Kurento Documentation
Release 7.0-dev

Kurento

Mar 11, 2024

Introduction to Kurento

1.1 Whatis Kurento?
1.2 Why a WebRTC media server?
1.3 Why Kurento Media Server?
1.4 Kurento Design Principles
About OpenVidu

Getting Started

Installation Guide

4.1 Amazon Web Services
42 Dockerimage
43 Local Installation
4.4 STUN/TURN serverinstall
4.5 Check yourinstallation

Installing Nightly Builds

5.1 Kurento Media Server
5.2 KurentoJavaClient
5.3 Kurento JavaScript Client
Configuration

6.1 Debuglogging.
6.2 STUN/TURN Server
6.3 Network Interface
6.4 WebRTCBitrate
65 RTPPorts.
6.6 Advanced Settings
Tutorials

7.1 HelloWorld
7.2 WebRTC Magic Mirror
73 RTPReceiver.

7.4 WebRTC One-To-Many broadcast
7.5 WebRTC One-To-One video call

7.6 WebRTC One-To-One video call with recording and filtering
7.7 WebRTC Many-To-Many video call (Group Call)
7.8 Media Elements metadata
7.9 WebRTC MediaPlayer

7.10 'WebRTC outgoing Data Channels

USER DOCUMENTATION

AN O\ W W

11

13

............................ 14
............................ 15
............................ 16
............................ 18
............................ 18

21

............................ 22
............................ 23
............................ 25

10

11

12

13

14

15

7.11 WebRTC incoming Data Channel i
7.12 WebRTCrecording o o it e e e e e e e e e e e e e e e e e
7.13 WebRTC statistics o o o e
7.14 Chroma Filter. e e e e e
7.15 Crowd Detector Filter e e e e e e e
7.16 Plate Detector Filter e e e e e e e e
7.17 Pointer Detector Filter e e e e e e e

Writing Kurento Applications

8.1 Global Architecture e e e e e e e e e e e e e e
8.2 Application Architecture L e e e e e e e e e
83 MediaPlane L e

Writing Kurento Modules

9.1 Scaffolding and development L e e e e
9.2 Installationand usage e e e e
0.3 Examples

Frequently Asked Questions

10.1 NAT,ICE, STUN, TURN e e e e e e e
10.2 Kurentoin Docker o . . e e e
10.3 MediaPipeline L e e

Troubleshooting Issues

11.1 Media Server Crashes e e e e e e
11.2 Corrupted Video o o o e e e e
11.3 Other Media Serverissues v i i i i it e e e e e e e e e e
11.4 Application SErver o e e e e e e e e e
11.5 WebRTC failures o e e e e e e e e e e e e e
11.6 Dockerissues e e e e e e e e e e
11.7 Element-specificinfo L
11.8 Browser o e e e e e e e e e e e e e e

Support
12.1 Community SUPPOIt o o e e e e e e e e e e e e e e e e
12.2 Commercial SUPPOTT v o o o o e e e e e e e e e e e e e e e e e e e

Client API Reference

13.1 Java Client e e e e e e e e e
13.2 JavaScript Client e e e e e e e e e
13.3 KurentoJs Utils o e e e e

Kurento Modules

14.1 Media Elements and Media Pipelines e
142 Endpoints o o e e e e e e e e e e e e e e e e e
143 Flters o o e e
144 Hubs o e e e e e e e e
145 Example Modules e e e e

Kurento Protocol

15.1 JSON-RPC message format i ittt
15.2 Kurento API over JSON-RPC e e e e
15.3 Example: WebRTC inloopback e
15.4 Creating a custom Kurento Client it e e

303
303
304
307

309
309
312
317

319
320
325
327

329
330
331
334
338
342
344
345
348

349
349
350

351
351
351
351

353
353
354
355
356
357

16

17

18

19

20

21

22

23

24

25

Kurento Utils JS

16.1 OVerview v i e e e e e
162 Howtouseit v i i it s e e e e
163 Examples
164 Usingdatachannels
16.5 Reference documentation
16,6 Soucecode
16.7 Buildforbrowser

Securing Kurento Applications

17.1 Securing Application Servers
17.2 Securing Kurento Media Server

Endpoint Events

18.1 MediaObjectevents v i v vt it
18.2 MediaElementevents.o
18.3 BaseRtpEndpointevents
18.4 WebRtcEndpointevents
18.5 Sample sequence of events: WebRtcEndpoint

NAT Traversal

191 WebRTCwithICE
19.2 RTPwithoutICE

WebRTC Statistics

20.1 Introduction
20.2 APIdescription. o . e e e
203 Example e e e e

Debug Logging

21.1 Defaultlevels
21.2 Verboselogging e
21.3 LogsLocation
214 LogContents v v v it e e e e e e e e e e
21.5 Logging levels and components

Kurento Team

Contribution Guide

23.1 Didyoufindabug?
232 Didyoufixabug?

23.3 Did you fix whitespace, format code, or make a purely cosmetic patch?

23.4 Do you intend to add a new feature or change an existing one?
23.5 Thanksforhelping

Code of Conduct

Release Notes

25.1 Kurento 7.1 Release Notes (UNRELEASED)
25.2 Kurento 7.0 Release Notes v v v v v i
253 6.18.0 (September 2022) e e e
254 6.17.0 (March 2022) o e e e e
25.5 6.16.0 (March2021) e
25.6 6.15.0 November 2020) e
257 6.140 June 2020) e e e

375
376
376
376
378
379
382
383

385
385
387

391
392
393
394
395
396

399
399
399

403
403
403
405

407
408
408
411
412
413

415

417
418
418
418
418
418

419

421
421
422
427
433
433
436
439

26

27

28

29

30

31

32

25.8 6.13.2 May 2020) e e e e e e e e e
25.9 6.13.0 (December 2019) e e e e e e
25.10 6.12.0 (October 2019) e e e e e e
2511 6.11.0 (July 2019) o e e e e
25.12 6.10.0 (Apr2019) e e
25.13 6.9.0 (Dec 2018) o i e e e
25.14 6.8.1 (Oct 2018) . . . o o o i e e e e e e
2515 6.7.2 (May 2018) e e e e e e e e e

Developer Guide

26.1 Introduction e e e
26.2 Code 1repositories v v v i e e e e e e e e e e e e e e e e e
263 Development 101 oL e
26.4 Buildfromsources e e e
26.5 Installdebug symbols L e
26.6 RunanddebugwithGDB e e e
26.7 Workonaforkedlibrary e e
26.8 Create Debpackages
269 UnitTests o o e e e e e e e e e e e e
26.10 How-TO o o o o e e e e e e

Continuous Integration

Release Procedures

28.1 Introduction e e e e e e e e e e
28.2 Releaseorder e e e e e e
28.3 FIRST: Open anew Release Process o o
28.4 Kurento Media Server L e e e e e e e e e e e
28.5 Kurento JavaScriptclient e e e e e e e e e
28.6 Kurento Javaclient L e e e e
287 DoCKer images o v i e e e e e e e e e e e e e e e e e e e
28.8 Kurento documentation L e e e e e e e e e e e e e
28.9 LAST: Close the Release Process st

Security Hardening

29.1 Hardening validation oL e
29.2 Hardeningin Kurento
293 PIC/PIEin GCC e e e e
294 PIC/PIEinCMakeo o i e

Writing this documentation

30.1 Buildinglocally e e e e e e e
30.2 Kurento documentation Style Guide Lo
30.3 Sphinx documentation generator ool e e e e
304 Readthe Docsbuilds L oL e e e e

Testing

31,1 E2ETeStS . . . o o o o e e e e
31.2 Running Javatests i L i e e e e e e e e e e e e e e e
31.3 Kurento Testing Framework explained

Browser Details

32.1 Firefox o e
322 Safario e e
323 Chrome o v o e e e e e e e e e e e e e e e

33

34

35

36

37

38

39

40

41

42

32.4 Browser MTU e e e e e e e e e
32.5 Bandwidth Estimation e e e
32,6 Video Encoding L e e e e e
327 Source Code URLS e e e e e

Congestion Control (RMCAT)
33.1 Google Congestion Control e
33.2 Meaningof REMB e

H.264 video codec

34.1 Profilesand Levels e e e e
34.2 NAL Units (NALU) e e e e e
343 SPS,PPS . . . s
344 GSHEAMET CAPS + « « v v v v v e
34.5 GStreamer “codec_data” L L. L e e e e e e e

Memory Fragmentation

35.1 Problembackground L. e e e e e e e e e
352 Solution. oL e e e e
353 UsingJemalloc L L e e e e e e e e
35.4 Other suggestions o i L e e e e e e e e e e e e e e e e

MP4 recording format
36.1 MP4 metadataisSuUes i e

NAT Types and NAT Traversal

37.1 BasicCOnCepts v v v v e
372 Types of NAT L L e
373 Typesof NAT inthe Real World
37.4 NAT Traversal o e e e

RTP Streaming Commands

38.1 RTPsenderexamples. o o i i e e e e e e e e e
38.2 RTPreceiverexamples i i i e e e e e e e e e e e e
383 SRTPexamples o o o i e e e e e e e e e e e e e e
38.4 Additional Notes o o L e e e e

Apple Safari
39.1 CodeCiSSUES . . . v v v it e e e e e e
39.2 HTML policies for video playback

Self-Signed Certificates
40.1 Usingalocal domain o o i i e e e e e e e e e e
40.2 Trusting a self-signed certificate L o

Glossary

Indices and tables

Index

547
548
549
551
552

555
556
560
562
565

569
569
569

571
572
573

575

583

585

vi

Kurento Documentation, Release 7.0-dev

Kurento Media Server (KMS) is a multimedia server package that can be used to develop advanced video applications
for WebRTC platforms. It is an Open Source project, with source code released under the terms of Apache License
Version 2.0 and available on GitHub.

Warning: This project is on bare minimum maintenance mode.

There are no major new features planned for Kurento, and even minor issues may take some time to be
addressed.

Kurento won’t implement several WebRTC features such as Simulcast, End-To-End Encryption, Insertable Streams,
or even support for more than 1 video + 1 audio in the same WebRTC peer connection.

For new videoconferencing projects we recommend to build on top of a higher-level platform such as [Open-
Vidu](https://openvidu.io/) (from the same team as Kurento). It hides to some extent the sheer complexity of
scalable WebRTC systems, and allows you to focus on your app instead.

If you’re just looking for a bare-bones, low-level WebRTC SFU like Kurento, [mediasoup](https://mediasoup.org/)
is a very good, modern and actively developed alternative.

Start here: Introduction to Kurento and Getting Started, and then learn to write Kurento applications with Tutorials.
The main documentation for the project is organized into different sections:

* User Documentation

» Feature Documentation

* Project Documentation
Information about development of Kurento itself is also available:

* Release Notes

* Developer Documentation

USER DOCUMENTATION 1

https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://github.com/Kurento
https://openvidu.io/
https://mediasoup.org/

Kurento Documentation, Release 7.0-dev

2 USER DOCUMENTATION

CHAPTER
ONE

INTRODUCTION TO KURENTO

1.1 What is Kurento?

Kurento Media Server (KMS) is a multimedia server package that can be used to develop advanced video applications
for WebRTC platforms. It is an Open Source project, with source code released under the terms of Apache License
Version 2.0 and available on GitHub.

The most prominent characteristics of Kurento are these:

1.1.1 Modular Pipelines

//_ Browser \ / Kurento Media Server \

Application Logic Media Pipeline
)){ WebRtcPeer - | .
Sy
ﬂ'lm

(& A 4

Fig. 1: Simple Example of a Media Pipeline

Kurento provides building blocks such as WebRTC and RTP senders & receivers, audio/video mixers, media record-
ing, and more. These Media Elements are self-contained objects that hold a specific media capability; they are extremely
easy to compose by inserting, activating, or deactivating them at any point in time, even when the media is already
flowing.

It is also very easy to extend Kurento and write your own elements, which can then be integrated with the already

existing ones!

Application developers use Kurento to control a so-called Media Pipeline with the desired Media Elements, effectively
forming a fully customized architecture that is tailored to their needs. Several built-in modules are provided for group
communications, transcoding of media formats, and routing of audiovisual flows.

Given the flexible modular approach that Kurento offers, it is possible to achieve both Selective Forwarding Unit
(SFU) and Multipoint Conferencing Unit (M CU) application architectures.

https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://github.com/Kurento

Kurento Documentation, Release 7.0-dev

1.1.2 Built-in Modules

Kurento exposes a rich toolbox of media elements as part of its API:

Compaosite

WebRtcEndpoint
FaceOverlayFilter

Dispatcher

HitpPostEndpoint PlayerEndpoint 7BarFilter

e e :

DispatcherOneToMany

RipEndpoint

RecorderEndpoint GstreamerFilter

£k =3 >
| |

Fig. 2: Some Media Elements provided out of the box by Kurento

For example:
* The WebRtcEndpoint is able to send and receive WebRTC media streams.
* The PlayerEndpoint can be used to consume media from RTSP, HTTP, or local sources.
* The RecorderEndpoint can store media streams into a local or remote file system.

¢ The FaceOverlayFilter is a simple Computer Vision example that detects people’s faces on the video streams,
to add an overlay image on top of them.

Jump straight into the Tuforials to see practical examples of all these elements, used in applications built with kurento.

To learn more, read the section about Kurento Modules. Furthermore, remember that Kurento has a plugin API that
allows you to write your own modules!

1.1.3 JSON-RPC Protocol

KMS exposes all its API features through a JSON-RPC protocol called Kurento Protocol, which can be accessed
directly through a WebSocket connection. For convenience, Kurento also offers Java and JavaScript SDKs: Client API
Reference. But you can use any programming language, simply writing your code directly against the protocol.

The picture below shows how to use Kurento in three scenarios:

» Using the Kurento JavaScript SDK directly from a WebRTC browser (only recommended for quick tests and
development, not for production services).

 Using the Kurento Java SDK in a standalone Java EE Application Server. The web browser is a client of this
application for things like HTML, and WebRTC signaling, while the application itself is client of KMS (using
the Kurento Protocol to control KMS).

4 Chapter 1. Introduction to Kurento

Kurento Documentation, Release 7.0-dev

 Using the Kurento JavaScript SDK in a Node.js Application Server. Again, the web browser is a client of this
application, while the application is client of KMS.

Client €)@y,

Application code

JavaScript Kurento Protocol
Kuento Client JSON-RPC over WS

Media Traffic

Client €)™y lava EE Kurento /=
#FP Server - Media Server
Application code Siaalire :
protocol Java Kuento
Client J50M-RPC
over W5

Media Traffic

Client ;.:! 'm\., . Kurento
> Media Server
Application code
Kurento

JavaScrif Protocol
Kuento Clien JSON-RPC
over Ws

Media Traffic

,.---.-.------.-.------.-.------.-.--
R ————————

Fig. 3: Connection of Kurento Java and JavaScript SDKs to Kurento Media Server

Complete examples for the supported SDK technologies are described in Tutorials.

1.2 Why a WebRTC media server?

WebRTC is a set of protocols and APIs that provide web browsers and mobile applications with Real-Time Commu-
nications (RTC) capabilities over peer-to-peer connections. It was conceived to allow connecting browsers without
intermediate helpers or services, but in practice this P2P model falls short when trying to create more complex appli-
cations. For this reason, in most cases a central media server is required.

Conceptually, a WebRTC media server is just a multimedia middleware where media traffic passes through when
moving from source(s) to destination(s).

Media servers are capable of processing incoming media streams and offer different outcomes, such as:

* Group Communications: Distributing among several receivers the media stream that one peer generates, i.e.
acting as a Multi-Conference Unit (“MCU”).

1.2. Why a WebRTC media server? 5

https://webrtc.org/

Kurento Documentation, Release 7.0-dev

Peer-to-Peer WebRTC Application (without media infrastructure)

. WebRTC video stream
| - @ |

: WebRTC Application with media server

¢ e

Media Server

Fig. 4: Peer-to-peer WebRTC approach vs. WebRTC through a media server

* Mixing: Transforming several incoming stream into one single composite stream.
* Transcoding: On-the-fly adaptation of codecs and formats between incompatible clients.

* Recording: Storing in a persistent way the media exchanged among peers.

1.3 Why Kurento Media Server?

Kurento Media Server (KMS) can be used in the WebRTC Media Server model, to allow for media transmission,
processing, recording, and playback. KMS is built on top of the fantastic GStreamer multimedia library, and provides
the following features:

* Networked streaming protocols, including HTTP, RTP and WebRTC.

e Group communications (both MCU and SFU functionality) supporting media mixing and media rout-
ing/dispatching.

¢ Generic support for filters implementing Computer Vision and Augmented Reality algorithms.

¢ Media storage that supports writing operations for WebM and MP4 and playing in all formats supported by
GStreamer.

* Automatic media transcoding between any of the codecs supported by GStreamer, including VPS8, H.264, H.263,
AMR, OPUS, Speex, G.711, and more.

1.4 Kurento Design Principles

Kurento is designed based on the following main principles:

Distribution of Media and Application Services Kurento Media Server and applications can be de-
ployed, escalated or distributed among different machines.

A single application can invoke the services of more than one Kurento Media Server. The opposite
also applies, that is, a Kurento Media Server can attend the requests of more than one application.

6 Chapter 1. Introduction to Kurento

Kurento Documentation, Release 7.0-dev

Transcoding media server

What common WebRTC WebRTC Media Server
Media Servers do: Media is Transcoding Media got |
. Transcoding here MCU there
'+ MCU : Recording :
'+ Recording > E
What Kurento Media Kurento Media Server
Server adds: Transcoding, MCU,

* Flexible processing Media is Recording + Rich Media
* Augmentedreality e Enrich, Augment, got there

- B'?’?di”g Adapt, Analyze,
i+ Mixing 1 e Transform, Store, ... |

* Analyzing —
Events

Fig. 6: Kurento Media Server capabilities

1.4. Kurento Design Principles 7

Kurento Documentation, Release 7.0-dev

Suitable for the Cloud Kurento is suitable to be integrated into cloud environments to act as a PaaS
(Platform as a Service) component.

Media Pipelines Chaining Media Elements via Media Pipelines is an intuitive approach to challenge the
complexity of multimedia processing.

Application development Developers do not need to be aware of internal Kurento Media Server com-
plexities: all the applications can deployed in any technology or framework the developer likes, from
client to server. From browsers to cloud services.

End-to-End Communication Capability Kurento provides end-to-end communication capabilities so
developers do not need to deal with the complexity of transporting, encoding/decoding and rendering
media on client devices.

Fully Processable Media Streams Kurento enables not only interactive interpersonal communications
(e.g. Skype-like with conversational call push/reception capabilities), but also human-to-machine
(e.g. Video on Demand through real-time streaming) and machine-to-machine (e.g. remote video
recording, multisensory data exchange) communications.

Modular Processing of Media Modularization achieved through media elements and pipelines allows
defining the media processing functionality of an application through a “graph-oriented” language,
where the application developer is able to create the desired logic by chaining the appropriate func-
tionalities.

Auditable Processing Kurento is able to generate rich and detailed information for QoS monitoring,
billing and auditing.

Seamless IMS integration Kurento is designed to support seamless integration into the /MS infrastruc-

ture of Telephony Carriers.

Transparent Media Adaptation Layer Kurento provides a transparent media adaptation layer to make
the convergence among different devices having different requirements in terms of screen size, power
consumption, transmission rate, etc. possible.

8 Chapter 1. Introduction to Kurento

CHAPTER
TWO

ABOUT OPENVIDU

OpenVidu is a framework that is based on Kurento, and encapsulates most of its features in order to simplify some of
the most typical use cases of WebRTC, such as conference rooms.

An application developer using OpenVidu doesn’t need to worry about all the low-level technologies and protocols that
form part of typical WebRTC communications. The main goal of this project is to provide a simpler API: just include
the OpenVidu client-side library, and use OpenVidu Server for handling the media flows, and you’ll have a full-featured
WebRTC-capable application.

For more advanced needs, or for applications that require more versatile management of media processing pipelines,
Kurento is still the go-to solution; however, if you are planning on building a service which matches one of the simplified
use cases covered by OpenVidu, we strongly suggest to check it out as it will be easier and cheaper to go that route.

OpenVidu is developed by the same team that created Kurento. Check it out: https://openvidu.io/

https://openvidu.io/
https://openvidu.io/

Kurento Documentation, Release 7.0-dev

10 Chapter 2. About OpenVidu

CHAPTER
THREE

GETTING STARTED

Generally speaking, these are the first steps that any user interested in Kurento should follow:

1.

Know your use case
Choose between Kurento and OpenVidu.

Kurento Media Server has been designed as a general-purpose platform that can be used to create any kind of
multimedia streaming applications. This makes KMS a powerful tool, however it also means that there is some
unavoidable complexity that the developer must face.

WebRTC is a complex standard with a lot of moving parts, and you need to know about each one of these
components and how they work together to achieve the multimedia communications that the standard strives to
offer.

If your intended application consists of a complex setup with different kinds of sources and varied use cases,
then Kurento is the best leverage you can use.

However, if you intend to solve a simpler use case, such as those of video conference applications, the Open-
Vidu project builds on top of Kurento to offer a simpler and easier to use solution that will save you time and
development effort.

