

 [image: Kurento logo]

Table of Contents

	Introduction
	Core API

	Other components

	Integration example

	Quick start
	Functionalities

	Running the demo

	Configuring the demo

	Rooms Core API
	Understanding the API

	RoomManager

	Events - RoomHandler

	NotificationRoomManager

	Notifications design - UserNotificationService

	Notifications design - NotificationRoomHandler

	KurentoClientProvider

	POJOs

	Developer guide
	Quick hints

	Try the tutorial

	WebSocket API for Room Server
	WebSocket messages

	REST APIs
	Room Server API

	Room Demo API

	Client JavaScript API
	KurentoRoom

	KurentoRoom.Room

	KurentoRoom.Participant

	KurentoRoom.Stream

	Client Java API
	Using the library

	Usage

	Room Demo tutorial
	Server-side code

	Demo customization of the server-side

	Client-side code

	Demo deployment
	Installation procedures

	Running the application

	Code structure

	Kurento JavaDoc
	Kurento Room SDK JavaDoc

	Glossary

	Index

 [image: Kurento logo]

Introduction

At Kurento we strive to provide services for developers of advanced
video applications for the Web and smartphone platforms.
We found that a common use case is represented by multi-party group calls
requiring a media server for advanced media processing.

This project introduces the Rooms API, designed for the development
of conferencing applications whose centerpiece is the Kurento Media Server.
The conference groups (rooms) will be managed using the API, which at the same time
provides the means to interconnect the end-users through a Kurento Media Server
instance.

[image: Architecture of a Room application]
Architecture of a Room application

The API’s core module, Room SDK, is a Java library for the
server-side and has the main functionality of managing multi-conference sessions.

Additionally, we provide extra components that can be used when
developing applications that follow the architecture depicted above:

	Room Server: a container-based implementation of the server, uses
JSON-RPC over WebSockets for communications with the clients

	Room JavaScript Client: module implementing a Room client for Web applications
(works with the Room Server only)

	Room Client: a client library for Java web applications or Android clients
(works with the Room Server only)

[image: Integration of the API components]
Integration of the API components

Core API

The core module defines a programming model for applications developed using the
Java language. Some of the benefits from using this library:

	control over the lifecycle of a multimedia conference (room)

	access to typical operations required for managing the participants (join, exit,
publish or receive media streams, etc.)

	simple media signaling, the application is required only to provide the media
initialization and negotiation parameters received from the clients

	multimedia legs or service topologies are hidden by default (media elements
like image filters can still be applied to a participant’s stream)

This component requires access to at least one instance of a Kurento Media Server
for WebRTC media handling.

Developers can integrate this API directly into their application, but it’s
important to understand that this library doesn’t possess, on its own, the
ability to communicate with the clients. Further details can be found in the
core API section.

Other components

Our server implementation, the Room Server, packs the functionality from the Room
SDK with technologies such as Spring Boot and JSON-RPC over WebSockets. As such,
it combines the client communications component and the core Room API, providing
a fully-fledged Rooms server application.
It can be easily integrated into other applications that use the Spring Boot framework.

Both client libraries are designed to be used in combination with the Room Server,
as for signaling they use the JSON-RPC API exposed by our server component.

The Java client doesn’t deal with media handling but only defines a Java API
over the JSON-RPC protocol supported by the Room Server.

On the other hand, the JavaScript client also controls the browser’s media
initialization and negotiation details, enabling the developer to focus on application
functionality.

At the moment, there is no iOS client available.

Note

Please observe that the server’s WebSocket API has a limitation concerning an
user’s name, it can’t contain lower dashes (_).

Integration example

The Room Demo module is a Single-Page Application based on the Room Server and the
Room JavaScript Client. It enables users to simultaneously establish multiple
connections to other users connected to the same session or room.

Note

Even though the core module is the Room SDK, developers are free to pick
whatever component they need in order to build their application: some might
need some minor modifications on the client side, whilst others would want to
inject their logic on server side and might even have to modify the SDK.

For example, the demo shows how to integrate some of the provided components
together with the client-side technology AngularJS and some small modifications
of the server (adds a image filter for the video streams and a custom message type).

We provide a Quick start guide for the demo’s installation
and execution.

There’s also a short Developer guide for applications based on this API.

Quick start

For a quick initial contact with the framework, we recommend running the demo
application and observing the exchange of WebSocket messages between the clients
and the server.

Currently, the demo is only supported for Ubuntu 14.04 LTS 64bits.

Functionalities

This project, named kurento-room-demo, contains the client-side implementation
(HTML, JavaScript, graphic resources) of the Rooms API and embeds the room
server to provide the functionality required for group communications (the
so-called rooms).

Upon launch and using the SpringBoot framework, it starts the main application
of the module kurento-room-server which exposes the rooms API through an
WebSocket interface.

The client part has been implemented using AngularJS and lumX and it’s using
the room’s JavaScript library for the client-side (KurentoRoom.js).

This application allows web clients to:

	login inside a room (creating the room if it doesn’t exist)

	leave the room

	publish their media stream

	mute their video and/or audio

	enter fullscreen

	automatically subscribe to any stream published in the room and play it on
the screen (video) and through the system speakers (audio)

	unsubscribe from a stream

	unpublish their media

	send messages to the other peers

	apply or remove a media filter over their published video stream (using a
face overlay filter that adds a hat on top of a recognized human face)

	select which video source to display in the larger area of the browser from
the available thumbnails

Running the demo

After cloning the tutorial, it can be executed directly from the terminal by
using the Maven exec plugin. To make sure the demo can be built and executed
correctly, a stable release (or tag) is checked out before proceeding with the
build (prevents missing dependencies, given that in Kurento master is the
development branch):

$ git clone https://github.com/Kurento/kurento-room.git
$ cd kurento-room
checkout the latest tag
$ git checkout $(git describe --abbrev=0 --tags)
$ cd kurento-room-demo
$ mvn compile exec:java

Now open the following URL in a WebRTC-compatible browser and connect to a new
room by providing the desired user and room names: https://localhost:8443.

Configuring the demo

There are several options or properties that might require to be modified in order for the demo to
function properly.

The properties file, kurento-room-demo.conf.json, used in the demo’s execution as
described above, is located in the folder src/main/resources and its
contents are the following:

{
 "kms": {
 "uris": ["ws://localhost:8888/kurento", "ws://127.0.0.1:8888/kurento"]
 },
 "app": {
 "uri": "https://localhost:8443/"
 },
 "kurento": {
 "client": {
 //milliseconds
 "requestTimeout": 20000
 }
 },
 "demo": {
 //mario-wings.png or wizard.png
 "hatUrl": "mario-wings.png",
 "hatCoords": {
 // mario-wings hat
 "offsetXPercent": -0.35F,
 "offsetYPercent": -1.2F,
 "widthPercent": 1.6F,
 "heightPercent": 1.6F

 //wizard hat
 //"offsetXPercent": -0.2F,
 //"offsetYPercent": -1.35F,
 //"widthPercent": 1.5F,
 //"heightPercent": 1.5F
 },
 "loopback" : {
 "remote": false,
 //matters only when remote is true
 "andLocal": false
 },
 "authRegex": ".*",
 "kmsLimit": 1000
 }
}

These properties can be overwritten on the command-line when starting the demo server:

$ mvn compile exec:java -Dkms.uris=[\"ws://192.168.1.99:9001/kurento\"]

In this example, we’ve instructed the demo to use a different URI of a running
KMS instance when creating the KurentoClient required by the Room API.

Note

More details on the demo’s configuration and execution can be found in the
deployment section.

Rooms Core API

The Rooms API is based on the Room Manager abstraction. This manager can organize
and control multi-party group calls with the aid of Kurento technologies.

We understand this library as an SDK for any developer that wants to implement
a Room server-side application.

The Room Manager’s Java API takes care of the room and media-specific details, freeing
the programmer from low-level or repetitive tasks (inherent to every multi-conference
application) and allowing her to focus more on the application’s functionality or
business logic.

Understanding the API

The manager deals with two main concepts:

	rooms - virtual groups of peers, with the limitation that an user can be
belong to only one at a time. To identify them we use their names.

	participants - virtual representation of a end-user. The application will
provide a string representation of the user level that should suffice to
uniquely identify this participant.

Given the nature of the applications using our API, it’s expected that the
end-users will try to connect to existing rooms (or create new ones) and
publish or receive media streams from other peers.

When using this SDK, the application’s job is to receive and translate messages
from the end-users’ side into requests for a Room Manager instance.

Some of API’s methods not only deal with room management, but also with
the media capabilities required by the participants. The underlying media
processing is performed through a library called Kurento Client,
which can raise events when certain conditions are met for some of the media
objects created by the manager. In turn, the information gathered by
handling these events is sometimes required to be notified to the end-user.
The manager notifies the application of the most important events by using an
interface called Room Handler, for which the application must provide an
implementation.

[image: Room Manager integration]
Room Manager integration

We provide two types of Room Manager that expose almost the same interface (the
same method names but with different signatures):

	org.kurento.room.RoomManager: the default implementation.

	org.kurento.room.NotificationRoomManager: an implementation that defines
a model for sending the notifications or the responses back to the clients.

RoomManager

There are two requirements for creating a new (regular) room manager, and they
are to provide implementations for:

	the Room Handler in charge of events triggered by internal media objects

	a Kurento Client Manager that will be used to obtain instances of Kurento Client

For client-originated requests, the application is required to inform the
remote parties of the outcome of executing the requests, such as informing all
participants in a room when one of them has requested to publish her media.

There is another type of methods that attend to application-originated requests
(or business logic), in this case the application if free to interpret the
result and to act upon it.

Events - RoomHandler

In order to act upon events raised by media objects, such as new ICE
candidates gathered or media errors, the application has to provide an event
handler. Generally speaking, these are user-orientated events, so the application
should notify the corresponding users.

Room and RoomHandler relations

The following is a table detailing the server events that will resort to methods
from Room Handler.

	Events

	RoomHandler

	gathered ICE candidate

	onSendIceCandidate

	pipeline error

	onPipelineError

	media element error

	onMediaElementError

NotificationRoomManager

There are two requirements when instantiating a notification room manager, and
they are to provide implementations for:

	a communication interface that can send messages or notifications back to
the application’s end users AND/OR a notification room event handler that
will take the control over the notifications’ lifecycle

	a Kurento Client Manager that will be used to obtain concrete instances
of Kurento Client

The room event handler has been designed to provide feedback to the application
with the result obtained from processing a user’s request.

