ReadTheDocs-Breathe Documentation
Release 1.0.0

Thomas Edvalson

Sep 06, 2019

CONTENTS

1 Going to 11: Amping Up the Programming-Language Run-Time Foundation 3
2 Solid Compilation Foundation and Language Support 5
2.1 Quick Start Guide e e e e e 5
2.1.1 CurrentRelease Notes i e 5

2.1.2 Installation Guide oL e e e e e e e e 5

2.1.3 Programming Guide e 6

2.14 ROCm GPU Tunning Guides oottt ittt e e e e e 6

2.1.5 GCNISAManuals e 7

2.1.6 ROCm APIReferences i i i i et 7

2.1.7 ROCmMTools o e 8

2.1.8 ROCm Libraries e e e e e e e e e e e e e 9

2.1.9 ROCm Compiler SDK e 10
2.1.10 ROCm System Managementt vt vin et 11
2.1.11 ROCm Virtualization & Containers v v v v it i 11
2.1.12 Remote Device Programming o 11
2.1.13 DeepLearningonROCm L e 12
2.1.14 System Level Debug e 12
2.1.15 Tutorial L e e e e 12
2.1.16 ROCM GlOSSary v v o o e 12

2.2 CurrentRelease NOtES o o i i it e e e e 12
2.2.1 Hotfixrelease ROCm 2.7.1 e e 12
2.2.1.1 Defectfixedin ROCm 2.7.1 e e e 12

2.2.1.2 Upgrading from ROCm 2.7t02.7.1 o o 13

2.2.2 New features and enhancements in ROCm 2.7 13
2.2.2.1 [rocFFT] Real FFT Functional 13

2.2.2.2 rocRand Enhancements and Optimizations 13

2223 RAS . e 13

2224 ROCm-SMIenhancements o v i v v vt v ittt et 13

2.2.3 New features and enhancements in ROCm 2.6 13
2.2.3.1 ROCmlInfoenhancements 13

2.2.3.2 [Thrust] Functional Supporton Vega20 14

2233 MIGraphX v0.3 L e 14

2234 MIOpen2.0 e e 14

2.2.3.5 Bloatl6 software support in rocBLAS/Tensile 14

2.2.3.6 AMD Infinity Fabric™ Link enablement 15

2.2.3.7 ROCm-smi featuresand bug fixes 15

2.2.3.8 ROCm-smi-lib enhancements, 15

2239 RCCL2Enablement ittt ettt e e e e 15

2.2.3.10 rocFFT enhancements i i v i ittt et e 15

224 New features and enhancements in ROCm 2.5, 15
2241 UCX LOSUPPOIt . « o v v o o e e e e e e e e e e e e e e e e e e 15
2.24.2 BFloatl6 GEMM inrocBLAS/Tensile 15
2243 ROCm-SMlenhancements 16
2.2.4.4 [PyTorch] multi-GPU functional support (CPU aggregation/Data Parallel) 16
2.2.4.5 rocSparse optimization on Radeon Instinct MISO and MI60 16
22.4.6 [Thrust] Preview o 0 i e e e e e e e e 16
2.24.7 Support overlapping kernel execution in same HIP stream 16
2.24.8 AMD Infinity Fabric™ Link enablement 16

2.2.5 New features and enhancements in ROCm 2.4 16
2.2.5.1 TensorFlow 2.0 sUpport e e e 16
2.2.5.2 AMD Infinity Fabric™ Link enablement 16

2.2.6 New features and enhancements inROCm 2.3 17
2.2.6.1 Memusageper GPU e 17
2.2.6.2 MIVisionX, vI.1 -ONNX 17
2.2.6.3 MIGraphX, v0.2 e 17
2.2.6.4 MlOpen, v1.8 -3d convolutionsandint8 17
2.2.6.5 Caffe2 -mGPU support e e e 17
2.2.6.6 rocTracer library, ROCm tracing API for collecting runtimes API and asynchronous

GPU activity traces v vttt e e e 17
2.2.6.7 BLAS - Int8§ GEMM performance, Int8 functional and performance 17
2.2.6.8 Prioritized L1/L2/L3 BLAS (functional) 17
2.2.6.9 BLAS -tensileoptimization e e 18
2.2.6.10 MIOpen Int8 support o i i e e e e e e e 18

2.277 New features and enhancements in ROCm 2.2 18
2.277.1 rocSparse Optimization on Vega20 18
2.2.7.2 DGEMM and DTRSM Optimization 18
2273 Caffe2 e 18

2.2.8 New features and enhancements in ROCm 2.1 18
2.2.8.1 RocTracer v1.0 preview release — ‘rocprof” HSA runtime tracing and statistics sup-

POt - . o o o e e 18
2.2.8.2 Improvements to ROCM-SMItool- 18
2.2.8.3 DGEMM Optimizations -« v v v v v v ettt e e e 18

2.2.9 New features and enhancements in ROCm 2.0 18
2.29.1 Adds support for RHEL 7.6 / CentOS 7.6 and Ubuntu 18.04.1 19
2.2.9.2 Adds support for Vega 7nm, Polaris 12GPUs 19
2.2.9.3 Introduces MIVisionX L. 19
2.29.4 TImprovements to ROCm Libraries 19
2295 MIOpen i e e e e e e e 19
2.2.9.6 Tensorflow multi-gpu and Tensorflow FP16 support for Vega 7nm 19
2.2.9.7 PyTorch/Caffe2 with Vega 7nm Support 19
2.29.8 Improvements to ROCProfilertool 19
2.2.9.9 Support for hipStreamCreateWithPriority 19
2.2.9.10 OpenCL 2.0 SUPPOIt v v v v i et e e e e e e e e e e e 20
2.2.9.11 TImproved Virtual Addressing (48 bit VA) management for Vega 10 and later GPUs . 20
2.2.9.12 Kubernetes SUPPOIt v v vt e e e e e e e e e e e e e e e e e 20
2.2.9.13 Removed features e e e 20

2.2.10 New features and enhancements in ROCm 1.9.2 20
2.2.10.1 RDMAMPI) supporton Vega7nm oo v v i v it 20
2.2.10.2 Improvementsto HCC i 20
2.2.10.3 TImprovements to ROCProfilertool 20
22104 Criticalbug fixes L 20

2.2.11 New features and enhancements in ROCm 1.9.1 20

2.2.11.1 Added DPMsupportto Vega7nmo oot e e 20

23

2.2.11.2 Fix for ‘ROCm profiling” “Version mismatch between HSA runtime and libhsa-

runtime-tools64.so.1”erroro oo o 21

2.2.12 New features and enhancements in ROCm 1.9.0 21
2.2.12.1 PreviewforVega7nm 21
2.2.12.2 System Management Interface L Lo 21
2.2.12.3 TImprovementsto HIP/HCC 21
2.2.12.4 Preview for rocprof Profiling Tool, . 21
2.2.12.5 Preview for rocr Debug Agent rocr_debug_agent 21
2.2.12.6 New distribution support L 21
2.2.12.7 ROCm 1.9 is ABI compatible with KFD in upstream Linux kernels. 22
ROCm Installation Guide o e e 22
2.3.1 Are YouReady to ROCK? e e 22
2.3.2 Current ROCm Version: 2.7.1o e 22
2.3.3 The latest ROCm platform - ROCm 2.7, 22
234 Hardware Support. e e e e 23
234.1 Supported GPUs 24
2342 Supported CPUs e 24
2.3.4.3 Not supported or limited support under ROCm 25
2.3.4.3.1 Limited support oL e e e e e 25

23432 Notsupported e 26

2.3.5 Supported Operating Systems - New operating systems available 26
2.3.5.1 ROCm support in upstream Linux kernels 26

2.3.6 Installing from AMD ROCm repositories o v v v v v v v v v v v v v oo 27
2.3.6.1 ROCm Binary Package Structure, 27
2.3.6.2 Ubuntu Support - installing from a Debian repository 29
2.3.6.2.1 First make sure your systemisuptodate 29

2.3.6.22 Add the ROCm apt repositoryo v v v v ... 29

23623 Install 30

2.3.6.2.4 Next set your permissions v v v v v v v e e e e e e 30

2.3.6.2.5 Testbasic ROCminstallation 30

2.3.6.2.6 Performing an OpenCL-only Installation of ROCm 30

2.3.6.2.7 How to uninstall from Ubuntu 16.04 or Ubuntu 18.04 31

2.3.6.2.8 Installing development packages for cross compilation 31

2.3.6.2.9 Using Debian-based ROCm with upstream kernel drivers 31

2.3.6.3 CentOS/RHEL 7 (7.6) Support o i i it e i e et e 31
2.3.6.3.1 Preparing RHEL 7 (7.6) for installation 31

2.3.6.3.2 Install and setup Devtoolset-7 32

2.3.6.3.3 Prepare CentOS/RHEL (7.6) for DKMS Install 32

2.3.6.34 Installing ROCmonthesystem 32

2.3.6.3.5 Setup permiSSiOnS v e e e e e e e e e e e 32

2.3.6.3.6 Testbasic ROCminstallation 33

2.3.6.3.7 Performing an OpenCL-only Installation of ROCm 33

2.3.6.3.8 Compiling applications using HCC, HIP, and other ROCm software . . . 33

2.3.6.3.9 How to uninstall ROCm from CentOS/RHEL 7.6 33

2.3.6.3.10 Installing development packages for cross compilation 34

2.3.6.3.11 Using ROCm with upstream kernel drivers 34

237 Knownissues/workarounds Lo oL e 34
2.3.7.1 rocprofiler —hiptrace and —hsatrace fails to load roctracer library 34
2.3.7.2 rocFFT unit tests - memory access fault 34

2.3.8 Closed source COMPONENLS . . . v v v v v v v v v e e e e e e e e e e e e e e e 34
2.3.9 Getting ROCmssource code o o vt i it e e e e e 35
239.1 Imstallingrepo 35
2.3.9.2 Downloading the ROCm sourcecode 35

2.3.9.3 Buildingthe ROCm sourcecode 35

24

25

2.6

2.3.10 Deprecation NOtCE v v v v vt ittt e e e e e e e e e 35

2.3.10.1 HCC . . oo e 35
2.3.10.2 hipThrust. o o e e e e e e e e 36

2311 Finalnotes o o i e e e e e e e e e e e 36
Programming Guide 36
24.1 ROCMLanguageso v vt v ittt e e e e 36
2.4.1.1 ROCm, Lingua Franca, C++, OpenCL and Python 36
2.4.1.2 Whatis the Heterogeneous Compute (HC) API? 36
2413 WhentoUse HC e 37
2.4.1.4 HIP: Heterogeneous-Computing Interface for Portability 37
2415 WhentoUseHIP e 37
24.1.6 OpenCL™: Open Compute Language 37
24.177 WhentoUseOpenCL e e 37
24.1.8 Anaconda Python WithNumba 37
2419 Numba e e 37
24.1.10 WhentoUse Anaconda 38
24001 Wrap-Up . . . oo e 38
2.4.1.12 Table Comparing Syntax for Different Compute APIs 40
240103 NOES . v v vt e e e e e e e e e e 41

242 HCCProgramming Guide e 41
2.4.2.1 HCC: Heterogeneous Compute Compiler 41
2.4.2.2 Accelerator Modes Supported oL 41
2.4.2.3 Platform Requirements e e e 42
2424 Compiler Backends e 42
2425 Installation oLl e 42
2426 Ubuntu e e 42
2427 Download HCC e 42
24.2.8 Build HCCfromsource o v v v v v v ittt e e et 43
2429 UseHCC. e 44
24210 Multiple ISA L 44
24.2.11 CodeXL Activity Logger 45

243 HCBestPractices e 45
24.3.1 HCCbuilt-in macros v v v v v it e e e e e e e e 46
2.4.3.2 HC-specific features o e e e e e e 46
2.4.3.3 Differences between HC APland C++AMP 47
2434 HCCProfileMode e 48
24341 Kernel Commands e 49

24342 Memory Copy Commands 49

24343 BarrierCommands 50

24344 Overhead e 51

24.3.45 Additional Detailsand tips Lo oL, 51

2.4.3.5 APldocumentation e e e e e e 51

244 HIPPrograming Guide e 51
245 HIPBestPractices i i e 52
24.6 OpenCL Programing Guide o 0 v i i it et e e e e 52
247 OpenCL Best Practices o 0 o i i e e e e e e e e 52
ROCm GPU Tuning Guides i ettt e e 52
2.5.1 GFX7Tuning Guide e 52
252 GFX8Tuning Guide e e 52
253 VegaTuning Guide o it i i e e e e e e e e e e e 52
GCNISAManualso e e 52
26.1 GCN 1.1, .o e 52
262 GCN2.0. . . o 53
2,63 Vega 53

2.7

2.8

2.6.4 Inline GCN ISA Assembly Guide 53

2.6.4.1 The Art of AMDGCN Assembly: How to Bend the Machine to Your Will 53
2.64.2 DS Permute Instructions o 53
2.64.3 Passing ParameterstoaKernel oo 0oL 53
2.644 The GPR Counting i v ittt it e e 56
2.6.4.5 Compiling GCN ASM Kernel IntoHsaco 57
ROCm APIReferences i i i e e e e 57
2.7.1 ROCr System Runtime APL. e 57
2772 HCCLanguage Runtime API 57
2773 HIP Language Runtime API o 57
274 HIPMath APL. o e 57
2.77.5 Math Library APT’s o e 58
2.7.6 DeepLearning API’s e e e e e e 58
ROCmM Tools o e e 58
2.8.1 HCC 58
2.8.1.1 Download HCC e 58
2.8.1.2 Build HCCfromsource« o oo v v v v i it ii et e e 58
2.8.1.3 UseHCC. e 59
2.8.1.4 Multiple ISA L 59
2.8.1.5 CodeXL Activity Logger 60
2.8.1.6 HCC with ThinLTO Linking, 60

2.8.2 GCN Assembler and Disassembler L oL 60
2.83 GCN Assembler ToolS i e 64
2.84 ROCProfiler e 66
2.84.1 Download 67
2.84.2 Build 67
2.8.4.3 Profiling Tool ‘rocprof” Usage 68

2.8.5 ROCrDebug Agent i i it e e e 69
2.8.6 ROCm-GDB e 72
2.8.7 Radeon Compute Profiler e 73
2.8.8 ROCTIACer v i it e e e e e e e e e e e 73
2.8.8.1 Documentationo e e e e e 73
2.8.82 Tobuildandruntest L e 73

2.8.9 CodeXL o o e e 74
2.8.10 GPUPerfAPL e 74
2.8.11 ROCm Binary Utilities e 74
2.8.12 MIVISIOnX e e e e 74
2.8.12.1 AMD OpenVX (amd_openvx) o v v v v it it e 75
2.8.12.2 AMD OpenVX EXtensions v v v v v v vttt e e 75
2.8.12.2.1 Features v v v v i e e e e e e e e 75

2.8.12.2.2 Pre-requisites: oo e 75

2.8.12.2.3 Build Instructions Lo e 76

2.8.12.2.4 Build using Visual Studio Professional 2013 on 64-bit Windows 10/8.1/7 . 76

2.8.12.2.5 BuildusingCMake e 76

2.8.12.2.6 Radeon Loom Stitching Library (vx_loomsl) 76

2.8.12.2.7 OpenVX Neural Network Extension Library (vx_nn) 78

2.8.12.2.8 AMD Module for OpenCV-interop from OpenVX (vx_opencv) 79

2.8.12.2.8.1 BuildInstructions oo 80

2.8.12.3 Applications e e e e e e 81
2.8.12.3.1 Cloud Inference Application (cloud_inference) 81

2.8.12.3.2 Convert Neural Net models into AMD NNIR and OpenVX Code 81

2.8.12.3.3 Currently supported oL 83

2.8.12.4 Samples e 84
2.8.12.4.1 GDF - Graph Description Format 84

2.8.12.5 MIVisionX Toolkit e e e e e 85

2.8.12.6 UtlItIeS o i e e e e e e e e e 85
2.8.12.7 PrerequiSites o i e e e e e e e e e e e e e e e 85
2.8.1277.1 Windows Lo 86
281272 LINUX . . oo oo e e e e e e e e e 86
2.8.12.7.3 Pre-requisites setup script - MIVisionX-setup.py 86
2.8.12.7.4 Prerequisites for running the scripts 86
2.8.12.8 Builld MIVisionX e 87
2.8.12.9 Build & Install MIVisionX o 87
2.8.12.10 PrerequiSites L. e e e e 87