Install KMS

The installation guide explains different ways in which Kurento can be installed in your system. The fastest and
easiest one is to use our pre-configured template for Amazon AWS.

Configure KMS

KMS is able to run as-is after a normal installation. However, there are several parameters that you might want
to tune in the configuration files.

Write an Application

Write an application that uses the Kurento Protocol to comunicate with KMS and use its capabilities. The easiest
way of doing this is to build on one of the provided Kurento Clients.

Have a look at any of the multiple ruforials that explain how to build basic applications.
Ask for help

If you face any issue with Kurento itself or have difficulties configuring the plethora of mechanisms that form
part of WebRTC, don’t hesitate to ask for help to our community of users.

Still, there are times when the problems at hand require more specialized study. If you wish to get help from
expert people with more inside knowledge of Kurento, get in contact with us to request Commercial Support.

Enjoy!

11

https://openvidu.io/
https://openvidu.io/
https://openvidu.io/

Kurento Documentation, Release 7.0-dev

Kurento is a project that aims to bring the latest innovations closer to the people, and help connect them together.
Make a great application with it, and let us know! We will be more than happy to find out about who is using
Kurento and what is being built with it :-)

12 Chapter 3. Getting Started

CHAPTER
FOUR

INSTALLATION GUIDE

Table of Contents

* Installation Guide
— Amazon Web Services
— Docker image
* Running
- Why host networking?
% Docker Upgrade
— Local Installation
* Running
* Local Upgrade
— STUN/TURN server install

— Check your installation

% Checking RTP port connectivity

Kurento Media Server (KMS) is compiled and provided for installation by the Kurento team members, in a variety
of forms. The only officially supported processor architecture is 64-bit x86, so for other platforms (such as ARM) you
will have to build from sources.

» Using an EC2 instance in the Amazon Web Services (AWS) cloud service is suggested to users who don’t want
to worry about properly configuring a server and all software packages, because the provided template does all
this automatically.

* The Kurento Docker image allows to run KMS on top of any host machine, for example Fedora or CentOS. In
theory it could even be possible to run under Windows, but so far that possibility hasn’t been explored by the
Kurento team, so you would be at your own risk.

e Setting up a local installation with apt-get install allows to have total control of the installation process. It
also means that it’s easier to make mistakes, so we don’t recommend this installation method. Do this only if you
are a seasoned System Administrator.

Besides installing KMS, a common need is also installing a STUN/TURN server, especially if KMS or any of its clients
are located behind a NAT router or firewall.

If you want to try nightly builds of KMS, then head to the section Installing Nightly Builds.

13

https://aws.amazon.com

Kurento Documentation, Release 7.0-dev

4.1

Amazon Web Services

The AWS CloudFormation template file for Amazon Web Services (AWS) can be used to create an EC2 instance that
comes with everything needed and totally pre-configured to run KMS, including a Coturn server.

Follow these steps to use it:

1.
2.
3.

4.

Access the AWS CloudFormation Console.
Click on Create Stack.

Now provide this Amazon S3 URL for the template:

https://s3-eu-west-1.amazonaws.com/aws.kurento.org/KMS-Coturn-cfn-7.0.0.yaml

Follow through the steps of the configuration wizard:
4.1. Stack name: A descriptive name for your Stack.
4.2. InstanceType: Choose an appropriate size for your instance. Check the different ones.

4.3. KeyName: You need to create an RSA key beforehand in order to access the instance. Check AWS docu-
mentation on how to create one.

4.4. SSHLocation: For security reasons you may need to restrict SSH traffic to allow connections only from
specific locations. For example, from your home or office.

4.5. TurnUser: User name for the TURN relay.
4.6. TurnPassword: Password required to use the TURN relay.

Note: The template file includes Coturn as a STUN server and TURN relay. The default
user/password for this server is kurento/kurento. You can optionally change the username, but make
sure to change the default password.

Finish the Stack creation process. Wait until the status of the newly created Stack reads CREATE_COMPLETE.

Select the Stack and then open the Outputs tab, where you’ll find the instance’s public IP address, and the Kurento
Media Server endpoint URL that must be used by Application Servers.

Note:

The Kurento CF template is written to deploy on the default VPC (see the Amazon Virtual Private Cloud

docs). There is no VPC selector defined in this template, so you won’t see a choice for it during the AWS CF wizard.
If you need more flexibility than what this template offers, you have two options:

A.

Manually create an EC2 instance, assigning all the resources as needed, and then using the other installation
methods to set Kurento Media Server up on it: Docker image, Local Installation.

. Download the current CF from the link above, and edit it to create your own custom version with everything you

need from it.

14

Chapter 4. Installation Guide

https://aws.amazon.com
https://github.com/coturn/coturn
https://console.aws.amazon.com/cloudformation
https://aws.amazon.com/ec2/instance-types/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/vpc/

Kurento Documentation, Release 7.0-dev

4.2 Docker image

The kurento-media-server Docker image is a nice all-in-one package for an easy quick start. It comes with all the
default settings, which is enough to let you try the Tutorials.

If you need to insert or extract files from a Docker container, there is a variety of methods: You could use a bind mount;
a volume; cp some files from an already existing container; change your ENTRYPOINT to generate or copy the files
at startup; or base FROM this Docker image and build a new one with your own customizations. Check Kurento in
Docker for an example of how to use bind-mounts to provide your own configuration files.

These are the exact contents of the image:

¢ A local apt-get installation of KMS, as described in Local Installation, plus all its extra plugins (chroma,
platedetector, etc).

¢ Debug symbols installed, as described in Install debug symbols. This allows getting useful stack traces in case
the KMS process crashes. If this happens, please report a bug.

* All default settings from the local installation, as found in /etc/kurento/. For details, see Configuration.

4.2.1 Running

Docker allows to fine-tune how a container runs, so you’ll want to read the Docker run reference and find out the
command options that are needed for your project.

This is a good starting point, which runs the latest Kurento Media Server image with default options:

docker pull kurento/kurento-media-server:7.0.0

docker run -d --name kurento --network host \
kurento/kurento-media-server:7.0.0

By default, KMS listens on the port 8888. Clients wanting to control the media server using the Kurento Protocol should
open a WebSocket connection to that port, either directly or by means of one of the provided Client API Reference SDKs.

The health checker script inside this Docker image does something very similar in order to check if the container is
healthy.

Once the container is running, you can get its log output with the docker logs command:

docker logs --follow kms >"kms-$(date '+%Y%m%dT%H%M%S') .log" 2>&1

For more details about KMS logs, check Debug Logging.

Why host networking?

Notice how our suggested docker run command uses --network host? Using Host Networking is recommended
for software like proxies and media servers, because otherwise publishing large ranges of container ports would con-
sume a lot of memory. You can read more about this issue in our Troubleshooting Guide.

The Host Networking driver only works on Linux hests, so if you are using Docker for Mac or Windows then you’ll
need to understand that the Docker network gateway acts as a NAT between your host and your container. To use KMS
without STUN (e.g. if you are just testing some of the Turorials) you’ll need to publish all required ports where KMS
will listen for incoming data.

For example, if you use Docker for Mac and want to have KMS listening on the UDP port range [S000, 5050] (thus
allowing incoming data on those ports), plus the TCP port 8888 for the Client API Reference, run:

4.2. Docker image 15

https://hub.docker.com/r/kurento/kurento-media-server
https://docs.docker.com/storage/bind-mounts/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/engine/reference/commandline/cp/
https://docs.docker.com/engine/reference/run/#entrypoint-default-command-to-execute-at-runtime
https://docs.docker.com/engine/reference/builder/#from
https://github.com/Kurento/kurento/issues
https://docs.docker.com/engine/reference/run/
https://github.com/Kurento/kurento/blob/main/docker/kurento-media-server/healthchecker.sh
https://docs.docker.com/engine/reference/commandline/logs/
https://docs.docker.com/network/host/

Kurento Documentation, Release 7.0-dev

docker run --rm \
-p 8888:8888/tcp \
-p 5000-5050:5000-5050/udp \
-e KMS_MIN_PORT=5000 \
-e KMS_MAX_PORT=5050 \
kurento/kurento-media-server:7.0.0

4.2.2 Docker Upgrade

One of the nicest things about the Docker deployment method is that changing versions, or upgrading, is almost trivially
easy. Just pull the new image version and use it to run your new container:

Download the new image version:
docker pull kurento/kurento-media-server:7.0.0

Create a new container based on the new version of KMS:
docker run [...] kurento/kurento-media-server:7.0.0

4.3 Local Installation

With this method, you will install Kurento Media Server from the native Ubuntu packages built by us.
Officially supported platforms: Ubuntu 20.04 (Focal) (64-bits).
Open a terminal and run these commands:

1. Make sure that GnuPG is installed.

sudo apt-get update ; sudo apt-get install --no-install-recommends \
gnupg

2. Add the Kurento repository to your system configuration.

Run these commands:

Get DISTRIB_* env vars.
source /etc/upstream-release/lsb-release 2>/dev/null || source /etc/lsb-release

Add Kurento repository key for apt-get.

sudo apt-key adv \
--keyserver hkp://keyserver.ubuntu.com:80 \
--recv-keys 234821A61B67740F89BFD669FC8A16625AFA7A83

Add Kurento repository line for apt-get.

sudo tee "/etc/apt/sources.list.d/kurento.list" >/dev/null <<EOF

Kurento Media Server - Release packages

deb [arch=amd64] http://ubuntu.openvidu.io/7.0.0 $DISTRIB_CODENAME main
EOF

3. Install KMS:

16 Chapter 4. Installation Guide

Kurento Documentation, Release 7.0-dev

Note: This step applies only for a first time installation. If you already have installed Kurento and want to
upgrade it, follow instead the steps described here: Local Upgrade.

sudo apt-get update ; sudo apt-get install --no-install-recommends \
kurento-media-server

This will install the release version of Kurento Media Server.

4.3.1 Running

The server includes service files which integrate with the Ubuntu init system, so you can use the following commands
to start and stop it:

sudo service kurento-media-server start
sudo service kurento-media-server stop

Log messages from KMS will be available in /var/log/kurento-media-server/. For more details about KMS
logs, check Debug Logging.

4.3.2 Local Upgrade

To upgrade a local installation of Kurento Media Server, you have to write the new version number into the file /etc/
apt/sources.list.d/kurento.list, which was created during Local Installation. After editing that file, you can
choose between 2 options to actually apply the upgrade:

A. Upgrade all system packages.

This is the standard procedure expected by Debian & Ubuntu maintainer methodology. Upgrading all system
packages is a way to ensure that everything is set to the latest version, and all bug fixes & security updates are
applied too, so this is the most recommended method:

sudo apt-get update ; sudo apt-get dist-upgrade

However, don’t do this inside a Docker container. Running apt-get upgrade or apt-get dist-upgrade is frowned
upon by the Docker best practices; instead, you should just move to a newer version of the Kurento Docker
images.

B. Uninstall the old Kurento version, before installing the new one.

Note however that apt-get is not good enough to remove all of Kurento packages. We recommend that you use
aptitude for this, which works much better than apt-get:

sudo aptitude remove '7installed?version(kurento)’

sudo apt-get update ; sudo apt-get install --no-install-recommends \
kurento-media-server

Note: Be careful! If you fail to upgrade all Kurento packages, you will get wrong behaviors and crashes. Kurento is
composed of several packages:

e kurento-media-server

e kurento-module-creator

4.3. Local Installation 17

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/#apt-get
https://hub.docker.com/r/kurento/kurento-media-server
https://hub.docker.com/r/kurento/kurento-media-server

Kurento Documentation, Release 7.0-dev

* kurento-module-core

* kurento-module-elements
* kurento-module-filters

* libnicelO

* openh264

* And more

To use a newer version you have to upgrade all Kurento packages, not only the first one.

4.4 STUN/TURN server install

Working with WebRTC requires developers to learn and have a good understanding about everything related to NAT,
ICE, STUN, and TURN. If you don’t know about these, you should start reading here: NAT, ICE, STUN, TURN.

Kurento Media Server, just like any WebRTC endpoint, will work fine on its own, for LAN connections or for servers
which have a public IP address assigned to them. However, sooner or later you will want to make your application
work in a cloud environment with NAT firewalls, and allow KMS to connect with remote clients. At the same time,
remote clients will probably want to connect from behind their own NAT router too, so your application needs to be
prepared to perform NAT Traversal in both sides. This can be done by setting up a STUN server or a TURN relay, and
configuring it in both KMS and the client browser.

These links contain the information needed to finish configuring your Kurento Media Server with a STUN/TURN
server:

» Configuration
e How to install Coturn?

* How to test my STUN/TURN server?

4.5 Check your installation

To verify that the Kurento process is up and running, use this command and look for the kurento-media-server process:

$ ps -fC kurento-media-server
UID PID PPID C STIME TTY TIME CMD
kurento 7688 1 0 13:36 ? 00:00:00 /usr/bin/kurento-media-server

Unless configured otherwise, KMS will listen on the port TCP 8888, to receive RPC Requests and send RPC Responses
by means of the Kurento Protocol. Use this command to verify that this port is open and listening for incoming packets:

$ sudo netstat -tupln | grep -e kurento -e 8888
tcp6 0 O :::8888 :::* LISTEN 7688/kurento-media-

You can change these parameters in the file /etc/kurento/kurento.conf. json.

To check whether KMS is up and listening for connections, use the following command:

18 Chapter 4. Installation Guide

Kurento Documentation, Release 7.0-dev

curl \
--include \
--header "Connection: Upgrade" \
--header "Upgrade: websocket" \
--header "Host: 127.0.0.1:8888" \
--header "Origin: 127.0.0.1" \
"http://127.0.0.1:8888/kurento"

You should get a response similar to this one:

HTTP/1.1 500 Internal Server Error
Server: WebSocket++/0.8.1

Ignore the “Server Error” message: this is expected because we didn’t send any actual message, but it is enough to
prove that Kurento is up and listening for WebSocketconnections.

If you need to automate this, you could write a script similar to healthchecker.sh, the one we use in Kurento Docker
images.

4.5.1 Checking RTP port connectivity
This section explains how you can verify that Kurento Media Server can be reached from a remote client machine, in
scenarios where the media server is not behind a NAT.

You will take the role of an end user application, such as a web browser, wanting to send audio and video to the media
server. For that, we’ll use Netcat in the server, and either Netcat or Ncat in the client (because Ncat has more installation
choices for Linux, Windows, and Mac clients).

The check proposed here will not work if the media server sits behind a NAT, because we are not punching holes in it
(e.g. with STUN, see When are STUN and TURN needed?); doing so is outside of the scope for this section, but you
could also do it by hand if needed (like shown in Do-It-Yourself hole punching).

First part: Server
Follow these steps on the machine where Kurento Media Server is running.

* First, install Netcat, which is available for most Linux distributions. For example:

For Debian/Ubuntu:
sudo apt-get update ; sudo apt-get install netcat-openbsd

Then, start a Netcat server, listening on any port of your choice:

To test a TCP port:
nc -vnl <server_port>

To test an UDP port:
nc -vnul <server_port>

Second part: Client
Now move to a client machine, and follow the next steps.

¢ Install either of Netcat or Ncat. On Linux, Netcat is probably available as a package. On MacOS and Windows,
it might be easier to download a prebuilt installer from the Ncat downloads page.

» Now, run Netcat or Ncat to connect with the server and send some test data. These examples use ncat, but the
options are the same if you use nc:

4.5. Check your installation 19

https://github.com/Kurento/kurento/blob/main/docker/kurento-media-server/healthchecker.sh
https://hub.docker.com/r/kurento/kurento-media-server
https://hub.docker.com/r/kurento/kurento-media-server
https://nmap.org/ncat/
https://nmap.org/download.html

Kurento Documentation, Release 7.0-dev

Linux, MacOS:
ncat -vn -p <client_port> <server_ip> <server_port> # TCP
ncat -vnu -p <client_port> <server_ip> <server_port> # UDP

Windows:
ncat.exe -vn -p <client_port> <server_ip> <server_port> # TCP
ncat.exe -vnu -p <client_port> <server_ip> <server_port> # UDP

Note: The -p <client_port> is optional. We’re using it here so the source port is well known, allowing us
to expect it on the server’s Ncat output, or in the IP packet headers if packet analysis is being done (e.g. with
Wireshark or tcpdump). Otherwise, the O.S. would assign a random source port for our client.

* When the connection has been established, try typing some words and press Return or Enter. If you see the text
appearing on the server side of the connection, the test has been successful.

« If the test is successful, you will see the client’s source port in the server output. If this number is different than
the <client_port> you used, this means that the client is behind a Symmetric NAT, and a TURN relay will be
required for WebRTC.

* Ifthe test data is not reaching the server, or the client command fails with a message suchasNcat: Connection
refused, it means the connection has failed. You should review the network configuration to make sure that a
firewall or some other filtering device is not blocking the connection. This is an indication that there are some
issues in the network, which gives you a head start to troubleshoot missing media in your application.

For example: Assume you want to connect from the port 3000 of a client whose public IP is 198.51.100.2, to the port
55000 of your server at 203.0.113.2. This is what both client and server terminals could look like:

CLIENT

$ ncat -vn -p 3000 203.0.113.2 55000
Ncat: Connected to 203.0.113.2:55000
(input) THIS IS SOME TEST DATA

SERVER

$ nc -vnl 55000

Listening on 0.0.0.0 55000

Connection received on 198.51.100.2 3000
(output) THIS IS SOME TEST DATA

Notice how the server claims to have received a connection from the client’s IP (198.51.100.2) and port (3000). This
means that the client’s NAT, if any, does not alter the source port of its outbound packets. If we saw here a different
port, it would mean that the client’s NAT is Symmetric, which usually requires using a TURN relay for WebRTC.

20 Chapter 4. Installation Guide

CHAPTER
FIVE

INSTALLING NIGHTLY BUILDS

Table of Contents

e Installing Nightly Builds
— Kurento Media Server
% Docker image
* Local Installation
— Kurento Java Client
% Per-User config

% Per-Project config

— Kurento JavaScript Client

Some components of KMS are built nightly, with the code developed during that same day. Other components are built
immediately when code is merged into the source repositories.

These builds end up being uploaded to Development repositories so they can be installed by anyone. Use these if you
want to develop Kurento itself, or if you want to try the latest changes before they are officially released.

Warning: Nightly builds always represent the current state on the software development; 99% of the time this is
stable code, very close to what will end up being released.

However, it’s also possible (although unlikely) that these builds might include undocumented changes, regressions,
bugs or deprecations. It’s safer to be conservative and avoid using nightly builds in a production environment,
unless you have a strong reason to do it.

Note: If you are looking to build KMS from the source code, then you should check the section aimed at development
of KMS itself: Build from sources.

21

Kurento Documentation, Release 7.0-dev

5.1 Kurento Media Server

5.1.1 Docker image

While official Kurento releases are published as Docker images and tagged with a release number, the latest development
progress is tagged with dev: kurento/kurento-media-server (notice the dev-* tags). Other than that, these images
behave exactly like the release ones. For usage instructions check out this section: Docker image.

5.1.2 Local Installation

The steps to install a nightly version of Kurento Media Server are pretty much the same as those explained in Local
Installation — with the only change of using dev instead of a version number, in the file /etc/apt/sources.list.
d/kurento.list.

Open a terminal and run these commands:

1. Make sure that GnuPG is installed.

sudo apt-get update ; sudo apt-get install --no-install-recommends \
gnupg

2. Add the Kurento repository to your system configuration.

Run these commands:

Get DISTRIB_* env vars.
source /etc/upstream-release/lsb-release 2>/dev/null || source /etc/lsb-release

Add Kurento repository key for apt-get.

sudo apt-key adv \
--keyserver hkp://keyserver.ubuntu.com:80 \
--recv-keys 234821A61B67740F89BFD669FC8A16625AFA7A83

Add Kurento repository line for apt-get.

sudo tee "/etc/apt/sources.list.d/kurento.list" >/dev/null <<EOF

Kurento Media Server - Nightly packages

deb [arch=amd64] http://ubuntu.openvidu.io/dev $DISTRIB_CODENAME main
EOF

. Install KMS:

Note: This step applies only for a first time installation. If you already have installed Kurento and want to
upgrade it, follow instead the steps described here: Local Upgrade.

sudo apt-get update ; sudo apt-get install --no-install-recommends \
kurento-media-server

This will install the nightly version of Kurento Media Server.

22

Chapter 5. Installing Nightly Builds

https://hub.docker.com/r/kurento/kurento-media-server/tags

Kurento Documentation, Release 7.0-dev

5.2 Kurento Java Client

Development builds of Kurento Java packages are uploaded to the GitHub Maven Repository.

This repo can be configured once per-User (by editing Maven’s global settings.xml), or it can be added per-Project,
to every pom.xml. We recommend using the first method.

For more information about adding a snapshots repository to Maven, check the official documentation: Guide to Testing
Development Versions of Plugins.

5.2.1 Per-User config

Add the snapshots repository to your Maven settings file: $HOME/.m2/settings.xml. If this file doesn’t exist yet,
you can copy it from /etc/maven/settings.xml, which offers a nice default template to get you started.