The notification managing API considers two different types of methods:

	server domain - consists of methods designed to be used in the
implementation of the application’s logic tier and the integration with the
room SDK. The execution of these methods will be performed synchronously.
They can be seen as helper or administration methods and expose a direct
control over the rooms.

	client domain - methods invoked as a result of incoming user
requests, they implement the room specification for the client endpoints.
They could execute asynchronously and the caller should not expect a result,
but use the response handler if it’s required to further analyze and process
the client’s request.

The following diagram describes the components that make up the system when using
the notifications room manager:

[image: Notification Room Manager]
Notification Room Manager

Notifications design - UserNotificationService

This specification was planned so that the room manager could send
notifications or responses back to the remote peers whilst remaining isolated
from the transport or communications layers. The notification API is used by
the our implementation of the NotificationRoomHandler (the class
DefaultNotificationRoomHandler).

The API’s methods were defined based on the protocol JSON-RPC and its messages
format. It is expected but not required for the client-server communications to
use this protocol.

It is left for the developer to provide an implementation for this API.

If the developer chooses another mechanism to communicate with the client, they
will have to use their own implementation of NotificationRoomHandler which
will completely decouple the communication details from the room API.

Notifications design - NotificationRoomHandler

Through this interface, the room API passes the execution result of client
primitives to the application and from there to the clients. It’s the
application’s duty to respect this contract. These methods all return void.

Several of the methods will be invoked as a result of things happening outside
of a user request scope: room closed, user evicted and the ones inherited from
the RoomHandler interface.

NotificationRoomManager and NotificationRoomHandler relations

The following is a table detailing the methods from the
NotificationRoomManager that will resort to methods from
NotificationRoomHandler (also inherited methods).

	NotificationRoomManager

	NotificationRoomHandler

	joinRoom

	onParticipantJoined

	leaveRoom

	onParticipantLeft

	publishMedia

	onPublishMedia

	unpublishMedia

	onUnpublishMedia

	subscribe

	onSubscribe

	unsubscribe

	onUnsubscribe

	sendMessage

	onSendMessage

	onIceCandidate

	onRecvIceCandidate

	close room (Server action)

	onRoomClosed

	evict participant (Server action)

	onParticipantEvicted

	gathered ICE candidate (Server event)

	onSendIceCandidate

	pipeline error (Server event)

	onPipelineError

	media element error (Server event)

	onParticipantMediaError

KurentoClientProvider

This service was designed so that the room manager could obtain a Kurento Client
instance at any time, without requiring knowledge about the placement of the
KMS instances.

It is left for the developer to provide an implementation for this interface.

POJOs

The following classes are used in the requests and responses defined by the
Rooms API.

	UserParticipant - links the participant’s identifier with her user name
and a flag telling if the user is currently streaming media.

	ParticipantRequest - links the participant’s identifier
with a request id (optional identifier of the request at the communications
level, included when responding back to the client; is nullable and will be
copied as is). Used in the notification variant of the Room Manager.

	RoomException - runtime exception wrapper, includes:

	code - Number that indicates the error type that occurred

	message - String providing a short description of the error

Developer guide

Quick hints

These are some of the design and architecture requirements that an application
has to fulfill in order to use the Room API:

	include the SDK module to its dependencies list

	create an instance of one of the two Room Manager types by
providing implementations for the following interfaces:

	RoomHandler

	KurentoClientProvider

	develop the client-side of the application for devices that support WebRTC
(hint: or use our client-js library and take a look at the demo’s client
implementation)

	design a room signaling protocol that will be used between the clients and
the server (hint: or use the WebSockets API from kurento-room-server)

	implement a server-side handler for client messages, that will use the
RoomManager to process these requests (hint: we provide a JSON-RPC
handler in kurento-room-server)

	choose a response and notification mechanism for the communication with the
clients (hint: JSON-RPC notification service from kurento-room-server)

About the technology stacks that can or should be used to implement a Rooms
application:

	WebSockets as transport for messages between the server and the clients
(and maybe JSON-RPC for the messages format).

	Spring Boot for the easy configuration and integration with some of
Kurento’s modules. It also provides a WebSockets library.

And of course, the main requirement is at least one installation of the
Kurento Media Server that has to be accessible from the room application.

Try the tutorial

There is a complete tutorial on how to create a
multi-conference application by taking advantage of the components already
provided in this project (Room SDK, Room Server and the JavaScript client). The
tutorial is based on the development of the Room Demo application.

WebSocket API for Room Server

The Room Server component exposes a WebSocket with the default URI
wss://localhost:8443/room, where the hostname and port depend on the current
setup.

For a Room application integrating the server component, this WebSocket enables
to not only receive client messages but also instantly push events to the clients,
as soon as they happen.

The exchanged messages between server and clients are
JSON-RPC 2.0 [http://www.jsonrpc.org/specification] requests and responses.
The events are sent from the server in the same way as a server’s request, but
without requiring a response and they don’t include an identifier.

WebSocket messages

1 - Join room

Represents a client’s request to join a room. If the room does not exist, it is
created. To obtain the available rooms, the client should previously use the
REST method getAllRooms.

	Method: joinRoom

	Parameters:

	user - user’s name

	room - room’s name

	dataChannels - optional boolean, enables DataChannels for the publisher

	Example request:

{"jsonrpc":"2.0","method":"joinRoom",
 "params":{"user":"USER1","room":"ROOM_1","dataChannels":true},"id":0}

	Server response (result):

	sessionId - id of the WebSocket session between the browser and
the server

	value - list of existing users in this room, empty when the room
is a fresh one:

	id - an already existing user’s name

	streams - list of stream identifiers that the other
participant has opened to connect with the room. As only webcam is
supported, will always be [{"id":"webcam"}].

	Example response:

{"id":0,"result":{"value":[{"id":"USER0","streams":[{"id":"webcam"}]}],
"sessionId":"dv41ks9hj761rndhcc8nd8cj8q"},"jsonrpc":"2.0"}

2 - Participant joined event

Event sent by server to all other participants in the room as a result of a new
user joining in.

	Method: participantJoined

	Parameters:

	id: the new participant’s id (username)

	Example message:

{"jsonrpc":"2.0","method":"participantJoined","params":{"id":"USER1"}}

3 - Publish video

Represents a client’s request to start streaming her local media to anyone
inside the room. The user can use the SDP answer from the response to display
her local media after having passed through the KMS server (as opposed or
besides using just the local stream), and thus check what other users in the
room are receiving from her stream. The loopback can be enabled using the
corresponding parameter.

	Method: publishVideo

	Parameters:

	sdpOffer: SDP offer sent by this client

	doLoopback: boolean enabling media loopback

	Example request:

{"jsonrpc":"2.0","method":"publishVideo","params":{"sdpOffer":
"v=0....apt=100\r\n"},"doLoopback":false,"id":1}

	Server response (result)

	sessionId: id of the WebSocket session

	sdpAnswer: SDP answer build by the the user’s server WebRTC endpoint

	Example response:

{"id":1,"result":{"sdpAnswer":"v=0....apt=100\r\n",
"sessionId":"dv41ks9hj761rndhcc8nd8cj8q"},"jsonrpc":"2.0"}

4 - Participant published event

Event sent by server to all other participants in the room as a result of a user
publishing her local media stream.

	Method: participantPublished

	Parameters:

	id: publisher’s username

	streams: list of stream identifiers that the participant has opened
to connect with the room. As only webcam is supported, will always be
[{"id":"webcam"}].

	Example message:

{"jsonrpc":"2.0","method":"participantPublished",
"params":{"id":"USER1","streams":[{"id":"webcam"}]}}

5 - Unpublish video

Represents a client’s request to stop streaming her local media to her room peers.

	Method: unpublishVideo

	Parameters: No parameters required

	Example request:

{"jsonrpc":"2.0","method":"unpublishVideo","id":38}

	Server response (result)

	sessionId: id of the WebSocket session

	Example response:

{"id":1,"result":{"sessionId":"dv41ks9hj761rndhcc8nd8cj8q"},"jsonrpc":"2.0"}

6 - Participant unpublished event

Event sent by server to all other participants in the room as a result of a user
having stopped publishing her local media stream.

	Method: participantUnpublished

	Parameters:

	name - publisher’s username

	Example message:

{"method":"participantUnpublished","params":{"name":"USER1"}, "jsonrpc":"2.0"}

7 - Receive video

Represents a client’s request to receive media from participants in the room
that published their media. This method can also be used for loopback
connections.

	Method: receiveVideoFrom

	Parameters:

	sender: id of the publisher’s endpoint, build by appending the
publisher’s name and her currently opened stream (usually webcam)

	sdpOffer: SDP offer sent by this client

	Example request:

{"jsonrpc":"2.0","method":"receiveVideoFrom","params":{"sender":
"USER0_webcam","sdpOffer":"v=0....apt=100\r\n"},"id":2}

	Server response (result)

	sessionId: id of the WebSocket session

	sdpAnswer: SDP answer build by the other participant’s WebRTC
endpoint

	Example response:

{"id":2,"result":{"sdpAnswer":"v=0....apt=100\r\n", "sessionId":"dv41ks9hj761rndhcc8nd8cj8q"},"jsonrpc":"2.0"}

8 - Unsubscribe from video

Represents a client’s request to stop receiving media from a given publisher.

	Method: unsubscribeFromVideo

	Parameters:

	sender: id of the publisher’s endpoint, build by appending the
publisher’s name and her currently opened stream (usually webcam)

	Example request:

{"jsonrpc":"2.0","method":"unsubscribeFromVideo","params":{"sender":
"USER0_webcam"},"id":67}

	Server response (result)

“sessionId” - id of the WebSocket session

	Example response:

{"id":2,"result":{"sdpAnswer":"v=0....apt=100\r\n",
 "sessionId":"dv41ks9hj761rndhcc8nd8cj8q"},"jsonrpc":"2.0"}

9 - Send ICE Candidate

Request that carries info about an ICE candidate gathered on the client side.
This information is required to implement the trickle ICE mechanism. Should be
sent whenever an ICECandidate event is created by a RTCPeerConnection.