2.8.12.10.1 Using MIVisionX-setup.py and CMake on Linux (Ubuntu 16.04/18.04 or
CentOS 7.5/7.6) withROCm 88

2.8.12.10.2 Build using CMake on Linux (Ubuntu 16.04 64-bit or CentOS 7.5/7.6)
withROCm 88
2.8.12.10.3 Build annInferenceApp using Qt Creator 89

2.8.12.10.4 Build Radeon LOOM using Visual Studio Professional 2013 on 64-bit
Windows 10/8.1/7 o 89
2.8.12.10.5 Verify the Installation 89
2.8.12.10.6 Linux e 89
281211 Docker e e 90
2.8.12.11.1 MIVisionX Docker 90
2.8.12.11.2 Docker Workflow Sample on Ubuntu 16.04 90
2.8.12.11.3 Workflow L e 90
2.8.12.11.4 Supported Neural Net Layers 91
2.8.12.12 Release Notes o e 92
2.8.12.12.1 KnownisSues v v vttt e e e e e e e e e 92
2.8.12.12.2 Tested configurations e e 92
29 ROCmULIbraries oo ittt e e 92
29.1 1ocFFT . . . e e 92
2.9.1.1 APLdesign e e e e e e e 93
29.1.2 Installing pre-built packages Lo L. 93
2.9.1.3 Quickstart rocFFT build 93
2.9.1.4 Manual build (all supported platforms) 93
2.9.1.5 Example e e e e e e e e 93
29.1.6 APIL. . . . e e 94
2.9.1.6.1 Types e e 94
29.1.6.2 Library SetupandCleanup 95
29.1.63 Plan e 95
2.9.1.6.4 Plandescription e e e e 96
29.1.6.5 Execution 97
29.1.6.6 Executioninfo oo 98
2.9.1.6.7 Enumerationst e e e e e e 99
292 rocBLAS . . 100
2.9.2.1 PrerequiSites o i i i e e e e e e e e e e e e 100
2.9.2.2 Installing pre-built packages L e 100
2.9.23 QuickstartrocBLAS build Lo 100
2.9.2.4 Manual build (all supported platforms) oL 101
29.2.5 rocBLAS interface examples oo 101
2926 GEMVAPL e 101
2.9.2.7 Batched and strided GEMM APl 101
2.9.2.8 Asynchronous API. e 102
2929 APL. . . e 102
29291 TYpES e 102

2.9.29.1.1 Definitions e 102

2929.1.2 rocblas_int. 102
29.29.1.3 rocblas_long L 102
29.29.14 rocblas_float_complex, 102
29.29.1.5 rocblas_double_complex 102
29.29.1.6 rocblas_half 102
29.29.1.7 rocblas_half complex L. 102
29.2.9.1.8 rocblas_handle 102
2.9.2.9.1.9 Enums e 103
2.9.29.1.10 rocblas_operation L. 103
2.9.29.1.11 rocblas_fill 103
29.29.1.12 rocblas_diagonal 103
2.929.1.13 rocblas_side e 103
2.9.2.9.1.14 rocblas_status e e e e 104
2.9.29.1.15 rocblas_datatype 104
2.9.29.1.16 rocblas_pointer_mode oL 105
2.9.29.1.17 rocblas_layer mode, 105
29.29.1.18 rocblas_gemm_algo oL 105
2.92.92 FunctionsS e e e e e e e e 105
2.9.29.2.1 Level IBLAS 105
29.29.22 rocblas_<type>scal() 105
29.29.23 rocblas_<type>copy()o 106
29.29.24 rocblas_<type>dot() 106
2.9.29.2.5 rocblas_<type>swap() o v e i e e 107
2.9.29.2.6 rocblas_<type>axpy() ot i e e 107
29.29.277 rocblas_<type>asum() 108
29.29.2.8 rocblas_<type>nrm2() 108
292929 rocblas_i<type>amax() 109
29.29.2.10 rocblas_i<type>amin()o 109
2929211 Level2BLAS 109
29.29.2.12 rocblas_<type>gemv() oo 109
29.29.2.13 rocblas_<type>trsv()o oo 110
29.29.2.14 rocblas_<type>ger()o 111
2.9.29.2.15 rocblas_<type>syr()o 112
2929216 Level 3BLAS 113
2.9.2.9.2.17 rocblas_<type>trtri_batched() 113
2.9.29.2.18 rocblas_<type>trsm() 113
29.29.2.19 rocblas_<type>gemm() 114
2.9.2.9.2.20 rocblas_<type>gemm_strided_batched() 115
2.9.29.2.21 rocblas_<type>gemm_kernel_name() 117
2.9.2.9.2.22 rocblas_<type>geam()o e 117
2929223 BLASExtensions 118
2.9.29.2.24 rocblas_gemm_ex() oo e 118
2.9.2.9.2.25 rocblas_gemm_strided_batched_ex() 118
2.9.2.9.2.26 BuildInformation L. 120
2.9.2.9.2.27 rocblas_get_version_string() 120
2.9.29.2.28 Auxiliary 121
2.9.2.9.2.29 rocblas_pointer_to_mode()o 121
2.9.29.2.30 rocblas_create_handle() 121
29.29.231 rocblas_destroy_handle() 121
2.9.29.2.32 rocblas_add_stream() e 121
2.9.29.2.33 rocblas_set_stream() 121
2.9.29.234 rocblas_get_stream()ol el 121
2.9.2.9.2.35 rocblas_set_pointer_mode() 122
2.9.29.2.36 rocblas_get_pointer_mode() 122

vii

293

294

2.9.2.9.2.37 rocblas_set_vector() 122

2.9.2.9.2.38 rocblas_get_vector() 122
2.9.29.2.39 rocblas_set_matrix()o e e 122
2.9.29.2.40 rocblas_get_matrix()o 122
29210 ANLAPL. e 122
hipBLAS . . . e 144
2.9.3.1 Introduction e e e e e e e e e 144
2.9.3.1.1 Installing pre-built packages, 144
2.9.3.1.2 Quickstart hipBLAS build 144
2932 Build e e 145
29.3.2.1 Dependencies For Building Library 145
2.9.3.2.2 Build Library Using Script (Ubuntuonly) 145
29.3.2.3 Build Library Using Individual Commands 145
29.3.2.4 Build Library + Tests + Benchmarks + Samples Using Individual Commands 145
29.3.25 Commonbuild problems00, 146
29033 Running 147
29331 NOUCE o v it e e e e e e e e e e e 147
2.9.3.3.2 hipBLAS interfaceexamples oL 147
29333 GEMVAPI e e e 147
2.9.3.3.4 Batched and stridled GEMM API 148
Tensile e e e 148
2.94.1 Introduction e e e e e 148
2.9.4.1.1 Quick Example (Ubuntu):, 148
2.9.42 Benchmark Configexample 149
2.9.4.2.1 Example Benchmark config.yaml as input file to Tensile 149
29.422 Structure of config.yaml. oo oL 150
2.9.4.23 Global Parameters 150
29.4.24 Problem Type Parameters 151
2.9.4.2.5 Solution/ Kernel Parameters 152
29426 Defaults e e e e e 152
29.4.3 Benchmark Protocol 152
2.9.4.3.1 Old Benchmark Architecture was Intractable 152
2.9.4.3.2 Incremental Benchmarkis Faster 152
29433 Phasesof Benchmark 152
2.9.4.3.4 Initial Solution Parameters, 153
29435 ProblemSizes 153
2.9.43.6 Benchmark Common Parameters 154
29437 ForkParameters e e 154
2.9.4.3.8 Benchmark Fork Parameters 154
2.9.439 JoinParameters e e 155
2.9.4.3.10 Benchmark Join Parameters. 155
2.9.4.3.11 Benchmark Final Parameters 155
2944 Contributing e e e 155
2.9.4.5 Dependencies e e e e e e e e 155
29451 CMake. 0 e e e e e e e e e e 155
29452 Python e e 155
29453 Compilers e 156
2.94.6 Installation e e e 156
2947 Kernel Parameters e e e e e e e e e e e 156
2.9.4.7.1 Solution/ Kernel Parameters 156
2.9.4.7.2 Kernel Parameters Affect Performance 157
29473 How N-Dimensional Tensor Contractions Are Mapped to Finite-
Dimensional GPU Kernels 158
29.4.74 Special Dimensions: DO,DlandDU 158

viii

295

29.6

29.7

2938

299

29475 GPUKernel Dimension v v vt e 158

2.9.4.8 Languages o it e e e e e e e e e e e e e 158
29.4.8.1 Tensile Benchmarkingis Python, 158
29482 TensileLibrary o 158
29.483 DeviceLanguageso 158

2949 LibraryLogic e 159

2.9.4.10 Problem Nomenclature 159
2.9.4.10.1 Example Problems 159
2.9.4.10.2 Nomenclature e 159
2.9.4.10.3 Limitationsot e e e e e e e e e e e 160

29411 Tensiledlibo e 160

2.9.4.12 VersioniNg v v v v v vt e e e e e e e e e e e e e e e e e e 160

rocThrust o e e 161

29.5.1 Introduction 161

2952 Requirements e e e e 161

2.9.53 Hardware e 161

29.54 BuildAndInstall 161

2.9.5.5 UsingrocThrustIn AProject 162

2.9.5.6 Running UnitTests i e e 162

2.9.57 Documentation i i e e e e e e e e 162

2.9.5.8 Support ..o e e 162

hipCUB e e 162

2.9.6.1 Requirements i i i e e e e e e e e e e 163

29.6.2 BuildAndInstall 163

29.6.3 UsinghipCUBIn A Project 164

29.6.4 Running UnitTests 164

2.9.6.5 Documentation e e e e e e e e e e e 164

2.9.6.6 SUPPOIT e e e e e 164

2.9.6.7 Contributionsand License o 165

ROCm SMIlibrary o e e e e e e e e e 165

2.9.7.1 Important note about Versioning and Backward Compatibility 165

2.9.72 Building ROCm SMI 165
29.7.2.1 Additional Required software for building 165

2.9.7.3 Building the Documentation. e 165

2.9.74 Buildingthe Tests i e e e e 166

2975 UsageBasics. e 166
29751 Devicelndices L e 166
29.752 HelloROCmSMI i 166

RCCL . . o e 167

29.8.1 Introduction e 167

29.8.2 Requirements e e e e e e e 167

29.83 Quickstart RCCLBuild 167

29.84 Manualbuild. 168
29.84.1 Tobuildthelibrary :. e 168

2.9.8.5 To build the RCCL package and install package : 168

20.8.6 TeStS e e e 168

29.8.7 Library and API Documentation 169

29.8.8 Copyright e 169

rocALUTION o e 169

2.9.9.1 Introduction e e e e 169

2.9.9.2 OVEIVIEW v ittt e e e e e e e e 169

29.9.3 Buildingand Installing L 170

29.9.4 Installing from AMD ROCm repositories 170

2.9.9.5 Building rocALUTION from Open-Source repository 170

2.9.10

2.9.9.6 Download rocALUTION it 170
2.9.9.7 Using install.sh to build dependencies + library 170
2.9.9.8 Using install.sh to build dependencies + library + client 171
2.9.9.9 Using individual commands to build rocALUTION 171
2.9.9.10 Common build problems o 172
2.9.9.11 Simple Test oo o e e e e e 173
29.9.12 APL. . . . e 173
2.9.9.12.1 Host Utility Functions, 173
29.9.122 BackendManager e 174
2.909.123 BaseRocalution L 176
29.9.12.4 Operator o i i i i e e e e e e 178
299125 Vector e e e 179
29.9.12.6 LocalMatrix. e 185
29.9.1277 LocalStencil 203
2.9.9.12.8 Global Matrix 204
299129 Local Vector o i e 206
2.9.9.12.10 Global Vector e 209
2.9.9.12.11 Parallel Manager i 210
29.9.12.12 Solvers. o e e e 211
2.9.9.12.13 Preconditionersot e e e 224
rocSPARSE . . . e 232
2.9.10.1 Introduction it e e e e e 232
2.9.10.2 Device and Stream Managementt tee e e 232
2.9.10.2.1 Asynchronous Execution 232
2.9.10.2.2 HIP Device Management 232
2.9.10.2.3 HIP Stream Management 233
2.9.10.2.4 Multiple Streams and Multiple Devices 233
2.9.10.3 Building and Installing 233
2.9.103.1 Installing from AMD ROCm repositories 233
2.9.10.3.2 Building rocSPARSE from Open-Source repository 233
2.9.10.3.3 Using install.sh to build dependencies + library 234
2.9.10.3.4 Using install.sh to build dependencies + library +client 234
2.9.10.3.5 Using individual commands to build rocSPARSE 234
2.9.10.3.6 Common build problems o 235
2.9.104 Unittests v v v v it e e e e e e e e e e e e e 235
29.10.5 Benchmarks 236
2.9.10.6 Storage Formats 236
29.10.6.1 COOstorageformatot v it i e 236
2.9.10.6.2 CSRstorageformat i e 236
2.9.10.6.3 ELLstorage format o i e 237
2.9.10.7 TYPES .« v v e e e e e e e e e e e e e 238
2.9.10.7.1 rocsparse_handle o 238
2.9.10.7.2 rocsparse_mat_descr i e 238
29.10.7.3 rocsparse_mat_infoo Lo 238
2.9.10.7.4 rocsparse_hyb_mat e 238
2.9.10.7.5 rocsparse_actiono i i e e e 238
29.10.7.6 rocsparse_hyb_partition oL Lo 239
2.9.10.7.7 rocsparse_index_base 239
2.9.10.7.8 rocsparse_MatriX_typeo e e e e 239
2.9.10.7.9 rocsparse_fill_mode e 240
2.9.10.7.10 rocsparse_diag type o it it e e e e e e e 240
2.9.10.7.11 rocsparse_Operationt e it 240
2.9.10.7.12 rocsparse_pointer_mode o Lo 241