Edit the settings file to include this:

<settings>

<profiles>
<profile>
<id>snapshot</id>
<repositories>
<repository>
<id>kurento-github-download</id>
<name>Kurento GitHub Maven packages (public access)</name>
<url>https://public:ghp_
— fildyqnUBB4LZvk8DE6VEbsu6XdnSBZ466WEJ@maven . pkg.github.com/kurento/*</url>
<releases>
<enabled>false</enabled>
</releases>
<snapshots>
<enabled>true</enabled>
</snapshots>
</repository>
</repositories>
<pluginRepositories>
<pluginRepository>
<id>kurento-github-download</id>
<name>Kurento GitHub Maven packages (public access)</name>
<url>https://public:ghp_
—, fil4yqnUBB4LZvk8DE6VEbsu6XdnSBZ466WE J@maven. pkg.github.com/kurento/*</url>
<releases>
<enabled>false</enabled>
</releases>
<snapshots>
<enabled>true</enabled>
</snapshots>
</pluginRepository>
</pluginRepositories>
</profile>
</profiles>

</settings>

5.2. Kurento Java Client 23

https://github.com/orgs/Kurento/packages
https://maven.apache.org/guides/development/guide-testing-development-plugins.html
https://maven.apache.org/guides/development/guide-testing-development-plugins.html

Kurento Documentation, Release 7.0-dev

Then use the -Psnapshot argument in your Maven commands, to enable the new profile. For example:

mvn -Psnapshot clean package

mvn dependency:get -Psnapshot -Dartifact='org.kurento:kurento-client:7.0.0-SNAPSHOT'

If you don’t want to change all your Maven commands, it is possible to mark the profile as active by default. This way,
a -Psnapshot argument will always be implicitly added, so all calls to Maven will already use the profile:

<settings>

<profiles>
<profile>
<id>snapshot</id>

</profile>
</profiles>
<activeProfiles>
<activeProfile>snapshot</activeProfile>
</activeProfiles>

</settings>

5.2.2 Per-Project config

This method consists on explicitly adding access to the snapshots repository, for a specific project. Open the project’s
pom.xml and include this:

<project>

<repositories>
<repository>
<id>kurento-github-download</id>
<name>Kurento GitHub Maven packages (public access)</name>
<url>https://public:ghp_fWi4ygnUBB4LZvk8DE6VEbsu6XdnSBZ466WEJ@maven.pkg.
—.github.com/kurento/*</url>
<releases>
<enabled>false</enabled>
</releases>
<snapshots>
<enabled>true</enabled>
</snapshots>
</repository>
</repositories>
<pluginRepositories>
<pluginRepository>
<id>kurento-github-download</id>
<name>Kurento GitHub Maven packages (public access)</name>
<url>https://public:ghp_fWi4ygnUBB4LZvk8DEGVEbsu6XdnSBZ466WEJ@maven. pkg.
—.github.com/kurento/*</url>
<releases>
<enabled>false</enabled>

(continues on next page)

24 Chapter 5. Installing Nightly Builds

Kurento Documentation, Release 7.0-dev

(continued from previous page)

</releases>
<snapshots>
<enabled>true</enabled>
</snapshots>
</pluginRepository>
</pluginRepositories>

</project>

Afterwards, in the same pom.xml, look for the desired dependency and change its version to a snapshot one. For
example:

<dependency>
<groupld>org.kurento</groupId>
<artifactId>kurento-client</artifactId>
<version>7.0.0-SNAPSHOT</version>
</dependency>

5.3 Kurento JavaScript Client

Change the dependencies section in the application’s package.json, to point directly to the development repository:

"dependencies": {
"kurento-client": "git+https://github.com/Kurento/kurento-client-js.git#master"

}

5.3. Kurento JavaScript Client 25

Kurento Documentation, Release 7.0-dev

26

Chapter 5. Installing Nightly Builds

CHAPTER
SIX

CONFIGURATION

Table of Contents

» Configuration

Debug Logging
STUN/TURN Server

Network Interface

WebRTC Bitrate

— RTP Ports

— Advanced Settings

% ICE-TCP

% External IP Address

* Maximum Transmission Unit

% WebRTC DTLS certificates

* Recorder packet loss correction

Most (but not all, see below) of the settings in Kurento can be set statically in configuration files:
e /etc/kurento/kurento.conf. json
The main configuration file. Provides settings for the behavior of Kurento Media Server itself.
e /etc/kurento/modules/kurento/MediaElement.conf.ini
Generic parameters for all kinds of MediaElement.
e /etc/kurento/modules/kurento/SdpEndpoint.conf.ini
Audio/video parameters for SdpEndpoints (i.e. WebRtcEndpoint and RtpEndpoint).
¢ /etc/kurento/modules/kurento/WebRtcEndpoint.conf.ini
Specific parameters for WebRtcEndpoint.
¢ /etc/kurento/modules/kurento/HttpEndpoint.conf.ini
Specific parameters for HttpEndpoint.

e /etc/default/kurento-media-server

27

Kurento Documentation, Release 7.0-dev

This file is loaded by the system’s service init files. Defines some environment variables, which have an effect
on features such as the Debug Logging, or the Core Dump files that are generated when a crash happens.

For other settings not directly available in configuration files, make sure to read the Client API SDK docs, where all
exposed methods are documented:

¢ Kurento Client JavaDoc.
¢ Kurento Client JsDoc.

The Kurento Docker images also accept some environment variables that map directly to settings in the above files.
If this is not flexible enough, you can always use a bind-mount or volume with a different set of configuration files in
/etc/kurento/. For some tips about these techniques, go to Kurento in Docker.

6.1 Debug Logging

KMS uses the environment variable GST_DEBUG to define the debug level of all underlying modules. Check Debug
Logging for more information about this and other environment variables.

Set this variable to change the verbosity level of the log messages generated by KMS.
Local install

¢ Set environment variable GST_DEBUG in /etc/default/kurento-media-server.
Docker

¢ Pass environment variable GST_DEBUG:

docker run [...] \
-e GST_DEBUG="Kurento*:5" \
kurento/kurento-media-server:7.0.0

6.2 STUN/TURN Server

Read When are STUN and TURN needed? to learn about when you might need to use these, and STUN/TURN server
install for guidance on how to install your own STUN/TURN server.

Local install

¢ Set values stunServerAddress and stunServerPort to use a STUN server, or set turnURL to use a TURN
server; in /etc/kurento/modules/kurento/WebRtcEndpoint.conf.ini.

Docker

¢ Pass environment variables KMS_STUN_IP and KMS_STUN_PORT for STUN, or KMS_TURN_URL for TURN.
Client API

e Java: setStunServerAddress and setStunServerPort for STUN, or setTurnUrl for TURN.

 JavaScript: setStunServerAddress and setStunServerPort for STUN, or setTurnUrl for TURN.

28 Chapter 6. Configuration

../_static/client-javadoc/index.html
../_static/client-jsdoc/index.html
https://docs.docker.com/storage/bind-mounts/
https://docs.docker.com/storage/volumes/
../_static/client-javadoc/org/kurento/client/WebRtcEndpoint.html#setStunServerAddress(java.lang.String)
../_static/client-javadoc/org/kurento/client/WebRtcEndpoint.html#setStunServerPort(int)
../_static/client-javadoc/org/kurento/client/WebRtcEndpoint.html#setTurnUrl(java.lang.String)
../_static/client-jsdoc/module-elements.WebRtcEndpoint.html#setStunServerAddress
../_static/client-jsdoc/module-elements.WebRtcEndpoint.html#setStunServerPort
../_static/client-jsdoc/module-elements.WebRtcEndpoint.html#setTurnUrl

Kurento Documentation, Release 7.0-dev

6.3 Network Interface

To specify the network interface name(s) that KMS should use to communicate from the environment where it is
running (either a physical machine, a virtual machine, a Docker container, etc.)

Local install

¢ Set value networkInterfaces in /etc/kurento/modules/kurento/WebRtcEndpoint.conf.ini.
Docker

* Pass environment variable KMS_NETWORK_INTERFACES.
Client API

* Java: setNetworkInterfaces.

* JavaScript: setNetworkInterfaces.

6.4 WebRTC Bitrate

The default MaxVideoSendBandwidth range of the WebRtcEndpoint is a VERY conservative one, and leads to a low
maximum video quality. Most applications will probably want to increase this to higher values such as 2000 kbps (2
mbps): Java, JavaScript.

There are several ways to override the default settings for variable bitrate and network bandwidth estimation:
* setMinVideoRecvBandwidth / setMaxVideoRecvBandwidth
* setMinVideoSendBandwidth / setMaxVideoSendBandwidth
* setEncoderBitrate / setMinEncoderBitrate / setMaxEncoderBitrate

— This setting is also configurable in /etc/kurento/modules/kurento/MediaElement.conf.ini.

6.5 RTP Ports

These two parameters define the minimum and maximum ports that Kurento Media Server will bind to (listen) in order
to receive remote RTP packets. This affects the operation of both RtpEndpoint and WebRtcEndpoint.

Plain RTP (RtpEndpoint) needs 2 ports for each media kind: an even port is used for RTP, and the next odd port is used
for RTCP. WebRTC (WebRtcEndpoint) uses RTCP Multiplexing (rtcp-mux) when possible, so it only uses 1 port for
each media kind.

Local install

¢ Set values minPort, maxPort in /etc/kurento/modules/kurento/BaseRtpEndpoint.conf.ini.
Docker

¢ Pass environment variables KMS_MIN_PORT, KMS_MAX_PORT.

6.3. Network Interface 29

../_static/client-javadoc/org/kurento/client/WebRtcEndpoint.html#setNetworkInterfaces(java.lang.String)
../_static/client-jsdoc/module-elements.WebRtcEndpoint.html#setNetworkInterfaces
../_static/client-javadoc/org/kurento/client/BaseRtpEndpoint.html#setMaxVideoSendBandwidth(int)
../_static/client-jsdoc/module-core_abstracts.BaseRtpEndpoint.html#setMaxVideoSendBandwidth
../_static/client-javadoc/org/kurento/client/BaseRtpEndpoint.html#setMinVideoRecvBandwidth(int)
../_static/client-javadoc/org/kurento/client/SdpEndpoint.html#setMaxVideoRecvBandwidth(int)
../_static/client-javadoc/org/kurento/client/BaseRtpEndpoint.html#setMinVideoSendBandwidth(int)
../_static/client-javadoc/org/kurento/client/BaseRtpEndpoint.html#setMaxVideoSendBandwidth(int)
../_static/client-javadoc/org/kurento/client/MediaElement.html#setEncoderBitrate(int)
../_static/client-javadoc/org/kurento/client/MediaElement.html#setMinEncoderBitrate(int)
../_static/client-javadoc/org/kurento/client/MediaElement.html#setMaxEncoderBitrate(int)

Kurento Documentation, Release 7.0-dev

6.6 Advanced Settings

These settings are only provided for advanced users who know what they are doing and why they need them. For most
cases, the default values are good enough for most users.

6.6.1 ICE-TCP

ICE-TCP is what allows WebRTC endpoints to exchange ICE candidates that use the TCP protocol; in other words, the
feature of using TCP instead of UDP for WebRTC communications.

If you have a well known scenario and you are 100% sure that UDP will work, then disabling TCP provides slightly
faster times when establishing WebRTC sessions. I.e., with ICE-TCP disabled, the time between joining a call and
actually seeing the video will be shorter.

Of course, if you cannot guarantee that UDP will work in your network, then you should leave this setting enabled,
which is the default. Otherwise, UDP might fail and there would be no TCP fallback for WebRTC to work.

Local install

¢ Set value iceTcp to 1 (ON) or 0 (OFF) in /etc/kurento/modules/kurento/WebRtcEndpoint.conf.ini.
Docker

* Set environment variable KMS_ICE_TCP to 1 (ON) or 0 (OFF).
Client API

* Java: setlceTcp.

* JavaScript: setlceTcp.

6.6.2 External IP Address

When this feature is used, all of the Kurento IPv4 and/or IPv6 ICE candidates are mangled to contain the given address.
This can speed up WebRTC connection establishment in scenarios where the external or public IP is already well known,
also having the benefit that STUN won’t be needed for the media server.

Local install
¢ Set values externalIPv4, externalIPv6 in /etc/kurento/modules/kurento/WebRtcEndpoint.conf.
ini.
Docker
¢ Pass environment variables KMS_EXTERNAL_IPV4, KMS_EXTERNAL_IPV6.

« If the special value auto is used, then the container will auto-discover its own public IP address by performing a
DNS query to some of the well established providers (OpenDNS, Google, Cloudflare). You can review the script
here: getmyip.sh. In cases where these services are not reachable, the external IP parameters are left unset.

Client API
e Java: setExternallPv4.

e JavaScript: setExternallPv4.

30 Chapter 6. Configuration

https://tools.ietf.org/html/rfc6544
../../_static/client-javadoc/org/kurento/client/WebRtcEndpoint.html#setIceTcp(boolean)
../../_static/client-jsdoc/module-elements.WebRtcEndpoint.html#setIceTcp
https://github.com/Kurento/kurento/blob/main/docker/kurento-media-server/getmyip.sh
../_static/client-javadoc/org/kurento/client/WebRtcEndpoint.html#setExternalIPv4(java.lang.String)
../_static/client-jsdoc/module-elements.WebRtcEndpoint.html#setExternalIPv4

Kurento Documentation, Release 7.0-dev

6.6.3 Maximum Transmission Unit
The MTU is a hard limit on the size that outbound packets will have. For some users it is important being able to lower
the packet size in order to prevent fragmentation.

For the vast majority of use cases it is better to use the default MTU value of 1200 Bytes, which is also the default
value in most popular implementations of WebRTC (see Browser MTU).

Local install

¢ Set value mtu in /etc/kurento/modules/kurento/BaseRtpEndpoint.conf.ini.
Docker

* Pass environment variable KMS_MTU.
Client API

e Java: setMtu.

* JavaScript: setMtu.

6.6.4 WebRTC DTLS certificates

By default, Kurento uses a different self-signed certificate for every WebRtcEndpoint (see Media Plane security
(DTLS)). If you want or need to use the same cert for every endpoint, first join both your certificate (chain) file(s)
and the private key with a command such as this one:

Make a single file to be used with Kurento Media Server.
cat cert.pem key.pem >cert+key.pem

Then, configure the path to cert+key.pem:
Local install

* Set either of pemCertificateRSA or pemCertificateECDSA with the path to your certificate file in /etc/
kurento/modules/kurento/WebRtcEndpoint.conf.ini.

Docker

* Pass environment variables KNS_PEM_CERTIFICATE_RSA or KMS_PEM_CERTIFICATE_ECDSA with the path in-
side the container. Also, make sure the file is actually found in that path; normally you would do that with a
bind-mount, a Docker volume, or a custom Docker image. For more information and examples, check Kurento
in Docker.

6.6.5 Recorder packet loss correction

The parameter gapsFix determines which of the packet loss correction techniques should be used for recordings.
Packet loss can happen for example when an RTP or WebRTC media flow suffers from network congestion and some
packets don’t arrive at the media server. When this happens, it causes gaps in the recorded stream.

Currently there are two techniques implemented:
* NONE: Do not fix gaps.

Leave the stream as-is, and store it with any gaps that the stream might have. Some players are clever enough
to adapt to this during playback, so that the gaps are reduced to a minimum and no problems are perceived by
the user; other players are not so sophisticated, and will struggle trying to decode a file that contains gaps. For
example, trying to play such a file directly with Chrome will cause lipsync issues (audio and video will fall out
of sync).

6.6. Advanced Settings 31

../_static/client-javadoc/org/kurento/client/BaseRtpEndpoint.html#setMtu(int)
../_static/client-jsdoc/module-core_abstracts.BaseRtpEndpoint.html#setMtu

Kurento Documentation, Release 7.0-dev

This is the best choice if you need consistent durations across multiple simultaneous recordings (i.e. you are
recording N participants of a room, and you want the N videos to have the same exact duration). Another usual
reason to prefer this mode is if you are anyway going to post-process the recordings (e.g. with an extra FFmpeg
step).

* GENPTS: Adjust timestamps to generate a smooth progression over all frames.

This technique rewrites the timestamp of all frames, so that gaps are suppressed. It provides the best playback
experience for recordings that need to be played as-is (i.e. they won’t be post-processed). However, fixing
timestamps might cause a change in the total duration of a file. So different recordings from the same session
might end up with slightly different durations.

See the extended description of GapsFixMethod for more details about these settings.

Local install

* Set gapsFix with the preferred gaps fix method in /etc/kurento/modules/kurento/RecorderEndpoint.
conf.ini.

32

Chapter 6. Configuration

../_static/client-javadoc/org/kurento/client/GapsFixMethod.html

CHAPTER
SEVEN

TUTORIALS

Table of Contents

* Tutorials
— Hello World
— WebRTC Magic Mirror
— RTP Receiver
— WebRTC One-To-Many broadcast
— WebRTC One-To-One video call
— WebRTC One-To-One video call with recording and filtering
— WebRTC Many-To-Many video call (Group Call)
— Media Elements metadata
— WebRTC Media Player
— WebRTC outgoing Data Channels
— WebRTC incoming Data Channel
— WebRTC recording
— WebRTC statistics
— Chroma Filter
— Crowd Detector Filter

— Plate Detector Filter

— Pointer Detector Filter

This section contains tutorials showing how to use the Kurento framework to build different types of WebRTC and
multimedia applications.

Note: These tutorials have been created with learning purposes. They don’t have comprehensive error handling, or
any kind of sophisticated session management. As such, these tutorials should not be used in production environments;
they only show example code for you to study, in order to achieve what you want with your own code.

Use at your own risk!

These tutorials come in three flavors:

33

Kurento Documentation, Release 7.0-dev

» Java: Showing applications where clients interact with Spring Boot-based applications, that host the logic or-
chestrating the communication among clients and control Kurento Media Server capabilities.

To run the Java tutorials, you need to first install the Java JDK and Maven:

sudo apt-get update ; sudo apt-get install --no-install-recommends \
git \
default-jdk \
maven

Java tutorials are written on top of Spring Boot, so they already include most features expected from a full-fledged
service, such as a web server or logging support.

Spring Boot is also able to create a “fully executable jar”, a standalone executable built out of the application
package. This executable comes already with support for commands such as start, stop, or restart, so it can
be used as a system service with either init.d (System V) and systemd. For more info, refer to the Spring Boot
documentation and online resources such as this Stack Overflow answer.

* Browser JavaScript: These show applications executing at the browser and communicating directly with the
Kurento Media Server. In these tutorials all logic is directly hosted by the browser. Hence, no application server
is necessary.

* Node.js: In which clients interact with an application server made with Node.js technology. The application
server holds the logic orchestrating the communication among the clients and controlling Kurento Media Server
capabilities for them.

Note: These tutorials require HTTPS in order to use WebRTC. Following instructions will provide further information
about how to enable application security.

7.1 Hello World

This is one of the simplest WebRTC applications you can create with Kurento. It implements a WebRTC loopback (a
WebRTC media stream going from client to Kurento Media Server and back to the client)

7.1.1 Kurento Java Tutorial - Hello World

This web application has been designed to introduce the principles of programming with Kurento for Java developers.
It consists of a WebRTC video communication in mirror (loopback). This tutorial assumes you have basic knowledge
of Java, JavaScript, HTML and WebRTC. We also recommend reading Introduction to Kurento before starting this
tutorial.

Note: Web browsers require using HTTPS to enable WebRTC, so the web server must use SSL and a certificate file.
For instructions, check Configure a Java server to use HTTPS.

For convenience, this tutorial already provides dummy self-signed certificates (which will cause a security warning in
the browser).

34 Chapter 7. Tutorials

https://spring.io/projects/spring-boot
https://docs.spring.io/spring-boot/docs/current/reference/html/deployment.html#deployment-install
https://docs.spring.io/spring-boot/docs/current/reference/html/deployment.html#deployment-service
https://docs.spring.io/spring-boot/docs/current/reference/html/deployment.html#deployment-service
https://stackoverflow.com/questions/21503883/spring-boot-application-as-a-service/30497095#30497095

Kurento Documentation, Release 7.0-dev

Quick start

Follow these steps to run this demo application:
1. Install Kurento Media Server: Installation Guide.

2. Run these commands:

git clone https://github.com/Kurento/kurento.git
cd kurento/tutorials/java/hello-world/
git checkout main
mvn -U clean spring-boot:run \
-Dspring-boot.run. jvmArguments="-Dkms.url=ws://{KMS_HOST}:8888/kurento"

Open the demo page with a WebRTC-compliant browser (Chrome, Firefox): https://localhost:8443/
Click on Start to begin the demo.

Grant access to your webcam.

S

As soon as the loopback connection is negotiated and established, you should see your webcam video in both the
local and remote placeholders.

7. Click on Stop to finish the demo.

Understanding this example

Kurento provides developers a Kurento Java Client to control the Kurento Media Server. This client library can be
used in any kind of Java application: Server Side Web, Desktop, Android, etc. It is compatible with any framework
like Java EE, Spring, Play, Vert.x, Swing and JavaFX.