	Method: onIceCandidate

	Parameters:

	endpointName: the name of the peer whose ICE candidate was found

	candidate: the candidate attribute information

	sdpMLineIndex: the index (starting at zero) of the m-line in the
SDP this candidate is associated with

	sdpMid: media stream identification, “audio” or “video”, for the
m-line this candidate is associated with

	Example request:

{"jsonrpc":"2.0","method":"onIceCandidate","params":
 {"endpointName":"USER1","candidate":
 "candidate:2023387037 1 udp 2122260223 127.0.16.1 48156 typ host generation 0",
 "sdpMid":"audio",
 "sdpMLineIndex":0
 },"id":3}

	Server response (result):

	sessionId: id of the WebSocket session

	Example response:

{"id":3,"result":{"sessionId":"dv41ks9hj761rndhcc8nd8cj8q"},"jsonrpc":"2.0"}

10 - Receive ICE Candidate event

Server event that carries info about an ICE candidate gathered on the server
side. This information is required to implement the trickle ICE mechanism. Will
be received by the client whenever a new candidate is gathered for the local
peer on the server.

	Method: iceCandidate

	Parameters:

	endpointName: the name of the peer whose ICE candidate was found

	candidate: the candidate attribute information

	sdpMLineIndex: the index (starting at zero) of the m-line in the
SDP this candidate is associated with

	sdpMid: media stream identification, “audio” or “video”, for the
m-line this candidate is associated with

	Example message:

{"method":"iceCandidate","params":{"endpointName":"USER1",
"sdpMLineIndex":1,"sdpMid":"video","candidate":
"candidate:2 1 UDP 1677721855 127.0.1.1 58322 typ srflx raddr 172.16.181.129 rport 59597"},"jsonrpc":"2.0"}

11 - Leave room

Represents a client’s notification that she’s leaving the room.

	Method: leaveRoom

	Parameters: NONE

	Example request:

{"jsonrpc":"2.0","method":"leaveRoom","id":4}

	Server response (result):

	sessionId: id of the WebSocket session

	Example response:

{"id":4,"result":{"sessionId":"dv41ks9hj761rndhcc8nd8cj8q"},"jsonrpc":"2.0"}

12 - Participant left event

Event sent by server to all other participants in the room as a consequence of
an user leaving the room.

	Method: participantLeft

	Parameters:

	name: username of the participant that has disconnected

	Example message:

{"jsonrpc":"2.0","method":"participantLeft","params":{"name":"USER1"}}

13 - Participant evicted event

Event sent by server to a participant in the room as a consequence of a
server-side action requiring the participant to leave the room.

	Method: participantEvicted

	Parameters: NONE

	Example message:

{"jsonrpc":"2.0","method":"participantLeft","params":{}}

14 - Send message

Used by clients to send written messages to all other participants in the room.

	Method: sendMessage

	Parameters:

	message: the text message

	userMessage: message originator (username)

	roomMessage: room identifier (room name)

	Example request:

{"jsonrpc":"2.0","method":"sendMessage","params":{"message":"My message",
"userMessage":"USER1","roomMessage":"ROOM_1"},"id":5}

	Server response (result):

	sessionId: id of the WebSocket session

	Example response:

{"id":5,"result":{"sessionId":"dv41ks9hj761rndhcc8nd8cj8q"},"jsonrpc":"2.0"}

15 - Message sent event

Broadcast event that propagates a written message to all room participants.

	Method: sendMessage

	Parameters:

	room: current room name

	name: username of the text message source

	message: the text message

	Example message:

{"method":"sendMessage","params":{"room":"ROOM_1","user":"USER1",
"message":"My message"},"jsonrpc":"2.0"}

16 - Media error event

Event sent by server to all participants affected by an error event intercepted
on a media pipeline or media element.

	Method: mediaError

	Parameters:

	error: description of the error

	Example message:

{"method":"mediaError","params":{
"error":"ERR_CODE: Pipeline generic error"},"jsonrpc":"2.0"}

17 - Custom request

Provides a custom envelope for requests not directly implemented by the Room
server. The default server implementation of handling this call is to throw a
RuntimeException. There is one implementation of this request, and it’s used by
the demo application to toggle the hat filter overlay.

	Method: customRequest

	Parameters: Parameters specification is left to the actual implementation

	Example request:

{"jsonrpc":"2.0","method":"customRequest","params":{...},"id":6}

	Server response (result):

	sessionId: id of the WebSocket session

	other result parameters are not specified (left to the implementation)

	Example response:

{"id":6,"result":{"sessionId":"dv41ks9hj761rndhcc8nd8cj8q"},"jsonrpc":"2.0"}

REST APIs

Apart from the WebSocket API, clients can also interact with the Room Server
component using a more conventional Http REST API.

Room Server API

The Room Server component publishes a REST service with only one primitive,
that can be used to obtain the available rooms.

1 - Get all rooms

Returns a list with all the available rooms’ names.

	Request method and URL: GET /getAllRooms

	Request Content-Type: NONE

	Request parameters: NONE

	Response elements: Returns an entity of type application/json including
a POJO of type Set<String> with the following information:

	Element

	Optional

	Description

	roomN

	Yes

	Name of the N-th available room

	Response Codes

	Code

	Description

	200 OK

	Query successfully executed

Room Demo API

The demo application provides an additional REST service with two primitives:

	close a given room directly from the server and evict the existing participants

	one that sends the configuration loopback parameters to the client-side

1 - Close room

Closes the room

	Request method and URL: GET /close?room={roomName}

	Request Content-Type: NONE

	Request parameters:

	Element

	Optional

	Description

	{roomName}

	No

	Name of the room that will be closed

	Response elements:

	Code

	Description

	200 OK

	Query successfully executed

	404 Not found

	No room exists with the provided name

2 - Get client configuration

Returns a ClientConfig POJO that can be used to configure the source for the own
video (only local, remote or both).

	Request method and URL: GET /getClientConfig

	Request Content-Type: NONE

	Request parameters: NONE

	Response elements: Returns an entity of type application/json including
a POJO of type ClientConfig with the following information:

	Element

	Optional

	Description

	loopbackRemote

	Yes

	If true, display the local video from the server loopback

	loopbackAndLocal

	Yes

	If the other parameter is true, enables the original source as well

	Response Codes:

	Code

	Description

	200 OK

	Query successfully executed

Client JavaScript API

The developer of room applications can use this API when implementing the web interface.

It is a JavaScript library build upon other public APIs like Kurento Utils JS,
Kurento JSON-RPC Client JS, EventEmitter, etc. This module can be added as a
Maven dependency to projects implementing the client-side code for web browsers
that support WebRTC.

The library is contained by the JavaScript file KurentoRoom.js from the
module kurento-room-client-js.

The main classes of this library are the following:

	KurentoRoom: main class that initializes the room and the local stream,
also used to communicate with the server

	KurentoRoom.Room: the room abstraction, provides access to local and
remote participants and their streams

	KurentoRoom.Participant: a peer (local or remote) in the room

	KurentoRoom.Stream: wrapper for media streams published in the room

KurentoRoom

Example:

var kurento = KurentoRoom(wsUri, function (error, kurento) {...});

Through this initialization function, we indicate the WebSocket URI that will be
used to send and receive messages from the server.

The result of opening the WebSocket connection is announced through a callback
that is passed as parameter. The callback’s signature also includes as parameter
a reference to the own KurentoRoom object, giving access to its API when the
connection was established successfully.

The interface of KurentoRoom includes the creation of the Room and of the
local stream and also, for convenience, the following:

	Disconnect an active participant, be it remote or local media. This method
allows to unsubscribe from receiving media from another peer or to end publishing
the local media:

kurento.disconnectParticipant(stream);

	Close the connection to the server and release all resources:

kurento.close();

	Send messages to the other peers:

kurento.sendMessage(room, user, message);

	Send a custom request whose parameters and response handling is left to the
developer. In the demo application it is used to toggle the hat filter.

kurento.sendCustomRequest(params, function (error, response) {...});

	Add additional parameters to all WebSocket requests sent to server.

kurento.setRpcParams(params);

KurentoRoom.Room

Example:

var room = kurento.Room(options);

This constructor requires a parameter which consists of the following attributes:

	room: mandatory, the name of the room

	user: mandatory, the name of the peer inside the room

	subscribeToStreams: optional, can be true (default value) or false. If false,
the user won’t get automatic subscription to the published streams, but will
have to explicitly subscribe in order to receive media.

connect() method

The room interface’s main component is the connect method:

room.connect();

Instead of using a callback for dealing with the result of this operation, the
client must subscribe to events emitted by the room:

room-connected event

Example:

room.addEventListener("room-connected", function (data) {...});

	data.participants: array of existing KurentoRoom.Participant

	data.streams: array of existing KurentoRoom.Stream

Emitted in case the join room operation was successful.

error-room event

Example:

room.addEventListener("error-room", function (data) {...});

	data.error: the error object (use data.error.message for the description)

When an error occurred when trying to register into the room.

Other events emitted during the lifecycle of the room:

room-closed event

Example:

room.addEventListener("room-closed", function (data) {...}

	data.room: the room’s name

Emitted as a result of a server notification that the room has been forcibly
closed. Receiving this event is advised to be followed by an orderly exit from
the room (alert the user and close all resources associated with the room).

participant-joined event

Example:

room.addEventListener("participant-joined", function (data) {...});

	data.participant: a new KurentoRoom.Participant

Announces that a new peer has just joined the room.

participant-left event

Example:

room.addEventListener("participant-left", function (data) {...});

	data.participant: the KurentoRoom.Participant instance

Announces that a peer has left the room.

participant-evicted event

Example:

room.addEventListener("participant-evicted", function (data) {...});

	data.localParticipant: the local KurentoRoom.Participant instance

Announces that this peer has to leave the room as requested by the application.

participant-published event

Example:

room.addEventListener("participant-published", function (data) {...});

	data.participant: the KurentoRoom.Participant instance

Emitted when a publisher announces the availability of her media stream.

stream-published event

Example:

room.addEventListener("stream-published", function(data) {...});

	data.stream: the local KurentoRoom.Stream instance

Sent after the local media has been published to the room.

stream-subscribed event

Example:

room.addEventListener("stream-subscribed", function(data) {...});

	data.stream: the subscribed to KurentoRoom.Stream instance

Event that informs on the success of the subscribe operation.

stream-added event

Example:

room.addEventListener("stream-added", function(data) {...});

	data.stream: the new KurentoRoom.Stream instance

When the room automatically added and subscribed to a published stream.

stream-removed event

Example:

room.addEventListener("stream-removed", function(data) {...});

	data.stream: the disposed KurentoRoom.Stream instance

A consequence of a peer disconnecting from the room or unpublishing their media.

error-media event

Example:

room.addEventListener("error-media", function (data) {...});

	data.error: the error message

The server is notifying of an exception in the media server. The application
should inform the user about the error and, in most cases, should proceed with
an orderly exit from the room.

newMessage event

Example:

room.addEventListener("newMessage", function (data) {...});

	data.room: the room in which the message was sent

	data.user: the sender

	data.message: the text message

Upon reception of a message from a peer in the room (the sender is also notified
using this event).

