundle	yes	yes♦	yes	yes	yes
Load each file separate	no	yes	no	yes	no
Multiple bundles	yes	with manual configuration	with manual configuration	yes	no
Additional chunks are loaded on demand	yes	yes	no	System.import [https://github.com/systemjs/systemjs/blob/master/docs/system-api.md#systemimportmodulename–normalizedparentname—promisemodule]	no
Multi pages build with common bundle	with manual configuration	yes	with manual configuration	with bundle arithmetic	no
Concat in require require("./fi" + "le")	yes	no♦	no	no	no
Indirect require var r = require; r("./file")	yes	no♦	no	no	no
Expressions in require (guided) require("./templates/" + template)	yes (all files matching included)	no♦	no	no	no
Expressions in require (free) require(moduleName)	with manual configuration	no♦	no	no	no
Requirable files	file system	web	file system	through plugins	file system or through plugins
Plugins	yes	yes	yes	yes	yes
Preprocessing	loaders, transforms [https://github.com/webpack/transform-loader]	loaders	transforms	plugin translate	plugin transforms
Watch mode	yes	not required	yes	not needed in dev	no
Debugging support	SourceUrl, SourceMaps	not required	SourceMaps	SourceUrl, SourceMaps	SourceUrl, SourceMaps
Node.js built-in libs require("path")	yes	no	yes	yes	node-resolve-plugin [https://github.com/rollup/rollup-plugin-node-resolve]
Other Node.js stuff	process, __dir/filename, global	-	process, __dir/filename, global	process, __dir/filename, global for cjs	global (commonjs-plugin [https://github.com/rollup/rollup-plugin-commonjs])
Replacement for browser	web_modules, .web.js, package.json field, alias config option	alias option	package.json field, alias option	package.json, alias option	no
Minimizing	uglify	uglify, closure compiler	uglifyify [https://github.com/hughsk/uglifyify]	yes	uglify-plugin [https://github.com/TrySound/rollup-plugin-uglify]
Mangle path names	yes	no	partial	yes	not required (path names are not included in the bundle)
Runtime overhead	243B + 20B per module + 4B per dependency	14.7kB + 0B per module + (3B + X) per dependency	415B + 25B per module + (6B + 2X) per dependency	5.5kB for self-executing bundles, 38kB for full loader and polyfill, 0 plain modules, 293B CJS, 139B ES6 System.register before gzip	none for ES2015 modules (other formats may have)
Dependencies	19MB / 127 packages	11MB / 118 packages	1.2MB / 1 package	26MB / 131 packages	?MB / 3 packages

♦ in production mode (opposite in development mode)

X is the length of the path string

 © Copyright 2016.
 Created using Sphinx 1.3.5.

loader-conventions.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

extension	semantic	loader examples
———–	———-	—————–
.js	returns module exports	nothing
.ts	returns module exports	ts-loader
.coffee	returns module exports	coffee-loader
coffee-redux-loader		
.jsx	returns module exports (react component)	jsx-loader
react-hot-loader!jsx-loader		
.json		
.json5	returns json value	json-loader
json5-loader		
.txt	return string value	raw-loader
.css	returns nothing, side effect of adding style to DOM	style-loader!css-loader
style-loader!css-loader!autoprefixer-loader		
.less	returns nothing, side effect of adding style to DOM	style-loader!css-loader!less-loader
.scss	returns nothing, side effect of adding style to DOM	style-loader!css-loader!scss-loader
.styl	returns nothing, side effect of adding style to DOM	style-loader!css-loader!stylus-loader
.png		
.jpg		
.jpeg		
.gif		
.svg	returns url to image	file-loader
url-loader		
.woff		
.ttf	returns url to font	file-loader
url-loader		
.wav		
.mp3	returns url to audio	file-loader
url-loader		
.mpeg		
.mp4		
.webm		
.ogv	returns url to video	file-loader
.html	returns HTML as string	html-loader
.md		
.markdown	returns HTML as string	html-loader!markdown-loader
.jade	returns template function	jade-loader
.hbs		
.handlebars | returns template function | handlebars-loader |