This Hello World demo is one of the simplest web applications you can create with Kurento. The following picture
shows a screenshot of this demo running:

The interface of the application (an HTML web page) is composed by two HTMLS5 <video> tags: one showing the
local stream (as captured by the device webcam) and the other showing the remote stream sent by the media server
back to the client.

The logic of the application is quite simple: the local stream is sent to the Kurento Media Server, which sends it back
to the client without modifications. To implement this behavior, we need to create a Media Pipeline composed by a
single Media Element, i.e. a WebRtcEndpoint, which holds the capability of exchanging full-duplex (bidirectional)
WebRTC media flows. This media element is connected to itself so that the media it receives (from browser) is sent
back (to browser). This media pipeline is illustrated in the following picture:

This is a web application, and therefore it follows a client-server architecture. At the client-side, the logic is imple-
mented in JavaScript. At the server-side, we use a Spring-Boot based application server consuming the Kurento
Java Client API, to control Kurento Media Server capabilities. All in all, the high level architecture of this demo is
three-tier. To communicate these entities, two WebSockets are used:

1. A WebSocket is created between client and application server to implement a custom signaling protocol.

2. Another WebSocket is used to perform the communication between the Kurento Java Client and the Kurento
Media Server.

This communication takes place using the Kurento Protocol. For a detailed description, please read this section:
Kurento Protocol.

The diagram below shows a complete sequence diagram, of the interactions with the application interface to: i)
JavaScript logic; ii) Application server logic (which uses the Kurento Java Client); iii) Kurento Media Server.

7.1. Hello World 35

https://localhost:8443/

Kurento Documentation, Release 7.0-dev

Tutorial 1: Hello World (WebRTC in loopback)

Thek appication shows @ FrebRaabadoant conneciiod 1o Baelf (oopback]. Take @ ok i e Meda Poeiog. To nan Sl demo Kl ke g

1, Db Bk pudeie with & Beduviad Somplant with WebdtT C (Chnoea, Fieedox)

2k on Sard buion

3 Gl T a00sss W e Camesta 8N mecrophones. Afer T SO respoalon T koopbac shouid sta
4 Chzl o Segy b Bl B CoMTRLrRiaten

Local stream Remote stream

© I ity

Py

PP W NaevA

Fig. 1: Kurento Hello World Screenshot: WebRTC in loopback

36 Chapter 7. Tutorials

Kurento Documentation, Release 7.0-dev

K Kurento Media Server \

Media Pipeline

WebRtcEndpoint

/

Fig. 2: Kurento Hello World Media Pipeline in context

The following sections analyze in depth the server (Java) and client-side (JavaScript) code of this application. The
complete source code can be found in GitHub.

Application Server Logic

This demo has been developed using Java in the server-side, based on the Spring Boot framework, which embeds a
Tomcat web server within the generated maven artifact, and thus simplifies the development and deployment process.

Note: You can use whatever Java server side technology you prefer to build web applications with Kurento. For
example, a pure Java EE application, SIP Servlets, Play, Vert.x, etc. Here we chose Spring Boot for convenience.

In the following, figure you can see a class diagram of the server side code:
The main class of this demo is HelloWorldApp.

As you can see, the KurentoClient is instantiated in this class as a Spring Bean. This bean is used to create Kurento
Media Pipelines, which are used to add media capabilities to the application. In this instantiation we see that we need
to specify to the client library the location of the Kurento Media Server. In this example, we assume it is located at
localhost, listening in port TCP 8888. If you reproduce this example, you’ll need to insert the specific location of
your Kurento Media Server instance there.

Once the Kurento Client has been instantiated, you are ready for communicating with Kurento Media Server and
controlling its multimedia capabilities.

@SpringBootApplication

@EnableWebSocket

public class HelloWorldApp implements WebSocketConfigurer {
@Bean
public HelloWorldHandler handler() {

(continues on next page)

7.1. Hello World 37

https://github.com/Kurento/kurento/tree/main/tutorials/java/hello-world
https://github.com/Kurento/kurento/blob/main/tutorials/java/hello-world/src/main/java/org/kurento/tutorial/helloworld/HelloWorldApp.java

Kurento Documentation, Release 7.0-dev

' JavaScript Application Kurento

Client | Server Media Server
W :uebktcmr = kurentoUtils.WebRtgPeer.WebRtcPeerSendrecv
B | Allow | e e

:wbm:cmr .generate0f fer

id:start
sdpoffer:<sdp> |method:create,params: {sessionldi<sessionlds,
L type:MediaPipeline|

.

result: {sessionld:<sessionld>,value:<pipelin
eld>}

method: create, params: {constructorParams : (med
iaPipeline:<pipelineld>),sessionId:<sessionl
d>, type :WebRtcEndpoint |

result: {sessionld:<sessionld>, value:<webRtcE
ndpointId>}

-

"
method: invoke, params: {object i <webRtcEndpoint
Id>,operation:connect,cperationParams: {sink:
<webRtcEndpointId>],sessionldi<sessionId>)

e
£ 4

result: {sessionld:<sessionld>}

method: invoke, params: {object :<webRtcEndpoint
Id>, operation:processOffer, operationParams: {
offer:<sdp>}, sessionld:<sessionId>}

.

id:startResponse

H i H i HE4 >
sdpAnswer : <sdp> result: {sessionld:<zessionld>,value:<sdp>}

"
<

method: subseribe, params: {object : <webRtcEndpo
nﬂebRtCPéer—PNcéMMﬁ“@r intId>, sessionldi<sessionld>, type:OnIcecandi
date)

result: {sessionld:<sessionld>,value:<subscri
ptionId=}

method:invokes, params: [object :<webRtcEndpoint
1d>,operation:gatherCandidates, sessionld:<se
ssionld>)

method:onEvent, params: {value: {data: {candidat
e:<candidate>}
mathod:onEvent, params : {(value: [data: {candidat
webRtcPeer.addIceCandidate &:<candidate>}
id:iceCandidate -

candidate:<candidate> H
result: {sessionldi<sessionld>}

id:icecandidate
candidate :<candidate>

webRtcPeer.addIceCandidate

Lln

E method: invoke, params: {object :<webRLcEPId>, op
id:onIceCandidate eration:addIceCandidate, operationParams: {can
candidate:<candidate> didate:<candidate>, sessionId:<sessionId>)

method:inveke, params: {object :<webRtcEPId>, op
id:onIceCandidate eration:addIceCandidate, operationParams: {can
candidate:<candidatex> - didate:<candidate>, sessionId:<sessionld>}

- > o
- -
.

result: {sesslonld:<sessionId>)

L Medremc

nuehktcpeer. dispose

id:stop method:xelease, params : {object i<mediaPipeline
Id>, sessionld:<sessionld>}

v

result: {sessionId:<sessionid>}

= —3Com ' rar er ' VT Chapter 7. Tutorials

Kurento Documentation, Release 7.0-dev

HelloWorldd pp

HelleWorldHandler [—3 KurentoClient

Usersession

Fig. 4: Server-side class diagram of the HelloWorld app

(continued from previous page)

return new HelloWorldHandler();

1

@Bean

public KurentoClient kurentoClient() {
return KurentoClient. O;

1

@0Override

public void registerWebSocketHandlers(WebSocketHandlerRegistry registry) {
registry. (handler(), "/helloworld™);

}

public static void main(String[] args) throws Exception {
SpringApplication. (HelloWorldApp. , args);
3
}

This web application follows a Single Page Application architecture (SPA), and uses a WebSocket to communicate
with the application server, by means of requests and responses. Specifically, the main app class implements the
interface WebSocketConfigurer to register a WebSocketHandler that processes WebSocket requests in the path
/helloworld.

The class HelloWorldHandler implements TextWebSocketHandler to handle text WebSocket requests. The central
piece of this class is the method handleTextMessage. This method implements the actions for requests, returning
responses through the WebSocket. In other words, it implements the server part of the signaling protocol depicted in
the previous sequence diagram.

public void handleTextMessage(WebSocketSession session, TextMessage message)
throws Exception {
[...]
switch (messageld) {
case "start":
start(session, jsonMessage);

(continues on next page)

7.1. Hello World 39

https://github.com/Kurento/kurento/blob/main/tutorials/java/hello-world/src/main/java/org/kurento/tutorial/helloworld/HelloWorldHandler.java

Kurento Documentation, Release 7.0-dev

(continued from previous page)

break;

case "stop": {
stop(session);
break;

1

case "onIceCandidate":
onRemoteIceCandidate(session, jsonMessage);
break;

default:
sendError(session, "Invalid message, ID:
break;

+ messageld);

..]

The start () method performs the following actions:

Configure media processing logic. This is the part in which the application configures how Kurento has to
process the media. In other words, the media pipeline is created here. To that aim, the object KurentoClient
is used to create a MediaPipeline object. Using it, the media elements we need are created and connected. In
this case, we only instantiate one WebRtcEndpoint for receiving the WebRTC stream and sending it back to the
client.

final MediaPipeline pipeline = kurento. O;

final WebRtcEndpoint webRtcEp =
new WebRtcEndpoint. (pipeline). O;

webRtcEp. (webRtcEp) ;

Create event listeners. All objects managed by Kurento have the ability to emit several types of events, as
explained in Endpoint Events. Application Servers can listen for them in order to have more insight about what
is going on inside the processing logic of the media server. It is a good practice to listen for all possible events,
so the client application has as much information as possible.

// Common events for all objects that inherit from BaseRtpEndpoint
addErrorListener(

new EventListener<ErrorEvent>() { ... });
addMediaFlowInStateChangedListener(

new EventListener<MediaFlowInStateChangedEvent>() { ... });
addMediaFlowOutStateChangedListener(

new EventListener<MediaFlowOutStateChangedEvent>() { ... });
addConnectionStateChangedListener(

new EventListener<ConnectionStateChangedEvent>(Q) { ... });
addMediaStateChangedListener(

new EventlListener<MediaStateChangedEvent>(Q) { ... });
addMediaTranscodingStateChangedListener(

new EventListener<MediaTranscodingStateChangedEvent>() { ... });

// Events specific to objects of class WebRtcEndpoint
addIceCandidateFoundListener(

new EventListener<IceCandidateFoundEvent>() { ... });
addIceComponentStateChangedListener(

(continues on next page)

40

Chapter 7. Tutorials

Kurento Documentation, Release 7.0-dev

(continued from previous page)

new EventListener<IceComponentStateChangedEvent>() { ... });
addIceGatheringDoneListener(
new EventListener<IceGatheringDoneEvent>() { ... });

addNewCandidatePairSelectedListener(
new EventListener<NewCandidatePairSelectedEvent>() { ... });

* WebRTC SDP negotiation. In WebRTC, the SDP Offer/Answer model is used to negotiate the audio or video
tracks that will be exchanged between peers, together with a subset of common features that they support. This
negotiation is done by generating an SDP Offer in one of the peers, sending it to the other peer, and bringing
back the SDP Answer that will be generated in response.

In this particular case, the SDP Offer has been generated by the browser and is sent to Kurento, which then
generates an SDP Answer that must be sent back to the browser as a response.

// 'webrtcSdpOffer' is the SDP Offer generated by the browser;
// send the SDP Offer to KMS, and get back its SDP Answer
String webrtcSdpAnswer = webRtcEp. (webrtcSdpOffer);
sendMessage(session, webrtcSdpAnswer);

* Gather ICE candidates. While the SDP Offer/Answer negotiation is taking place, each one of the peers can
start gathering the connectivity candidates that will be used for the /CE protocol. This process works very
similarly to how a browser notifies its client code of each newly discovered candidate by emitting the event
RTCPeerConnection.onicecandidate; likewise, Kurento’s WebRtcEndpoint will notify its client application for
each gathered candidate via the event IceCandidateFound.

webRtcEp. O;

Client-Side Logic

Let’s move now to the client-side of the application. To call the previously created WebSocket service in the server-
side, we use the JavaScript class WebSocket. We use a specific Kurento JavaScript library called kurento-utils.js to
simplify the WebRTC interaction with the server. This library depends on adapter.js, which is a JavaScript WebRTC
utility maintained by Google that abstracts away browser differences.

These libraries are brought to the project as Maven dependencies which download all required files from WeblJars.org;
they are loaded in the index.html page, and are used in the index.js file.

In the following snippet we can see the creation of the WebSocket in the path /helloworld. Then, the onmessage
listener of the WebSocket is used to implement the JSON signaling protocol in the client-side. Notice that there
are three incoming messages to client: startResponse, error, and iceCandidate. Convenient actions are
taken to implement each step in the communication. For example, in function start, the function WebRtcPeer.
WebRtcPeerSendrecv of kurento-utils.js is used to start a WebRTC communication.

var ws = new WebSocket('ws://' + location.host + '/helloworld');

ws.onmessage = function(message) {
var parsedMessage = JSON.parse(message.data);
console.info('Received message: ' + message.data);

switch (parsedMessage.id) {

case 'startResponse':
startResponse(parsedMessage) ;
break;

(continues on next page)

7.1. Hello World 41

https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection/onicecandidate
https://github.com/Kurento/kurento/blob/main/tutorials/java/hello-world/src/main/resources/static/index.html
https://github.com/Kurento/kurento/blob/main/tutorials/java/hello-world/src/main/resources/static/js/index.js

Kurento Documentation, Release 7.0-dev

(continued from previous page)

case 'error':
if (state == I_AM_STARTING) {
setState(I_CAN_START);
1
onError('Error message from server: ' + parsedMessage.message);
break;
case 'iceCandidate':
webRtcPeer.addIceCandidate(parsedMessage.candidate, function(error) {
if (error)
return console.error('Error adding candidate: ' + error);
B;
break;
default:
if (state == I_AM_STARTING) {
setState(I_CAN_START);
}

onError('Unrecognized message', parsedMessage);
1

function start() {
console.log('Starting video call ...");

// Disable start button
setState(I_AM_STARTING);
showSpinner (videoInput, videoOutput);

console.log('Creating WebRtcPeer and generating local sdp offer ...');

var options = {
localvideo : videoInput,
remoteVideo : videoOutput,
onicecandidate : onIceCandidate
}
webRtcPeer = new kurentoUtils.WebRtcPeer.WebRtcPeerSendrecv(options,
function(error) {
if (error)
return console.error(error);
webRtcPeer.generateOffer (onOffer);
B;
1

function onOffer(error, offerSdp) {
if (error)
return console.error('Error generating the offer');
console.info('Invoking SDP offer callback function ' + location.host);
var message = {
id : 'start',
sdpOffer : offerSdp
}

sendMessage (message) ;

(continues on next page)

42 Chapter 7. Tutorials

Kurento Documentation, Release 7.0-dev

(continued from previous page)

function onIceCandidate(candidate) {
console.log('Local candidate' + JSON.stringify(candidate));

var message = {
id : 'onIceCandidate',
candidate : candidate
}
sendMessage (message) ;

}

function startResponse(message) {
setState(I_CAN_STOP);
console.log('SDP answer received from server. Processing ...');

webRtcPeer.processAnswer (message.sdpAnswer, function(error) {
if (error)
return console.error(error);
b;
1

function stop() {
console.log('Stopping video call ...");
setState(I_CAN_START);
if (webRtcPeer) {
webRtcPeer.dispose();
webRtcPeer = null;

var message = {
id : 'stop'
1
sendMessage(message) ;
}
hideSpinner(videoInput, videoOutput);
1

function sendMessage(message) {
var jsonMessage = JSON.stringify(message);
console.log('Sending message: ' + jsonMessage);
ws.send(jsonMessage);

7.1. Hello World 43

Kurento Documentation, Release 7.0-dev

Dependencies

This Java Spring application is implemented using Maven. The relevant part of the pom.xml is where Kurento depen-
dencies are declared. As the following snippet shows, we need two dependencies: the Kurento Client Java dependency
(kurento-client) and the JavaScript Kurento utility library (kurento-utils) for the client-side. Other client libraries are
managed with WebJars.

7.1.2 JavaScript - Hello world

Warning: Bower dependencies are not yet upgraded for Kurento 7.0.0.

Kurento tutorials that use pure browser JavaScript need to be rewritten to drop the deprecated Bower service and
instead use a web resource packer. This has not been done, so these tutorials won’t be able to download the depen-
dencies they need to work. PRs would be appreciated!

This web application has been designed to introduce the principles of programming with Kurento for JavaScript de-
velopers. It consists of a WebRTC video communication in mirror (loopback). This tutorial assumes you have basic
knowledge of JavaScript, HTML and WebRTC. We also recommend reading /ntroduction to Kurento before starting
this tutorial.

Note: Web browsers require using HTTPS to enable WebRTC, so the web server must use SSL and a certificate file.
For instructions, check Configure JavaScript applications to use HTTPS.

For convenience, this tutorial already provides dummy self-signed certificates (which will cause a security warning in
the browser).

Running this example

First of all, install Kurento Media Server: Installation Guide. Start the media server and leave it running in the back-
ground.

Install Node.js, Bower, and a web server in your system:

curl -sSL https://deb.nodesource.com/setup_18.x | sudo -E bash -
sudo apt-get install -y nodejs

sudo npm install -g bower

sudo npm install -g http-server

Here, we suggest using the simple Node.js http-server, but you could use any other web server.

You also need the source code of this tutorial. Clone it from GitHub, then start the web server:

git clone https://github.com/Kurento/kurento.git

cd kurento/tutorials/javascript-browser/hello-world/

git checkout main

bower install

http-server -p 8443 --ssl --cert keys/server.crt --key keys/server.key

When your web server is up and running, use a WebRTC compatible browser (Firefox, Chrome) to open the tutorial
page:

 If KMS is running in your local machine:

44 Chapter 7. Tutorials

https://github.com/Kurento/kurento/blob/main/tutorials/java/hello-world/pom.xml
https://www.webjars.org/

Kurento Documentation, Release 7.0-dev

https://localhost:8443/

 If KMS is running in a remote machine:

https://localhost:8443/index.html?ws_uri=ws://{KMS_HOST}:8888/kurento

Note: By default, this tutorial works out of the box by using non-secure WebSocket (ws://) to establish a client
connection between the browser and KMS. This only works for localhost. It will fail if the web server is remote.

If you want to run this tutorial from a remote web server, then you have to do 3 things:
1. Configure Secure WebSocket in KMS. For instructions, check Signaling Plane security (WebSocket).

2. In index.js, change the ws_uri to use Secure WebSocket (wss:// instead of ws://) and the correct KMS port
(TCP 8433 instead of TCP 8888).

3. Asexplained in the link from step 1, if you configured KMS to use Secure WebSocket with a self-signed certificate
you now have to browse to https://{KMS_HOST}:8433/kurento and click to accept the untrusted certificate.

Understanding this example

Kurento provides developers a Kurento JavaScript Client to control Kurento Media Server. This client library can
be used in any kind of JavaScript application including desktop and mobile browsers.

This hello world demo is one of the simplest web applications you can create with Kurento. The following picture
shows a screenshot of this demo running:

The interface of the application (an HTML web page) is composed by two HTMLS5 video tags: one showing the local
stream (as captured by the device webcam) and the other showing the remote stream sent by the media server back to
the client.

The logic of the application is quite simple: the local stream is sent to the Kurento Media Server, which sends it back
to the client without modifications. To implement this behavior, we need to create a Media Pipeline composed by a
single Media Element, i.e. a WebRtcEndpoint, which holds the capability of exchanging full-duplex (bidirectional)
WebRTC media flows. This media element is connected to itself,, so that the media it receives (from browser) is send
back (to browser). This media pipeline is illustrated in the following picture:

This is a web application, and therefore it follows a client-server architecture. Nevertheless, due to the fact that we
are using the Kurento JavaScript client, there is not need to use an application server since all the application logic is
held by the browser. The Kurento JavaScript Client is used directly to control Kurento Media Server by means of a
WebSocket bidirectional connection:

The following sections analyze in deep the client-side (JavaScript) code of this application, the dependencies, and how
to run the demo. The complete source code can be found in GitHub.

7.1. Hello World 45

https://github.com/Kurento/kurento/tree/main/tutorials/javascript-browser/hello-world

Kurento Documentation, Release 7.0-dev

Tutorial 1: Hello World (WebRTC in loopback)

Thek appication shows @ FrebRaabadoant conneciiod 1o Baelf (oopback]. Take @ ok i e Meda Poeiog. To nan Sl demo Kl ke g

1, Db Bk pudeie with & Beduviad Somplant with WebdtT C (Chnoea, Fieedox)

2k on Sard buion

3 Gl T a00sss W e Camesta 8N mecrophones. Afer T SO respoalon T koopbac shouid sta
4 Chzl o Segy b Bl B CoMTRLrRiaten

Local stream Remote stream

© I ity

Py

PP W NaevA

Fig. 5: Kurento Hello World Screenshot: WebRTC in loopback

46 Chapter 7. Tutorials

Kurento Documentation, Release 7.0-dev

K Kurento Media Server \

Media Pipeline

WebRtcEndpoint

Web RTE st A

Fig. 6: Kurento Hello World Media Pipeline in context

JavaScript Logic
The Kurento hello-world demo follows a Single Page Application architecture (SPA). The interface is the following
HTML page: index.html. This web page links two Kurento JavaScript libraries:
 kurento-client.js : Implementation of the Kurento JavaScript Client.
 kurento-utils.js : Kurento utility library aimed to simplify the WebRTC management in the browser.
In addition, these two JavaScript libraries are also required:
* Bootstrap : Web framework for developing responsive web sites.
* jquery.js : Cross-platform JavaScript library designed to simplify the client-side scripting of HTML.