KurentoRoom.Participant

This is more of an internal data structure (the client shouldn’t create instances
of this type), used to group distinct media streams from the same room peer.
Currently the room server only supports one stream per user.

It is a component in the data object for several emitted room events (
room-connected, participant-joined, participant-left,
participant-published).

KurentoRoom.Stream

Example:

var localStream = kurento.Stream(room, options);

The initialization of the local stream requires the following parameters:

	room: mandatory, the KurentoRoom.Room instance

	options: required object whose attributes are optional

	participant: to whom belongs the stream

	id: stream identifier (if null, will use the String webcam)

	data: enables DataChannels, the application can use the
sendData() method

init method

The stream interface’s main component is the init method, which will trigger a
request towards the user to grant access to the local camera and microphone:

localStream.init();

Instead of using a callback for dealing with the result of this operation, the
client must subscribe to events emitted by the stream:

access-accepted event

Example:

localStream.addEventListener("access-accepted", function () {...});

Emitted in case the user grants access to the camera and microphone.

access-denied event

Example:

localStream.addEventListener("access-denied", function () {...});

Sent when the user denies access to her camera and microphone.

getID() method

The identifier of the stream, usually webcam.

getGlobalID() method

Calculates a global identifier by mixing the owner’s id (the participant name)
and the local id. E.g. user1_webcam.

There are several other methods exposed by the Stream interface, they will
be described in the tutorial for making a room application.

sendData() method

If the stream is local (publishing), sends data to the server endpoint as specified
by the DataChannels protocol.

Client Java API

The developer of room applications can use this API when implementing a Java or
an Android client.

It is actually only a wrapper over the JSON-RPC protocol used to communicate with
the Room Server.

The usefulness of this module is that it allows to create and manage room
participants in a programmatic manner, or that it can be used to create an
Android room client.

Please note that we haven’t tested if it’s actually working on the Android
platform (should depend on the support for the WebSocket client implementation).

Using the library

This client can be obtained as a Maven dependency with the following coordinates:

<dependency>
 <groupId>org.kurento</groupId>
 <artifactId>kurento-room-client</artifactId>
 <version>6.6.1-SNAPSHOT</version>
</dependency>

With this dependency, the developer can use the class
org.kurento.room.client.KurentoRoomClient to create rooms or connect to
existing sessions.

Usage

To connect to a Kurento Room Server it is required to create an instance of
KurentoRoomClient class indicating the URI of the application server’s WebSocket endpoint:

KurentoRoomClient client = new KurentoRoomClient("wss://roomAddress:roomPort/room");

In background, a websocket connection is made between the Java application and
the Kurento Room Server.

As the client is no more than a wrapper for sending and receiving the messages
defined by the Room Server’s WebSocket API,
the methods of this API are quite easy to understand (as they reflect the
JSON-RPC messages).

Notifications

The client maintains a notifications’ queue where it stores messages received from
the server. The developer should run the following method in a separate thread
using an infinite loop:

Notification notif = client.getServerNotification();

The Notification abstract class publishes a method that can be used to find
its exact type:

if (notif == null)
 return;
log.debug("Polled notif {}", notif);
switch (notif.getMethod()) {
 case ICECANDIDATE_METHOD:
 IceCandidateInfo info = (IceCandidateInfo) notif;
 //do something with the ICE Candidate information
 ...
 break;
 ...
}

The notification types are the following and they contain information for the
different types of events triggered from the server-side:

	org.kurento.room.client.internal.IceCandidateInfo

	org.kurento.room.client.internal.MediaErrorInfo

	org.kurento.room.client.internal.ParticipantEvictedInfo

	org.kurento.room.client.internal.ParticipantJoinedInfo

	org.kurento.room.client.internal.ParticipantLeftInfo

	org.kurento.room.client.internal.ParticipantPublishedInfo

	org.kurento.room.client.internal.ParticipantUnpublishedInfo

	org.kurento.room.client.internal.RoomClosedInfo

	org.kurento.room.client.internal.SendMessageInfo

Join room

Map<String, List<String>> newPeers = client.joinRoom(room, username, dataChannels);

This method sends the joinRoom message and returns a list containing the existing
participants and their published streams.

Leave room

client.leaveRoom();

This method sends the leaveRoom message.

Publish

String sdpAnswer = client.publishVideo(sdpOffer, false);

This method sends the publishVideo message. It returns the SDP answer from
the publishing media endpoint on the server.

Unpublish

client.unpublishVideo();

This method sends the unpublishVideo message.

Subscribe

String sdpAnswer = client.receiveVideoFrom(sender, sdpOffer);

This method sends the receiveVideoFrom message. It returns the SDP answer from
the subscribing media endpoint on the server.

Unsubscribe

client.unsubscribeFromVideo(sender);

This method sends the unsubscribeFromVideo message.

Send ICE Candidate

client.onIceCandidate(endpointName, candidate, sdpMid, sdpMLineIndex);

This method sends the onIceCandidate message, containing a local ICE Candidate
for the connection with the specified endpoint.

Send message

client.sendMessage(userName, roomName, message);

This method sends the sendMessage message.

Room Demo tutorial

This tutorial is a guide for developing a multiconference application using the
Room SDK. It is based on the development of the demo application found in
kurento-room-demo, which in turn depends on the kurento-room-sdk,
kurento-room-server and kurento-room-client-js components.

The next figure tries to explain the integration of these components and
the communication channels between them.

[image: Kurento Room Demo integration]
Kurento Room Demo integration

Server-side code

The main class of the room server library project is a Spring Boot application
class, KurentoRoomServerApp. In this class we’ll be instantiating Spring
beans for the different components that make up the server-side.

Furthermore, this class with all its configuration can then be imported into
application classes of other Spring projects (using Spring’s @Import
annotation or extending the server Spring Boot application class).

Room management

For managing rooms and their users, the server uses the Room SDK library. We’ve
chosen the notification-flavored API, namely the class NotificationRoomManager.
We have to define the manager as a Spring bean that will be injected as a
dependency when needed (using the @Autowired annotation).

But first, we need a UserNotificationService implementation to provide to the
NotificationRoomManager constructor. We’ll use an instance of the type
JsonRpcNotificationService that will store the WebSocket sessions for sending
responses and notifications back to the clients.

We also require a KurentoClientProvider instance that we’ve named KMSManager:

@Bean
public NotificationRoomManager roomManager() {
 return new NotificationRoomManager(userNotificationService, kmsManager());
}

Signaling

For interacting with the clients, our demo application will be using the
JSON-RPC server library developed by Kurento. This library is
using for the transport protocol the WebSockets library provided by the Spring
framework.

We register a handler for incoming JSON-RPC messages so that we can process
each request depending on its method name. This handler implements the WebSocket
API described earlier.

The request path is indicated when adding the handler in the method
registerJsonRpcHandlers(...) of the JsonRpcConfigurer API (implemented
by our Spring application class).

The handler class requires some dependencies which are passed using its constructor,
the user control component and the user notifications service (these are explained below).

@Bean
@ConditionalOnMissingBean
public RoomJsonRpcHandler roomHandler() {
 return new RoomJsonRpcHandler(userControl(), notificationService());
}

@Override
public void registerJsonRpcHandlers(JsonRpcHandlerRegistry registry) {
 registry.addHandler(roomHandler(), "/room");
}

The main method of the handler, handleRequest(...), will be invoked for
each incoming request from the clients. All WebSocket communications with a
given client will be done inside a session, for which the JSON-RPC library will
provide a reference when invoking the handling method. A request-response
interchange is called a transaction, also provided and from which we obtain the
WebSocket session.

The application will store the session and transactions associated to each user
so that our UserNotificationService implementation may send responses or
server events back to the clients when invoked from the Room SDK library:

@Override
public final void handleRequest(Transaction transaction,
Request<JsonObject> request) throws Exception {
 ...
 notificationService.addTransaction(transaction, request);

 sessionId = transaction.getSession().getSessionId();
 ParticipantRequest participantRequest = new ParticipantRequest(sessionId,
 Integer.toString(request.getId()));

 ...
 transaction.startAsync();
 switch (request.getMethod()) {
 case JsonRpcProtocolElements.JOIN_ROOM_METHOD:
 userControl.joinRoom(transaction, request, participantRequest);
 break;
 ...
 default:
 log.error("Unrecognized request {}", request);
 }
}

Manage user requests

The handler delegates the execution of the user requests to a different
component, an instance of the JsonRpcUserControl class. This object will
extract the required parameters from the request and will invoke the necessary
code from the RoomManager.

In the case of the joinRoom(...) request, it will first store the user and
the room names to the session for an easier retrieval later on:

public void joinRoom(Transaction transaction, Request<JsonObject> request,
 ParticipantRequest participantRequest) throws ... {

 String roomName = getStringParam(request,
 JsonRpcProtocolElements.JOIN_ROOM_ROOM_PARAM);

 String userName = getStringParam(request,
 JsonRpcProtocolElements.JOIN_ROOM_USER_PARAM);

 //store info in session
 ParticipantSession participantSession = getParticipantSession(transaction);
 participantSession.setParticipantName(userName);
 participantSession.setRoomName(roomName);

 roomManager.joinRoom(userName, roomName, participantRequest);

}

User responses and events

As said earlier, the NotificationRoomManager instance is created by
providing an implementation for the UserNotificationService API, which in
this case will be an object of type JsonRpcNotificationService.

This class stores all opened WebSocket sessions in a map from which will obtain
the Transaction object required to send back a response to a room request. For
sending JSON-RPC events (notifications) to the clients it will use the
functionality of the Session object.

Please observe that the notification API (sendResponse,
sendErrorResponse, sendNotification and closeSession) had to be
provided for the default implementation of the NotificationRoomHandler
(included with the Room SDK library). Other variations of a room application
could implement their own NotificationRoomHandler, thus rendering
unnecessary the notification service.