2.9.10.7.13 rocsparse_analysis_policy oL 241

2.9.10.7.14 rocsparse_solve_policy 241

2.9.10.7.15 rocsparse_layer_mode o 241
2.9.10.7.16 rocsparse_statlso u e e e e e e e e e e e e e 242
2.9.10.8 Logging o i e e e e e e e 242
2.9.10.9 Sparse Auxiliary Functions o 243
29.10.9.1 rocsparse_create_handle(). L. 243
2.9.10.9.2 rocsparse_destroy_handle() oL 243
2.9.10.9.3 rocsparse_set_stream() e e e e e e e e e 244
2.9.10.9.4 rocsparse_get_stream()o a e i e e e e e e 244
2.9.10.9.5 rocsparse_set_pointer_mode()l e e 245
2.9.10.9.6 rocsparse_get_pointer_mode()o 245
2.9.10.9.7 rocsparse_get_version()o e i i i e e e e e e 245
2.9.10.9.8 rocsparse_get_git_ 1ev() o .t i e e e e e 246
2.9.10.9.9 rocsparse_create_mat_descr()o Lo e e 246
2.9.10.9.10 rocsparse_destroy_mat_descr() oo e 246
2.9.10.9.11 rocsparse_copy_mat_descr() oo e . 247
2.9.10.9.12 rocsparse_set_mat_index_base() 247
2.9.10.9.13 rocsparse_get_mat_index_base() 247
2.9.10.9.14 rocsparse_set_mat_type() i e e e e e e e e 248
2.9.10.9.15 rocsparse_get mat_type()ol 248
2.9.10.9.16 rocsparse_set_mat_fill_mode() 248
2.9.10.9.17 rocsparse_get_mat_fill. mode() 249
2.9.10.9.18 rocsparse_set_mat_diag_type() 249
2.9.10.9.19 rocsparse_get_mat_diag type()o e e 249
2.9.10.9.20 rocsparse_create_hyb_mat() 249
2.9.10.9.21 rocsparse_destroy_hyb_mat() 250
2.9.10.9.22 rocsparse_create_mat_info()o 250
2.9.10.9.23 rocsparse_destroy_mat_info() 250
2.9.10.10 Sparse Level 1 Functions e 251
2.9.10.10.1 rocsparse_axpyi()« v v v it e e e e e 251
2.9.10.10.2 rocsparse_doti()o e e e 252
2.9.10.10.3 rocsparse_gthr() 252
2.9.10.10.4 rocsparse_gthrz() e 253
2.9.10.10.5 rocsparse_roti() v it i e e e e e e e e e 254
2.9.10.10.6 rocsparse_sCtr() o it i e e e e e e e e e e 255
2.9.10.11 Sparse Level 2 Functions o 256
2.9.10.11.1 rocsparse_coomv() v vt i i e e e e e e e 256
2.9.10.11.2 rocsparse_csrmv_analysis() 257
2.9.10.11.3 rocsparse_CSImMV() « . v v v v v v e e e e e e e e e e e e e e e 258
2.9.10.11.4 rocsparse_csrmv_analysis_clear() 261
2.9.10.11.5 rocsparse_ellmv() e 261
2.9.10.11.6 rocsparse_hybmv() Lo oo 263
2.9.10.11.7 rocsparse_csrsv_zero_pivot()t e i 264
2.9.10.11.8 rocsparse_csrsv_buffer_size() Lo 264
2.9.10.11.9 rocsparse_csrsv_analysis()« . . oot i e e 265
2.9.10.11.10rocsparse_csrsv_solve() v v v v v v vt e e e 267
2.9.10.11.11rocsparse_csrsv_clear()« o v i et e 269
2.9.10.12 Sparse Level 3 Functions 270
2.9.10.12.1 rocsparse_CSrmm() v vt e e e e e e e e e e e e e 270
2.9.10.13 Preconditioner Functions e 273
2.9.10.13.1 rocsparse_csrilu0_zero_pivot() oo 273
2.9.10.13.2 rocsparse_csrilu0_buffer_size() oL 274
2.9.10.13.3 rocsparse_csrilu0_analysis() oL 275
2.9.10.13.4 rocsparse_csrilu0()o 276

xi

2.9.10.13.5 rocsparse_csriluO_clear() 280

2.9.10.14 Sparse Conversion Functions e 281
2.9.10.14.1 rocsparse_csr2C00() « .« v v v v v i e e e e e e e e e e 281

2.9.10.14.2 1ocsparse_CO02CST() « « v v v v v e e e e e e e e e e e e e e e 282

2.9.10.14.3 rocsparse_csr2csc_buffer_size() 284

2.9.10.14.4 rocsparse_CSI2CSC() « v v v v v e e e e e e e e e e e e e 284

2.9.10.14.5 rocsparse_csr2ell_width(), 287

2.9.10.14.6 rocsparse_csr2ell() e 287

2.9.10.14.7 rocsparse_ell2cst_nnz() o L. o e e e e 289

2.9.10.14.8 rocsparse_ell2csr() e e 290

2.9.10.14.9 rocsparse_csr2hyb() 291
2.9.10.14.10rocsparse_create_identity_permutation() 292
2.9.10.14.11rocsparse_csrsort_buffer_size() 293
2.9.10.14.12rocsparse_Csrsort() . . . v v . o i e e e e e e e e e e e e e 294
2.9.10.14.13rocsparse_coosort_buffer_size() 295
2.9.10.14.14rocsparse_coosort_by_row() oo e 296
2.9.10.14.15rocsparse_coosort_by_column(), 298

2.9.11 Deprecated Libraries o o . o e e e e e e e e e e e e 300
2.9.11.1 hCRNG e e e e e e e e 300
29.11.2 hipeigen L e 300
2.9.11.3 CcIFFT e e e e 300
2.9.11.4 CcIBLAS e e e 300
2.9.11.5 CcISPARSE e e e 300
29.11.6 cIRNG e e e e e e e 300
2.9.11.7 hcFFT . . . e e e e e e e e e 301

2.10 ROCm Compiler SDK e 301
2.10.1 GCN Native ISA LLVM Code Generator v v v it i 301
2.10.2 ROCm Code Object Format i it et e e e e e e 301
2.10.3 ROCm Device Library 0 0 i e e e e e e e e e e 301
2.10.3.1 OVERVIEW e e e e e e e 301
2.10.3.2 BUILDING e e e e e 301
2.10.3.3 USING BITCODE LIBRARIES 302
2.10.3.4 TESTING e e e e 303

2.10.4 ROCrRuntime i i i e e e e e e e e e e e e e e e e 303
2.10.4.1 HSA Runtime API and runtime for ROCm 303
2.10.4.2 Sourcecode e e e e e e e e e e e e e 304
2.10.4.3 Binaries for Ubuntu & Fedora and installation instructions 304
2.10.4.4 Infrastructure o i e e e e e e e e e e e e e 304
2.10.4.5 Sample L e e e e e e e e e 305
2.10.4.6 KNOWNISSUES . . . v v v v i e o e 305

2.11 ROCm System Managementt i ittt et e 305
2.11.1 ROCmM-SMI e 305
2.11.1.1 Programing ROCm-SMI 310

2.11.2 SYSFSInterface e e e e 310
2.11.2.1 Naming and data format standards for sysfsfiles 310
2.11.2.1.1 Global attributes e e e 311

2.11.2.1.2 Voltages oL 313

2.11.2.1.3 Fans e e e 316

2.11.2.1.4 PWM . . o e e e e e 319

2.11.2.1.5 Temperatures v v v v v v e e e e e e e e e e e e e e 322

2.11.2.1.6 Currentst i e e e e e e e e e e e e e e e e e e 325

2.11.2.1.7 POWEr o e e e e e e 328

211218 Energy o e 329

2.11.2.1.9 Humidity e 329

xii

2.12

2.13

2.14

2,112,110 Alarms o oo e e e e 329

2.11.2.1.11 Intrusiondetection 332

2.11.2.1.11.1 sysfs attribute writes interpretation 332

2.11.2.1.12 Performance e e e 333

2113 KFD Topology o o o i e e e e e e e 333
2.11.3.1 HSA Agent Information L 333
2.11.3.2 Node Information e 334
21133 MEMOTY . . v v v v it e e e e e e e e e e e e e e e e e e 334
21134 Cache e 334
2.11.3.5 TO-LINKS o e 334
2.11.3.6 How to use topology information 334
ROCm Virtualization & Containers v v v vt i i vt e e e et e 336
2.12.1 PCle Passthroughon KVM e 336
2.12.1.1 Ubuntu 16.04 e e e 336
2.12.1.2 Fedora 27 or CentOS 7 (1708) i i it 337

2.12.2 ROCm-Docker e 338
2.122.1 DockerHub 338
2.12.2.2 ROCm-dockersetupguide v ittt 338
21223 Details e 339
2.12.2.4 Buildingimages e 339
21225 Docker compose e 340
Remote Device Programming e 341
2.13.1 ROCmRDMA e e 341
2.13.1.1 Restrictions and limitations oL e 341
2.13.1.2 ROCmRDMA interface specification 341
2.13.1.3 DataStruCtures v v v v e 341
2.13.1.4 The function to query ROCmMRDMA interface 342
2.13.1.5 The function to query ROCmRDMA interface 342
2.13.1.6 ROCmRDMA interface functions description 343

2,132 UCXK . . e e e 344
2.13.2.1 Introduction e e e e e e e e e e e 344
2.13.22 UCX Quickstart e e e e 344
2.13.23 UCX APIusageexampleso oo i it i it e et 344
2.13.24 Running UCX e e e e e e 344
2.13.2.4.1 UCXinternal performancetests. 344

2.13.2.42 OpenMPI and OpenSHMEM with UCX 346

2.13.2.5 ImterfacetoROCm 347
2.13.2.6 Documentationo e e e e e e e e 347
2.13.2.6.1 HighLevel Design e ein.... 347

2.13.2.6.2 Infrastructureand Tools 348

21327 FAQ . . o o e e e 350

2,133 MPL . . . e 351
2.13.4 IPC . . . e 352
2.13.4.1 Introduction e e e e e 352

Deep Learningon ROCm o o L e e e e e e 355
2.14.1 TensorFlow o L e e e e e e 355
2.14.1.1 ROCm Tensorflow v2.0Release 355
2.14.1.2 Tensorflow Installation 355
2.14.1.3 Tensorflow More Resources oo 355

2142 MIOPEN . . . v o e e e e e e e e e e e e e e e e 356
2.14.2.1 ROCm MIOpenv2.0Release i it 356
2.142.2 Porting from cuDNNtoMIOpen 356
2.14.2.3 The ROCm 2.7 has prebuilt packages for MIOpen 356

2.143 PyTorch e e 357

2.15

2.16
2.17

Index

2.143.1 Building PyTorchforROCm 357

2.14.3.2 Recommended:Install using published PyTorch ROCm docker image: 357
2.14.3.3 Option 2: Install using PyTorch upstream dockerfile 358
2.14.3.4 Option 3: Install using minimal ROCm dockerfile 359
2.143.5 TryPyTorchexamples 360

2144 Caffe2 360
2.14.4.1 Building Caffe2 forROCm 360
2.14.42 Option 1: Docker image with Caffe2 installed: 361
2.14.43 Option 2: Install using Caffe2 ROCm docker image: 361
2.14.4.4 Test the Caffe2 Installation 361
2.144.5 Runbenchmarks L 362
2.14.4.6 Running example sCripts« o v it e e e e 362
2.14.477 Building owndockerimages e 362

2.14.5 Deep Learning Framework support for ROCm 363
2.14.6 Tutorials L e e e e e e e 363
System Level Debug 363
2.15.1 ROCm Language & System Level Debug, Flags and Environment Variables 363
2.15.1.1 ROCrErrorCode e 363
2.15.1.2 Command to dump firmware version and get Linux Kernel version 364
2.15.1.3 DebugFlags e 364
2.15.1.4 ROCr level env variable fordebug 364
2.15.1.5 Turn Off Page Retry on GFX9/Vegadevices 364
2.15.1.6 HCC Debug Enviroment Varibles 365
2.15.1.7 HIP Environment Varibles oo 367
2.15.1.8 OpenCL Debug Flags 368
2.15.1.9 PCle-Debug 368
Tutorial L 368
ROCM GlOSSArY . . . o v v o e 368
371

xiv

ReadTheDocs-Breathe Documentation, Release 1.0.0

We are excited to present ROCm, the first open-source HPC/Hyperscale-class platform for GPU computing that’s
also programming-language independent. We are bringing the UNIX philosophy of choice, minimalism and modular
software development to GPU computing. The new ROCm foundation lets you choose or even develop tools and a
language run time for your application.

ROCm is built for scale; it supports multi-GPU computing in and out of server-node communication through RDMA.
It also simplifies the stack when the driver directly incorporates RDMA peer-sync support.

ROCm has a rich system run time with the critical features that large-scale application, compiler and language-run-
time development requirements.

CONTENTS 1

ReadTheDocs-Breathe Documentation, Release 1.0.0

2 CONTENTS

CHAPTER
ONE

GOING TO 11: AMPING UP THE PROGRAMMING-LANGUAGE
RUN-TIME FOUNDATION

The ROCr System Runtime is language independent and makes heavy use of the Heterogeneous System Architecture
(HSA) Runtime API. This approach provides a rich foundation to execute programming languages such as HCC C++
and HIP, the Khronos Group’s OpenCL, and Continuum’s Anaconda Python.

Compiler Front End

! o
GCN LLVM |;
Compiler Compiler ||

LLVM Opt LLVM Opt |

Passes Passes || Language Runtime API
CPUISA
ROCr System Runtime API

ROCm Driver

Linux® OS

Important features include the following:
* Multi-GPU coarse-grain shared virtual memory
* Process concurrency and preemption
* Large memory allocations
* HSA signals and atomics
* User-mode queues and DMA
* Standardized loader and code-object format
¢ Dynamic and offline-compilation support
* Peer-to-peer multi-GPU operation with RDMA support

¢ Profiler trace and event-collection API

ReadTheDocs-Breathe Documentation, Release 1.0.0

¢ Systems-management API and tools

Support on Metal

I
L
L

Deep Learning

Compiler

Collective
Communication Lib

Language RT API
System RT API

4 Chapter 1. Going to 11: Amping Up the Programming-Language Run-Time Foundation

CHAPTER
TWO

SOLID COMPILATION FOUNDATION AND LANGUAGE SUPPORT

e LLVM compiler foundation
e HCC C++ and HIP for application portability
* GCN assembler and disassembler

The frontiers of what you can accomplish with ROCm are vast and uncharted. We look forward to working with you
to improve the platform so you can use it more effectively in your own projects. Our efforts have opened the door to
unique heterogeneous-computing applications that explore what this growing technology can do.

2.1 Quick Start Guide

2.1.1 Current Release Notes
Release Notes

The Release Notes for the ROCm Latest version.
2.1.2 Installation Guide

Installing from AMD ROCm repositories

This guide discusses how to install and check for correct operation of ROCm using AMD ROCm Repository.

Installing from a Debian repository
This guide discusses how to install and check for correct operation of ROCm using Debian repository on Ubuntu.

Installing from an yum repository
This guide describes how to install and check for correct operation of ROCm using yum on RHEL and CentOS 7.5.

Getting ROCm source code
This guide discusses how to modify the open source code base and rebuild the components of ROCm latest version.

Installing ROCk-Kernel only
This guide discusses how to install ROCm Kernel into the system.

http://rocm-documentation.readthedocs.io/en/latest/Current_Release_Notes/Current-Release-Notes.html#rocm-1-8-what-new
http://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html#installing-from-amd-rocm-repositories
http://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html#ubuntu-support-installing-from-a-debian-repository
https://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html#centos-rhel-7-both-7-4-and-7-5-support
http://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html#getting-rocm-source-code
http://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/ROCk-kernel.html#rock-kernel

ReadTheDocs-Breathe Documentation, Release 1.0.0

FAQ on Installation

This section provides answers for various frequently asked questions related to installation steps and issues faced
during installation.

2.1.3 Programming Guide

This guide provides a detailed discussion of the ROCm programming model and programming interface. It describes
the hardware implementation and provides guidance on how to achieve maximum performance.

The appendices include a list of all ROCm-enabled devices, detailed description of all extensions to the C language,
listings of supported mathematical functions, C++ features supported in host and device code, technical specifications
of various devices, and concludes by introducing the low-level driver API.

ROCm Languages

This guide provides information on different ROCm languages. ROCm stack offers multiple programming-language
choices found in this section.

HC Programing Guide
This guide provides a detailed discussion on The Heterogeneous Compute programming installation requirements,
methods to install on various platforms and how to build it from source

HC Best Practices

This section deals with detailed working with HCC, build the program, Build-in Macros, HCC Profiler mode and API
Documentaion.

HIP Programing Guide

This guide provides a detailed discussion of The HIP programming, installation requirements, methods to install on
various platfroms and how to build it from source

HIP Best Practices

This section Provides details regarding various concepts of HIP Porting, Debugging, Bugs, FAQ and other aspects of
the HIP.

OpenCL Programing Guide
This guide provides a detailed discussion of The OpenCL Architecture, AMD Implementation, Profiling, and other
aspects of Opencl.

OpenCL Best Practices
This section provides information on Performance and optimization for various device types such as GCN devices.

2.1.4 ROCm GPU Tunning Guides

GFX7 Tuning Guide
— In-Progress

6 Chapter 2. Solid Compilation Foundation and Language Support

http://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/FAQ-on-Installation.html#faq-on-installation
http://rocm-documentation.readthedocs.io/en/latest/Programming_Guides/Programming-Guides.html#rocm-languages
http://rocm-documentation.readthedocs.io/en/latest/Programming_Guides/Programming-Guides.html#hc-programing-guide
http://rocm-documentation.readthedocs.io/en/latest/Programming_Guides/Programming-Guides.html#hc-best-practices
http://rocm-documentation.readthedocs.io/en/latest/Programming_Guides/Programming-Guides.html#hip-programing-guide
http://rocm-documentation.readthedocs.io/en/latest/Programming_Guides/Programming-Guides.html#hip-best-practices
http://rocm-documentation.readthedocs.io/en/latest/Programming_Guides/Programming-Guides.html#opencl-programing-guide
http://rocm-documentation.readthedocs.io/en/latest/Programming_Guides/Programming-Guides.html#opencl-best-practices
http://rocm-documentation.readthedocs.io/en/latest/ROCm_GPU_Tunning_Guides/ROCm-GPU-Tunning-Guides.html#gfx7-tuning-guide

ReadTheDocs-Breathe Documentation, Release 1.0.0

GFXS8 Tuning Guide
— In-Progress

Vega Tuning Guide
— In-Progress

2.1.5 GCN ISA Manuals
GCN 1.1

This Section gives information on ISA Manual for Hawaii (Sea Islands Series Instruction Set Architecture)

GCN 2.0

This Section gives information on ISA Manual for Fiji and Polaris (AMD Accelerated Parallel Processing
technology)

Vega
This section provides “Vega” Instruction Set Architecture, Program Organization, Mode register and more details.