* adapter.js : WebRTC JavaScript utility library maintained by Google that abstracts away browser differences.

ekko-lightbox : Module for Bootstrap to open modal images, videos, and galleries.
* demo-console : Custom JavaScript console.

The specific logic of the Hello World JavaScript demo is coded in the following JavaScript file: index.js. In this file,
there is a function which is called when the green button labeled as Start in the GUI is clicked.

var startButton = document.getElementById("start");

startButton.addEventListener("click", function() {
var options = {
localVideo: videoInput,
remoteVideo: videoOutput

};

webRtcPeer = kurentoUtils.WebRtcPeer.WebRtcPeerSendrecv(options, function(error) {
if(error) return onError(error)

(continues on next page)

7.1. Hello World 47

https://github.com/Kurento/kurento/blob/main/tutorials/javascript-browser/hello-world/index.html
https://github.com/Kurento/kurento/blob/main/tutorials/javascript-browser/hello-world/js/index.js

Kurento Documentation, Release 7.0-dev

b Start =)
- : webRtcPeer = kurentoUtils.WebRtcPeer.WebRtdPeerSendrecy
| Allow | ——

nwebntcPeer ;generatedffer

method:create,params: {sessionld:<sessionld>,
type:MediaPipeline)

result: [sessionld:<sessionld>,value:<pipelin
eld>)

€

method:create, params: {constructorParams : {med
iaPipeline:<pipelineld>}, sessionld:<sessionl
d>, type:WebRtcEndpeint |

>
result:{sessionldi<sessionld>,value:<webRLCE

ndpointIid>}

%

method:inveke, params: {object :<webRtcEndpoint
I1d>,operation:addIcecandidate,operationParam
s:{candidate: (<candidate>}}
rsessionid:<sessionId>}

result: {sessionld:<sessionTd>)

method: subseribs, params: {cbject :<webRtcEndpo

intld>, sessionld:<sessionld>, type:OnIcecandi
date)

-

result:{sessionldi<sessionId>,value:<subscri
ptionlds)

method:inveke, params: {object:<webRtcEndpoint
Id>,cperation:procassoffer, operationParams:{
offer:<sdp>},sessionld:<sessionld>)

result:{sessionld:<sessionld>, value:<sdp>)

:'H‘GDRtCPGG r.processhnswer

:wbatcneer -gatherCandidates

method:invoke, params: {object :<webRtcEndpoint
1d>,operation:gathercandidates, sessionld:<se
ssionid>)

result:{sessionld:<sessionId>}

method:invoke, params: {cbject :<webRtcEndpoint
Id>,operation:gatherCandidates, sessionld:<se
ssionId>)

result:{sessionldi<sessionId>}

zwenmc Peer.connect

methed:invoke, params: {object:<webRtcEndpoint
Id>,cperation:connect,operationParams: |sink:
<webRtecEndpointId>), sessionld:<sessionld>}

result:{sessionId:<sessionId>)

method:invoke, params: {object :<webRteEndpoint
Id>,operation:connect,operationParams: {sink:
<webRtcEndpointId>},sessionld:<sessionId>)
N

result:[sessionld:<sessionId>)

methed:invoke, params: {object :<webRtcEndpoint
Id>,operation:addIceCandidate, operationParam
s:{candidate:<candidate»)

result:{sessionld:<sessionId>)

— T —

z webRtcPeer.dispose

method: release, params: {object:<pipelineld>, s
essionld: <sessionld>)

result:{sessionld:<sessionId>}

48 ' “ ' ' aer 7. Tutorials

Kurento Documentation, Release 7.0-dev

(continued from previous page)

this.generateOffer(onOffer)
B;

[...]

The function WebRtcPeer.WebRtcPeerSendrecv abstracts the WebRTC internal details (i.e. PeerConnection and ge-
tUserStream) and makes possible to start a full-duplex WebRTC communication, using the HTML video tag with id
videolnput to show the video camera (local stream) and the video tag videoOutput to show the remote stream provided
by the Kurento Media Server.

Inside this function, a call to generateOffer is performed. This function accepts a callback in which the SDP offer is
received. In this callback we create an instance of the KurentoClient class that will manage communications with the
Kurento Media Server. So, we need to provide the URI of its WebSocket endpoint. In this example, we assume it’s
listening in port TCP 8888 at the same host than the HTTP serving the application.

[...]
var args = getopts(location.search,
{
default:
{
ws_uri: 'ws://' + location.hostname + ':8888/kurento’,
ice_servers: undefined
}
D;
[...]

kurentoClient(args.ws_uri, function(error, client){
[...]
1

Once we have an instance of kurentoClient, we need to create a Media Pipeline, as follows:

client.create("MediaPipeline", function(error, _pipeline){
[...]
b;

If everything works correctly, we will have an instance of a media pipeline (variable _pipeline in this example). With
it, we are able to create Media Elements. In this example we just need a single WebRtcEndpoint.

In WebRTC, SDP is used for negotiating media exchanges between applications. Such negotiation happens based on
the SDP offer and answer exchange mechanism by gathering the /CE candidates as follows:

pipeline = _pipeline;

pipeline.create("WebRtcEndpoint", function(error, webRtc){
if(error) return onError(error);

setIceCandidateCallbacks(webRtcPeer, webRtc, onError)

webRtc.processOffer(sdpOffer, function(error, sdpAnswer){
if(error) return onError(error);

(continues on next page)

7.1. Hello World 49

Kurento Documentation, Release 7.0-dev

(continued from previous page)

webRtcPeer.processAnswer (sdpAnswer, onError);

b;

webRtc.gatherCandidates(onError) ;

[...]
b;

Finally, the WebRtcEndpoint is connected to itself (i.e., in loopback):

webRtc.connect (webRtc, function(error){
if(error) return onError(error);

console.log("Loopback established");
b;

Note: The TURN and STUN servers to be used can be configured simple adding the parameter ice_servers to the
application URL, as follows:

https://localhost:8443/index.html?ice_servers=[{"urls":"stun:stunl.example.net"},{"urls":
~'"stun:stun2.example.net"}]
https://localhost:8443/index.html?ice_servers=[{"urls":"turn:turn.example.org", "username

—":"user","credential": "myPassword"}]

Dependencies

All dependencies of this demo can to be obtained using Bower. The list of these dependencies are defined in the
bower.json file, as follows:

"dependencies": {
"kurento-client": "7.0.0",
"kurento-utils": "7.0.0"

To get these dependencies, just run the following shell command:

bower install

Note: You can find the latest version of Kurento JavaScript Client at Bower.

50 Chapter 7. Tutorials

https://github.com/Kurento/kurento/blob/main/tutorials/javascript-browser/hello-world/bower.json
https://bower.io/search/?q=kurento-client

Kurento Documentation, Release 7.0-dev

7.1.3 Node.js - Hello world

This web application has been designed to introduce the principles of programming with Kurento for Node.js devel-
opers. It consists of a WebRTC video communication in mirror (loopback). This tutorial assumes you have basic
knowledge of JavaScript, Node.js, HTML and WebRTC. We also recommend reading /ntroduction to Kurento before
starting this tutorial.

Note: Web browsers require using HTTPS to enable WebRTC, so the web server must use SSL and a certificate file.
For instructions, check Configure a Node.js server to use HTTPS.

For convenience, this tutorial already provides dummy self-signed certificates (which will cause a security warning in
the browser).

For the impatient: running this example

You need to have installed the Kurento Media Server before running this example. Read the installation guide for
further information.

Be sure to install Bower and Node.js version 8.x in your system. In an Ubuntu machine, you can install both as follows:

curl -sSL https://deb.nodesource.com/setup_18.x | sudo -E bash -
sudo apt-get install -y nodejs
sudo npm install -g bower

Also, Node.js should already include NPM, the Node.js package manager.

To launch the application, you need to clone the GitHub project where this demo is hosted, install it and run it:

git clone https://github.com/Kurento/kurento.git
cd kurento/tutorials/javascript-node/hello-world/
git checkout main

npm install

npm start

If you have problems installing any of the dependencies, please remove them and clean the npm cache, and try to install
them again:

rm -r node_modules
npm cache clean

Access the application connecting to the URL https://localhost:8443/ in a WebRTC capable browser (Chrome, Firefox).

Note: These instructions work only if Kurento Media Server is up and running in the same machine as the tutorial.
However, it is possible to connect to a remote KMS in other machine, simply adding the argument ws_uri to the npm
execution command, as follows:

npm start -- --ws_uri=ws://{KMS_HOST}:8888/kurento

In this case you need to use npm version 2. To update it you can use this command:

sudo npm install npm -g

7.1. Hello World 51

https://localhost:8443/

Kurento Documentation, Release 7.0-dev

Understanding this example

Kurento provides developers a Kurento JavaScript Client to control Kurento Media Server. This client library can
be used from compatible JavaScript engines including browsers and Node.js.

This hello world demo is one of the simplest web application you can create with Kurento. The following picture shows
a screenshot of this demo running:

Tutorial 1: Hello World (WebRTC in loopback)

Thes appication shows & ebRaobadpoint connectied 1o Ewel (ooptack). Take @ ook i the Meda Pioeing. To nan this demo Sodoer S s

1, Db Bk pudeie with & Beduviad Somplant with WebdtT C (Chnoea, Fieedox)

2k on Sard buion

3 Gl T a00sss W e Camesta 8N mecrophones. Afer T SO respoalon T koopbac shouid sta
4 Chzl o Segy b Bl B CoMTRLrRiaten

Local stream Remote stream

£ 20 Kot

PP W NaevA

Fig. 8: Kurento Hello World Screenshot: WebRTC in loopback

The interface of the application (an HTML web page) is composed by two HTMLS video tags: one showing the local
stream (as captured by the device webcam) and the other showing the remote stream sent by the media server back to
the client.

The logic of the application is quite simple: the local stream is sent to the Kurento Media Server, which returns it back
to the client without modifications. To implement this behavior we need to create a Media Pipeline composed by a
single Media Element, i.e. a WebRtcEndpoint, which holds the capability of exchanging full-duplex (bidirectional)
WebRTC media flows. This media element is connected to itself so that the media it receives (from browser) is send
back (to browser). This media pipeline is illustrated in the following picture:

This is a web application, and therefore it follows a client-server architecture. At the client-side, the logic is imple-
mented in JavaScript. At the server-side we use a Node.js application server consuming the Kurento JavaScript
Client API to control Kurento Media Server capabilities. All in all, the high level architecture of this demo is
three-tier. To communicate these entities, two WebSockets are used. First, a WebSocket is created between client

52 Chapter 7. Tutorials

Kurento Documentation, Release 7.0-dev

K Kurento Media Server \

Media Pipeline

WebRtcEndpoint

/

Fig. 9: Kurento Hello World Media Pipeline in context

and application server to implement a custom signaling protocol. Second, another WebSocket is used to perform the
communication between the Kurento JavaScript Client and the Kurento Media Server. This communication takes place
using the Kurento Protocol. For further information on it, please see this page of the documentation.

The diagram below shows an complete sequence diagram from the interactions with the application interface to: i)
JavaScript logic; ii) Application server logic (which uses the Kurento JavaScript Client); iii) Kurento Media Server.

The following sections analyze in deep the server and client-side code of this application. The complete source code
can be found in GitHub.

Application Server Logic

This demo has been developed using the express framework for Node.js, but express is not a requirement for Kurento.
The main script of this demo is server.js.

In order to communicate the JavaScript client and the Node application server a WebSocket is used. The incoming
messages to this WebSocket (variable ws in the code) are conveniently handled to implemented the signaling protocol
depicted in the figure before (i.e. messages start, stop, onIceCandidate).

var ws = require('ws');

var wss = new ws.Server({
server : server,
path : '/helloworld'
b;

/;’:

* Management of WebSocket messages

(continues on next page)

7.1. Hello World 53

https://github.com/Kurento/kurento/tree/main/tutorials/javascript-node/hello-world
https://github.com/Kurento/kurento/blob/main/tutorials/javascript-node/hello-world/server.js

Kurento Documentation, Release 7.0-dev

' JavaScript Application Kurento

Client | Server Media Server
W :uebktcmr = kurentoUtils.WebRtgPeer.WebRtcPeerSendrecv
B | Allow | e e

:wbm:cmr .generate0f fer

id:start
sdpoffer:<sdp> |method:create,params: {sessionldi<sessionlds,
L type:MediaPipeline|

.

result: {sessionld:<sessionld>,value:<pipelin
eld>}

method: create, params: {constructorParams : (med
iaPipeline:<pipelineld>),sessionId:<sessionl
d>, type :WebRtcEndpoint |

result: {sessionld:<sessionld>, value:<webRtcE
ndpointId>}

-

"
method: invoke, params: {object i <webRtcEndpoint
Id>,operation:connect,cperationParams: {sink:
<webRtcEndpointId>],sessionldi<sessionId>)

e
£ 4

result: {sessionld:<sessionld>}

method: invoke, params: {object :<webRtcEndpoint
Id>, operation:processOffer, operationParams: {
offer:<sdp>}, sessionld:<sessionId>}

.

id:startResponse

H i H i HE4 >
sdpAnswer : <sdp> result: {sessionld:<zessionld>,value:<sdp>}

"
<

method: subseribe, params: {object : <webRtcEndpo
nﬂebRtCPéer—PNcéMMﬁ“@r intId>, sessionldi<sessionld>, type:OnIcecandi
date)

result: {sessionld:<sessionld>,value:<subscri
ptionId=}

method:invokes, params: [object :<webRtcEndpoint
1d>,operation:gatherCandidates, sessionld:<se
ssionld>)

method:onEvent, params: {value: {data: {candidat
e:<candidate>}
mathod:onEvent, params : {(value: [data: {candidat
webRtcPeer.addIceCandidate &:<candidate>}
id:iceCandidate -

candidate:<candidate> H
result: {sessionldi<sessionld>}

id:icecandidate
candidate :<candidate>

webRtcPeer.addIceCandidate

Lln

H method: invoke, params: {object :<webRLcEPId>, op

id:onIcecandidate eration:addIceCandidate, operationParams: {can
candidate:<candidate> N didate:<candidate>, sessionId:<sessionId>)

method:inveke, params: {object :<webRtcEPId>, op

id:onIceCandidate eration:addIceCandidate, operationParams: {can
candidate :<candidate> .| didate:<candidate>,sessionld:<sessionld>}

result: {sesslonld:<sessionId>)

L Medremc

nuehktcpeer. dispose

id:stop method:xelease, params : {object i<mediaPipeline
Id>, sessionld:<sessionld>}

v

result: {sessionId:<sessionid>}

OOpPUdK) d

54 Chapr7. Tutorials

Kurento Documentation, Release 7.0-dev

(continued from previous page)

*/
wss.on('connection', function(ws, req) {
var sessionlId = null;
var request = req;
var response = {
writeHead : {}
};

sessionHandler(request, response, function(err) {
sessionld = request.session.id;
console.log('Connection received with sessionId ' + sessionId);

b;

ws.on('error', function(error) {
console.log('Connection ' + sessionld +
stop(sessionld);

b;

error');

ws.on('close', function() {
console.log('Connection
stop(sessionId);

b;

v

+ sessionld + ' closed');

ws.on('message', function(_message) {
var message = JSON.parse(_message);
console.log('Connection ' + sessionld +

received message ', message);
switch (message.id) {
case 'start':
sessionld = request.session.id;
start(sessionld, ws, message.sdpOffer, function(error, sdpAnswer) {
if (error) {
return ws.send(JSON.stringify({

id : 'error',
message : error
D)
1
ws.send(JSON.stringify({
id : 'startResponse',
sdpAnswer : sdpAnswer
I;
D;
break;
case 'stop':
stop(sessionld);
break;

case 'onIceCandidate':
onIceCandidate(sessionId, message.candidate);
break;

(continues on next page)

7.1. Hello World 55

Kurento Documentation, Release 7.0-dev

(continued from previous page)

default:
ws.send(JSON.stringify({
id : 'error',
message : 'Invalid message ' + message
DI;
break;
}

b;
b;

In order to control the media capabilities provided by the Kurento Media Server, we need an instance of the Kuren-
toClient in the Node application server. In order to create this instance, we need to specify to the client library the
location of the Kurento Media Server. In this example, we assume it’s located at localhost listening in port TCP 8888.

var kurento = require('kurento-client');
var kurentoClient = null;

var argv = minimist(process.argv.slice(2), {
default: {
as_uri: 'https://localhost:8443/"',
ws_uri: 'ws://localhost:8888/kurento’
}
b;

[...]

function getKurentoClient(callback) {
if (kurentoClient !== null) {
return callback(null, kurentoClient);

}

kurento(argv.ws_uri, function(error, _kurentoClient) {
if (error) {
console.log("Could not find media server at address + argv.ws_uri);
return callback("Could not find media server at address" + argv.ws_uri
+ ". Exiting with error " + error);

}

kurentoClient = _kurentoClient;
callback(null, kurentoClient);

b;

Once the Kurento Client has been instantiated, you are ready for communicating with Kurento Media Server. Our first
operation is to create a Media Pipeline, then we need to create the Media Elements and connect them. In this example,
we just need a single WebRtcEndpoint connected to itself (i.e. in loopback). These functions are called in the start
function, which is fired when the start message is received:

function start(sessionId, ws, sdpOffer, callback) {
if (!sessionId) {

(continues on next page)

56 Chapter 7. Tutorials

Kurento Documentation, Release 7.0-dev

(continued from previous page)

return callback('Cannot use undefined sessionId');

}

getKurentoClient (function(error, kurentoClient) {
if (error) {
return callback(error);

}

kurentoClient.create('MediaPipeline’', function(error, pipeline) {
if (error) {
return callback(error);

}

createMediaElements(pipeline, ws, function(error, webRtcEndpoint) {
if (error) {
pipeline.release();
return callback(error);

}

if (candidatesQueue[sessionId]) {
while(candidatesQueue[sessionId].length) {
var candidate = candidatesQueue[sessionId].shiftQ);
webRtcEndpoint.addIceCandidate(candidate);

}

connectMediaElements(webRtcEndpoint, function(error) {
if (error) {
pipeline.release();
return callback(error);

}

webRtcEndpoint.on('IceCandidateFound', function(event) {
var candidate = kurento.getComplexType('IceCandidate') (event.
—,candidate);
ws.send(JSON.stringify({
id : 'iceCandidate',
candidate : candidate
)
b;

webRtcEndpoint.processOffer(sdpOffer, function(error, sdpAnswer) {
if (error) {
pipeline.release();
return callback(error);

}

sessions[sessionId] = {
'pipeline’ : pipeline,
'webRtcEndpoint' : webRtcEndpoint
1

return callback(null, sdpAnswer);

(continues on next page)

7.1. Hello World 57

Kurento Documentation, Release 7.0-dev

(continued from previous page)

b;

webRtcEndpoint.gatherCandidates(function(error) {

if (error) {
return callback(error);

}

b;

b;
b;
b;
b;
}

function createMediaElements(pipeline, ws, callback) {
pipeline.create('WebRtcEndpoint', function(error, webRtcEndpoint) {
if (error) {
return callback(error);

}

return callback(null, webRtcEndpoint);
b;

function connectMediaElements(webRtcEndpoint, callback) {
webRtcEndpoint.connect (webRtcEndpoint, function(error) {
if (error) {
return callback(error);
}
return callback(null);
b;
1

As of Kurento Media Server 6.0, the WebRTC negotiation is done by exchanging /CE candidates between the WebRTC
peers. To implement this protocol, the webRtcEndpoint receives candidates from the client in IceCandidateFound
function. These candidates are stored in a queue when the webRtcEndpoint is not available yet. Then these candidates
are added to the media element by calling to the addIceCandidate method.

var candidatesQueue = {};

[...]

function onIceCandidate(sessionId, _candidate) {
var candidate = kurento.getComplexType('IceCandidate')(_candidate);

if (sessions[sessionId]) {
console.info('Sending candidate');
var webRtcEndpoint = sessions[sessionId].webRtcEndpoint;
webRtcEndpoint.addIceCandidate(candidate);
}
else {
console.info('Queueing candidate');
if (!candidatesQueue[sessionId]) {

(continues on next page)

58 Chapter 7. Tutorials

Kurento Documentation, Release 7.0-dev

(continued from previous page)

candidatesQueue[sessionId] = [];

}

candidatesQueue[sessionId].push(candidate);

Client-Side Logic

Let’s move now to the client-side of the application. To call the previously created WebSocket service in the server-side,
we use the JavaScript class WebSocket. We use a specific Kurento JavaScript library called kurento-utils.js to simplify
the WebRTC interaction with the server. This library depends on adapter.js, which is a JavaScript WebRTC utility
maintained by Google that abstracts away browser differences. Finally jquery.js is also needed in this application.
These libraries are linked in the index.html web page, and are used in the index.js. In the following snippet we can see
the creation of the WebSocket (variable ws) in the path /helloworld. Then, the onmessage listener of the WebSocket
is used to implement the JSON signaling protocol in the client-side. Notice that there are three incoming messages
to client: startResponse, error, and iceCandidate. Convenient actions are taken to implement each step in the
communication.

var ws = new WebSocket('ws://' + location.host + '/helloworld');
var webRtcPeer;

const I_CAN_START = 0;
const I_CAN_STOP = 1;
const I_AM_STARTING = 2;

[...]

ws.onmessage = function(message) {
var parsedMessage = JSON.parse(message.data);
console.info('Received message: ' + message.data);

switch (parsedMessage.id) {
case 'startResponse':
startResponse(parsedMessage) ;
break;
case 'error':
if (state == I_AM_STARTING) {
setState(I_CAN_START);
1
onError('Error message from server:
break;
case 'iceCandidate':
webRtcPeer.addIceCandidate(parsedMessage.candidate)
break;
default:
if (state == I_AM_STARTING) {
setState(I_CAN_START);

+ parsedMessage.message);

}

onError('Unrecognized message', parsedMessage);

7.1. Hello World 59

https://github.com/Kurento/kurento/blob/main/tutorials/javascript-node/hello-world/static/index.html
https://github.com/Kurento/kurento/blob/main/tutorials/javascript-node/hello-world/static/js/index.js

Kurento Documentation, Release 7.0-dev

In the function start the method WebRtcPeer.WebRtcPeerSendrecv of kurento-utils.js is used to create the
webRtcPeer object, which is used to handle the WebRTC communication.

videoInput = document.getElementById('videoInput');
videoOutput = document.getElementById('videoOutput');

[...]

function start() {
console.log('Starting video call ...")