In the case of sending a response to a given request, the transaction object
will be used and removed from memory (a different request will mean a new
transaction). Same thing happens when sending an error response:

@Override
public void sendResponse(ParticipantRequest participantRequest, Object result) {
 Transaction t = getAndRemoveTransaction(participantRequest);
 if (t == null) {
 log.error("No transaction found for {}, unable to send result {}",
 participantRequest, result);
 return;
 }
 try {
 t.sendResponse(result);
 } catch (Exception e) {
 log.error("Exception responding to user", e);
 }
}

To send a notification (or server event), we’ll be using the session object.
This mustn’t be removed until the close session method is invoked (from the
room handler, as a consequence of an user departure, or directly from the
WebSocket handler, in case of connection timeouts or errors):

@Override
public void sendNotification(final String participantId,
 final String method, final Object params) {

 SessionWrapper sw = sessions.get(participantId);
 if (sw == null || sw.getSession() == null) {
 log.error("No session found for id {}, unable to send notification {}: {}",
 participantId, method, params);
 return;
 }
 Session s = sw.getSession();

 try {
 s.sendNotification(method, params);
 } catch (Exception e) {
 log.error("Exception sending notification to user", e);
 }
}

Dependencies

Kurento Spring applications are managed using Maven. Our server library
has several explicit dependencies in its pom.xml file, Kurento Room SDK
and Kurento JSON-RPC server are the ones used for implementing the server’s
functionality, while the other ones are used for testing:

<dependencies>
 <dependency>
 <groupId>org.kurento</groupId>
 <artifactId>kurento-room-sdk</artifactId>
 </dependency>
 <dependency>
 <groupId>org.kurento</groupId>
 <artifactId>kurento-jsonrpc-server</artifactId>
 <exclusions>
 <exclusion>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-logging</artifactId>
 </exclusion>
 </exclusions>
 </dependency>
 <dependency>
 <groupId>org.kurento</groupId>
 <artifactId>kurento-room-test</artifactId>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.kurento</groupId>
 <artifactId>kurento-room-client</artifactId>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.mockito</groupId>
 <artifactId>mockito-core</artifactId>
 <scope>test</scope>
 </dependency>
</dependencies>

Demo customization of the server-side

The demo adds a bit of customization to the room server by extending and
replacing some of its Spring beans. All this is done in the new Spring Boot
application class of the demo, KurentoRoomDemoApp, that extends the
original application class of the server:

public class KurentoRoomDemoApp extends KurentoRoomServerApp {
 ...
 public static void main(String[] args) throws Exception {
 SpringApplication.run(KurentoRoomDemoApp.class, args);
 }
}

Custom KurentoClientProvider

As substitute for the default implementation of the provider interface we’ve
created the class FixedNKmsManager, which’ll allow maintaining a series of
KurentoClient, each created from an URI specified in the demo’s
configuration.

Custom user control

To provide support for the additional WebSocket request type, customRequest, an
extended version of JsonRpcUserControl was created,
DemoJsonRpcUserControl.

This class overrides the method customRequest(...) to allow toggling the
FaceOverlayFilter, which adds or removes the hat from the publisher’s head.
It stores the filter object as an attribute in the WebSocket session so that
it’d be easier to remove it:

 @Override
 public void customRequest(Transaction transaction,
 Request<JsonObject> request, ParticipantRequest participantRequest) {

 try {
 if (request.getParams() == null
 || request.getParams().get(CUSTOM_REQUEST_HAT_PARAM) == null)
 throw new RuntimeException("Request element '" + CUSTOM_REQUEST_HAT_PARAM
 + "' is missing");

 boolean hatOn = request.getParams().get(CUSTOM_REQUEST_HAT_PARAM)
 .getAsBoolean();

 String pid = participantRequest.getParticipantId();
 if (hatOn) {
 if (transaction.getSession().getAttributes()
 .containsKey(SESSION_ATTRIBUTE_HAT_FILTER))
 throw new RuntimeException("Hat filter already on");

 log.info("Applying face overlay filter to session {}", pid);

 FaceOverlayFilter faceOverlayFilter = new FaceOverlayFilter.Builder(
 roomManager.getPipeline(pid)).build();

 faceOverlayFilter.setOverlayedImage(this.hatUrl,
 this.offsetXPercent, this.offsetYPercent, this.widthPercent,
 this.heightPercent);

 //add the filter using the RoomManager and store it in the WebSocket session
 roomManager.addMediaElement(pid, faceOverlayFilter);
 transaction.getSession().getAttributes().put(SESSION_ATTRIBUTE_HAT_FILTER,
 faceOverlayFilter);

 } else {

 if (!transaction.getSession().getAttributes()
 .containsKey(SESSION_ATTRIBUTE_HAT_FILTER))
 throw new RuntimeException("This user has no hat filter yet");

 log.info("Removing face overlay filter from session {}", pid);

 //remove the filter from the media server and from the session
 roomManager.removeMediaElement(pid, (MediaElement)transaction.getSession()
 .getAttributes().get(SESSION_ATTRIBUTE_HAT_FILTER));

 transaction.getSession().getAttributes()
 .remove(SESSION_ATTRIBUTE_HAT_FILTER);
 }

 transaction.sendResponse(new JsonObject());

 } catch (Exception e) {
 log.error("Unable to handle custom request", e);
 try {
 transaction.sendError(e);
 } catch (IOException e1) {
 log.warn("Unable to send error response", e1);
 }
 }
}

Dependencies

There are several dependencies in its pom.xml file, Kurento Room Server, Kurento
Room Client JS (for the client-side library), a Spring logging library and Kurento Room
Test for the test implementation. We had to manually exclude some transitive dependencies
in order to avoid conflicts:

<dependencies>
 <dependency>
 <groupId>org.kurento</groupId>
 <artifactId>kurento-room-server</artifactId>
 <exclusions>
 <exclusion>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-logging</artifactId>
 </exclusion>
 <exclusion>
 <groupId>org.apache.commons</groupId>
 <artifactId>commons-logging</artifactId>
 </exclusion>
 </exclusions>
 </dependency>
 <dependency>
 <groupId>org.kurento</groupId>
 <artifactId>kurento-room-client-js</artifactId>
 </dependency>
 <dependency>
 <groupId>org.kurento</groupId>
 <artifactId>kurento-room-test</artifactId>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-log4j</artifactId>
 </dependency>
</dependencies>

Client-side code

This section describes the code from the AngularJS application
contained by kurento-room-demo. The Angular-specific code won’t be explained,
as our goal is to understand the room mechanism (the reader shouldn’t worry as
the indications below will also serve for a client app developed with plain or
conventional JavaScript).

Libraries

Include the required JavaScript files:

<script src="./js/jquery-2.1.1.min.js"></script>
<script src="./js/jquery-ui.min.js"></script>
<script src="./js/adapter.js"></script>
<script src="./js/kurento-utils.js"></script>
<script src="./js/kurento-jsonrpc.js"></script>
<script src="./js/EventEmitter.js"></script>
<script src="./js/KurentoRoom.js"></script>

	jQuery: is a cross-platform JavaScript library designed to simplify the
client-side scripting of HTML.

	Adapter.js: is a WebRTC JavaScript utility library maintained by Google
that abstracts away browser differences.

	EventEmitter: implements an events library for the browser.

	kurento-jsonrpc: is a small RPC library that we’ll be using for the
signaling plane of this application.

	kurento-utils: is a Kurento utility library aimed to simplify the WebRTC
management in the browser.

	KurentoRoom: this script is the library described earlier which is included
by the kurento-room-client-js project.

Init resources

In order to join a room, call the initialization function from
KurentoRoom, providing the server’s URI for listening JSON-RPC requests. In
this case, the room server listens for secure WebSocket connections on the request
path /room:

var wsUri = 'wss://' + location.host + '/room';

You must also provide the room and username:

var kurento = KurentoRoom(wsUri, function (error, kurento) {...}

The callback parameter is where we’ll subscribe to the events emitted by the room.

If the WebSocket initialization failed, the error object will not be null and
we should check the server’s configuration or status.

Otherwise, we’re good to go and we can create a Room and the local Stream
objects. Please observe that the constraints from the options passed to the
local stream (audio, video, data) are being ignored at the moment:

room = kurento.Room({
 room: $scope.roomName,
 user: $scope.userName
});
var localStream = kurento.Stream(room, {
 audio: true,
 video: true,
 data: true
});

Webcam and mic access

The choice of when to join the room is left to the application, and in this one
we must first obtain the access to the webcam and the microphone before calling
the join method. This is done by calling the init method on the local stream:

localStream.init();

During its execution, the user will be prompted to grant access to the media
resources on her system. Depending on her response, the stream object will emit
the access-accepted or the access-denied event. The application has to register
for these events in order to continue with the join operation:

localStream.addEventListener("access-denied", function () {
 //alert of error and go back to login page
}

Here, when the access is granted, we proceed with the join operation by calling
connect on the room object:

localStream.addEventListener("access-accepted", function () {
 //register for room-emitted events
 room.connect();
}

Room events

As a result of the connect call, the room might emit several event types which
the developer should generally be aware of.

If the connection results in a failure, the error-room event is generated:

room.addEventListener("error-room", function (error) {
 //alert the user and terminate
});

In case the connection is successful and the user is accepted as a valid peer in
the room, room-connected event will be used.

The next code excerpts will contain references to the objects ServiceRoom
and ServiceParticipant which are Angular services defined by the demo
application. And it’s worth mentioning that the ServiceParticipant uses
streams as room participants:

room.addEventListener("room-connected", function (roomEvent) {

 if (displayPublished) { //demo cofig property
 //display my video stream from the server (loopback)
 localStream.subscribeToMyRemote();
 }
 localStream.publish(); //publish my local stream

 //store a reference to the local WebRTC stream
 ServiceRoom.setLocalStream(localStream.getWebRtcPeer());

 //iterate over the streams which already exist in the room
 //and add them as participants
 var streams = roomEvent.streams;
 for (var i = 0; i < streams.length; i++) {
 ServiceParticipant.addParticipant(streams[i]);
 }
}

As we’ve just instructed our local stream to be published in the room, we
should listen for the corresponding event and register our local stream as the
local participant in the room. Furthermore, we’ve added an option to the demo
to display our unchanged local video besides the video that was passed through
the media server (when configured as such):

room.addEventListener("stream-published", function (streamEvent) {
 //register local stream as the local participant
 ServiceParticipant.addLocalParticipant(localStream);

 //also display local loopback
 if (mirrorLocal && localStream.displayMyRemote()) {
 var localVideo = kurento.Stream(room, {
 video: true,
 id: "localStream"
 });
 localVideo.mirrorLocalStream(localStream.getWrStream());
 ServiceParticipant.addLocalMirror(localVideo);
 }
});

In case a participant decides to publish her media, we should be aware of its
stream being added to the room:

room.addEventListener("stream-added", function (streamEvent) {
 ServiceParticipant.addParticipant(streamEvent.stream);
});

The reverse mechanism must be employed when the stream is removed (when
the participant leaves the room):

room.addEventListener("stream-removed", function (streamEvent) {
 ServiceParticipant.removeParticipantByStream(streamEvent.stream);
});

Another important event is the one triggered by a media error on the server-side:

room.addEventListener("error-media", function (msg) {
 //alert the user and terminate the room connection if deemed necessary
});

There are other events that are a direct consequence of a notification sent
from the server, such as a room evacuation:

room.addEventListener("room-closed", function (msg) {
 //alert the user and terminate
});

Finally, the client API allows us to send text messages to the other peers in
the room:

room.addEventListener("newMessage", function (msg) {
 ServiceParticipant.showMessage(msg.room, msg.user, msg.message);
});

Streams interface

After having subscribed to a new stream, the application can use one or both of
these two methods from the stream interface.

stream.playOnlyVideo(parentElement, thumbnailId):

This method will append a video HTML tag to an existing element specified by
the parentElement parameter (which can be either an identifier or directly the
HTML tag). The video element will have autoplay on and no play controls. If the
stream is local, the video will be muted.