Inline GCN ISA Assembly Guide

This section covers various concepts of AMDGCN Assembly, DS Permute Instructions, Parameters to a Kernel, GPR
Counting.

2.1.6 ROCm API References

Here API References are listed out for users

ROCr System Runtime API
ROCr System Runtime API Details are listed here

HCC Language Runtime API
HCC Language Runtime APIDetails are listed here

HIP Language Runtime API
HIP Language Runtime API Details are listed here

HIP Math API
Here HIP Math APT are listed with sample working classes

Thrust API Documentation
Here you can find all the details on installation, working of Thrust Library and Thrust API List

2.1. Quick Start Guide 7

http://rocm-documentation.readthedocs.io/en/latest/ROCm_GPU_Tunning_Guides/ROCm-GPU-Tunning-Guides.html#gfx8-tuning-guide
http://rocm-documentation.readthedocs.io/en/latest/ROCm_GPU_Tunning_Guides/ROCm-GPU-Tunning-Guides.html#vega-tuning-guide
http://rocm-documentation.readthedocs.io/en/latest/GCN_ISA_Manuals/GCN-ISA-Manuals.html#gcn-1-1
http://rocm-documentation.readthedocs.io/en/latest/GCN_ISA_Manuals/GCN-ISA-Manuals.html#gcn-2-0
http://rocm-documentation.readthedocs.io/en/latest/GCN_ISA_Manuals/GCN-ISA-Manuals.html#vega
http://rocm-documentation.readthedocs.io/en/latest/GCN_ISA_Manuals/GCN-ISA-Manuals.html#inline-gcn-isa-assembly-guide
http://rocm-documentation.readthedocs.io/en/latest/ROCm_API_References/ROCm-API-References.html#rocr-system-runtime-api
http://rocm-documentation.readthedocs.io/en/latest/ROCm_API_References/ROCm-API-References.html#hcc-language-runtime-api
http://rocm-documentation.readthedocs.io/en/latest/ROCm_API_References/ROCm-API-References.html#hip-language-runtime-api
http://rocm-documentation.readthedocs.io/en/latest/ROCm_API_References/ROCm-API-References.html#hip-math-api
http://rocm-documentation.readthedocs.io/en/latest/ROCm_API_References/ROCm-API-References.html#thrust-api-documentation

ReadTheDocs-Breathe Documentation, Release 1.0.0

Math Library API’s
HIP MAth API with hcRNG, cIBLAS, cISPARSE API’s.

Deep Learning API’s
Here MIOpen API and MIOpenGEMM API are listed.

2.1.7 ROCm Tools

HCC
Complete description of Heterogeneous Compute Compiler has been listed and documented.

GCN Assembler and Disassembler
This Section provides details regarding GCN in-detail.

GCN Assembler Tools
In this Section, information related to AMDGPU ISA assembler is documented.

ROCm-GDB

Complete Documentaion of ROCm-GDB tool is provided here. Installtion, Build steps and working of Debugger and
API related to it has been documented here.

ROCm-Profiler

This section gives details on Radeon Compute Profiler- performance analysis tool,and we have details on how to
clone and use it.

ROCm-Tracer

This section gives Details on ROCm Tracer, which provides a generic independent from specific runtime profiler to
trace API and asyncronous activity. Here we have details on library source tree, steps to build and run test.

CodeXL

This section provides details on CodeXL, a comprehensive tool suite. The Documentaion of Installation and builds
and other details related to Codexl is given.

GPUperfAPI

This section provides details on GPU Performance API. The content related to how to clone, system requiments and
source code directory layout can be found.

ROCm Binary Utilities
— In-progess

8 Chapter 2. Solid Compilation Foundation and Language Support

http://rocm-documentation.readthedocs.io/en/latest/ROCm_API_References/ROCm-API-References.html#math-library-api-s
http://rocm-documentation.readthedocs.io/en/latest/ROCm_API_References/ROCm-API-References.html#deep-learning-api-s
http://rocm-documentation.readthedocs.io/en/latest/ROCm_Tools/ROCm-Tools.html#hcc
http://rocm-documentation.readthedocs.io/en/latest/ROCm_Tools/ROCm-Tools.html#gcn-assembler-and-disassembler
http://rocm-documentation.readthedocs.io/en/latest/ROCm_Tools/ROCm-Tools.html#gcn-assembler-tools
http://rocm-documentation.readthedocs.io/en/latest/ROCm_Tools/ROCm-Tools.html#rocm-gdb
http://rocm-documentation.readthedocs.io/en/latest/ROCm_Tools/ROCm-Tools.html#rocm-profiler
https://rocm-documentation.readthedocs.io/en/latest/ROCm_Tools/ROCm-Tools.html#roc-tracer
http://rocm-documentation.readthedocs.io/en/latest/ROCm_Tools/ROCm-Tools.html#codexl
http://rocm-documentation.readthedocs.io/en/latest/ROCm_Tools/ROCm-Tools.html#gpuperfapi
http://rocm-documentation.readthedocs.io/en/latest/ROCm_Tools/ROCm-Tools.html#rocm-binary-utilities

ReadTheDocs-Breathe Documentation, Release 1.0.0

2.1.8 ROCm Libraries

rocFFT

This section provides details on rocFFT,it is a AMD’s software library compiled with the CUDA compiler using HIP
tools for running on Nvidia GPU devices.

rocBLAS

This section provides details on rocBLAS, it is a library for BLAS on ROCm.rocBLAS is implemented in the HIP
programming language and optimized for AMD’s latest discrete GPUs.

hipBLAS

This section provides details on hipBLAS, it is a BLAS marshalling library, with multiple supported backends.
hipBLAS exports an interface that does not require the client to change. Currently,it supports rocblas and cuBLAS as
backends.

hcRNG

This section provides details on hcRNG. It is a software library ,where uniform random number generators targeting
the AMD heterogeneous hardware via HCC compiler runtime is implemented..

hipeigen
This section provides details on Eigen.It is a C++ template library which provides linear algebra for matrices, vectors,
numerical solvers, and related algorithms.

clFFT

This section provides details on cIFFT.It is a software library which contains FFT functions written in OpenCL,and
clFFt also supports running on CPU devices to facilitate debugging and heterogeneous programming.

cIBLAS

This section provides details on cIBLAS. It makes easier for developers to utilize the inherent performance and power
efficiency benefits of heterogeneous computing.

cISPARSE
This section provides details on cISPARSE, it is an OpenCL library which implements Sparse linear algebra routines.

cIRNG
This section provides details on cIRNG,This is a library for uniform random number generation in OpenCL.

hcFFT

This section provides details on hcFFT, it hosts the HCC based FFT Library and targets GPU acceleration of FFT
routines on AMD devices.

Tensile

2.1. Quick Start Guide 9

https://rocm-documentation.readthedocs.io/en/latest/ROCm_Tools/rocFFT.html#rocfft
https://rocm-documentation.readthedocs.io/en/latest/ROCm_Tools/rocblas.html#rocblas
https://rocm-documentation.readthedocs.io/en/latest/ROCm_Tools/hipBLAS.html#hip8las
https://rocm-documentation.readthedocs.io/en/latest/ROCm_Tools/hcRNG.html#hcrng
https://rocm-documentation.readthedocs.io/en/latest/ROCm_Tools/hipeigen.html#hipeigen
https://rocm-documentation.readthedocs.io/en/latest/ROCm_Tools/clFFT.html#c1fft
https://rocm-documentation.readthedocs.io/en/latest/ROCm_Tools/clBLA.html#clbla
https://rocm-documentation.readthedocs.io/en/latest/ROCm_Tools/clSPARSE.html#clsparse1
https://rocm-documentation.readthedocs.io/en/latest/ROCm_Tools/clRNG.html#cl1rng
https://rocm-documentation.readthedocs.io/en/latest/ROCm_Tools/hcFFT.html#hcfft
https://rocm-documentation.readthedocs.io/en/latest/ROCm_Tools/tensile.html#tensile

ReadTheDocs-Breathe Documentation, Release 1.0.0

This section provides details on Tensile. It is a tool for creating a benchmark-driven backend library for
GEMMs,N-dimensional tensor contractions and multiplies two multi-dimensional objects together on a GPU.

rocALUTION

This section provides details on rocALUTION. It is a sparse linear algebra library with focus on exploring
fine-grained parallelism, targeting modern processors and accelerators including multi/many-core CPU and GPU
platforms. It can be seen as middle-ware between different parallel backends and application specific packages.

rocSPARSE

This section provides details on rocSPARSE.It is a library that contains basic linear algebra subroutines for sparse
matrices and vectors written in HiP for GPU devices. It is designed to be used from C and C++ code.

rocThrust
This section provides details on rocThrust. It is a parallel algorithmn library.

hipCUB This section provides details on hipCUB.

It is a thin wrapper library on top of rocPRIM or CUB. It enables developers to port the project using CUB library to
the HIP layer and to

run them on AMD hardware.

ROCm SMI Library This section provides details on ROCm SMI library. The ROCm System Management Interface
Library, or ROCm SMI library is part of the Radeon Open Compute ROCm software stack. It is a C library for linux
that provides a user space interface for applications to monitor and control GPU aplications.

RCCL This section provides details on ROCm Communications Collectives Library. It is a stand alone library of
standard collective communication routines for GPUS, implememting all-reduce, all gather, reduce, broadcast, and
reduce scatter.

2.1.9 ROCm Compiler SDK

GCN Native ISA LLVM Code Generator

This section provide complete description on LLVM such as introduction, Code Object, Code conventions, Source
languages, etc.,

ROCm Code Object Format
This section describes about application binary interface (ABI) provided by the AMD, implementation of the HSA
runtime. It also provides details on Kernel, AMD Queue and Signals.

ROCm Device Library

Documentation on instruction related to ROCm Device Library overview,Building and Testing related information
with respect to Device Library is provided.

10 Chapter 2. Solid Compilation Foundation and Language Support

https://rocm-documentation.readthedocs.io/en/latest/ROCm_Libraries/ROCm_Libraries.html#rocalution
https://rocm-documentation.readthedocs.io/en/latest/ROCm_Libraries/ROCm_Libraries.html#id38
https://rocm-documentation.readthedocs.io/en/latest/ROCm_Libraries/ROCm_Libraries.html#rocthrust
https://rocm-documentation.readthedocs.io/en/latest/ROCm_Libraries/ROCm_Libraries.html#hipcub
https://rocm-documentation.readthedocs.io/en/latest/ROCm_Libraries/ROCm_Libraries.html#rocm-smi-library
https://rocm-documentation.readthedocs.io/en/latest/ROCm_Libraries/ROCm_Libraries.html#rccl
http://rocm-documentation.readthedocs.io/en/latest/ROCm_Compiler_SDK/ROCm-Compiler-SDK.html#gcn-native-isa-llvm-code-generator
http://rocm-documentation.readthedocs.io/en/latest/ROCm_Compiler_SDK/ROCm-Compiler-SDK.html#rocm-code-object-format
http://rocm-documentation.readthedocs.io/en/latest/ROCm_Compiler_SDK/ROCm-Compiler-SDK.html#roc-device-library

ReadTheDocs-Breathe Documentation, Release 1.0.0

ROCr Runtime

This section refers the user-mode API interfaces and libraries necessary for host applications to launch compute
kernels to available HSA ROCm kernel agents. we can find installation details and Infrastructure details related to
ROCr.

2.1.10 ROCm System Management

ROCm-SMI
ROCm System Management Interface a complete guide to use and work with rocm-smi tool.

SYSFS Interface

This section provides information on sysfs file structure with details related to file structure related to system are
captured in sysfs.

KFD Topology

KFD Kernel Topology is the system file structure which describes about AMD GPU related information such as
nodes, Memory, Cache and IO-links.

2.1.11 ROCm Virtualization & Containers

PCle Passthrough on KVM

Here PCle Passthrough on KVM is described. A KVM-based instructions assume a headless host with an
input/output memory management unit (IOMMU) to pass peripheral devices such as a GPU to guest virtual
machines.more information can be found on the same here.

ROCm-Docker

A framework for building the software layers defined in the Radeon Open Compute Platform into portable docker
images. Detailed Information related to ROCm-Docker can be found.

2.1.12 Remote Device Programming

ROCnRDMA

ROCmRDMA is the solution designed to allow third-party kernel drivers to utilize DMA access to the GPU memory.
Complete indoemation related to ROCmRDMA is Documented here.

Uucx
This section gives information related to UCX, How to install, Running UCX and much more

MPI
This section gives information related to MPL

IPC
This section gives information related to IPC.

2.1. Quick Start Guide 11

http://rocm-documentation.readthedocs.io/en/latest/ROCm_Compiler_SDK/ROCm-Compiler-SDK.html#rocr-runtime
http://rocm-documentation.readthedocs.io/en/latest/ROCm_System_Managment/ROCm-System-Managment.html#rocm-smi
http://rocm-documentation.readthedocs.io/en/latest/ROCm_System_Managment/ROCm-System-Managment.html#sysfs-interface
http://rocm-documentation.readthedocs.io/en/latest/ROCm_System_Managment/ROCm-System-Managment.html#kfd-topology
http://rocm-documentation.readthedocs.io/en/latest/ROCm_Virtualization_Containers/ROCm-Virtualization-&-Containers.html#pcie-passthrough-on-kvm
http://rocm-documentation.readthedocs.io/en/latest/ROCm_Virtualization_Containers/ROCm-Virtualization-&-Containers.html#rocm-docker
http://rocm-documentation.readthedocs.io/en/latest/Remote_Device_Programming/Remote-Device-Programming.html#rocnrdma
http://rocm-documentation.readthedocs.io/en/latest/Remote_Device_Programming/Remote-Device-Programming.html#ucx
http://rocm-documentation.readthedocs.io/en/latest/Remote_Device_Programming/Remote-Device-Programming.html#mpi
http://rocm-documentation.readthedocs.io/en/latest/Remote_Device_Programming/Remote-Device-Programming.html#ipc

ReadTheDocs-Breathe Documentation, Release 1.0.0

2.1.13 Deep Learning on ROCm

This section provides details on ROCm Deep Learning concepts.

Porting from cuDNN to MIOpen
The porting guide highlights the key differences between the current cuDNN and MIOpen APIs.

Deep Learning Framework support for ROCm
This section provides detailed chart of Frameworks supported by ROCm and repository details.

Tutorials
Here Tutorials on different DeepLearning Frameworks are documented.

2.1.14 System Level Debug

ROCm Language & System Level Debug, Flags and Environment Variables

Here in this section we have details regardinf various system related debugs and commands for isssues faced while
using ROCm.

2.1.15 Tutorial

This section Provide details related to few Concepts of HIP and other sections.

2.1.16 ROCm Glossary

ROCm Glossary gives highlight concept and their main concept of how they work.

2.2 Current Release Notes

2.2.1 Hotfix release ROCm 2.7.1

This release is a hotfix release for ROCm release 2.7.1, and addresses the defect mentioned below. The features and
enhancements as mentioned in ROCm 2.7 remain relevant to ROCm release 2.7.1 as well.