 © Copyright 2016.
 Created using Sphinx 1.3.5.

node.js-api.html

 Navigation

 		
 index

 		doc_webpack latest documentation »

The short way

var webpack = require("webpack");

// returns a Compiler instance
webpack({
 // configuration
}, function(err, stats) {
 // ...
});

The long way

var webpack = require("webpack");

// returns a Compiler instance
var compiler = webpack({
 // configuration
});

compiler.run(function(err, stats) {
 // ...
});
// or
compiler.watch({ // watch options:
 aggregateTimeout: 300, // wait so long for more changes
 poll: true // use polling instead of native watchers
 // pass a number to set the polling interval
}, function(err, stats) {
 // ...
});

Compiler

An instance of Compiler has the following methods

compiler.run(callback) - Builds the bundle(s).

		callback(err, stats) - A function that will be called with the build is complete.

var watcher = compiler.watch(watchOptions, handler) - Builds the bundle(s) then starts the watcher, which rebuilds bundles whenever their source files change. Returns a Watching instance. Note: since this will automatically run an initial build, so you only need to run watch (and not run).

		watchOptions
		watchOptions.aggregateTimeout - After a change the watcher waits that time (in milliseconds) for more changes. Default: 300.

		watchOptions.poll - The watcher uses polling instead of native watchers. true uses the default interval, a number specifies a interval in milliseconds. Default: undefined (automatic).

		handler(err, stats) - A function that will be called when a build has been completed, or an error or warning has occurred. (Note that handler is called multiple times. It even can occur that handler is called for the same bundle multiple times. In this cases webpack is not sure about changes and rebuilds.)

Watching

An instance of Watching has the following method:

watcher.close(callback) - stops the watcher.

		callback - A function that’s called when the watcher has closed.

stats

The Stats object exposes these methods:

stats.hasErrors

Returns true if there were errors while compiling.

stats.hasWarnings

Returns true if there were warnings while compiling.

stats.toJson(options)

Return information as json object

You can specify the information by the options argument: (Boolean)

options.context (string) context directory for request shortening

options.hash add the hash of the compilation

options.version add webpack version information

options.timings add timing information

options.assets add assets information

options.chunks add chunk information

options.chunkModules add built modules information to chunk information

options.modules add built modules information

options.children add children information

options.cached add also information about cached (not built) modules

options.reasons add information about the reasons why modules are included

options.source add the source code of modules

options.errorDetails add details to errors (like resolving log)

options.chunkOrigins add the origins of chunks and chunk merging info

options.modulesSort (string) sort the modules by that field

options.chunksSort (string) sort the chunks by that field

options.assetsSort (string) sort the assets by that field

In toJson every flag defaults to true (except chunkModules). By default it’s not sorted.

Here is an example of the resulting JSON [https://github.com/webpack/analyse/blob/master/app/pages/upload/example.json].

Note: If you want to extract the asset name for generating the HTML page, use the assetsByChunkName property, which contains an object mapping chunkName to asset name(s) (it’s a string or an array of strings).

stats.toString(options)

Returns a formatted string of the result.

options are the same as options in toJson.

options.colors With console colors

error handling

to handle all errors and warnings with the node.js API you need to test err, stats.errors and stats.warnings:

var webpack = require("webpack");
webpack({
 // configuration
}, function(err, stats) {
 if(err)
 return handleFatalError(err);
 var jsonStats = stats.toJson();
 if(jsonStats.errors.length > 0)
 return handleSoftErrors(jsonStats.errors);
 if(jsonStats.warnings.length > 0)
 handleWarnings(jsonStats.warnings);
 successfullyCompiled();
});

compile to memory

var MemoryFS = require("memory-fs");
var webpack = require("webpack");

var fs = new MemoryFS();
var compiler = webpack({ ... });
compiler.outputFileSystem = fs;
compiler.run(function(err, stats) {
 // ...
 var fileContent = fs.readFileSync("...");
});

 © Copyright 2016.
 Created using Sphinx 1.3.5.