It’s expected that an element with the identifier thumbnailId to exist and
to be selectable. This element will be displayed (jQuery .show() method) when a
WebRTC stream can be assigned to the src attribute of the video element.

stream.playThumbnail(thumbnailId):

Creates a div element (class name participant) inside the element whose
identifier is thumbnailId. The video from the stream is going to be
played inside this div (participant) by calling
playOnlyVideo(parentElement, thumbnailId) with it as the parentElement.

Using the global ID of the stream, a name tag will also be displayed onto
the participant element as a string of text inside a div element.
The style of the name tag is specified by the CSS class name.

The size of the thumbnail must be defined by the application. In
the room demo, thumbnails start with a width of 14% which will be used until there
are more than 7 publishers in the room (7 x 14% = 98%). From this point on,
another formula will be used for calculating the width, 98% divided by the
number of publishers.

Demo deployment

On machines which meet the following requirements, one can install Kurento Room
applications as a system service (e.g. kurento-room-demo).

This section explains how to deploy (install, configure and execute) the Room Demo application.
We also provide a way to run the demo without resorting to a system-wide installation.

System requirements:

	Ubuntu 14.04

	Git (to obtain the source code)

	Java JDK version 8

	Maven (for building from sources)

	Bower (which in turn requires Node.js)

curl -sL https://deb.nodesource.com/setup | sudo bash -
sudo apt-get install -y nodejs
npm install -g bower

	Kurento Media Server or connection with at least a running instance (to
install follow the official
guide [http://doc-kurento.readthedocs.org/en/stable/installation_guide.html])

Installation procedures

Demo binaries

Currently, there are no binary releases of Kurento Room Demo. In order to deploy
a new demo server, it is required to build it from sources.

$ git clone https://github.com/Kurento/kurento-room.git
$ cd kurento-room
checkout the latest tag
$ git checkout $(git describe --abbrev=0 --tags)

Build from source

The demo has been configured to generate a zipped archive during the package
phase of a Maven build. To obtain it, build the kurento-room-demo project
together with its required modules:

$ cd kurento-room
$ mvn clean package -am -pl kurento-room-demo -DskipTests

Now unzip the generated execution binaries:

$ cd kurento-room-demo/target
$ unzip kurento-room-demo-6.6.1-SNAPSHOT.zip

The directory structure of the uncompressed binaries:

	bin/ - contains the installation and execution scripts

	files/ - the demo’s executable JAR file and other configuration files

	sysfiles/ - used when installing as a system service

Configuration

The configuration file, kurento-room-demo.conf.json is located in the files
folder, when executing the demo with normal user privileges.
When installing the demo application as a system service, the configuration files will be located
inside /etc/kurento.

$ cd kurento-room-demo-6.6.1-SNAPSHOT
$ vim files/kurento-room-demo.conf.json
or
$ vim /etc/kurento/kurento-room-demo.conf.json

The default content of this file:

{
 "kms": {
 "uris": ["ws://localhost:8888/kurento", "ws://127.0.0.1:8888/kurento"]
 },
 "app": {
 "uri": "https://localhost:8443/"
 },
 "kurento": {
 "client": {
 //milliseconds
 "requestTimeout": 20000
 }
 },
 "demo": {
 //mario-wings.png or wizard.png
 "hatUrl": "mario-wings.png",
 "hatCoords": {
 // mario-wings hat
 "offsetXPercent": -0.35F,
 "offsetYPercent": -1.2F,
 "widthPercent": 1.6F,
 "heightPercent": 1.6F

 //wizard hat
 //"offsetXPercent": -0.2F,
 //"offsetYPercent": -1.35F,
 //"widthPercent": 1.5F,
 //"heightPercent": 1.5F
 },
 "loopback" : {
 "remote": false,
 //matters only when remote is true
 "andLocal": false
 },
 "authRegex": ".*",
 "kmsLimit": 1000
 }
}

With the following key meanings:

	kms.uris is an array of WebSocket addresses used to initialize
KurentoClient instances (each instance represents a Kurento Media Server). In
the default configuration, for the same KMS the application will create two
KurentoClient objects. The KurentoClientProvider implementation for this demo
(org.kurento.room.demo.FixedNKmsManager) will return KurentoClient instances
on a round-robin base or, if the user’s name follows a certain pattern, will
return the less loaded instance. The pattern check is hardcoded and SLA users
are considered those whose name starts with the string special (e.g.
specialUser).

	kurento.client.requestTimeout is a tweak to prevent timeouts in the KMS
communications during heavy load (e.g. lots of peers). The default value of
the timeout is 10 seconds.

	app.uri is the demo application’s URL and is mainly used for building
URLs of images used in media filters (such as the hat filter). This URL must
be accessible from any KMS defined in kms.uris.

	demo.hatUrl sets the image used for the FaceOverlayFilter applied to the
streamed media when the user presses the corresponding button in the demo
interface. The filename of the image is relative to the static web
resources folder img/.

	demo.hatCoords represents the JSON encoding of the parameters required to
configure the overlaid image. We provide the coordinates for two hat
images, mario-wings.png and wizard.png.

	demo.loopback.remote if true, the users will see their own video using
the loopbacked stream from the server. Thus, if the user enables the hat
filter on her video stream, she’ll be able to visualize the end result
after having applied the filter.

	demo.loopback.andLocal if true, besides displaying the loopback media,
the client interface will also provide the original (and local) media stream.

	demo.authRegex is the username pattern that allows the creation of a room
only when it matches the pattern. This is done during the call to obtain an
instance of KurentoClient, the provider will throw an exception if the
pattern has been specified and it doesn’t match the name.

	demo.kmsLimit is the maximum number of pipelines that can be created in a
KurentoClient.

HTTPS

The application uses a Java keystore - keystore.jks - containing a
self-signed certificate, which is located in the same folder as the JAR
executable file.

The keystore’s configuration is read from a typical application.properties file,
read by the Spring Boot framework when booting up the application. Although
the default name can be used during development, for installation purposes we’ve
changed the name to kurento-room-demo.properties. It can be edited directly
in the files/ folder or in the service’s configuration folder (/etc/kurento) after
installing the demo.

Any changes like the keystore’s name or password can be applied directly into
this file.

These settings are read automatically by the application (not required to be on the
command line).

server.port: 8443
server.address: 0.0.0.0
server.ssl.key-store: keystore.jks
server.ssl.key-store-password: kurento
server.ssl.keyStoreType: JKS
server.ssl.keyAlias: kurento-selfsigned

In order to disable HTTPS, remove or rename the file, or remove those lines that
contain ssl and change the value of server.port to a more suitable value
(recommended only if using a secure proxy with SSL).

server.address configures the IP address where the embedded Tomcat container binds
to (default value is 0.0.0.0, where it listens on all available addresses).
It is useful when securing the application, by indicating the loopback IP and
serving all connections through a secure proxy.

Logging configuration

The default logging configuration can be overwritten by editing the file
kurento-room-demo-log4j.properties, also found in the files folder (or
/etc/kurento/ for system-wide installations).

$ cd kurento-room-demo-6.6.1-SNAPSHOT
$ vim files/kurento-room-demo-log4j.properties
or
$ vim /etc/kurento/kurento-room-demo-log4j.properties

In it, the location of the server’s output log file can be set up, the default
location will be kurento-room-demo-6.6.1-SNAPSHOT/logs/kurento-room-demo.log
(or /var/log/kurento/kurento-room-demo.log for system-wide installations).

To change it, replace the ${application.log.file} variable with an
absolute path on your system:

log4j.appender.file.File=${application.log.file}
e.g. -->
log4j.appender.file.File=/home/user/demo.log

Running the application

After having built and unzipped the installation files, there are two options
for running the demo application server:

	user-level execution - doesn’t need additional installation steps, can
be done right away after uncompressing the installer

	system-level execution - requires installation of the demo application
as a system service, which enables automatic startup after system reboots

In both cases, the application uses Spring Boot framework to run inside an
embedded Tomcat container server, so there’s no need for deployment inside an
existing servlet container. If this is a requirement, modifications will have
to be made to the project’s build configuration (Maven) so that instead of a
JAR with dependencies, the build process would generate a WAR file.

Run at user-level

After having configured the server instance just
execute the start script:

$ cd kurento-room-demo-6.6.1-SNAPSHOT
$./bin/start.sh

Run as daemon

First install the demo after having built and uncompressed the generated
binaries. sudo privileges are required to install it as a service:

$ cd kurento-room-demo-6.6.1-SNAPSHOT
$ sudo ./bin/install.sh

The service kurento-room-demo will be automatically started.

Now, you can configure the Room demo server as stated in the
previous section and restart the service.

$ sudo service kurento-room-demo {start|stop|status|restart|reload}

Troubleshooting

For quickstarting and troubleshooting the demo use the following command to
execute the fat jar from the lib folder:

$ cd kurento-room-demo-6.6.1-SNAPSHOT/lib
$ java -jar kurento-room-demo.jar

Version upgrade

To update to a newer version, please repeat the installation procedures.