// Disable start button
setState (I_AM_STARTING);
showSpinner (videoInput, videoOutput);

console.log('Creating WebRtcPeer and generating local sdp offer ...');

var options = {
localvideo: videoInput,
remoteVideo: videoOutput,
onicecandidate : onIceCandidate

}

webRtcPeer = kurentoUtils.WebRtcPeer.WebRtcPeerSendrecv(options, function(error) {
if(error) return onError(error);
this.generateOffer(onOffer);
D;
1

function onIceCandidate(candidate) {
console.log('Local candidate' + JSON.stringify(candidate));

var message = {
id : 'onIceCandidate',
candidate : candidate
1
sendMessage(message) ;

}

function onOffer(error, offerSdp) {
if(error) return onError(error);

console.info('Invoking SDP offer callback function ' + location.host);
var message = {

id : 'start',

sdpOffer : offerSdp
}

sendMessage(message) ;

60 Chapter 7. Tutorials

Kurento Documentation, Release 7.0-dev

Dependencies

Server-side dependencies of this demo are managed using NPM . Our main dependency is the Kurento Client JavaScript
(kurento-client). The relevant part of the package.json file for managing this dependency is:

"dependencies": {

[...]

"kurento-client" : "7.0.0"

At the client side, dependencies are managed using Bower. Take a look to the bower.json file and pay attention to the
following section:

"dependencies": {

[...]

"kurento-utils" : "7.0.0"

Note: You can find the latest version of Kurento JavaScript Client at npm and Bower.

7.2 WebRTC Magic Mirror

This web application consists of a WebRTC loopback video communication, adding a funny hat over detected faces.
This is an example of a Computer Vision and Augmented Reality filter.

7.2.1 Java - WebRTC magic mirror

This web application extends the Hello World Tutorial, adding media processing to the basic WebRTC loopback.

Note: Web browsers require using HTTPS to enable WebRTC, so the web server must use SSL and a certificate file.
For instructions, check Configure a Java server to use HTTPS.

For convenience, this tutorial already provides dummy self-signed certificates (which will cause a security warning in
the browser).

For the impatient: running this example

First of all, you should install Kurento Media Server to run this demo. Please visit the installation guide for further
information.

To launch the application, you need to clone the GitHub project where this demo is hosted, and then run the main class:

git clone https://github.com/Kurento/kurento.git
cd kurento/tutorials/java/magic-mirror/

git checkout main

mvn -U clean spring-boot:run

7.2. WebRTC Magic Mirror 61

https://github.com/Kurento/kurento/blob/main/tutorials/javascript-node/hello-world/package.json
https://github.com/Kurento/kurento/blob/main/tutorials/javascript-node/hello-world/static/bower.json
https://npmsearch.com/?q=kurento-client
https://bower.io/search/?q=kurento-client

Kurento Documentation, Release 7.0-dev

The web application starts on port 8443 in the localhost by default. Therefore, open the URL https://localhost:8443/
in a WebRTC compliant browser (Chrome, Firefox).

Note: These instructions work only if Kurento Media Server is up and running in the same machine as the tutorial.
However, it is possible to connect to a remote KMS in other machine, simply adding the flag kms.url to the JVM
executing the demo. As we’ll be using maven, you should execute the following command

mvn -U clean spring-boot:run \
-Dspring-boot.run. jvmArguments="-Dkms.url=ws://{KMS_HOST}:8888/kurento"

Understanding this example

This application uses computer vision and augmented reality techniques to add a funny hat on top of faces. The
following picture shows a screenshot of the demo running in a web browser:

o Kureats Tledal nin =
L L |

Tutorial 2: Magic Mirror
Thes sppibraton ahows B PrisdeRTcE ndoosnd Connes ied b Exed (loopbasi) with & FeoeDyvariey [ier in e madde (Lsos & ook i T Meda Fipeins]. Torum P Semo los s seps

1 Opdr Bl pagh with & browidr Damglanl with WebATC (Chegme, Finglon]

& Gk o Soard buon

1 Grand Pur scoeas B B camans aned micropiaora. K T 509 negolaton Bhe iopbeck should st
A i oy 580 1o T B COMmTRnsCalon

Local stream Remote stream

Condals

Created S0P ofsr

Lol desacriplon ek

HE raesitan Coergieiod

Frrasors) S0P ofler calboh boreBer iptaPel B0)
SOHF srrmrs reered e rorresle et rptios

) © 208 Kurento
o
derted W NaevA

Fig. 11: Kurento Magic Mirror Screenshot: WebRTC with filter in loopback

The interface of the application (an HTML web page) is composed by two HTMLS5 video tags: one for the video camera
stream (the local client-side stream) and other for the mirror (the remote stream). The video camera stream is sent to

62 Chapter 7. Tutorials

https://localhost:8443/

Kurento Documentation, Release 7.0-dev

Kurento Media Server, which processes and sends it back to the client as a remote stream. To implement this, we need
to create a Media Pipeline composed by the following Media Element s:

* WebRtcEndpoint: Provides full-duplex (bidirectional) WebRTC capabilities.

» FaceOverlay filter: Computer vision filter that detects faces in the video stream and puts an image on top of
them. In this demo the filter is configured to put a Super Mario hat).

WebRtcEndpoint FaceOverlayFilter

Fig. 12: WebRTC with filter in loopback Media Pipeline

This is a web application, and therefore it follows a client-server architecture. At the client-side, the logic is imple-
mented in JavaScript. At the server-side, we use a Spring-Boot based application server consuming the Kurento
Java Client API, to control Kurento Media Server capabilities. All in all, the high level architecture of this demo
is three-tier. To communicate these entities, two WebSockets are used. First, a WebSocket is created between client
and application server to implement a custom signaling protocol. Second, another WebSocket is used to perform the
communication between the Kurento Java Client and the Kurento Media Server. This communication takes place using
the Kurento Protocol. For further information on it, please see this page of the documentation.

To communicate the client with the Java EE application server we have designed a simple signaling protocol based on
JSON messages over WebSocket ‘s. The normal sequence between client and server is as follows: i) Client starts the
Magic Mirror. ii) Client stops the Magic Mirror.

If any exception happens, server sends an error message to the client. The detailed message sequence between client
and application server is depicted in the following picture:

As you can see in the diagram, an SDP and /CE candidates needs to be exchanged between client and server to establish
the WebRTC session between the Kurento client and server. Specifically, the SDP negotiation connects the WebRtcPeer
at the browser with the WebRtcEndpoint at the server. The complete source code of this demo can be found in GitHub.

Application Server Side

This demo has been developed using Java in the server-side, based on the Spring Boot framework, which embeds a
Tomcat web server within the generated maven artifact, and thus simplifies the development and deployment process.

Note: You can use whatever Java server side technology you prefer to build web applications with Kurento. For
example, a pure Java EE application, SIP Servlets, Play, Vert.x, etc. Here we chose Spring Boot for convenience.

In the following figure you can see a class diagram of the server side code:

The main class of this demo is named MagicMirrorApp. As you can see, the KurentoClient is instantiated in this class
as a Spring Bean. This bean is used to create Kurento Media Pipelines, which are used to add media capabilities to
your applications. In this instantiation we see that we need to specify to the client library the location of the Kurento
Media Server. In this example, we assume it is located at localhost, listening in port TCP 8888. If you reproduce this
tutorial, you’ll need to insert the specific location of your Kurento Media Server instance there.

7.2. WebRTC Magic Mirror 63

https://raw.githubusercontent.com/Kurento/test-files/main/img/mario-wings.png
https://github.com/Kurento/kurento/tree/main/tutorials/java/magic-mirror
https://github.com/Kurento/kurento/blob/main/tutorials/java/magic-mirror/src/main/java/org/kurento/tutorial/magicmirror/MagicMirrorApp.java

Kurento Documentation, Release 7.0-dev

"

JavaScript
Client

Start of
WebRTC
magic mirror

Stop of
WebRTC
magic mirror

An error
happens

-

Application ' Kurento
Server

Media Server

id:start
sdpOffer:<sdp>

id:startResponse
sdpAnswer :<sdp>

>

Kurento Protocol Messages
(JSON over WebSocket)

€
£
<

yyy

id:iceCandidate
candidate:<candidates>

id:onIceCandidate
candidate :<candidate>

id:stop

>

Media Traffic

id:error

message:<description>
®©

Fig. 13: One to one video call signaling protocol

MagicMirrorApp

/

Magic MirerHandler 2w

KurentoClient

l

Usersession

Fig. 14: Server-side class diagram of the MagicMirror app

64

Chapter 7. Tutorials

Kurento Documentation, Release 7.0-dev

@EnableWebSocket
@SpringBootApplication
public class MagicMirrorApp implements WebSocketConfigurer {

final static String DEFAULT_KMS_WS_URI = "ws://localhost:8888/kurento";
@Bean

public MagicMirrorHandler handler() {
return new MagicMirrorHandler();

}

@Bean

public KurentoClient kurentoClient() {
return KurentoClient. O;

}

@0Override

public void registerWebSocketHandlers(WebSocketHandlerRegistry registry) {
registry. (handler(), "/magicmirror');

}

public static void main(String[] args) throws Exception {
new SpringApplication(MagicMirrorApp.). (args);
}

This web application follows a Single Page Application architecture (SPA), and uses a WebSocket to communicate client
with application server by means of requests and responses. Specifically, the main app class implements the interface
WebSocketConfigurer to register a WebSocketHandler to process WebSocket requests in the path /magicmirror.

MagicMirrorHandler class implements TextWebSocketHandler to handle text WebSocket requests. The central piece
of this class is the method handleTextMessage. This method implements the actions for requests, returning responses
through the WebSocket. In other words, it implements the server part of the signaling protocol depicted in the previous
sequence diagram.

In the designed protocol there are three different kinds of incoming messages to the Server : start, stop and
onIceCandidates. These messages are treated in the switch clause, taking the proper steps in each case.

public class MagicMirrorHandler extends TextWebSocketHandler {

private final Logger log = LoggerFactory. (MagicMirrorHandler.);
private static final Gson gson = new GsonBuilder(). O;

private final ConcurrentHashMap<String, UserSession> users = new ConcurrentHashMap
—<String, UserSession>(Q);

@Autowired
private KurentoClient kurento;

@Override
public void handleTextMessage(WebSocketSession session, TextMessage message) throws.
—Exception {
JsonObject jsonMessage = gson. (message. (), JsonObject.);

(continues on next page)

7.2. WebRTC Magic Mirror 65

https://github.com/Kurento/kurento/blob/main/tutorials/java/magic-mirror/src/main/java/org/kurento/tutorial/magicmirror/MagicMirrorHandler.java

Kurento Documentation, Release 7.0-dev

(continued from previous page)

log. ("Incoming message: {}", jsonMessage);

switch (jsonMessage.get("id"). O {
case "start":
start(session, jsonMessage);

break;
case "stop": {
UserSession user = users. (session. 0);
if (user != null) {
user. O;
}
break;
1
case "onIceCandidate": {
JsonObject jsonCandidate = jsonMessage. ("candidate"). O;
UserSession user = users. (session. 0);
if (user != null) {
IceCandidate candidate = new IceCandidate(jsonCandidate. ("candidate").
— () 1)
jsonCandidate.get ("sdpMid"). (O, jsonCandidate.get(
—'"sdpMLineIndex"). 0);
user. (candidate);
1
break;
1
default:
sendError(session, "Invalid message with id " + jsonMessage. "id").
- 0);
break;
1

}

private void start(WebSocketSession session, JsonObject jsonMessage) {

}

private void sendError(WebSocketSession session, String message) {

}

In the following snippet, we can see the start method. It handles the ICE candidates gathering, creates a Media
Pipeline, creates the Media Elements (WebRtcEndpoint and FaceOverlayFilter) and make the connections among
them. A startResponse message is sent back to the client with the SDP answer.

private void start(final WebSocketSession session, JsonObject jsonMessage) {
try {
// User session
UserSession user = new UserSession();
MediaPipeline pipeline = kurento. O;
user. (pipeline);

(continues on next page)

66 Chapter 7. Tutorials

Kurento Documentation, Release 7.0-dev

(continued from previous page)

WebRtcEndpoint webRtcEndpoint = new WebRtcEndpoint. (pipeline). O;
user. (webRtcEndpoint);
users. (session. O, user);

// ICE candidates
webRtcEndpoint. (new Eventlistener
—.<IceCandidateFoundEvent>() {
@Override
public void onEvent(IceCandidateFoundEvent event) {
JsonObject response = new JsonObject();

response. "id", "iceCandidate");
response. ("candidate", JsonUtils. (event. 0O)»;
try {
synchronized (session) {
session. (new TextMessage(response. 0O)»;
}
} catch (IOException e) {
log. (e. (ODH
}
}
D;
// Media logic
FaceOverlayFilter faceOverlayFilter = new FaceOverlayFilter. (pipeline).
- O;
String appServerUrl = System. ("app.server.url", MagicMirrorApp.
-);
faceOverlayFilter. (appServerUrl + "/img/mario-wings.png", -0.35F,.

~.-1.2F, 1.6F, 1.6F);

webRtcEndpoint. (faceOverlayFilter);
faceOverlayFilter. (webRtcEndpoint) ;

// SDP negotiation (offer and answer)
String sdpOffer = jsonMessage. ("sdpOffer™). O;
String sdpAnswer = webRtcEndpoint. (sdpOffer);

JsonObject response = new JsonObject(Q);
response. ("id", "startResponse");
response. ("sdpAnswer", sdpAnswer);

synchronized (session) {
session. (new TextMessage(response. 0O)»;

}
webRtcEndpoint. O;
} catch (Throwable t) {

sendError(session, t. 0);

}

7.2. WebRTC Magic Mirror 67

Kurento Documentation, Release 7.0-dev

Note: Notice the hat URL is provided by the application server and consumed by the KMS. This logic is assuming
that the application server is hosted in local (localhost), and by the default the hat URL is https://localhost:8443/img/
mario-wings.png. If your application server is hosted in a different host, it can be easily changed by means of the
configuration parameter app.server.url, for example:

mvn -U clean spring-boot:run -Dapp.server.url=https://app_server_host:app_server_port

The sendError method is quite simple: it sends an error message to the client when an exception is caught in the
server-side.

private void sendError(WebSocketSession session, String message) {

try {
JsonObject response = new JsonObject(Q);
response. "id", "error");
response. ("message", message);
session. (new TextMessage(response. 0O)»;
} catch (IOException e) {
log. ("Exception sending message", e);
}
1
Client-Side

Let’s move now to the client-side of the application. To call the previously created WebSocket service in the server-side,
we use the JavaScript class WebSocket. We use a specific Kurento JavaScript library called kurento-utils.js to simplify
the WebRTC interaction with the server. This library depends on adapter.js, which is a JavaScript WebRTC utility
maintained by Google that abstracts away browser differences. Finally jquery.js is also needed in this application.

These libraries are linked in the index.html web page, and are used in the index.js. In the following snippet we can
see the creation of the WebSocket (variable ws) in the path /magicmirror. Then, the onmessage listener of the
WebSocket is used to implement the JSON signaling protocol in the client-side. Notice that there are three incoming
messages to client: startResponse, error, and iceCandidate. Convenient actions are taken to implement each
step in the communication. For example, in functions start the function WebRtcPeer.WebRtcPeerSendrecv of
kurento-utils.js is used to start a WebRTC communication.

var ws = new WebSocket('ws://' + location.host + '/magicmirror');

ws.onmessage = function(message) {
var parsedMessage = JSON.parse(message.data);
console.info('Received message: ' + message.data);

switch (parsedMessage.id) {

case 'startResponse':
startResponse(parsedMessage) ;
break;

case 'error':
if (state == I_AM_STARTING) {

setState(I_CAN_START);

1
onError("Error message from server:
break;

+ parsedMessage.message);

(continues on next page)

68 Chapter 7. Tutorials

https://localhost:8443/img/mario-wings.png
https://localhost:8443/img/mario-wings.png
https://github.com/Kurento/kurento/blob/main/tutorials/java/magic-mirror/src/main/resources/static/index.html
https://github.com/Kurento/kurento/blob/main/tutorials/java/magic-mirror/src/main/resources/static/js/index.js

Kurento Documentation, Release 7.0-dev

(continued from previous page)

case 'iceCandidate':
webRtcPeer.addIceCandidate(parsedMessage.candidate, function (error) {
if (error) {

console.error("Error adding candidate: " + error);
return;
}
i3 H
break;
default:
if (state == I_AM_STARTING) {
setState(I_CAN_START);
}
onError('Unrecognized message', parsedMessage);
}
1
function start() {
console.log("Starting video call ...")
// Disable start button
setState(I_AM_STARTING);
showSpinner (videoInput, videoOutput);
console.log("Creating WebRtcPeer and generating local sdp offer ...");

var options = {
localvVideo: videoInput,
remoteVideo: videoOutput,
onicecandidate: onIceCandidate
1
webRtcPeer = new kurentoUtils.WebRtcPeer.WebRtcPeerSendrecv(options,
function (error) {
if (error) {
return console.error(error);
}
webRtcPeer.generateOffer (onOffer);
b;
1

function onOffer(offerSdp) {
console.info('Invoking SDP offer callback function ' + location.host);
var message = {
id : 'start',
sdpOffer : offerSdp
}
sendMessage (message) ;

}

function onIceCandidate(candidate) {
console.log("'Local candidate" + JSON.stringify(candidate));

var message = {
id: 'onIceCandidate',

(continues on next page)

7.2. WebRTC Magic Mirror 69

Kurento Documentation, Release 7.0-dev

(continued from previous page)

candidate: candidate
1

sendMessage (message) ;

Dependencies

This Java Spring application is implemented using Maven. The relevant part of the pom.xml is where Kurento depen-
dencies are declared. As the following snippet shows, we need two dependencies: the Kurento Client Java dependency
(kurento-client) and the JavaScript Kurento utility library (kurento-utils) for the client-side. Other client libraries are

managed with webjars:

<dependencies>

<dependency>
<groupld>org.kurento</groupId>
<artifactId>kurento-client</artifactId>

</dependency>

<dependency>
<groupId>org.kurento</groupId>
<artifactId>kurento-utils-js</artifactId>

</dependency>

<dependency>
<groupId>org.webjars</groupId>
<artifactId>webjars-locator</artifactId>

</dependency>

<dependency>
<groupId>org.webjars.bower</groupId>
<artifactId>bootstrap</artifactId>

</dependency>

<dependency>
<groupld>org.webjars.bower</groupIld>
<artifactId>demo-console</artifactId>

</dependency>

<dependency>
<groupId>org.webjars.bower</groupId>
<artifactId>adapter.js</artifactId>

</dependency>

<dependency>
<groupId>org.webjars.bower</groupId>
<artifactId>jquery</artifactId>

</dependency>

<dependency>
<groupId>org.webjars.bower</groupId>
<artifactId>ekko-lightbox</artifactId>

</dependency>

</dependencies>

Note: You can find the latest version of Kurento Java Client at Maven Central.

70

Chapter 7. Tutorials

https://www.webjars.org/
https://search.maven.org/#search%7Cga%7C1%7Ckurento-client

Kurento Documentation, Release 7.0-dev

7.2.2 JavaScript - Magic Mirror

Warning: Bower dependencies are not yet upgraded for Kurento 7.0.0.

Kurento tutorials that use pure browser JavaScript need to be rewritten to drop the deprecated Bower service and
instead use a web resource packer. This has not been done, so these tutorials won’t be able to download the depen-
dencies they need to work. PRs would be appreciated!