2.2.1.1 Defect fixed in ROCm 2.7.1

rocprofiler —hiptrace and —hsatrace fails to load roctracer library

In ROCm 2.7.1, rocprofiler —hiptrace and —hsatrace fails to load roctracer library defect has been fixed. To generate
traces, please provide directory path also using the parameter: -d <$directoryPath> for ex:

/opt/rocm/bin/rocprof —--hsa-trace -d $PWD/traces /opt/rocm/hip/samples/0_
—Intro/bit_extract/bit_extract

All traces and results will be saved under $PWD/traces path

12 Chapter 2. Solid Compilation Foundation and Language Support

http://rocm-documentation.readthedocs.io/en/latest/Deep_learning/Deep-learning.html#porting-from-cudnn-to-miopen
http://rocm-documentation.readthedocs.io/en/latest/Deep_learning/Deep-learning.html#deep-learning-framework-support-for-rocm
http://rocm-documentation.readthedocs.io/en/latest/Deep_learning/Deep-learning.html#tutorials
http://rocm-documentation.readthedocs.io/en/latest/Other_Solutions/Other-Solutions.html#rocm-language-system-level-debug-flags-and-environment-variables
https://rocm-documentation.readthedocs.io/en/latest/Current_Release_Notes/Current-Release-Notes.html#new-features-and-enhancements-in-rocm-2-7

ReadTheDocs-Breathe Documentation, Release 1.0.0

2.2.1.2 Upgrading from ROCm 2.7 to 2.7.1

To upgrade, please remove 2.7 completely as specified here or here, and install 2.7.1 as per instructions here.
Other notes

To use rocprofiler features, the following steps need to be completed before using rocprofiler: Step-1: Install roctracer
Ubuntu 16.04 or Ubuntu 18.04:

sudo apt install roctracer-dev
CentOS/RHEL 7.6:

sudo yum install roctracer-dev

Step-2: Add /opt/rocm/roctracer/lib to LD_LIBRARY_PATH

2.2.2 New features and enhancements in ROCm 2.7

2.2.2.1 [rocFFT] Real FFT Functional

Improved real/complex 1D even-length transforms of unit stride. Performance improvements of up to 4.5x are ob-
served. Large problem sizes should see approximately 2x.

2.2.2.2 rocRand Enhancements and Optimizations

¢ Added support for new datatypes: uchar, ushort, half.
* Improved performance on “Vega 7nm” chips, such as on the Radeon Instinct MI5S0

* mtgp32 uniform double performance changes due generation algorithm standardization. Better quality random
numbers now generated with 30% decrease in performance

* Up to 5% performance improvements for other algorithms

2.2.2.3 RAS

Added support for RAS on Radeon Instinct MI50, including:
¢ Memory error detection
e Memory error detection counter

2.2.2.4 ROCm-SMI enhancements

Added ROCm-SMI CLI and LIB support for FW version, compute running processes, utilization rates, utilization
counter, link error counter, and unique ID.

2.2.3 New features and enhancements in ROCm 2.6

2.2.3.1 ROCminfo enhancements

ROCmlInfo was extended to do the following: For ROCr API call errors including initialization determine if the error
could be explained by:

2.2. Current Release Notes 13

https://github.com/RadeonOpenCompute/ROCm/blob/master/README.md#how-to-uninstall-from-ubuntu-1604-or-Ubuntu-1804
https://github.com/RadeonOpenCompute/ROCm/blob/master/README.md#how-to-uninstall-rocm-from-centosrhel-76
https://github.com/RadeonOpenCompute/ROCm/blob/master/README.md#installing-from-amd-rocm-repositories

ReadTheDocs-Breathe Documentation, Release 1.0.0

ROCK (driver) is not loaded / available
» User does not have membership in appropriate group - “video”
* If not above print the error string that is mapped to the returned error code

* If no error string is available, print the error code in hex

2.2.3.2 [Thrust] Functional Support on Vega20

ROCm?2.6 contains the first official release of rocThrust and hipCUB. rocThrust is a port of thrust, a parallel algo-
rithm library. hipCUB is a port of CUB, a reusable software component library. Thrust/CUB has been ported to the
HIP/ROCm platform to use the rocPRIM library. The HIP ported library works on HIP/ROCm platforms.

Note: rocThrust and hipCUB library replaces hip-thrust, i.e. hip-thrust has been separated into two libraries, rocThrust
and hipCUB. Existing hip-thrust users are encouraged to port their code to rocThrust and/or hipCUB. Hip-thrust will
be removed from official distribution later this year.

2.2.3.3 MiIGraphX v0.3

MIGraphX optimizer adds support to read models frozen from Tensorflow framework. Further de-
tails and an example usage at https://github.com/ROCmSoftwarePlatform/AMDMIGraphX/wiki/Getting-started:
-using-the-new-features-of-MIGraphX-0.3

2.2.3.4 MIOpen 2.0

» This release contains several new features including an immediate mode for selecting convolutions, bfloat16
support, new layers, modes, and algorithms.

¢ MIOpenDriver, a tool for benchmarking and developing kernels is now shipped with MIOpen. BFloat16 now
supported in HIP requires an updated rocBLAS as a GEMM backend.

* Immediate mode API now provides the ability to quickly obtain a convolution kernel.

* MIOpen now contains HIP source kernels and implements the ImplicitGEMM kernels. This
is a new feature and is currently disabled by default. Use the environmental variable
“MIOPEN_DEBUG_CONV_IMPLICIT_GEMM=1" to activation this feature. ImplicitGEMM requires
an up to date HIP version of at least 1.5.9211.

* A new “loss” catagory of layers has been added, of which, CTC loss is the first. See the API reference for more
details. 2.0 is the last release of active support for gfx803 architectures. In future releases, MIOpen will not
actively debug and develop new features specifically for gfx803.

» System Find-Db in memory cache is disabled by default. Please see build instructions to enable this feature.
Additional documentation can be found here

2.2.3.5 Bloat16 software support in rocBLAS/Tensile

Added mixed precision bfloat1 6/IEEE {32 to gemm_ex. The input and output matrices are bfloat16. All arithmetic is
in IEEE 32.

14 Chapter 2. Solid Compilation Foundation and Language Support

https://github.com/ROCmSoftwarePlatform/thrust
https://github.com/ROCmSoftwarePlatform/AMDMIGraphX/wiki/Getting-started:-using-the-new-features-of-MIGraphX-0.3
https://github.com/ROCmSoftwarePlatform/AMDMIGraphX/wiki/Getting-started:-using-the-new-features-of-MIGraphX-0.3
https://rocmsoftwareplatform.github.io/MIOpen/doc/html/

ReadTheDocs-Breathe Documentation, Release 1.0.0

2.2.3.6 AMD Infinity Fabric™ Link enablement

The ability to connect four Radeon Instinct MI60 or Radeon Instinct MIS0 boards in two hives or two Radeon Instinct
MI60 or Radeon Instinct MIS0 boards in four hives via AMD Infinity Fabric™ Link GPU interconnect technology has
been added.

2.2.3.7 ROCm-smi features and bug fixes

* mGPU & Vendor check
¢ Fix clock printout if DPM is disabled
* Fix finding marketing info on CentOS

* Clarify some error messages
2.2.3.8 ROCm-smi-lib enhancements
* Documentation updates
* Improvements to *name_get functions
2.2.3.9 RCCL2 Enablement
RCCL2 supports collectives intranode communication using PCle, Infinity Fabric™, and pinned host memory, as well

as internode communication using Ethernet (TCP/IP sockets) and Infiniband/RoCE (Infiniband Verbs). Note: For
Infiniband/RoCE, RDMA is not currently supported.

2.2.3.10 rocFFT enhancements

¢ Added: Debian package with FFT test, benchmark, and sample programs
* Improved: hipFFT interfaces
¢ Improved: rocFFT CPU reference code, plan generation code and logging code

Features and enhancements introduced in previous versions of ROCm can be found in version_history.md

2.2.4 New features and enhancements in ROCm 2.5

2.2.4.1 UCX 1.6 support

Support for UCX version 1.6 has been added.

2.2.4.2 BFloat16 GEMM in rocBLAS/Tensile

Software support for BFloat16 on Radeon Instinct MI50, MI60 has been added. This includes:
* Mixed precision GEMM with BFloat16 input and output matrices, and all arithmetic in IEEE32 bit

* Input matrix values are converted from BFloatl6 to IEEE32 bit, all arithmetic and accumulation is IEEE32
bit.Output values are rounded from IEEE32 bit to BFloat16

* Accuracy should be correct to 0.5 ULP

2.2. Current Release Notes 15

https://github.com/RadeonOpenCompute/ROCm/blob/master/version_history.md

ReadTheDocs-Breathe Documentation, Release 1.0.0

2.2.4.3 ROCm-SMI enhancements

CLI support for querying the memory size, driver version, and firmware version has been added to ROCm-smi.

2.2.4.4 [PyTorch] multi-GPU functional support (CPU aggregation/Data Parallel)

Multi-GPU support is enabled in PyTorch using Dataparallel path for versions of PyTorch built using the
06c8aa7a3bbd91cda2fd6255ec82aad21falc0dS commit or later.

2.2.4.5 rocSparse optimization on Radeon Instinct MI50 and MI60

This release includes performance optimizations for csrsv routines in the rocSparse library.

2.2.4.6 [Thrust] Preview

Preview release for early adopters. rocThrust is a port of thrust, a parallel algorithm library. Thrust has been ported to
the HIP/ROCm platform to use the rocPRIM library. The HIP ported library works on HIP/ROCm platforms.

Note: This library will replace thrust in a future release. The package for rocThrust (this library) currently conflicts
with version 2.5 package of thrust. They should not be installed together.

2.2.4.7 Support overlapping kernel execution in same HIP stream

HIP API has been enhanced to allow independent kernels to run in parallel on the same stream.

2.2.4.8 AMD Infinity Fabric™ Link enablement

The ability to connect four Radeon Instinct MI60 or Radeon Instinct MI50 boards in one hive via AMD Infinity
Fabric™ Link GPU interconnect technology has been added.

Features and enhancements introduced in previous versions of ROCm can be found in version_history.md
2.2.5 New features and enhancements in ROCm 2.4

2.2.5.1 TensorFlow 2.0 support

ROCm 2.4 includes the enhanced compilation toolchain and a set of bug fixes to support TensorFlow 2.0 features
natively

2.2.5.2 AMD Infinity Fabric™ Link enablement

ROCm 2.4 adds support to connect two Radeon Instinct MI60 or Radeon Instinct MIS0 boards via AMD Infinity
Fabric™ Link GPU interconnect technology.

16 Chapter 2. Solid Compilation Foundation and Language Support

https://github.com/ROCmSoftwarePlatform/thrust
https://github.com/RadeonOpenCompute/ROCm/blob/master/version_history.md

ReadTheDocs-Breathe Documentation, Release 1.0.0

2.2.6 New features and enhancements in ROCm 2.3
2.2.6.1 Mem usage per GPU

Per GPU memory usage is added to rocm-smi. Display information regarding used/total bytes for VRAM, visible
VRAM and GTT, via the —showmeminfo flag

2.2.6.2 MiVisionX, v1.1 - ONNX

ONNX parser changes to adjust to new file formats

2.2.6.3 MIGraphX, v0.2

MIGraphX 0.2 supports the following new features:
e New Python API
* Support for additional ONNX operators and fixes that now enable a large set of Imagenet models
 Support for RNN Operators
* Support for multi-stream Execution
* [Experimental] Support for Tensorflow frozen protobuf files

See: Getting-started:-using-the-new-features-of-MIGraphX-0.2 for more details

2.2.6.4 MIOpen, v1.8 - 3d convolutions and int8

* This release contains full 3-D convolution support and int8 support for inference.

* Additionally, there are major updates in the performance database for major models including those found in
Torchvision.

See: MIOpen releases

2.2.6.5 Caffe2 - mGPU support

Multi-gpu support is enabled for Caffe2.

2.2.6.6 rocTracer library, ROCm tracing API for collecting runtimes APl and asynchronous GPU
activity traces

HIP/HCC domains support is introduced in rocTracer library.

2.2.6.7 BLAS - Int8 GEMM performance, Int8 functional and performance

Introduces support and performance optimizations for Int§ GEMM, implements TRSV support, and includes improve-
ments and optimizations with Tensile.

2.2.6.8 Prioritized L1/L2/L3 BLAS (functional)

Functional implementation of BLAS L1/L.2/L3 functions

2.2. Current Release Notes 17

https://github.com/ROCmSoftwarePlatform/AMDMIGraphX/wiki/Getting-started:-using-the-new-features-of-MIGraphX-0.2
https://github.com/ROCmSoftwarePlatform/MIOpen/releases

ReadTheDocs-Breathe Documentation, Release 1.0.0

2.2.6.9 BLAS - tensile optimization

Improvements and optimizations with tensile

2.2.6.10 MIOpen Int8 support

Support for int8

2.2.7 New features and enhancements in ROCm 2.2

2.2.7.1 rocSparse Optimization on Vega20

Cache usage optimizations for csrsv (sparse triangular solve), coomv (SpMV in COO format) and ellmv (SpMV in
ELL format) are available.

2.2.7.2 DGEMM and DTRSM Optimization

Improved DGEMM performance for reduced matrix sizes (k=384, k=256)

2.2.7.3 Caffe2

Added support for multi-GPU training

2.2.8 New features and enhancements in ROCm 2.1

2.2.8.1 RocTracer v1.0 preview release — ‘rocprof’ HSA runtime tracing and statistics support -

Supports HSA API tracing and HSA asynchronous GPU activity including kernels execution and memory copy

2.2.8.2 Improvements to ROCM-SMI tool -

Added support to show real-time PCle bandwidth usage via the -b/—showbw flag

2.2.8.3 DGEMM Optimizations -

Improved DGEMM performance for large square and reduced matrix sizes (k=384, k=256)

2.2.9 New features and enhancements in ROCm 2.0

Features and enhancements introduced in previous versions of ROCm can be found in version_history.md

18 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

2.2.9.1 Adds support for RHEL 7.6 / CentOS 7.6 and Ubuntu 18.04.1
2.2.9.2 Adds support for Vega 7nm, Polaris 12 GPUs
2.2.9.3 Introduces MiVisionX

A comprehensive computer vision and machine intelligence libraries, utilities and applications bundled into a single
toolkit.

2.2.9.4 Improvements to ROCm Libraries

* rocSPARSE & hipSPARSE

* rocBLAS with improved DGEMM efficiency on Vega 7nm
2.2.9.5 MIOpen

* This release contains general bug fixes and an updated performance database
* Group convolutions backwards weights performance has been improved
* RNNs now support fpl6

2.2.9.6 Tensorflow multi-gpu and Tensorflow FP16 support for Vega 7nm

» TensorFlow v1.12 is enabled with fp16 support

2.2.9.7 PyTorch/Caffe2 with Vega 7nm Support

* fpl6 support is enabled
* Several bug fixes and performance enhancements

* Known Issue: breaking changes are introduced in ROCm 2.0 which are not addressed upstream yet. Meanwhile,
please continue to use ROCm fork at https://github.com/ROCmSoftwarePlatform/pytorch

2.2.9.8 Improvements to ROCProfiler tool

* Support for Vega 7nm

2.2.9.9 Support for hipStreamCreateWithPriority

» Creates a stream with the specified priority. It creates a stream on which enqueued kernels have a different
priority for execution compared to kernels enqueued on normal priority streams. The priority could be higher or
lower than normal priority streams.

2.2. Current Release Notes 19

https://github.com/ROCmSoftwarePlatform/pytorch

ReadTheDocs-Breathe Documentation, Release 1.0.0

2.2.9.10 OpenCL 2.0 support

* ROCm 2.0 introduces full support for kernels written in the OpenCL 2.0 C language on certain devices and sys-
tems. Applications can detect this support by calling the “clGetDevicelnfo” query function with “parame_name”
argument set to “CL_DEVICE_OPENCL_C_VERSION”. In order to make use of OpenCL 2.0 C language fea-
tures, the application must include the option “-cl-std=CL2.0” in options passed to the runtime API calls respon-
sible for compiling or building device programs. The complete specification for the OpenCL 2.0 C language can
be obtained using the following link: https://www.khronos.org/registry/OpenCL/specs/opencl-2.0-openclc.pdf

2.2.9.11 Improved Virtual Addressing (48 bit VA) management for Vega 10 and later GPUs

* Fixes Clang AddressSanitizer and potentially other 3rd-party memory debugging tools with ROCm
* Small performance improvement on workloads that do a lot of memory management

¢ Removes virtual address space limitations on systems with more VRAM than system memory

2.2.9.12 Kubernetes support
2.2.9.13 Removed features

e HCC: removed support for C++AMP

2.2.10 New features and enhancements in ROCm 1.9.2

2.2.10.1 RDMA(MPI) support on Vega 7nm

* Support ROCnRDMA based on Mellanox InfiniBand.

2.2.10.2 Improvements to HCC

 Improved link time optimization.

2.2.10.3 Improvements to ROCProfiler tool

* General bug fixes and implemented versioning APIs.