Code structure

Kurento Room is hosted on github:

https://github.com/Kurento/kurento-room

The git repository contains a Maven project with the following modules:

	kurento-room [https://github.com/Kurento/kurento-room] - reactor project

	kurento-room/kurento-room-sdk [https://github.com/Kurento/kurento-room/tree/master/kurento-room-sdk] -
module that provides a management interface for developers of multimedia
conferences (rooms) applications in Java.

	kurento-room/kurento-room-server [https://github.com/Kurento/kurento-room/tree/master/kurento-room-server] -
Kurento’s own implementation of a room API, it provides the WebSockets API for
the communications between room clients and the server.

	kurento-room/kurento-room-client [https://github.com/Kurento/kurento-room/tree/master/kurento-room-client] -
Java library that uses WebSockets and JSON-RPC to interact with the server-side
of the Room API. Can be used to implement the client-side of a room application.

	kurento-room/kurento-room-client-js [https://github.com/Kurento/kurento-room/tree/master/kurento-room-client-js] -
Javascript library that acts as wrapper for several JS APIs (WebRTC,
WebSockets, Kurento Utils). Can be used to implement the client-side of a room
application.

	kurento-room/kurento-room-demo [https://github.com/Kurento/kurento-room/tree/master/kurento-room-demo] -
demonstration project, contains the client-side implementation (HTML, Javascript,
AngularJS, lumx, graphic resources) and depends on the Room Server to provide the
functionality required for group communications (the so-called rooms).

	kurento-room/kurento-room-basicapp [https://github.com/Kurento/kurento-room/tree/master/kurento-room-basicapp] -
basic demonstration project, similar to kurento-room-demo but with a lighter client-side
implementation (without any Javascript frameworks).

	kurento-room/kurento-room-test [https://github.com/Kurento/kurento-room/tree/master/kurento-room-test] -
a framework for functional tests of room applications. Required by tests from the demo and basicapp
modules.

Kurento JavaDoc

Kurento Room SDK JavaDoc

	kurento-room-sdk

Glossary

This is a glossary of terms that often appear in discussion about multimedia
transmissions. Most of the terms are described and linked to its wikipedia, RFC
or W3C relevant documents. Some of the terms are specific to kurento.

	AngularJS

	Represents an open-source web application framework that tries to address
many of the challenges encountered in developing single-page applications.
Provides a framework for client-side model–view–controller (MVC) and
model–view–viewmodel (MVVM) architectures, along with components commonly
used in rich Internet applications.

See also

AngularJS home page [https://angularjs.org/]

	Bower

	Bower [http://bower.io/] is a package manager for the web.
It offers a generic solution to the problem of front-end package management,
while exposing the package dependency model via an API that can be consumed by
a build stack.

	DataChannels

	The WebRTC Peer-to-peer Data API lets a web application send and receive generic application data
peer-to-peer. The API for sending and receiving data models the behavior of WebSockets.

See also

http://www.html5rocks.com/en/tutorials/webrtc/datachannels/

	getUserMedia

	The getUserMedia() JavaScript method is related to WebRTC because
it’s the gateway into that set of APIs. It provides the means to access
the user’s local camera/microphone stream.

See also

getUserMedia from the MediaDevices interface [https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/getUserMedia]

getUserMedia from the Navigator interface [https://developer.mozilla.org/en-US/docs/Web/API/Navigator/getUserMedia] (deprecated)

	Git

	Git [http://git-scm.com/] is a free and open source distributed
version control system designed to handle everything from small to very
large projects with speed and efficiency.

See also

	Git_(software)

	Wikipedia reference of Git

	GitHub

	GitHub [https://github.com/] is a Web-based Git repository
hosting service.

See also

	GitHub

	Wikipedia reference of GitHub

	HTTP

	The Hypertext Transfer Protocol
is an application protocol for distributed, collaborative, hypermedia
information systems. HTTP is the foundation of data communication for
the World Wide Web.

See also

RFC 2616 [https://tools.ietf.org/html/rfc2616.html]

	ICE	Interactive Connectivity Establishment

	Interactive Connectivity Establishment (ICE) is a technique used to achieve
NAT Traversal. ICE makes use of the STUN protocol and its extension,
TURN. ICE can be used by any protocol utilizing the offer/answer model.

See also

RFC 5245 [https://tools.ietf.org/html/rfc5245.html]

	Interactive Connectivity Establishment

	Wikipedia reference of ICE

	JSON

	JSON [http://json.org] (JavaScript Object Notation) is a lightweight
data-interchange format. It is designed to be easy to understand and
write for humans and easy to parse for machines.

	JSON-RPC

	JSON-RPC [http://json-rpc.org/] is a simple remote procedure
call protocol encoded in JSON. JSON-RPC allows for notifications
and for multiple calls to be sent to the server which may be
answered out of order.

	Kurento

	Kurento [http://kurento.org] is a platform for the development of multimedia
enabled applications. Kurento is the Esperanto term for the English word
‘stream’. We chose this name because we believe the Esperanto principles are
inspiring for what the multimedia community needs: simplicity, openness and
universality. Kurento is open source, released under Apache 2.0, and has several
components, providing solutions to most multimedia common services
requirements. Those components include: Kurento Media Server,
Kurento API, Kurento Protocol, and Kurento Client.

	Kurento API

	Kurento API is an object oriented API to create media pipelines to control
media. It can be seen as and interface to Kurento Media Server. It can be used from the
Kurento Protocol or from Kurento Clients.

	KurentoClient	Kurento Client

	A Kurento Client is a programming library (Java or JavaScript) used to control
Kurento Media Server from an application. For example, with this library, any developer
can create a web application that uses Kurento Media Server to receive audio and video from
the user web browser, process it and send it back again over Internet. Kurento Client
exposes the Kurento API to app developers.

	Kurento Protocol

	Communication between KMS and clients by means of JSON-RPC messages.
It is based on WebSocket that uses JSON-RPC V2.0 messages for making
requests and sending responses.

	Kurento Utils

	The Kurento Utils for Node.js and Browsers project contains a set of
reusable components that have been found useful during the development
of the WebRTC applications with Kurento.

See also

GitHub repository page [https://github.com/kurento/kurento-utils-js]

	KMS	Kurento Media Server

	Kurento Media Server is the core element of Kurento since it responsible for media
transmission, processing, loading and recording.

	lumx

	A responsive front-end framwework based on AngularJS and Google Material
Design specifications. It provides a full CSS Framework built with
Sass and a bunch of AngularJS components.

See also

lumX page [http://ui.lumapps.com/]

	Maven

	Maven [http://maven.apache.org/] is a build automation tool used primarily for Java projects.

	Media Element	Media Elements

	A Media Element is a module that encapsulates a specific
media capability. For example RecorderEndpoint, PlayerEndpoint, etc.

	Media Pipeline

	A Media Pipeline is a chain of media elements, where the output
stream generated by one element (source) is fed into one or
more other elements input streams (sinks). Hence, the pipeline
represents a “machine” capable of performing a sequence of
operations over a stream.

	Media Plane

	In the traditional 3GPP Mobile Carrier Media Framework, the handling of media is conceptually
splitted in two layers.
The one that handles the media itself, with functionalities such as
media transport, encoding/decoding, and processing, is called
Media Plane.

See also

Signaling Plane

	Multimedia

	Multimedia is concerned with the computer controlled integration
of text, graphics, video, animation, audio, and any other media where
information can be represented, stored, transmitted and processed
digitally.

There is a temporal relationship between many forms of media,
for instance audio, video and animations. There 2 are forms of problems
involved in

	Sequencing within the media, i.e. playing frames in correct
order or time frame.

	Synchronisation, i.e. inter-media scheduling. For example,
keeping video and audio synchronized or displaying captions
or subtitles in the required intervals.

See also

Wikipedia definition of Multimedia

	NAT	Network Address Translation

	Network address translation (NAT) is the technique of modifying
network address information in Internet Protocol (IP) datagram
packet headers while they are in transit across a traffic routing
device for the purpose of remapping one IP address space into
another.

See also

Network Address Translation
definition at Wikipedia

	NAT-T	NAT Traversal

	NAT traversal (sometimes abbreviated as NAT-T) is a general term
for techniques that establish and maintain Internet protocol
connections traversing network address translation (NAT) gateways,
which break end-to-end connectivity. Intercepting and modifying
traffic can only be performed transparently in the absence of
secure encryption and authentication.

See also

	NAT Traversal White Paper [http://www.nattraversal.com/]

	White paper on NAT-T and solutions for end-to-end
connectivity in its presence

	Node.js

	Node.js [http://www.nodejs.org/] is a cross-platform runtime environment for server-side
and networking applications. Node.js applications are written in
JavaScript, and can be run within the Node.js runtime on OS X,
Microsoft Windows and Linux with no changes.

	REST

	Representational State Transfer
is an architectural style consisting of a coordinated set of constraints applied to
components, connectors, and data elements, within a distributed hypermedia system.
The term representational state transfer was introduced and defined in 2000 by
Roy Fielding in his doctoral dissertation [http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm].

	RTCP

	The RTP Control Protocol is a
sister protocol of the RTP, that provides out-of-band
statistics and control information for an RTP flow.

See also

RFC 3605 [https://tools.ietf.org/html/rfc3605.html]

	RTCPeerConnection

	This interface represents a WebRTC connection between the local computer
and a remote peer. It is used to handle efficient streaming of data
between the two peers.

	RTP

	The Real-Time Transport Protocol
is a standard packet format designed for transmitting audio and video
streams on IP networks. It is used in conjunction with the
RTP Control Protocol. Transmissions using
the RTP audio/video profile
typically use SDP to describe the technical parameters of
the media streams.

See also

RFC 3550 [https://tools.ietf.org/html/rfc3550.html]

	SDP	Session Description Protocol

	The Session Description Protocol describes initialization
parameters for a streaming media session.
Both parties of a streaming media session exchange SDP files
to negotiate and agree in the parameters to be used for the
streaming.

See also

	RFC 4566 [https://tools.ietf.org/html/rfc4566.html]

	Definition of Session Description Protocol

	RFC 4568 [https://tools.ietf.org/html/rfc4568.html]

	Security Descriptions for Media Streams in SDP

	Signaling Plane

	It is the layer of a media system in charge of the information exchanges
concerning the establishment and control of the different media circuits
and the management of the network, in contrast to the transfer of media,
done by the Signaling Plane.

Functions such as media negotiation, QoS parametrization, call establishment,
user registration, user presence, etc. as managed in this plane.

See also

Media Plane

	SIP

	Session Initiation Protocol
is a signaling plane protocol widely used for controlling
multimedia communication sessions such as voice and video calls
over Internet Protocol (IP) networks. SIP works in conjunction with
several other application layer protocols:

	SDP for media identification and negotiation

	RTP, SRTP or WebRTC for the transmission of media streams

	A TLS layer may be used for secure transmission of SIP messages

	SPA	Single-Page Application

	A single-page application is a web application that fits on a single web page with the goal
of providing a more fluid user experience akin to a desktop application.