This web application extends the Hello World Tutorial, adding media processing to the basic WebRTC loopback.

Note: Web browsers require using HTTPS to enable WebRTC, so the web server must use SSL and a certificate file.
For instructions, check Configure JavaScript applications to use HTTPS.

For convenience, this tutorial already provides dummy self-signed certificates (which will cause a security warning in
the browser).

Running this example

First of all, install Kurento Media Server: Installation Guide. Start the media server and leave it running in the back-
ground.

Install Node.js, Bower, and a web server in your system:

curl -sSL https://deb.nodesource.com/setup_18.x | sudo -E bash -
sudo apt-get install -y nodejs

sudo npm install -g bower

sudo npm install -g http-server

Here, we suggest using the simple Node.js http-server, but you could use any other web server.

You also need the source code of this tutorial. Clone it from GitHub, then start the web server:

git clone https://github.com/Kurento/kurento.git

cd kurento/tutorials/javascript-browser/magic-mirror/

git checkout main

bower install

http-server -p 8443 --ssl --cert keys/server.crt --key keys/server.key

When your web server is up and running, use a WebRTC compatible browser (Firefox, Chrome) to open the tutorial
page:

 If KMS is running in your local machine:

https://localhost:8443/

If KMS is running in a remote machine:

https://localhost:8443/index.html?ws_uri=ws://{KMS_HOST}:8888/kurento

Note: By default, this tutorial works out of the box by using non-secure WebSocket (ws://) to establish a client
connection between the browser and KMS. This only works for localhost. If will fail if the web server is remote.

7.2. WebRTC Magic Mirror 71

Kurento Documentation, Release 7.0-dev

If you want to run this tutorial from a remote web server, then you have to do 3 things:
1. Configure Secure WebSocket in KMS. For instructions, check Signaling Plane security (WebSocket).

2. In index.js, change the ws_uri to use Secure WebSocket (wss:// instead of ws://) and the correct KMS port
(TCP 8433 instead of TCP 8888).

3. Asexplained in the link from step 1, if you configured KMS to use Secure WebSocket with a self-signed certificate
you now have to browse to https://{KMS_HOST}:8433/kurento and click to accept the untrusted certificate.

Note: By default, this tutorial assumes that Kurento Media Server can download the overlay image from a localhost
web server. It will fail if the web server is remote (from the point of view of KMS). This includes the case of running
KMS from Docker.

If you want to run this tutorial with a remote Kurento Media Server (including running KMS from Docker), then you
have to provide it with the correct IP address of the application’s web server:

* In index.js, change hat_uri to the correct one where KMS can reach the web server.

Understanding this example
This application uses computer vision and augmented reality techniques to add a funny hat on top of detected faces.
The following picture shows a screenshot of the demo running in a web browser:

The interface of the application (an HTML web page) is composed by two HTMLS5 video tags: one for the video camera
stream (the local client-side stream) and other for the mirror (the remote stream). The video camera stream is sent to
the Kurento Media Server, processed and then is returned to the client as a remote stream.

To implement this, we need to create a Media Pipeline composed by the following Media Element s:
* WebRtcEndpoint: Provides full-duplex (bidirectional) WebRTC capabilities.

* FaceOverlay filter: Computer vision filter that detects faces in the video stream and puts an image on top of
them. In this demo the filter is configured to put a Super Mario hat).

The media pipeline implemented is illustrated in the following picture:

The complete source code of this demo can be found in GitHub.

JavaScript Logic
This demo follows a Single Page Application architecture (SPA). The interface is the following HTML page: index.html.
This web page links two Kurento JavaScript libraries:
* kurento-client.js : Implementation of the Kurento JavaScript Client.
 kurento-utils.js : Kurento utility library aimed to simplify the WebRTC management in the browser.
In addition, these two JavaScript libraries are also required:
* Bootstrap : Web framework for developing responsive web sites.
* jquery.js : Cross-platform JavaScript library designed to simplify the client-side scripting of HTML.
 adapter.js : WebRTC JavaScript utility library maintained by Google that abstracts away browser differences.
* ekko-lightbox : Module for Bootstrap to open modal images, videos, and galleries.

* demo-console : Custom JavaScript console.

72 Chapter 7. Tutorials

https://raw.githubusercontent.com/Kurento/test-files/main/img/mario-wings.png
https://github.com/Kurento/kurento/tree/main/tutorials/javascript-browser/magic-mirror
https://github.com/Kurento/kurento/blob/main/tutorials/javascript-browser/magic-mirror/index.html

Kurento Documentation, Release 7.0-dev

o Kureio Totodal 1 ®
L L |

Tutorial 2: Magic Mirror

Thes sppiaton shows & WibSicEndpoind conrected i el [oaphai) with & FaoeOvartey War in T madds (e & ok B 5

e Ppele) Torum S dama Rolow theds sleps
1 O B page with & browner cormgiant with WiebRTC (Cheome, Firgla)
& Gl om St buson

1 CGeand B mooeans 5 B camass e micropiang. Al B S0 negotiaton the loptack should st
A Lok o Sop fo fnah e comemesnecaion

Local stream

Remole stream

Conads

Creabed S0P ofier

Liocal dedrplon et

ICE paifiaioie) Coevgaisied

Ve SOR (Maf £a150 Sreen ke aPt B080
S0P arvwet motcived, SO MifTee Gelirplcn

. © M Kurenio
s
Py o Cariony

NaevA

Fig. 15: Kurento Magic Mirror Screenshot: WebRTC with filter in loopback

WebRtcEndpoint FaceOverlayFilter

Fig. 16: WebRTC with filter in loopback Media Pipeline

7.2. WebRTC Magic Mirror

73

Kurento Documentation, Release 7.0-dev

The specific logic of this demo is coded in the following JavaScript page: index.js. In this file, there is a function which
is called when the green button labeled as Start in the GUI is clicked.

var startButton = document.getElementById("start");

startButton.addEventListener("click", function() {
var options = {
localVideo: videoInput,
remoteVideo: videoOutput

};

webRtcPeer = kurentoUtils.WebRtcPeer.WebRtcPeerSendrecv(options, function(error) {
if(error) return onError(error)
this.generateOffer (onOffer)

b

[...]

The function WebRtcPeer.WebRtcPeerSendrecv abstracts the WebRTC internal details (i.e. PeerConnection and ge-
tUserStream) and makes possible to start a full-duplex WebRTC communication, using the HTML video tag with id
videoInput to show the video camera (local stream) and the video tag videoOutput to show the remote stream provided
by the Kurento Media Server.

Inside this function, a call to generateOffer is performed. This function accepts a callback in which the SDP offer is
received. In this callback we create an instance of the KurentoClient class that will manage communications with the
Kurento Media Server. So, we need to provide the URI of its WebSocket endpoint. In this example, we assume it’s
listening in port TCP 8888 at the same host than the HTTP serving the application.

[...]

var args = getopts(location.search,

{
default:

{
ws_uri: 'ws://' + location.hostname + ':8888/kurento’',
ice_servers: undefined
}
b;

[...]

kurentoClient(args.ws_uri, function(error, client){
[...]
1

Once we have an instance of kurentoClient, the following step is to create a Media Pipeline, as follows:

client.create("MediaPipeline", function(error, _pipeline){
[...]
b;

If everything works correctly, we have an instance of a media pipeline (variable pipeline in this example). With this
instance, we are able to create Media Elements. In this example we just need a WebRtcEndpoint and a FaceOverlay-
Filter. Then, these media elements are interconnected:

74 Chapter 7. Tutorials

https://github.com/Kurento/kurento/blob/main/tutorials/javascript-browser/magic-mirror/js/index.js

Kurento Documentation, Release 7.0-dev

pipeline.create('WebRtcEndpoint', function(error, webRtcEp) {
if (error) return onError(error);

setIceCandidateCallbacks(webRtcPeer, webRtcEp, onError)

webRtcEp.processOffer(sdpOffer, function(error, sdpAnswer) {
if (error) return onError(error);

webRtcPeer.processAnswer (sdpAnswer, onError);

b
webRtcEp.gatherCandidates(onError) ;

pipeline.create('FaceOverlayFilter', function(error, filter) {
if (error) return onError(error);

filter.setOverlayedImage(args.hat_uri, -0.35, -1.2, 1.6, 1.6,
function(error) {
if (error) return onError(error);

b;

client.connect(webRtcEp, filter, webRtcEp, function(error) {
if (error) return onError(error);

console.log("WWebRtcEndpoint --> filter --> WebRtcEndpoint");
D;
i3
i3

Note: The TURN and STUN servers to be used can be configured simple adding the parameter ice_servers to the
application URL, as follows:

https://localhost:8443/index.html?ice_servers=[{"urls":"stun:stunl.example.net"},{"urls":
~'"stun:stun2.example.net"}]
https://localhost:8443/index.html?ice_servers=[{"urls":"turn:turn.example.org","username

~":"user","credential": "myPassword"}]

Dependencies

The dependencies of this demo has to be obtained using Bower. The definition of these dependencies are defined in
the bower.json file, as follows:

"dependencies": {
"kurento-client": "7.0.0",
"kurento-utils": "7.0.0"

Note: You can find the latest version of Kurento JavaScript Client at Bower.

7.2. WebRTC Magic Mirror 75

https://github.com/Kurento/kurento/blob/main/tutorials/javascript-browser/magic-mirror/bower.json
https://bower.io/search/?q=kurento-client

Kurento Documentation, Release 7.0-dev

7.2.3 Node.js - WebRTC magic mirror

This web application extends the Hello World Tutorial, adding media processing to the basic WebRTC loopback.

Note: Web browsers require using HTTPS to enable WebRTC, so the web server must use SSL and a certificate file.
For instructions, check Configure a Node.js server to use HTTPS.

For convenience, this tutorial already provides dummy self-signed certificates (which will cause a security warning in
the browser).

For the impatient: running this example

First of all, you should install Kurento Media Server to run this demo. Please visit the installation guide for further
information.

Be sure to have installed Node.js in your system. In an Ubuntu machine, you can install it as follows:

curl -sSL https://deb.nodesource.com/setup_18.x | sudo -E bash -
sudo apt-get install -y nodejs

To launch the application, you need to clone the GitHub project where this demo is hosted, install it and run it:

git clone https://github.com/Kurento/kurento.git
cd kurento/tutorials/javascript-node/magic-mirror/
git checkout main

npm install

npm start

If you have problems installing any of the dependencies, please remove them and clean the npm cache, and try to install
them again:

rm -r node_modules
npm cache clean

Access the application connecting to the URL https://localhost:8443/ in a WebRTC capable browser (Chrome, Firefox).

Note: These instructions work only if Kurento Media Server is up and running in the same machine as the tutorial.
However, it is possible to connect to a remote KMS in other machine, simply adding the argument ws_uri to the npm
execution command, as follows:

npm start -- --ws_uri=ws://{KMS_HOST}:8888/kurento

In this case you need to use npm version 2. To update it you can use this command:

sudo npm install npm -g

76 Chapter 7. Tutorials

https://localhost:8443/

Kurento Documentation, Release 7.0-dev

Understanding this example

This application uses computer vision and augmented reality techniques to add a funny hat on top of faces. The
following picture shows a screenshot of the demo running in a web browser:

o Kpetia Taledpd e =
L o &

Tutorial 2: Magic Mirror

Thes sppilcaton thows & WisbRicEndpoind oonnected b Bl oophesi) with & FacsOvertsy et in e micds (Leos & ook & T Mecda Posine) Torn P Semo llos hets sieps

1 Opdr Bl pagh with & browidr Damglanl with WebATC (Chegme, Finglon]

& Gk o Soard buon

1 Grand Pur scoeas B B camans aned micropiaora. K T 509 negolaton Bhe iopbeck should st
A ik oy S0 o T B ComaTRnsCaon,

Local stream Remote stream

Coads

Created S0P ofsr

Lol desacriplon ek

HE ratwinif @it CosFgaiion]

Frrasors) S0P ofler calboh boreBer iptaPel B0)
GOHF dimet e ot W ectele Seddrplcn

© 20 Hurendo

Usms.) NaevA

Fig. 17: Kurento Magic Mirror Screenshot: WebRTC with filter in loopback

The interface of the application (an HTML web page) is composed by two HTMLS5 video tags: one for the video camera
stream (the local client-side stream) and other for the mirror (the remote stream). The video camera stream is sent to
Kurento Media Server, which processes and sends it back to the client as a remote stream. To implement this, we need
to create a Media Pipeline composed by the following Media Element s:

* WebRtcEndpoint: Provides full-duplex (bidirectional) WebRTC capabilities.

* FaceOverlay filter: Computer vision filter that detects faces in the video stream and puts an image on top of
them. In this demo the filter is configured to put a Super Mario hat).

This is a web application, and therefore it follows a client-server architecture. At the client-side, the logic is imple-
mented in JavaScript. At the server-side we use a Node.js application server consuming the Kurento JavaScript
Client API to control Kurento Media Server capabilities. All in all, the high level architecture of this demo is
three-tier. To communicate these entities, two WebSockets are used. First, a WebSocket is created between client
and application server to implement a custom signaling protocol. Second, another WebSocket is used to perform the
communication between the Kurento JavaScript Client and the Kurento Media Server. This communication takes place
using the Kurento Protocol. For further information on it, please see this page of the documentation.

7.2. WebRTC Magic Mirror 77

https://raw.githubusercontent.com/Kurento/test-files/main/img/mario-wings.png

Kurento Documentation, Release 7.0-dev

WebRtcEndpoint FaceOverlayFilter

Fig. 18: WebRTC with filter in loopback Media Pipeline

To communicate the client with the Node.js application server we have designed a simple signaling protocol based on
JSON messages over WebSocket ‘s. The normal sequence between client and server is as follows: i) Client starts the
Magic Mirror. ii) Client stops the Magic Mirror.

If any exception happens, server sends an error message to the client. The detailed message sequence between client
and application server is depicted in the following picture:

As you can see in the diagram, an SDP and /CE candidates needs to be exchanged between client and server to establish
the WebRTC session between the Kurento client and server. Specifically, the SDP negotiation connects the WebRtcPeer
at the browser with the WebRtcEndpoint at the server. The complete source code of this demo can be found in GitHub.

Application Server Logic

This demo has been developed using the express framework for Node.js, but express is not a requirement for Kurento.
The main script of this demo is server.js.

In order to communicate the JavaScript client and the Node application server a WebSocket is used. The incoming
messages to this WebSocket (variable ws in the code) are conveniently handled to implemented the signaling protocol
depicted in the figure before (i.e. messages start, stop, onIceCandidate).

var ws = require('ws');

var wss = new ws.Server({
server : server,
path : '/magicmirror'

b;
Vi

* Management of WebSocket messages
*/
wss.on('connection', function(ws, req) {
var sessionlId = null;
var request = req;
var response = {
writeHead : {}

};

sessionHandler(request, response, function(err) {
sessionld = request.session.id;
console.log('Connection received with sessionId ' + sessionId);

(continues on next page)

78 Chapter 7. Tutorials

https://github.com/Kurento/kurento/tree/main/tutorials/javascript-node/magic-mirror
https://github.com/Kurento/kurento/blob/main/tutorials/javascript-node/magic-mirror/server.js

Kurento Documentation, Release 7.0-dev

-

"

|

JavaScript Application ' Kurento
Client Server Media Server
id:start
sdpOffer:<sdp> Kurento Protocol Messages
retorin > {ISON over WebSocket)
Start of id:startResponse €
sdpAnswer :<sdp> € rd
WebRTC 4 |« € X >
. . id:iceCandidate :
magic mirror candidate:<candidate>
id:onIceCandidate
candidate:<candidate>
>
Stop of =)
WebRTC = 1dsstep)
magic mirror |
- id:error
An error ‘messagemdescriptian}
happens

Fig. 19: One to one video call signaling protocol

7.2. WebRTC Magic Mirror

79

Kurento Documentation, Release 7.0-dev

(continued from previous page)

b;

ws.on('error', function(error) {
console.log('Connection ' + sessionld +
stop(sessionId);

error');

b;

ws.on('close', function() {
console.log('Connection ' + sessionId + ' closed');
stop(sessionId);

b;

ws.on('message', function(_message) {
var message = JSON.parse(_message);
console.log('Connection ' + sessionld +

received message ', message);
switch (message.id) {
case 'start':
sessionld = request.session.id;
start(sessionld, ws, message.sdpOffer, function(error, sdpAnswer) {
if (error) {
return ws.send(JSON.stringify({
id : 'error',
message : error

D)
}
ws.send(JSON.stringify({
id : 'startResponse',
sdpAnswer : sdpAnswer
I;
B;
break;
case 'stop':
stop(sessionld);
break;

case 'onIceCandidate':
onIceCandidate(sessionId, message.candidate);
break;

default:
ws.send(JSON.stringify({
id : 'error',
message : 'Invalid message

D)

break;

+ message

b;
b;

In order to control the media capabilities provided by the Kurento Media Server, we need an instance of the Kuren-

80 Chapter 7. Tutorials

Kurento Documentation, Release 7.0-dev

toClient in the Node application server. In order to create this instance, we need to specify to the client library the
location of the Kurento Media Server. In this example, we assume it’s located at localhost listening in port TCP 8888.

var kurento = require('kurento-client');
var kurentoClient = null;

var argv = minimist(process.argv.slice(2), {
default: {
as_uri: 'https://localhost:8443/"',
ws_uri: 'ws://localhost:8888/kurento’
}
D;

[...]

function getKurentoClient(callback) {
if (kurentoClient !== null) {
return callback(null, kurentoClient);

}

kurento(argv.ws_uri, function(error, _kurentoClient) {
if (error) {
console.log("Could not find media server at address + argv.ws_uri);
return callback("Could not find media server at address" + argv.ws_uri
+ ". Exiting with error + error);

"

}

kurentoClient = _kurentoClient;
callback(null, kurentoClient);

b;

Once the Kurento Client has been instantiated, you are ready for communicating with Kurento Media Server. Our
first operation is to create a Media Pipeline, then we need to create the Media Elements and connect them. In this
example, we need a WebRtcEndpoint connected to a FaceOverlayFilter, which is connected to the sink of the same
WebRtcEndpoint. These functions are called in the start function, which is fired when the start message is received:

function start(sessionId, ws, sdpOffer, callback) {
if (!sessionId) {
return callback('Cannot use undefined sessionId');

3

getKurentoClient (function(error, kurentoClient) {
if (error) {
return callback(error);

}

kurentoClient.create('MediaPipeline’', function(error, pipeline) {
if (error) {
return callback(error);

}

createMediaElements(pipeline, ws, function(error, webRtcEndpoint) {

(continues on next page)

7.2. WebRTC Magic Mirror 81

Kurento Documentation, Release 7.0-dev

(continued from previous page)

if (error) {
pipeline.release();
return callback(error);

}

if (candidatesQueue[sessionId]) {
while(candidatesQueue[sessionId].length) {
var candidate = candidatesQueue[sessionId].shift(Q);
webRtcEndpoint.addIceCandidate(candidate);

}

connectMediaElements(webRtcEndpoint, faceOverlayFilter, function(error) {
if (error) {
pipeline.release();
return callback(error);

}

webRtcEndpoint.on('IceCandidateFound', function(event) {
var candidate = kurento.getComplexType('IceCandidate')(event.
—.candidate);
ws.send(JSON.stringify({
id : 'iceCandidate',
candidate : candidate
s
b;

webRtcEndpoint.processOffer(sdpOffer, function(error, sdpAnswer) {
if (error) {
pipeline.release();
return callback(error);

}

sessions[sessionId] = {
'pipeline' : pipeline,
'webRtcEndpoint' : webRtcEndpoint
1
return callback(null, sdpAnswer);

b;

webRtcEndpoint.gatherCandidates(function(error) {

if (error) {
return callback(error);

}

b;

b;
D;
b;
b;
}

function createMediaElements(pipeline, ws, callback) {

(continues on next page)

82 Chapter 7. Tutorials

Kurento Documentation, Release 7.0-dev

(continued from previous page)

pipeline.create('WebRtcEndpoint', function(error, webRtcEndpoint) {
if (error) {
return callback(error);

}

return callback(null, webRtcEndpoint);

b;
}

function connectMediaElements(webRtcEndpoint, faceOverlayFilter, callback) {
webRtcEndpoint.connect (faceOverlayFilter, function(error) {
if (error) {
return callback(error);

3

faceOverlayFilter.connect (webRtcEndpoint, function(error) {
if (error) {
return callback(error);

}

return callback(null);
b
b

As of Kurento Media Server 6.0, the WebRTC negotiation is done by exchanging /CE candidates between the WebRTC
peers. To implement this protocol, the webRtcEndpoint receives candidates from the client in IceCandidateFound
function. These candidates are stored in a queue when the webRtcEndpoint is not available yet. Then these candidates
are added to the media element by calling to the addIceCandidate method.

var candidatesQueue = {};

[...]

function onIceCandidate(sessionId, _candidate) {
var candidate = kurento.getComplexType('IceCandidate')(_candidate);

if (sessions[sessionId]) {
console.info('Sending candidate');
var webRtcEndpoint = sessions[sessionId].webRtcEndpoint;
webRtcEndpoint.addIceCandidate(candidate);

}
else {
console.info('Queueing candidate');
if (!candidatesQueue[sessionId]) {
candidatesQueue[sessionId] = [];
}
candidatesQueue[sessionId].push(candidate);
}

7.2. WebRTC Magic Mirror 83

Kurento Documentation, Release 7.0-dev

Client-Side Logic

Let’s move now to the client-side of the application. To call the previously created WebSocket service in the server-side,
we use the JavaScript class WebSocket. We use a specific Kurento JavaScript library called kurento-utils.js to simplify
the WebRTC interaction with the server. This library depends on adapter.js, which is a JavaScript WebRTC utility
maintained by Google that abstracts away browser differences. Finally jquery.js is also needed in this application.
These libraries are linked in the index.html web page, and are used in the index.js. In the following snippet we can
see the creation of the WebSocket (variable ws) in the path /magicmirror. Then, the onmessage listener of the
WebSocket is used to implement the JSON signaling protocol in the client-side. Notice that there are three incoming
messages to client: startResponse, error, and iceCandidate. Convenient actions are taken to implement each
step in the communication.

var ws = new WebSocket('ws://' + location.host + '/magicmirror');
var webRtcPeer;

const I_CAN_START = 0;
const I_CAN_STOP = 1;
const I_AM_STARTING = 2;

[...]

ws.onmessage = function(message) {
var parsedMessage = JSON.parse(message.data);
console.info('Received message: ' + message.data);

switch (parsedMessage.id) {
case 'startResponse':
startResponse(parsedMessage) ;
break;
case 'error':
if (state == I_AM_STARTING) {
setState(I_CAN_START);
1
onError('Error message from server:
break;
case 'iceCandidate':
webRtcPeer.addIceCandidate(parsedMessage.candidate)
break;
default:
if (state == I_AM_STARTING) {
setState(I_CAN_START);

+ parsedMessage.message);

}

onError('Unrecognized message', parsedMessage);

In the function start the method WebRtcPeer.WebRtcPeerSendrecv of kurento-utils.js is used to create the
webRtcPeer object, which is used to handle the WebRTC communication.

videoInput = document.getElementById('videoInput');
videoOutput = document.getElementById('videoOutput');

[...]