2.2.10.4 Critical bug fixes
2.2.11 New features and enhancements in ROCm 1.9.1

2.2.11.1 Added DPM support to Vega 7nm

Dynamic Power Management feature is enabled on Vega 7nm.

20 Chapter 2. Solid Compilation Foundation and Language Support

https://www.khronos.org/registry/OpenCL/specs/opencl-2.0-openclc.pdf

ReadTheDocs-Breathe Documentation, Release 1.0.0

2.2.11.2 Fix for ‘ROCm profiling’ “Version mismatch between HSA runtime and libhsa-runtime-
tools64.s0.1” error

2.2.12 New features and enhancements in ROCm 1.9.0

2.2.12.1 Preview for Vega 7nm

 Enables developer preview support for Vega 7nm

2.2.12.2 System Management Interface

* Adds support for the ROCm SMI (System Management Interface) library, which provides monitoring and man-
agement capabilities for AMD GPUs.

2.2.12.3 Improvements to HIP/HCC

* Support for gfx906

Added deprecation warning for C++AMP. This will be the last version of HCC supporting C++AMP.
* Improved optimization for global address space pointers passing into a GPU kernel

* Fixed several race conditions in the HCC runtime

* Performance tuning to the unpinned copy engine

* Several codegen enhancement fixes in the compiler backend

2.2.12.4 Preview for rocprof Profiling Tool

Developer preview (alpha) of profiling tool ‘rpl_run.sh’, cmd-line front-end for rocProfiler, enables: * Cmd-line tool
for dumping public per kernel perf-counters/metrics and kernel timestamps * Input file with counters list and kernels
selecting parameters * Multiple counters groups and app runs supported * Output results in CSV format The tool
location is: /opt/rocm/bin/rpl_run.sh

2.2.12.5 Preview for rocr Debug Agent rocr_debug_agent

The ROCr Debug Agent is a library that can be loaded by ROCm Platform Runtime to provide the following func-
tionality: * Print the state for wavefronts that report memory violation or upon executing a “s_trap 2” instruction.
* Allows SIGINT (ctrl c) or SIGTERM (kill -15) to print wavefront state of aborted GPU dispatches. *
It is enabled on VegalO0 GPUs on ROCm1.9. The ROCm1.9 release will install the ROCr Debug Agent library at
/opt/rocr/lib/librocr_debug_agent64.so

2.2.12.6 New distribution support

* Binary package support for Ubuntu 18.04

2.2. Current Release Notes 21

ReadTheDocs-Breathe Documentation, Release 1.0.0

2.2.12.7 ROCm 1.9 is ABI compatible with KFD in upstream Linux kernels.
Upstream Linux kernels support the following GPUs in these releases: 4.17: Fiji, Polaris 10, Polaris 11 4.18: Fiji,
Polaris 10, Polaris 11, VegalO

Some ROCm features are not available in the upstream KFD: * More system memory available to ROCm applications
* Interoperability between graphics and compute * RDMA * IPC

To try ROCm with an upstream kernel, install ROCm as normal, but do not install the rock-dkms package. Also add a
udev rule to control /dev/kfd permissions:

echo 'SUBSYSTEM=="kfd", KERNEL=="kfd", TAG+="uaccess", GROUP="video"' | sudo tee /etc/
—udev/rules.d/70-kfd.rules

2.3 ROCm Installation Guide

2.3.1 Are You Ready to ROCK?

The ROCm Platform brings a rich foundation to advanced computing by seamlessly integrating the CPU and GPU
with the goal of solving real-world problems. This software enables the high-performance operation of AMD GPUs
for computation oriented tasks in the Linux operating system.

2.3.2 Current ROCm Version: 2.7.1

2.3.3 The latest ROCm platform - ROCm 2.7

The latest supported version of the drivers, tools, libraries and source code for the ROCm platform have been released
and are available from the following GitHub repositories:

* ROCm Core Components
— ROCk Kernel Driver
— ROCr Runtime
— ROCt Thunk Interface
* ROCm Support Software
— ROCm SMI
— ROCm cmake

rocminfo

— ROCm Bandwidth Test
* ROCm Development Tools
HCC compiler

- HIP
ROCm Device Libraries

ROCm OpenCL, which is created from the following components:
* ROCm OpenCL Runtime
* ROCm OpenCL Driver

22 Chapter 2. Solid Compilation Foundation and Language Support

https://github.com/RadeonOpenCompute/ROCK-Kernel-Driver/tree/roc-2.7.0
https://github.com/RadeonOpenCompute/ROCR-Runtime/tree/roc-2.7.0
https://github.com/RadeonOpenCompute/ROCT-Thunk-Interface/tree/roc-2.7.0
https://github.com/RadeonOpenCompute/ROC-smi/tree/roc-2.7.0
https://github.com/RadeonOpenCompute/rocm-cmake/tree/master-rocm-2.7
https://github.com/RadeonOpenCompute/rocminfo/tree/roc-2.7.0
https://github.com/RadeonOpenCompute/rocm_bandwidth_test/tree/roc-2.7.0
https://github.com/RadeonOpenCompute/hcc/tree/roc-hcc-2.7.0
https://github.com/ROCm-Developer-Tools/HIP/tree/roc-2.7.0
https://github.com/RadeonOpenCompute/ROCm-Device-Libs/tree/roc-hcc-2.7.0
http://github.com/RadeonOpenCompute/ROCm-OpenCL-Runtime/tree/roc-2.7.0
http://github.com/RadeonOpenCompute/ROCm-OpenCL-Driver/tree/roc-2.7.0

ReadTheDocs-Breathe Documentation, Release 1.0.0

% The ROCm OpenCL compiler, which is created from the following components:
- ROCm LLVM OCL
- ROCm LLVM HCC
- ROCm Clang
- ROCm 1ld OCL
- ROCm 1ld HCC
- ROCm Device Libraries
— ROCM Clang-OCL Kernel Compiler
— ‘Asynchronous Task and Memory Interface‘_
— ROCr Debug Agent
— ROCm Code Object Manager
— ROC Profiler
— ROC Tracer
— Radeon Compute Profiler
— Example Applications:
* HCC Examples
= HIP Examples
¢ ROCm Libraries
rocBLAS
— hipBLAS
— rocFFT

— rocRAND

— rocSPARSE

— hipSPARSE

— rocALUTION
— MIOpenGEMM
— MIOpen

— rocThrust

- ROCm SMI Lib
- RCCL

— MIVisionX

- hipCUB

2.3.4 Hardware Support
ROCm is focused on using AMD GPUs to accelerate computational tasks such as machine learning, engineering

workloads, and scientific computing. In order to focus our development efforts on these domains of interest, ROCm
supports a targeted set of hardware configurations which are detailed further in this section.

2.3. ROCm Installation Guide 23

http://github.com/RadeonOpenCompute/llvm/tree/roc-ocl-2.7.0
http://github.com/RadeonOpenCompute/llvm/tree/roc-hcc-2.7.0
http://github.com/RadeonOpenCompute/clang/tree/roc-2.7.0
http://github.com/RadeonOpenCompute/lld/tree/roc-ocl-2.7.0
http://github.com/RadeonOpenCompute/lld/tree/roc-hcc-2.7.0
https://github.com/RadeonOpenCompute/ROCm-Device-Libs/tree/roc-hcc-2.7.0
https://github.com/RadeonOpenCompute/clang-ocl/tree/roc-2.7.0
https://github.com/ROCm-Developer-Tools/rocr_debug_agent/tree/roc-2.7.0
https://github.com/RadeonOpenCompute/ROCm-CompilerSupport/tree/roc-2.7.0
https://github.com/ROCm-Developer-Tools/rocprofiler/tree/roc-2.6.x
https://github.com/ROCmSoftwarePlatform/roctracer/tree/roc-2.7.x
https://github.com/GPUOpen-Tools/RCP/tree/3a49405
https://github.com/ROCm-Developer-Tools/HCC-Example-Application/tree/ffd65333
https://github.com/ROCm-Developer-Tools/HIP-Examples/tree/roc-2.7.0
https://github.com/ROCmSoftwarePlatform/rocBLAS/tree/master-rocm-2.7
https://github.com/ROCmSoftwarePlatform/hipBLAS/tree/master-rocm-2.7
https://github.com/ROCmSoftwarePlatform/rocFFT/tree/master-rocm-2.7
https://github.com/ROCmSoftwarePlatform/rocRAND/tree/master-rocm-2.7
https://github.com/ROCmSoftwarePlatform/rocSPARSE/tree/master-rocm-2.7
https://github.com/ROCmSoftwarePlatform/hipSPARSE/tree/master-rocm-2.7
https://github.com/ROCmSoftwarePlatform/rocALUTION/tree/master-rocm-2.7
https://github.com/ROCmSoftwarePlatform/MIOpenGEMM/tree/9547fb9e
https://github.com/ROCmSoftwarePlatform/MIOpen/tree/roc-2.7.0
https://github.com/ROCmSoftwarePlatform/rocThrust/tree/master-rocm-2.7
https://github.com/RadeonOpenCompute/rocm_smi_lib/tree/roc-2.7.0
https://github.com/ROCmSoftwarePlatform/rccl/tree/master-rocm-2.7
https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX/tree/1.3.0
https://github.com/ROCmSoftwarePlatform/hipCUB/tree/2.7

ReadTheDocs-Breathe Documentation, Release 1.0.0

2.3.4.1 Supported GPUs
Because the ROCm Platform has a focus on particular computational domains, we offer official support for a selection
of AMD GPUs that are designed to offer good performance and price in these domains.
ROCm officially supports AMD GPUs that use following chips:
* GFX8 GPUs
— “Fiji” chips, such as on the AMD Radeon R9 Fury X and Radeon Instinct MI8
— “Polaris 10” chips, such as on the AMD Radeon RX 580 and Radeon Instinct MI6
— “Polaris 117 chips, such as on the AMD Radeon RX 570 and Radeon Pro WX 4100
— “Polaris 12” chips, such as on the AMD Radeon RX 550 and Radeon RX 540
* GFX9 GPUs
— “Vega 10 chips, such as on the AMD Radeon RX Vega 64 and Radeon Instinct MI25
— “Vega 7nm” chips, such as on the Radeon Instinct MI50, Radeon Instinct MI60 or AMD Radeon VII

ROCm is a collection of software ranging from drivers and runtimes to libraries and developer tools. Some of this
software may work with more GPUs than the “officially supported” list above, though AMD does not make any official
claims of support for these devices on the ROCm software platform. The following list of GPUs are enabled in the
ROCm software, though full support is not guaranteed:

* GFX8 GPUs
— “Polaris 117 chips, such as on the AMD Radeon RX 570 and Radeon Pro WX 4100
— “Polaris 12” chips, such as on the AMD Radeon RX 550 and Radeon RX 540
* GFX7 GPUs
— “Hawaii” chips, such as the AMD Radeon R9 390X and FirePro W9100

As described in the next section, GFX8 GPUs require PCI Express 3.0 (PCle 3.0) with support for PCle atomics. This
requires both CPU and motherboard support. GFX9 GPUs, by default, also require PCle 3.0 with support for PCle
atomics, but they can operate in most cases without this capability.

The integrated GPUs in AMD APUs are not officially supported targets for ROCm. As descried below , “Carrizo”,
“Bristol Ridge”, and “Raven Ridge” APUs are enabled in our upstream drivers and the ROCm OpenCL runtime.
However, they are not enabled in our HCC or HIP runtimes, and may not work due to motherboard or OEM hardware
limitations. As such, they are not yet officially supported targets for ROCm.

For a more detailed list of hardware support, please see the following documentation.

2.3.4.2 Supported CPUs

As described above, GFX8 GPUs require PCle 3.0 with PCle atomics in order to run ROCm. In particular, the CPU
and every active PCle point between the CPU and GPU require support for PCle 3.0 and PCle atomics. The CPU root
must indicate PCle AtomicOp Completion capabilities and any intermediate switch must indicate PCle AtomicOp
Routing capabilities.

Current CPUs which support PCle Gen3 + PCle Atomics are:
e AMD Ryzen CPUs;
e The CPUs in AMD Ryzen APUs;
* AMD Ryzen Threadripper CPUs
* AMD EPYC CPUs;

24 Chapter 2. Solid Compilation Foundation and Language Support

https://github.com/RadeonOpenCompute/ROCm#limited-support
https://rocm.github.io/hardware.html

ReadTheDocs-Breathe Documentation, Release 1.0.0

¢ Intel Xeon E7 v3 or newer CPUs;

* Intel Xeon E5 v3 or newer CPUs;

¢ Intel Xeon E3 v3 or newer CPUs;

¢ Intel Core i7 v4, Core i5 v4, Core i3 v4 or newer CPUs (i.e. Haswell family or newer).
e Some Ivy Bridge-E systems

Beginning with ROCm 1.8, GFX9 GPUs (such as Vega 10) no longer require PCIe atomics. We have similarly opened
up more options for number of PCle lanes. GFX9 GPUs can now be run on CPUs without PCle atomics and on older
PCle generations, such as PCIe 2.0. This is not supported on GPUs below GFX9, e.g. GFXS cards in the Fiji and
Polaris families.

If you are using any PCle switches in your system, please note that PCle Atomics are only supported on some switches,
such as Broadcom PLX. When you install your GPUs, make sure you install them in a PCIe 3.0 x16, x8, x4, or x1 slot
attached either directly to the CPU’s Root I/O controller or via a PCle switch directly attached to the CPU’s Root I/O
controller.

In our experience, many issues stem from trying to use consumer motherboards which provide physical x16 connectors
that are electrically connected as e.g. PCle 2.0 x4, PCle slots connected via the Southbridge PCle I/O controller, or
PCle slots connected through a PCle switch that does not support PCle atomics.

If you attempt to run ROCm on a system without proper PCle atomic support, you may see an error in the kernel log
(dmesg):

kfd: skipped device 1002:7300, PCI rejects atomics

Experimental support for our Hawaii (GFX7) GPUs (Radeon R9 290, R9 390, FirePro W9100, S9150, S9170) does not
require or take advantage of PCle Atomics. However, we still recommend that you use a CPU from the list provided
above for compatibility purposes.

2.3.4.3 Not supported or limited support under ROCm

2.3.4.3.1 Limited support

¢ ROCm 2.7.x should support PCIe 2.0 enabled CPUs such as the AMD Opteron, Phenom, Phenom II, Athlon,
Athlon X2, Athlon II and older Intel Xeon and Intel Core Architecture and Pentium CPUs. However, we have
done very limited testing on these configurations, since our test farm has been catering to CPUs listed above.
This is where we need community support. If you find problems on such setups, please report these issues.

e Thunderbolt 1, 2, and 3 enabled breakout boxes should now be able to work with ROCm. Thunderbolt 1 and
2 are PCle 2.0 based, and thus are only supported with GPUs that do not require PCle 3.0 atomics (e.g. Vega
10). However, we have done no testing on this configuration and would need community support due to limited
access to this type of equipment.

* AMD “Carrizo” and “Bristol Ridge” APUs are enabled to run OpenCL, but do not yet support HCC, HIP, or our
libraries built on top of these compilers and runtimes.

— As of ROCm 2.1, “Carrizo” and “Bristol Ridge” require the use of upstream kernel drivers.

— In addition, various “Carrizo” and “Bristol Ridge” platforms may not work due to OEM and ODM choices
when it comes to key configurations parameters such as inclusion of the required CRAT tables and [OMMU
configuration parameters in the system BIOS.

— Before purchasing such a system for ROCm, please verify that the BIOS provides an option for enabling
IOMMUV?2 and that the system BIOS properly exposes the correct CRAT table. Inquire with your vendor
about the latter.

2.3. ROCm Installation Guide 25

ReadTheDocs-Breathe Documentation, Release 1.0.0

e AMD “Raven Ridge” APUs are enabled to run OpenCL, but do not yet support HCC, HIP, or our libraries built
on top of these compilers and runtimes.

— As of ROCm 2.1, “Raven Ridge” requires the use of upstream kernel drivers.

— In addition, various “Raven Ridge” platforms may not work due to OEM and ODM choices when it comes
to key configurations parameters such as inclusion of the required CRAT tables and IOMMU configuration
parameters in the system BIOS.

— Before purchasing such a system for ROCm, please verify that the BIOS provides an option for enabling
IOMMUYV2 and that the system BIOS properly exposes the correct CRAT table. Inquire with your vendor
about the latter.