	Sphinx

	Documentation generation system used for Kurento projects.

See also

Official Sphinx page [http://sphinx-doc.org/]

Easy and beautiful documentation with Sphinx [http://www.ibm.com/developerworks/linux/library/os-sphinx-documentation/index.html?ca=dat]

	SpringBoot	Spring Boot

	Spring Boot [http://projects.spring.io/spring-boot/] is Spring’s convention-over-configuration
solution for creating stand-alone, production-grade Spring based applications that can you can “just run”.
It embeds Tomcat or Jetty directly and so there is no need to deploy WAR files in order to run
web applications.

	SRTCP

	SRTCP provides the same security-related features to RTCP,
as the ones provided by SRTP to RTP. Encryption, message
authentication and integrity, and replay protection are the
features added by SRTCP to RTCP.

See also

SRTP

	SRTP

	
	Secure RTP

	is a profile of RTP (Real-time Transport Protocol),
intended to provide encryption, message authentication and integrity,
and replay protection to the RTP data in both unicast and multicast
applications. Similar to how RTP has a sister RTCP protocol, SRTP
also has a sister protocol, called Secure RTCP (or SRTCP);

See also

RFC 3711 [https://tools.ietf.org/html/rfc3711.html]

	STUN	Session Traversal Utilities for NAT

	STUN is a standardized set of methods to allow an end host to discover
its public IP address if it is located behind a NAT. STUN is a
client-server protocol returning the public IP address to a client
together with information from which the client can infer the type
of NAT it sits behind.

	Trickle ICE

	Extension to the ICE protocol that allows ICE agents to send and receive
candidates incrementally rather than exchanging complete lists. With such
incremental provisioning, ICE agents can begin connectivity checks while they
are still gathering candidates and considerably shorten the time necessary for
ICE processing to complete.

See also

Trickle ICE IETF Draft [https://tools.ietf.org/html/draft-ietf-mmusic-trickle-ice-02]

	TLS

	Transport Layer Security
and its prececessor Secure Socket Layer (SSL)

See also

	RFC 5246 [https://tools.ietf.org/html/rfc5246.html]

	Version 1.2 of the Transport Layer Security protocol

	TURN	Traversal Using Relays around NAT

	TURN is a protocol that allows for a client behind a NAT or
firewall to receive incoming data over TCP or UDP connections. TURN
places a third party server to relay messages between two clients
where peer to peer media traffic is not allowed by a firewall.

	User Agent

	Software agent that is acting on behalf of a user.

See also

User agent

	WebRTC

	WebRTC [http://www.webrtc.org/] is an open source project that
provides rich Real-Time Communcations capabilities to web browsers
via Javascript and HTML5 APIs and components. These APIs are being
drafted by the World Wide Web Consortium (W3C).

See also

WebRTC Working Draft [http://www.w3.org/TR/webrtc/]

	WebSocket	WebSockets

	WebSocket [https://www.websocket.org/] specification (developed as
part of the HTML5 initiative) defines a full-duplex single socket
connection over which messages can be sent between client and server.

 Index

Index

 A
 | B
 | D
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | W

A

 	
 	AngularJS

B

 	
 	Bower

D

 	
 	DataChannels

G

 	
 	getUserMedia

 	
 	Git

 	GitHub

H

 	
 	HTTP

I

 	
 	ICE

 	
 	Interactive Connectivity Establishment

J

 	
 	JSON

 	
 	JSON-RPC

K

 	
 	KMS

 	Kurento

 	Kurento API

 	Kurento Client

 	
 	Kurento Media Server

 	Kurento Protocol

 	Kurento Utils

 	KurentoClient

L

 	
 	lumx

M

 	
 	Maven

 	
 Media

 	Pipeline

 	Media Element

 	
 	Media Elements

 	Media Pipeline

 	Media Plane

 	Multimedia

N

 	
 	NAT

 	NAT Traversal

 	
 	NAT-T

 	Network Address Translation

 	Node.js

P

 	
 	
 Plane

 	Media

 	Signaling

R

 	
 	REST

 	
 RFC

 	RFC 2616

 	RFC 3550

 	RFC 3605

 	RFC 3711

 	RFC 4566

 	RFC 4568

 	RFC 5245

 	RFC 5246

 	
 	RTCP

 	RTCPeerConnection

 	RTP

S

 	
 	SDP

 	Session Description Protocol

 	Session Traversal Utilities for NAT

 	Signaling Plane

 	Single-Page Application

 	SIP

 	
 	SPA

 	Sphinx

 	Spring Boot

 	SpringBoot

 	SRTCP

 	SRTP

 	STUN

T

 	
 	TLS

 	Traversal Using Relays around NAT

 	
 	Trickle ICE

 	TURN

U

 	
 	User Agent

W

 	
 	WebRTC

 	
 	WebSocket

 	WebSockets

 Table of Contents

Table of Contents

	Introduction
	Core API

	Other components

	Integration example

	Quick start
	Functionalities

	Running the demo

	Configuring the demo

	Rooms Core API
	Understanding the API

	RoomManager

	Events - RoomHandler

	NotificationRoomManager

	Notifications design - UserNotificationService

	Notifications design - NotificationRoomHandler

	KurentoClientProvider

	POJOs

	Developer guide
	Quick hints

	Try the tutorial

	WebSocket API for Room Server
	WebSocket messages

	REST APIs
	Room Server API

	Room Demo API

	Client JavaScript API
	KurentoRoom

	KurentoRoom.Room

	KurentoRoom.Participant

	KurentoRoom.Stream

	Client Java API
	Using the library

	Usage

	Room Demo tutorial
	Server-side code

	Demo customization of the server-side

	Client-side code

	Demo deployment
	Installation procedures

	Running the application

	Code structure

	Glossary

_static/file.png

_static/kurento-white.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_images/kurento-rect-logo3.png
@ HKURENTO

_images/room-components-integration.png
Client application (SPA) Android | Java web application

Room Javascript client Room Java client

O O
Java server application

v
Room SDK

_static/up.png

_images/room-demo.png
Kurento Room Demo
(HTML, jQuery, AngularJS)

Browser

Kurento Room JS Client

WebSockets
+JSON-RPC

Http REST

Application Server

&) spring

& Pivotal.

Java API Spring Boot

Kurento Room SDK

(room API & management)
Kurento Client

Kurento Protocol

_images/room-manager-notifications.png
Request - Response
Notification
Signaling plane
Application
Business Logic
T

Client reqs |

Notification User '
Room Notification KurentoClient

i Provider
Handler Service

_images/room-manager.png
WebliOS|Android
end-user

Client application
Application message Room Handler
handler

Kurento Client

nav.xhtml

 Table of Contents

 		
 Table of Contents

 		
 Introduction

 		
 Core API

 		
 Other components

 		
 Integration example

 		
 Quick start

 		
 Functionalities

 		
 Running the demo

 		
 Configuring the demo

 		
 Rooms Core API

 		
 Understanding the API

 		
 RoomManager

 		
 Events - RoomHandler

 		
 Room and RoomHandler relations

 		
 NotificationRoomManager

 		
 Notifications design - UserNotificationService

 		
 Notifications design - NotificationRoomHandler

 		
 NotificationRoomManager and NotificationRoomHandler relations

 		
 KurentoClientProvider

 		
 POJOs

 		
 Developer guide

 		
 Quick hints

 		
 Try the tutorial

 		
 WebSocket API for Room Server

 		
 WebSocket messages

 		
 1 - Join room

 		
 2 - Participant joined event

 		
 3 - Publish video

 		
 4 - Participant published event

 		
 5 - Unpublish video

 		
 6 - Participant unpublished event

 		
 7 - Receive video

 		
 8 - Unsubscribe from video

 		
 9 - Send ICE Candidate

 		
 10 - Receive ICE Candidate event

 		
 11 - Leave room

 		
 12 - Participant left event

 		
 13 - Participant evicted event

 		
 14 - Send message

 		
 15 - Message sent event

 		
 16 - Media error event

 		
 17 - Custom request

 		
 REST APIs

 		
 Room Server API

 		
 1 - Get all rooms

 		
 Room Demo API

 		
 1 - Close room

 		
 2 - Get client configuration

 		
 Client JavaScript API

 		
 KurentoRoom

 		
 KurentoRoom.Room

 		
 connect() method

 		
 room-connected event

 		
 error-room event

 		
 room-closed event

 		
 participant-joined event

 		
 participant-left event

 		
 participant-evicted event

 		
 participant-published event

 		
 stream-published event

 		
 stream-subscribed event

 		
 stream-added event

 		
 stream-removed event

 		
 error-media event

 		
 newMessage event

 		
 KurentoRoom.Participant

 		
 KurentoRoom.Stream

 		
 init method

 		
 access-accepted event

 		
 access-denied event

 		
 getID() method

 		
 getGlobalID() method

 		
 sendData() method

 		
 Client Java API

 		
 Using the library

 		
 Usage

 		
 Notifications

 		
 Join room

 		
 Leave room

 		
 Publish

 		
 Unpublish

 		
 Subscribe

 		
 Unsubscribe

 		
 Send ICE Candidate

 		
 Send message

 		
 Room Demo tutorial

 		
 Server-side code

 		
 Room management

 		
 Signaling

 		
 Manage user requests

 		
 User responses and events

 		
 Dependencies

 		
 Demo customization of the server-side

 		
 Custom KurentoClientProvider

 		
 Custom user control

 		
 Dependencies

 		
 Client-side code

 		
 Libraries

 		
 Init resources

 		
 Webcam and mic access

 		
 Room events

 		
 Streams interface

 		
 Demo deployment

 		
 Installation procedures

 		
 Demo binaries

 		
 Build from source

 		
 Configuration

 		
 HTTPS

 		
 Logging configuration

 		
 Running the application

 		
 Run at user-level

 		
 Run as daemon

 		
 Troubleshooting

 		
 Version upgrade

 		
 Code structure

 		
 Kurento JavaDoc

 		
 Kurento Room SDK JavaDoc

 		
 Glossary

_static/comment-bright.png

_images/room-top-arch.png
WebliOS|Android WebliOS|Android
end-user end-user

Apphcallon Appncauon
signaling () signaling ()

Room application

Kurento Media Server

Group of
end-users

_static/ajax-loader.gif

_static/down-pressed.png

_static