(continues on next page)

84 Chapter 7. Tutorials

https://github.com/Kurento/kurento/blob/main/tutorials/javascript-node/magic-mirror/static/index.html
https://github.com/Kurento/kurento/blob/main/tutorials/javascript-node/magic-mirror/static/js/index.js

Kurento Documentation, Release 7.0-dev

(continued from previous page)

function start() {
console.log('Starting video call ...")

// Disable start button
setState(I_AM_STARTING);
showSpinner(videoInput, videoOutput);

console.log('Creating WebRtcPeer and generating local sdp offer D
var options = {

localvVideo: videoInput,

remoteVideo: videoOutput,

onicecandidate : onIceCandidate

3

webRtcPeer = kurentoUtils.WebRtcPeer.WebRtcPeerSendrecv(options, function(error) {
if(error) return onError(error);

this.generateOffer(onOffer);
b;
1

function onIceCandidate(candidate) {
console.log('Local candidate' + JSON.stringify(candidate));

var message = {
id : 'onIceCandidate',
candidate : candidate
};
sendMessage(message) ;

}

function onOffer(error, offerSdp) {
if(error) return onError(error);

console.info('Invoking SDP offer callback function '
var message = {

id : 'start',
sdpOffer : offerSdp

+ location.host);

}

sendMessage(message) ;

7.2. WebRTC Magic Mirror 85

Kurento Documentation, Release 7.0-dev

Dependencies

Server-side dependencies of this demo are managed using NPM . Our main dependency is the Kurento Client JavaScript
(kurento-client). The relevant part of the package.json file for managing this dependency is:

"dependencies": {

[...]

"kurento-client" : "7.0.0"

At the client side, dependencies are managed using Bower. Take a look to the bower.json file and pay attention to the
following section:

"dependencies": {

[...]

"kurento-utils" : "7.0.0"

Note: You can find the latest version of Kurento JavaScript Client at npm and Bower.

7.3 RTP Receiver

This web application showcases reception of an incoming RTP or SRTP stream, and playback via a WebRTC connec-
tion.

7.3.1 Kurento Java Tutorial - RTP Receiver

This web application consists of a simple RTP stream pipeline: an RtpEndpoint is configured in KMS to listen for one
incoming video stream. This stream must be generated by an external program. Visual feedback is provided in this
page, by connecting the RipEndpoint to a WebRtcEndpoint in receive-only mode.

The Java Application Server connects to all events emitted from KMS and prints log messages for each one, so this
application is also a good reference to understand what are those events and their relationship with how KMS works.
Check Endpoint Events for more information about events that can be emitted by KMS.

Note: Web browsers require using HTTPS to enable WebRTC, so the web server must use SSL and a certificate file.
For instructions, check Configure a Java server to use HTTPS.

For convenience, this tutorial already provides dummy self-signed certificates (which will cause a security warning in
the browser).

86 Chapter 7. Tutorials

https://github.com/Kurento/kurento/blob/main/tutorials/javascript-node/magic-mirror/package.json
https://github.com/Kurento/kurento/blob/main/tutorials/javascript-node/magic-mirror/static/bower.json
https://npmsearch.com/?q=kurento-client
https://bower.io/search/?q=kurento-client

Kurento Documentation, Release 7.0-dev

Quick start

Follow these steps to run this demo application:

1.
2.

N o s

Install and run Kurento Media Server: Installation Guide.

Install Java JDK and Maven:

sudo apt-get update
sudo apt-get install default-jdk maven

. Run these commands:

git clone https://github.com/Kurento/kurento.git
cd kurento/tutorials/java/rtp-receiver/
git checkout main
mvn -U clean spring-boot:run \
-Dspring-boot.run. jvmArguments="-Dkms.url=ws://{KMS_HOST}:8888/kurento"

Open the demo page with a WebRTC-compliant browser (Chrome, Firefox): https://localhost:8443/
Click on Start to begin the demo.

Copy the KMS IP and Port values to the external streaming program.

As soon as the external streaming program starts sending RTP packets to the IP and Port where KMS is listening

for incoming data, the video should appear in the page.

Click on Stop to finish the demo.

Understanding this example

To implement this behavior we have to create a Media Pipeline, composed of an RtpEndpoint and a WebRtcEndpoint.
The former acts as an RTP receiver, and the latter is used to show the video in the demo page.

This is a web application, and therefore it follows a client-server architecture. At the client-side, the logic is imple-
mented in JavaScript. At the server-side, we use a Spring-Boot based application server consuming the Kurento
Java Client API, to control Kurento Media Server capabilities. All in all, the high level architecture of this demo is
three-tier.

To communicate these entities, two WebSockets channels are used:

1. A WebSocket is created between the Application Server and the browser client, to implement a custom signaling

protocol.

2. Another WebSocket is used to perform the communication between the Application Server and the Kurento
Media Server. For this, the Application Server uses the Kurento Java Client library. This communication takes

place using the Kurento Protocol (see Kurento Protocol).

The complete source code for this tutorial can be found in GitHub.

7.3. RTP Receiver

87

https://localhost:8443/
https://github.com/Kurento/kurento/tree/main/tutorials/java/rtp-receiver

Kurento Documentation, Release 7.0-dev

Application Server Logic

This demo has been developed using Java in the server side, based on the Spring Boot framework, which embeds a
Tomcat web server within the resulting program, and thus simplifies the development and deployment process.

Note: You can use whatever Java server side technology you prefer to build web applications with Kurento. For
example, a pure Java EE application, SIP Servlets, Play, Vert.x, etc. Here we chose Spring Boot for convenience.

This graph shows the class diagram of the Application Server:

Fig. 20: Server-side class diagram of the Application Server

Client-Side Logic
We use a specific Kurento JavaScript library called kurento-utils.js to simplify the WebRTC interaction between

browser and application server. This library depends on adapter.js, which is a JavaScript WebRTC utility maintained
by Google that abstracts away browser differences.

These libraries are linked in the index.html page, and are used in the index.js file.

7.4 WebRTC One-To-Many broadcast

Video broadcasting for WebRTC'. One peer transmits a video stream and N peers receive it.

7.4.1 Java - One to many video call

This web application consists of a one-to-many video call using WebRTC technology. In other words, it is an imple-
mentation of a video broadcasting web application.

Note: Web browsers require using HTTPS to enable WebRTC, so the web server must use SSL and a certificate file.
For instructions, check Configure a Java server to use HTTPS.

For convenience, this tutorial already provides dummy self-signed certificates (which will cause a security warning in
the browser).

For the impatient: running this example

First of all, you should install Kurento Media Server to run this demo. Please visit the installation guide for further
information.

To launch the application, you need to clone the GitHub project where this demo is hosted, and then run the main class:

git clone https://github.com/Kurento/kurento.git
cd kurento/tutorials/java/one2many-call/

git checkout main

mvn -U clean spring-boot:run

88 Chapter 7. Tutorials

Kurento Documentation, Release 7.0-dev

The web application starts on port 8443 in the localhost by default. Therefore, open the URL https://localhost:8443/
in a WebRTC compliant browser (Chrome, Firefox).

Note: These instructions work only if Kurento Media Server is up and running in the same machine as the tutorial.
However, it is possible to connect to a remote KMS in other machine, simply adding the flag kms.url to the JVM
executing the demo. As we’ll be using maven, you should execute the following command

mvn -U clean spring-boot:run \
-Dspring-boot.run. jvmArguments="-Dkms.url=ws://{KMS_HOST}:8888/kurento"

Understanding this example

There will be two types of users in this application: 1 peer sending media (let’s call it Presenter) and N peers receiving
the media from the Presenter (let’s call them Viewers). Thus, the Media Pipeline is composed by 1+N interconnected
WebRtcEndpoints. The following picture shows a screenshot of the Presenter’s web GUI:

Tutorial 3: Video Call 1 to N with WebRTC

Thork weob agpicaten (orirts &0 B0 000 B madry Weies dall wiing Vet 8 TS I olfer worde, T i a0 impigererialisn of & welies Eraadiianiling sgpicaton. Trere ate Bad Fpod of ind i
T appicaton 1 pat g ke feds cal & Rainr g M g sioainG Tl e of Sap M (s el T Ve T, e U 3 Fip i oompnaed by 1N
P e WA s T fu Frd deietel olie Pebia 40

U g S palge w3 Broagr Dormpikant w VWrobEl TS [Chrome, Firpios)

2 o waoni M 0 bey S Bt o s Corvmrecanon, ROk O s Bumon. TRere L 0rdy D or of S ored oF pa vl 60, Fon Lisiiee [ui B aready (Reaani Fe
Pt Poluftrl 5% oFF |00 T P ddwnidie]

A dirsrd ®a acoeny o e camars and merophore AMne B S0P st aton B somrmiaion thouid nar, Blatee pons wal B 10l i kenlact L@ b/t £ e 51 el
it [l s i b el e B Sl A [hea ki L TR dmmota il el b b R 8 e

€ B b Afetetl Siifed [b SBoetl Ll it P dicfed bidmiad] Chil of Viewds bullo® I fdd Ped Rlidled difnds

& ek on Biop i frah T comruricaton YWhen blapier dkch an Slop, e rpald of Viewors [s ordn B clemmurcation kod

B W01 K Do el i o be ALV e g OGN Y
REPZANFF 087 900 1048 O 8 108 005 13 100recsii
© 2018 Ko
s
By frsm it

Fig. 21: One to many video call screenshot

To implement this behavior we have to create a Media Pipeline composed by 1+N WebRtcEndpoints. The Presenter
peer sends its stream to the rest of the Viewers. Viewers are configured in receive-only mode. The implemented media
pipeline is illustrated in the following picture:

This is a web application, and therefore it follows a client-server architecture. At the client-side, the logic is imple-

7.4. WebRTC One-To-Many broadcast 89

https://localhost:8443/

Kurento Documentation, Release 7.0-dev

Master WebRteEndpoint Viewer WebRtcEndpoint

Fig. 22: One to many video call Media Pipeline

mented in JavaScript. At the server-side, we use a Spring-Boot based application server consuming the Kurento
Java Client API, to control Kurento Media Server capabilities. All in all, the high level architecture of this demo
is three-tier. To communicate these entities two WebSockets are used. First, a WebSocket is created between client
and server-side to implement a custom signaling protocol. Second, another WebSocket is used to perform the commu-
nication between the Kurento Java Client and the Kurento Media Server. This communication is implemented by the
Kurento Protocol. For further information, please see this page.

Client and application server communicate using a signaling protocol based on JSON messages over WebSocket ‘s.
The normal sequence between client and server is as follows:

1. A Presenter enters in the system. There must be one and only one Presenter at any time. For that, if a Presenter has
already present, an error message is sent if another user tries to become Presenter.

2. N Viewers connect to the presenter. If no Presenter is present, then an error is sent to the corresponding Viewer.
3. Viewers can leave the communication at any time.

4. When the Presenter finishes the session each connected Viewer receives an stopCommunication message and also
terminates its session.

We can draw the following sequence diagram with detailed messages between clients and server:

As you can see in the diagram, SDP and /CE candidates need to be exchanged between client and server to establish the
WebRTC connection between the Kurento client and server. Specifically, the SDP negotiation connects the WebRtcPeer
in the browser with the WebRtcEndpoint in the server. The complete source code of this demo can be found in GitHub.

Application Server Logic

This demo has been developed using Java in the server-side, based on the Spring Boot framework, which embeds a
Tomcat web server within the generated maven artifact, and thus simplifies the development and deployment process.

Note: You can use whatever Java server side technology you prefer to build web applications with Kurento. For
example, a pure Java EE application, SIP Servlets, Play, Vert.x, etc. We chose Spring Boot for convenience.

In the following, figure you can see a class diagram of the server side code:

90 Chapter 7. Tutorials

https://github.com/Kurento/kurento/tree/main/tutorials/java/one2many-call

Kurento Documentation, Release 7.0-dev

Javascript Client
[Presenter)

Application Kurento |
Server Media Server
ALT id:presenter
sdpOffer: <sdps

Eurento Protocol Messages
id:presenterResponse (ISON over WebSocket)
response:accepted E
 sdphnswer :<sdp> -
Preseme_r m?m" b id:icecandidate
communication _candidate :<candidate>

A

| id:onIceCandidate
candidate:<candidate>

idipresenterResponse
response:rejected
| message idescription

*

JavaScript Client
: @“”

ALT id:wviewer
adpoffor: <sdp>

Kurento Protdeol Messages
E (150N over febSocket)

vy

id:viewerResponse
Viewer joins to

response: accepted
presenter SdpAnSWeE 1 <3dp>

id:iceCandidate
candidate:<candidate>

idienlceCandidate
candidate :<candidater

id:viewerResponse
rasponse: rejected
message:description

Presente_r er!ds | id:stop
communication

L 4

id:stopCommunication

Fig. 23: One to many video call signaling protocol

7.4. WebRTC One-To-Many broadcast 91

Kurento Documentation, Release 7.0-dev

One2MamyCalladpp

CallHandler |—3 KurentoClient

Usersession

Fig. 24: Server-side class diagram of the One2Many app

The main class of this demo is named One2ManyCallApp. As you can see, the KurentoClient is instantiated in this
class as a Spring Bean. This bean is used to create Kurento Media Pipelines, which are used to add media capabilities
to your applications. In this instantiation we see that a WebSocket is used to connect with Kurento Media Server, by
default in the localhost and listening in the port TCP 8888.

@EnableWebSocket
@SpringBootApplication
public class One2ManyCallApp implements WebSocketConfigurer {

@Bean
public CallHandler callHandler() {
return new CallHandler();

}

@Bean

public KurentoClient kurentoClient() {
return KurentoClient. O;

}

public void registerWebSocketHandlers(WebSocketHandlerRegistry registry) {
registry. (callHandler(Q), '"/call");
}

public static void main(String[] args) throws Exception {
new SpringApplication(One2ManyCallApp.). (args);
}

This web application follows a Single Page Application architecture (SPA), and uses a WebSocket to communicate
client with server by means of requests and responses. Specifically, the main app class implements the interface
WebSocketConfigurer to register a WebSocketHandler to process WebSocket requests in the path /call.

CallHandler class implements TextWebSocketHandler to handle text WebSocket requests. The central piece of this
class is the method handleTextMessage. This method implements the actions for requests, returning responses
through the WebSocket. In other words, it implements the server part of the signaling protocol depicted in the previous

92 Chapter 7. Tutorials

https://github.com/Kurento/kurento/blob/main/tutorials/java/one2many-call/src/main/java/org/kurento/tutorial/one2manycall/One2ManyCallApp.java
https://github.com/Kurento/kurento/blob/main/tutorials/java/one2many-call/src/main/java/org/kurento/tutorial/one2manycall/CallHandler.java

Kurento Documentation, Release 7.0-dev

sequence diagram.

In the designed protocol there are three different kind of incoming messages to the Server : presenter, viewer, stop,
and onIceCandidate. These messages are treated in the swifch clause, taking the proper steps in each case.

public class CallHandler extends TextWebSocketHandler {

private static final Logger log = LoggerFactory. (CallHandler.);
private static final Gson gson = new GsonBuilder(). O;

private final ConcurrentHashMap<String, UserSession> viewers = new ConcurrentHashMap
—<String, UserSession>(Q);

@Autowired
private KurentoClient kurento;

private MediaPipeline pipeline;
private UserSession presenterUserSession;

@Override
public void handleTextMessage(WebSocketSession session, TextMessage message) throws.
—Exception {

JsonObject jsonMessage = gson. (message. (), JsonObject.);
log. ("Incoming message from session '{}': {}", session. (), jsonMessage);
switch (jsonMessage. "id"). 0O) {
case '"presenter":

try {

presenter(session, jsonMessage);
} catch (Throwable t) {
handleErrorResponse(t, session, "presenterResponse");
}
break;
case "viewer":
try {
viewer(session, jsonMessage);
} catch (Throwable t) {
handleErrorResponse(t, session, "viewerResponse");
1
break;
case "onIceCandidate": {
JsonObject candidate = jsonMessage. ("candidate"). O;

UserSession user = null;

if (presenterUserSession != null) {
if (presenterUserSession. () == session) {
user = presenterUserSession;
} else {
user = viewers. (session. 0);
}
1
if (user != null) {
IceCandidate cand = new IceCandidate(candidate. ("candidate").
- O,

(continues on next page)

7.4. WebRTC One-To-Many broadcast 93

Kurento Documentation, Release 7.0-dev

(continued from previous page)

candidate. ("sdpMid™). (), candidate. ("sdpMLineIndex").
- 0);
user. (cand);
1
break;
}
case "stop":
stop(session);
break;
default:
break;
}
}

private void handleErrorResponse(Throwable t, WebSocketSession session,
String responseld) throws IOException {

stop(session);

log. (t. O, t);

JsonObject response = new JsonObject();

response. ("id", responseld);

response. ("response", "rejected");

response. ("message", t. 0O);

session. (new TextMessage(response. O)»;

}

private synchronized void presenter(final WebSocketSession session, JsonObject..
<, jsonMessage) throws IOException {

}

private synchronized void viewer(final WebSocketSession session, JsonObject.,
—.jsonMessage) throws IOException {

}

private synchronized void stop(WebSocketSession session) throws IOException {

}

@Override
public void afterConnectionClosed(WebSocketSession session, CloseStatus status).
—throws Exception {
stop(session);

}

In the following snippet, we can see the presenter method. It creates a Media Pipeline and the WebRtcEndpoint for
presenter:

private synchronized void presenter(final WebSocketSession session, JsonObject.
—.jsonMessage) throws IOException {

(continues on next page)

94 Chapter 7. Tutorials

Kurento Documentation, Release 7.0-dev

(continued from previous page)

if (presenterUserSession == null) {
presenterUserSession = new UserSession(session);

pipeline = kurento. Q;

presenterUserSession. (new WebRtcEndpoint. (pipeline).
- O

WebRtcEndpoint presenterWebRtc = presenterUserSession. O;

presenterWebRtc. (new EventListener

—<IceCandidateFoundEvent>() {

@Override
public void onEvent(IceCandidateFoundEvent event) {
JsonObject response = new JsonObject();

response. ("id", "iceCandidate');
response. ("candidate", JsonUtils. (event. O)»;
try {
synchronized (session) {
session. (new TextMessage(response. 0O);
1
} catch (IOException e) {
log. (e. (ODH
1
1
b;
String sdpOffer = jsonMessage. ("sdpOffer"). O;
String sdpAnswer = presenterWebRtc. (sdpOffer);

JsonObject response = new JsonObject();

response. ("id", "presenterResponse");
response. ("response", "accepted");
response. ("sdpAnswer", sdpAnswer);

synchronized (session) {

presenterUserSession. (response);
}
presenterWebRtc. O;
} else {
JsonObject response = new JsonObject(Q);
response. ("id", "presenterResponse');
response. ("response", "rejected");
response. ("message", "Another user is currently acting as sender. Try.
—again later ...");
session. (new TextMessage(response. 0));
}
}

The viewer method is similar, but not he Presenter WebRtcEndpoin