2.3.4.3.2 Not supported

» “Tonga”, “Iceland”, “Vega M”, and “Vega 12" GPUs are not supported in ROCm 2.7.x
* We do not support GFX8-class GPUs (Fiji, Polaris, etc.) on CPUs that do not have PCle 3.0 with PCle atomics.
— As such, we do not support AMD Carrizo and Kaveri APUs as hosts for such GPUs.

— Thunderbolt 1 and 2 enabled GPUs are not supported by GFX8 GPUs on ROCm. Thunderbolt 1 & 2 are
based on PCle 2.0.

2.3.5 Supported Operating Systems - New operating systems available

The ROCm 2.7.x platform supports the following operating systems:
e Ubuntu 16.04.5(Kernel 4.15) and 18.04.2(Kernel 4.18)
¢ CentOS 7.6 (Using devtoolset-7 runtime support)
* RHEL 7.6 (Using devtoolset-7 runtime support)

2.3.5.1 ROCm support in upstream Linux kernels

As of ROCm 1.9.0, the ROCm user-level software is compatible with the AMD drivers in certain upstream Linux ker-
nels. As such, users have the option of either using the ROCK kernel driver that are part of AMD’s ROCm repositories
or using the upstream driver and only installing ROCm user-level utilities from AMD’s ROCm repositories.

These releases of the upstream Linux kernel support the following GPUs in ROCm:
* 4.17: Fiji, Polaris 10, Polaris 11
* 4.18: Fiji, Polaris 10, Polaris 11, VegalO
* 4.20: Fiji, Polaris 10, Polaris 11, Vegal0, Vega 7nm

The upstream driver may be useful for running ROCm software on systems that are not compatible with the kernel
driver available in AMD’s repositories. For users that have the option of using either AMD’s or the upstreamed driver,
there are various tradeoffs to take into consideration:

26 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

Using AMD’s rock-dkms package

Using the upstream kernel driver

Pros

More GPU features, and they are enabled ear-
lier

Includes the latest Linux kernel features

Tested by AMD on supported distributions

May work on other distributions and with custom kernels

Supported GPUs enabled regardless of kernel
version

Includes the latest GPU firmware

Cons

May not work on all Linx distributions or ver-
sions

Features and hardware support varies depending on kernel
version

Not currently supported on kernels newer than
4.18.

Limits GPU’s usage of system memory to 3/8 of system
memory

IPC and RDMA capabilities not yet enabled

Not tested by AMD to the same level as rock-dkms pack-
age

Does not include most up-to-date firmware

2.3.6 Installing from AMD ROCm repositories

AMD hosts both Debian and RPM repositories for the ROCm 2.7.x packages at this time.

The packages in the Debian repository have been signed to ensure package integrity.

2.3.6.1 ROCm Binary Package Structure

ROCm is a collection of software ranging from drivers and runtimes to libraries and developer tools. In AMD’s
package distributions, these software projects are provided as a separate packages. This allows users to install only
the packages they need, if they do not wish to install all of ROCm. These packages will install most of the ROCm
software into /opt /rocm/ by default.

The packages for each of the major ROCm components are:

* ROCm Core Components

— ROCKk Kernel Driver: rock—-dkms

— ROCr Runtime: hsa-rocr-dev, hsa—-ext—-rocr-dev

— ROCt Thunk Interface: hsakmt—roct, hsakmt—roct—-dev

¢ ROCm Support Software

ROCm SMI: rocm—smi

ROCm cmake: rocm—-cmake

rocminfo: rocminfo

* ROCm Development Tools

HCC compiler: hcc

(on Ubuntu)

ROCm Bandwidth Test: rocm_bandwidth_test

HIP: hip_base, hip_doc, hip_hcc, hip_samples
ROCm Device Libraries: rocm-device—1ibs

ROCm OpenCL: rocm-opencl, rocm-opencl-devel (on RHEL/CentOS), rocm-opencl-dev

2.3. ROCm Installation Guide

27

http://repo.radeon.com/rocm/apt/debian/
http://repo.radeon.com/rocm/yum/rpm/

ReadTheDocs-Breathe Documentation, Release 1.0.0

ROCM Clang-OCL Kernel Compiler: rocm-clang-ocl

Asynchronous Task and Memory Interface (ATMI): atmi

ROCr Debug Agent: rocr_debug_agent

ROCm Code Object Manager: comgr

ROC Profiler: rocprofiler—dev

ROC Tracer: roctracer—-dev

Radeon Compute Profiler: rocm-profiler
* ROCm Libraries
rocBLAS: rocblas

— hipBLAS: hipblas

— rocFFT: rocfft

— rocRAND: rocrand

— 1rocSPARSE: rocsparse

— hipSPARSE: hipsparse

— rocALUTION: rocalution:

— MIOpenGEMM: miopengemm

— MIOpen: MIOpen—-HIP (for the HIP version), MIOpen-OpenCL (for the OpenCL version)
— ROCm SMI Lib: rocm_smi_1ibé64
— RCCL: rccl

— MlVisionX: mivisionx

— rocThrust: rocThrust

— hipCUB: hipCUB

To make it easier to install ROCm, the AMD binary repos provide a number of meta-packages that will automati-
cally install multiple other packages. For example, rocm-dkms is the primary meta-package that is used to install
most of the base technology needed for ROCm to operate. It will install the rock—dkms kernel driver, and an-
other meta-package (rocm—dev) which installs most of the user-land ROCm core components, support software, and
development tools.

The rocm—utils meta-package will install useful utilities that, while not required for ROCm to operate, may still
be beneficial to have. Finally, the rocm—-1ibs meta-package will install some (but not all) of the libraries that are
part of ROCm.

The chain of software installed by these meta-packages is illustrated below

rocm-dkms

| -—— rock-dkms

\-— rocm-dev
| -—hsa-rocr-dev
| ——hsa-ext—-rocr—-dev
| ——hsakmt-roct
| ——hsakmt-roct-dev
| ——rocm—-cmake
| ——rocm-device-libs
| ——hcc

(continues on next page)

28 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

(continued from previous page)

| -—hip_base
|-—hip_doc
|-—hip_hcc
| -—hip_samples
| ——rocm-smi
| -—hsa-amd-aqglprofile
| ——comgr
| ——rocr_debug_agent
| -—rocm-utils
| -— rocminfo
\-- rocm-clang-ocl # This will cause OpenCL to be installed

rocm-1libs
|-—rocalution
|-—hipblas
| -—rocblas
| ——rocfft
| ——rocrand
|-—hipsparse
\-—rocsparse

These meta-packages are not required but may be useful to make it easier to install ROCm on most systems. Some
users may want to skip certain packages. For instance, a user that wants to use the upstream kernel drivers (rather than
those supplied by AMD) may want to skip the rocm-dkms and rock—-dkms packages, and instead directly install
rocm-dev.

Similarly, a user that only wants to install OpenCL support instead of HCC and HIP may want to skip the
rocm—-dkms and rocm—dev packages. Instead, they could directly install rock—-dkms, rocm-opencl, and
rocm-opencl-dev and their dependencies.

2.3.6.2 Ubuntu Support - installing from a Debian repository

The following directions show how to install ROCm on supported Debian-based systems such as Ubuntu 18.04. These
directions may not work as written on unsupported Debian-based distributions. For example, newer versions of Ubuntu
may not be compatible with the rock—dkms kernel driver. As such, users may want to skip the rocm—-dkms and
rock—-dkms packages, as described above, and instead ‘use the upstream kernel driver*_.

2.3.6.2.1 First make sure your system is up to date

sudo apt update

sudo apt dist-upgrade

sudo apt install libnuma-dev
sudo reboot

2.3.6.2.2 Add the ROCm apt repository

For Debian-based systems like Ubuntu, configure the Debian ROCm repository as follows:

wget —gqO - http://repo.radeon.com/rocm/apt/debian/rocm.gpg.key | sudo apt-key add -
echo 'deb [arch=amdé4] http://repo.radeon.com/rocm/apt/debian/ xenial main' | sudo,
—~tee /etc/apt/sources.list.d/rocm.list

2.3. ROCm Installation Guide 29

https://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html#rocm-binary-package-structure

ReadTheDocs-Breathe Documentation, Release 1.0.0

The gpg key might change, so it may need to be updated when installing a new release. If the key signature verification
is failed while update, please re-add the key from ROCm apt repository. The current rocm.gpg.key is not available in
a standard key ring distribution, but has the following shalsum hash:

£7£8147431c75e505¢c58a6£3a3548510869357a6 rocm.gpg.key

2.3.6.2.3 Install

Next, update the apt repository list and install the rocm—dkms meta-package:

sudo apt update
sudo apt install rocm-dkms

2.3.6.2.4 Next set your permissions

Users will need to be in the video group in order to have access to the GPU. As such, you should ensure that your
user account is a member of the video group prior to using ROCm. You can find which groups you are a member of
with the following command:

’groups

To add yourself to the video group you will need the sudo password and can use the following command:

sudo usermod —-a -G video S$SLOGNAME

You may want to ensure that any future users you add to your system are put into the “video” group by default. To do
that, you can run the following commands:

echo '"ADD_EXTRA_GROUPS=1' | sudo tee -a /etc/adduser.conf
echo '"EXTRA_GROUPS=video' | sudo tee -a /etc/adduser.conf

Once complete, reboot your system.

2.3.6.2.5 Test basic ROCm installation

After rebooting the system run the following commands to verify that the ROCm installation was successful. If you
see your GPUs listed by both of these commands, you should be ready to go!

/opt/rocm/bin/rocminfo
/opt/rocm/opencl/bin/x86_64/clinfo

Note that, to make running ROCm programs easier, you may wish to put the ROCm binaries in your PATH.

echo 'export PATH=S$PATH:/opt/rocm/bin:/opt/rocm/profiler/bin:/opt/rocm/opencl/bin/x86_
64" | sudo tee -a /etc/profile.d/rocm.sh

If you have an install issue please read this FAQ.

2.3.6.2.6 Performing an OpenCL-only Installation of ROCm

Some users may want to install a subset of the full ROCm installation. In particular, if you are trying to install on
a system with a limited amount of storage space, or which will only run a small collection of known applications,

30 Chapter 2. Solid Compilation Foundation and Language Support

https://rocm.github.io/install_issues.html

ReadTheDocs-Breathe Documentation, Release 1.0.0

you may want to install only the packages that are required to run OpenCL applications. To do that, you can run the
following installation command instead of the command to install rocm-dkms.

sudo apt-get install dkms rock-dkms rocm-opencl-dev

2.3.6.2.7 How to uninstall from Ubuntu 16.04 or Ubuntu 18.04

To uninstall the ROCm packages installed in the above directions, you can execute;

sudo apt autoremove rocm-dkms rocm-dev rocm-utils

2.3.6.2.8 Installing development packages for cross compilation

It is often useful to develop and test on different systems. For example, some development or build systems may not
have an AMD GPU installed. In this scenario, you may prefer to avoid installing the ROCK kernel driver to your
development system.

In this case, install the development subset of packages:

sudo apt update
sudo apt install rocm-dev

Note: To execute ROCm enabled apps you will require a system with the full ROCm driver stack installed

2.3.6.2.9 Using Debian-based ROCm with upstream kernel drivers

As described in the above section about upstream Linux kernel support, users may want to try installing ROCm user-
level software without installing AMD’s custom ROCK kernel driver. Users who do want to use upstream kernels can
run the following commands instead of installing rocm-dkms

sudo apt update

sudo apt install rocm-dev

echo 'SUBSYSTEM=="kfd", KERNEL=="kfd", TAG+="uaccess", GROUP="video"' | sudo tee /etc/
—udev/rules.d/70-kfd.rules

2.3.6.3 CentOS/RHEL 7 (7.6) Support

The following directions show how to install ROCm on supported RPM-based systems such as CentOS 7.6. These
directions may not work as written on unsupported RPM-based distributions. For example, Fedora may work but
may not be compatible with the rock—-dkms kernel driver. As such, users may want to skip the rocm-dkms and
rock-dkms packages, as described above, and instead use the upstream kernel driver.

Support for CentOS/RHEL 7 was added in ROCm 1.8, but ROCm requires a special runtime environment provided by
the RHEL Software Collections and additional dkms support packages to properly install and run.

2.3.6.3.1 Preparing RHEL 7 (7.6) for installation

RHEL is a subscription-based operating system, and you must enable several external repositories to enable installation
of the devtoolset-7 environment and the DKMS support files. These steps are not required for CentOS.

2.3. ROCm Installation Guide 31

https://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html#rocm-binary-package-structure
https://github.com/RadeonOpenCompute/ROCm#using-rpm-based-rocm-with-upstream-kernel-drivers

ReadTheDocs-Breathe Documentation, Release 1.0.0

First, the subscription for RHEL must be enabled and attached to a pool id. Please see Obtaining an RHEL image and
license page for instructions on registering your system with the RHEL subscription server and attaching to a pool id.

Second, enable the following repositories:

sudo subscription-manager repos —--enable rhel-server-rhscl-7-rpms
sudo subscription-manager repos —--enable rhel-7-server-optional-rpms
sudo subscription-manager repos —-enable rhel-7-server-extras—-rpms

Third, enable additional repositories by downloading and installing the epel-release-latest-7 repository RPM:

sudo rpm —-ivh https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

2.3.6.3.2 Install and setup Devtoolset-7

To setup the Devtoolset-7 environment, follow the instructions on this page:
https://www.softwarecollections.org/en/scls/rhscl/devtoolset-7/

Note that devtoolset-7 is a Software Collections package, and it is not supported by AMD.

2.3.6.3.3 Prepare CentOS/RHEL (7.6) for DKMS Install

Installing kernel drivers on CentOS/RHEL 7.6 requires dkms tool being installed:

sudo yum install -y epel-release
sudo yum install -y dkms kernel-headers- uname -r kernel-devel- uname -r

2.3.6.3.4 Installing ROCm on the system

It is recommended to remove previous ROCm installations before installing the latest version to ensure a smooth
installation.

At this point ROCm can be installed on the target system. Create a /etc/yum.repos.d/rocm.repo file with the following
contents:

The repo’s URL should point to the location of the repositories repodata database. Install ROCm components using
these commands:

sudo yum install rocm-dkms

The rock-dkms component should be installed and the /dev/k£d device should be available on reboot.

2.3.6.3.5 Set up permissions

Ensure that your user account is a member of the “video” or “wheel” group prior to using the ROCm driver. You can
find which groups you are a member of with the following command:

32 Chapter 2. Solid Compilation Foundation and Language Support

https://www.softwarecollections.org/en/scls/rhscl/devtoolset-7/
https://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html#how-to-uninstall-rocm-from-centos-rhel-7-6

ReadTheDocs-Breathe Documentation, Release 1.0.0

’groups

To add yourself to the video (or wheel) group you will need the sudo password and can use the following command:

sudo usermod —-a -G video S$SLOGNAME

You may want to ensure that any future users you add to your system are put into the “video” group by default. To do
that, you can run the following commands:

echo '"ADD_EXTRA_GROUPS=1' | sudo tee —-a /etc/adduser.conf
echo '"EXTRA_GROUPS=video' | sudo tee -a /etc/adduser.conf

Current release supports CentOS/RHEL 7.6. If users want to update the OS version, they should completely remove
ROCm packages before updating to the latest version of the OS, to avoid DKMS related issues.

Once complete, reboot your system.

2.3.6.3.6 Test basic ROCm installation

After rebooting the system run the following commands to verify that the ROCm installation was successful. If you
see your GPUs listed by both of these commands, you should be ready to go!

/opt/rocm/bin/rocminfo
/opt/rocm/opencl/bin/x86_64/clinfo

Note that, to make running ROCm programs easier, you may wish to put the ROCm binaries in your PATH.

echo 'export PATH=$PATH:/opt/rocm/bin:/opt/rocm/profiler/bin:/opt/rocm/opencl/bin/x86_
64" | sudo tee -a /etc/profile.d/rocm.sh

If you have an install issue please read this FAQ.

2.3.6.3.7 Performing an OpenCL-only Installation of ROCm

Some users may want to install a subset of the full ROCm installation. In particular, if you are trying to install on
a system with a limited amount of storage space, or which will only run a small collection of known applications,
you may want to install only the packages that are required to run OpenCL applications. To do that, you can run the
following installation command instead of the command to install rocm-dkms.

sudo yum install rock-dkms rocm-opencl-devel

2.3.6.3.8 Compiling applications using HCC, HIP, and other ROCm software

To compile applications or samples, please use gcc-7.2 provided by the devtoolset-7 environment. To do this, compile
all applications after running this command:

scl enable devtoolset-7 bash

2.3.6.3.9 How to uninstall ROCm from CentOS/RHEL 7.6

To uninstall the ROCm packages installed by the above directions, you can execute:

2.3. ROCm Installation Guide 33

https://rocm.github.io/install_issues.html

ReadTheDocs-Breathe Documentation, Release 1.0.0

sudo yum autoremove rocm-dkms rock-dkms

2.3.6.3.10 Installing development packages for cross compilation

It is often useful to develop and test on different systems. For example, some development or build systems may not
have an AMD GPU installed. In this scenario, you may prefer to avoid installing the ROCK kernel driver to your
development system.

In this case, install the development subset of packages:

sudo yum install rocm-dev

Note: To execute ROCm enabled apps you will require a system with the full ROCm driver stack installed

2.3.6.3.11 Using ROCm with upstream kernel drivers

As described in the above section about upstream Linux kernel support, use rs may want to try installing ROCm user-
level software without installing AMD’s custom ROCK kernel driver. Users who do want to use upstream kernels can
run the following commands instead of installing rocm-dkms

sudo yum install rocm-dev
echo 'SUBSYSTEM=="kfd", KERNEL=="kfd", TAG+="uaccess", GROUP="video"' | sudo tee /etc/
—udev/rules.d/70-kfd.rules

2.3.7 Known issues / workarounds

2.3.7.1 rocprofiler —hiptrace and —hsatrace fails to load roctracer library

In ROCm 2.7, rocprofiler —hiptrace and —hsatrace fails to load roctracer library. The workaround is to create two links
under ‘/opt/rocm’: $ In -s /opt/rocm/roctracer/lib/libroctracer64.so /opt/rocm/rocprofiler/lib/libroctracer64.so $ In -s
/opt/rocm/roctracer/tool/libtracer_tool.so /opt/rocm/rocprofiler/tool/libtracer_tool.so

2.3.7.2 rocFFT unit tests - memory access fault

Known failure with some power-of-2 size transforms in 1D real FFTs. This issue has been fixed in master branch of
public rocFFT repo: https://github.com/ROCmSoftwarePlatform/rocFFT

2.3.8 Closed source components

The ROCm platform relies on a few closed source components to provide functionality such as HSA image support.
These components are only available through the ROCm repositories, and they will either be deprecated or become
open source components in the future. These components are made available in the following packages:

¢ hsa-ext-rocr-dev

34 Chapter 2. Solid Compilation Foundation and Language Support

https://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html#rocm-support-in-upstream-linux-kernels
https://github.com/ROCmSoftwarePlatform/rocFFT

ReadTheDocs-Breathe Documentation, Release 1.0.0

2.3.9 Getting ROCm source code

ROCm is built from open source software. As such, it is possible to make modifications to the various components of
ROCm by downloading the source code, making modifications to it, and rebuilding the components. The source code
for ROCm components can be cloned from each of the GitHub repositories using git. In order to make it easier to
download the correct versions of each of these tools, this ROCm repository contains a repo manifest file, default.xml.
Interested users can thus use this manifest file to download the source code for all of the ROCm software.

2.3.9.1 Installing repo

Google’s repo tool allows you to manage multiple git repositories simultaneously. You can install it by executing the
following example commands:

mkdir -p ~/bin/
curl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repo
chmod a+x ~/bin/repo

Note that you can choose a different folder to install repo into if you desire. ~/bin/ is simply used as an example.

2.3.9.2 Downloading the ROCm source code

The following example shows how to use the repo binary downloaded above to download all of the ROCm source
code. If you chose a directory other than ~/bin/ to install repo, you should use that directory below.

mkdir -p ~/ROCm/

cd ~/ROCm/

~/bin/repo init -u https://github.com/RadeonOpenCompute/ROCm.git -b roc-2.7.0
repo sync

This will cause repo to download all of the open source code associated with this ROCm release. You may want to
ensure that you have ssh-keys configured on your machine for your GitHub ID.

2.3.9.3 Building the ROCm source code

Each ROCm component repository contains directions for building that component. As such, you should go to the
repository you are interested in building to find how to build it.

That said, AMD also offers a project that demonstrates how to download, build, package, and install ROCm software
on various distributions. The scripts here may be useful for anyone looking to build ROCm components.

2.3.10 Deprecation Notice

2.3.10.1 HCC

AMD is deprecating HCC to put more focus on HIP development and on other languages supporting heterogeneous
compute. We will no longer develop any new feature in HCC and we will stop maintaining HCC after its final release,
which is planned for end of the year, 2019. If your application was developed with the hc C++ API, we would
encourage you to transition it to other languages supported by AMD, such as HIP or OpenCL. HIP and hc language
share the same compiler technology, so many hc kernel language features (including inline assembly) are also available
through the HIP compilation path.

2.3. ROCm Installation Guide 35

https://gerrit.googlesource.com/git-repo/
https://github.com/RadeonOpenCompute/ROCm/blob/master/default.xml
https://github.com/RadeonOpenCompute/Experimental_ROC

ReadTheDocs-Breathe Documentation, Release 1.0.0

2.3.10.2 hipThrust

hip-thrust has been removed in ROCm?2.7.

2.3.11 Final notes

¢ OpenCL Runtime and Compiler will be submitted to the Khronos Group for conformance testing prior to its
final release.

2.4 Programming Guide

2.4.1 ROCm Languages
2.4.1.1 ROCm, Lingua Franca, C++, OpenCL and Python

The open-source ROCm stack offers multiple programming-language choices. The goal is to give you a range of tools
to help solve the problem at hand. Here, we describe some of the options and how to choose among them.

2.4.1.2 What is the Heterogeneous Compute (HC) API?

It’s a C++ dialect with extensions to launch kernels and manage accelerator memory. It closely tracks
the evolution of C++ and will incorporate parallelism and concurrency features as the C++ standard does.
For example, HC includes early support for the C++17 Parallel STL. At the recent ISO C++ meetings in
Kona and Jacksonville, the committee was excited about enabling the language to express all forms of
parallelism, including multicore CPU, SIMD and GPU. We’ll be following these developments closely,
and you’ll see HC move quickly to include standard C++ capabilities.

The Heterogeneous Compute Compiler (HCC) provides two important benefits:

Ease of development
* A full C++ API for managing devices, queues and events
e C++ data containers that provide type safety, multidimensional-array indexing and automatic data management
e C++ kernel-launch syntax using parallel_for_each plus C++11 lambda functions

* A single-source C++ programming environment—the host and device code can be in the same source file and
use the same C++ language;templates and classes work naturally across the host/device boundary

* HCC generates both host and device code from the same compiler, so it benefits from a consistent view of the
source code using the same Clang-based language parser

Full control over the machine
* Access AMD scratchpad memories (“LDS”)
* Fully control data movement, prefetch and discard
* Fully control asynchronous kernel launch and completion
* Get device-side dependency resolution for kernel and data commands (without host involvement)
e Obtain HSA agents, queues and signals for low-level control of the architecture using the HSA Runtime API

* Use [direct-to-ISA](https://github.com/RadeonOpenCompute/HCC-Native- GCN-ISA) compilation

36 Chapter 2. Solid Compilation Foundation and Language Support

https://github.com/RadeonOpenCompute/HCC-Native-GCN-ISA

ReadTheDocs-Breathe Documentation, Release 1.0.0

2.4.1.3 When to Use HC

Use HC when you’re targeting the AMD ROCm platform: it delivers a single-source, easy-to-program C++ environ-
ment without compromising performance or control of the machine.

2.4.1.4 HIP: Heterogeneous-Computing Interface for Portability

What is Heterogeneous-Computing Interface for Portability (HIP)? It’s a C++ dialect designed to ease conversion of
Cuda applications to portable C++ code. It provides a C-style API and a C++ kernel language. The C++ interface can
use templates and classes across the host/kernel boundary.

The Hipify tool automates much of the conversion work by performing a source-to-source transformation from Cuda
to HIP. HIP code can run on AMD hardware (through the HCC compiler) or Nvidia hardware (through the NVCC
compiler) with no performance loss compared with the original Cuda code.

Programmers familiar with other GPU languages will find HIP very easy to learn and use. AMD platforms implement
this language using the HC dialect described above, providing similar low-level control over the machine.

2.4.1.5 When to Use HIP

Use HIP when converting Cuda applications to portable C++ and for new projects that require portability between
AMD and Nvidia. HIP provides a C++ development language and access to the best development tools on both
platforms.

2.4.1.6 OpenCL™: Open Compute Language

What is OpenCL ? It’s a framework for developing programs that can execute across a wide variety of heterogeneous
platforms. AMD, Intel and Nvidia GPUs support version 1.2 of the specification, as do x86 CPUs and other devices
(including FPGAs and DSPs). OpenCL provides a C run-time API and C99-based kernel language.

2.4.1.7 When to Use OpenCL

Use OpenCL when you have existing code in that language and when you need portability to multiple platforms and
devices. It runs on Windows, Linux and Mac OS, as well as a wide variety of hardware platforms (described above).

2.4.1.8 Anaconda Python With Numba

What is Anaconda ? It’s a modern open-source analytics platform powered by Python. Continuum Analytics, a
ROCm platform partner, is the driving force behind it. Anaconda delivers high-performance capabilities including
acceleration of HSA APUs, as well as ROCm-enabled discrete GPUs via Numba. It gives superpowers to the people
who are changing the world.

2.4.1.9 Numba

Numba gives you the power to speed up your applications with high-performance functions written directly in Python.
Through a few annotations, you can just-in-time compile array-oriented and math-heavy Python code to native machine
instructions—offering performance similar to that of C, C++ and Fortran—without having to switch languages or
Python interpreters.

2.4. Programming Guide 37

ReadTheDocs-Breathe Documentation, Release 1.0.0

Numba works by generating optimized machine code using the LLVM compiler infrastructure at import time, run time
or statically (through the included Pycc tool). It supports Python compilation to run on either CPU or GPU hardware
and is designed to integrate with Python scientific software stacks, such as NumPy.

¢ Anaconda® with Numba acceleration

2.4.1.10 When to Use Anaconda

Use Anaconda when you’re handling large-scale data-analytics, scientific and engineering problems that require you
to manipulate large data arrays.

2.4.1.11 Wrap-Up
From a high-level perspective, ROCm delivers a rich set of tools that allow you to choose the best language for your
application.

¢ HCC (Heterogeneous Compute Compiler) supports HC dialects

e HIP is a run-time library that layers on top of HCC (for AMD ROCm platforms; for Nvidia, it uses the NVCC
compiler)

¢ The following will soon offer native compiler support for the GCN ISA:
— OpenCL 1.2+
— Anaconda (Python) with Numba

All are open-source projects, so you can employ a fully open stack from the language down to the metal. AMD is
committed to providing an open ecosystem that gives developers the ability to choose; we are excited about innovating
quickly using open source and about interacting closely with our developer community. More to come soon!

38 Chapter 2. Solid Compilation Foundation and Language Support

http://numba.pydata.org/numba-doc/latest/index.html

ReadTheDocs-Breathe Documentation, Release 1.0.0

2.4. Programming Guide 39

ReadTheDocs-Breathe Documentation, Release 1.0.0

2.4.1.12 Table Comparing Syntax for Different Compute APls

fast_math::cos(f)

Term CUDA HIP HC C++AMP OpenCL
Device int deviceld int deviceld hc::accelerator concurrency:: cl_device
accelerator
Queue cudaStream_t hipStream_t hc:: accelera- | concurrency:: cl_command_quepe
tor_view accelera-
tor_view
Event cudaEvent_t hipEvent_t hc:: comple- | concurrency:: cl_event
tion_future comple-
tion_future
Memory void * void * void N cl_mem
hc::array; concurrency::array;
hc::array_view concurrency::array_view
grid grid extent extent NDRange
tile tile
block block work-
thread thread group
thread thread
wavefront N/A work-
warp warp item
sub-
group
Thread index threadldx.x hipThreadldx_x | t_idx.local[0] t_idx.local[0] get_local_id(0)
Block index blocklIdx.x hipBlockIdx_x t_idx.tile[0] t_idx.tile[0] get_group_id(0)
Block dim blockDim.x hipBlockDim_x | t_ext.tile_dim[0] | t_idx.tile_dimO get_local_size(0)
Grid-dim gridDim.x hipGridDim_x t_ext[0] t_ext[0] get_global_size(0
Device Function | _ device__ __device__ [[hc]] (detected | restrict(amp) Implied in
automatically in device Compi-
many case) lation
Host Function __host_ (de- | [[cpu]] (default) | strict(cpu) (de- | Implied in host
—host_ fault) fault) Compilation
(default)
Host + Device | _ _host__ _ de- [[hel] [[cpul] restrict(amp,cpu) | No equivalent
Function vice_ __host_
__device__
Kernel Launch <KL >>> hipLaunchKernel| hc:: paral- | concurrency:: clEnqueueND-
lel_for_each paral- RangeKernel
lel_for each
Global Memory | _ global _ __global__ Unnecessary/ Unnecessary/Implied global
Implied
Group Memory | __shared__ __shared__ tile_static tile_static __local
Constant __constant__ __constant__ Unnecessary/ Unnecessary / | __constant
Implied Implied
__syncthreads __syncthreads tile_static.barrier() t_idx.barrier() barrier(CLK_LO(
Atomic Builtins | atomicAdd atomicAdd hc::atomic_fetch_addncurrency:: atomic_add
atomic_fetch_add
Precise- Math costH costh he:: pre——concurreney:: costH
40 Chapter 2. Solid&qmpj[g_tj&;g(ﬁo%gation and Language Support
cise_math::cos(f)
Fast Math __cos(f) __cos(f) hc::fast_math::cog(fdoncurrency:: native_cos(f)

TAL_MEMFENCI

ReadTheDocs-Breathe Documentation, Release 1.0.0

2.4.1.13 Notes

1. For HC and C++AMP, assume a captured _tiled_ext_ named “t_ext” and captured _extent_ named “ext”. These
languages use captured variables to pass information to the kernel rather than using special built-in functions so
the exact variable name may vary.

2. The indexing functions (starting with thread-index) show the terminology for a 1D grid. Some APIs use reverse
order of xyz / 012 indexing for 3D grids.

3. HC allows tile dimensions to be specified at runtime while C++AMP requires that tile dimensions be spec-
ified at compile-time. Thus hc syntax for tile dims is t_ext.tile_dim[0] while C++AMP is t_ext.
tile_dimO.

4. From ROCm version 2.0 onwards C++AMP is no longer available in HCC.

2.4.2 HCC Programming Guide

2.4.2.1 HCC: Heterogeneous Compute Compiler

HCC is an Open Source, Optimizing C++ Compiler for Heterogeneous Compute

HCC supports heterogeneous offload to AMD APUs and discrete GPUs via HSA enabled runtimes and drivers. It is
an ISO compliant C++ 11/14 compiler. It is based on Clang, the LLVM Compiler Infrastructure and the “libc++” C++
standard library.

Deprecation Notice

AMD is deprecating HCC to put more focus on HIP development and on other languages supporting heterogeneous
compute. We will no longer develop any new feature in HCC and we will stop maintaining HCC after its final release,
which is planned for June 2019. If your application was developed with the hc C++ API, we would encourage you
to transition it to other languages supported by AMD, such as HIP or OpenCL. HIP and hc language share the same
compiler technology, so many hc kernel language features (including inline assembly) are also available through the
HIP compilation path.

2.4.2.2 Accelerator Modes Supported

HC (Heterogeneous Compute) C++ API

Inspired by C++ AMP and C++17, this is the default C++ compute API for the HCC compiler. HC has some important
differences from C++ AMP including removing the “restrict” keyword, supporting additional data types in kernels,
providing more control over synchronization and data movement, and providing pointer-based memory allocation. It
is designed to expose cutting edge compute capabilities on Boltzmann and HSA devices to developers while offering
the productivity and usability of C++.

HIP

HIP provides a set of tools and API for converting CUDA applications into a portable C++ API. An application using
the HIP API could be compiled by hcce to target AMD GPUs. Please refer to HIP’s repository for more information.

C++ AMP

NOTE The supported for C++AMP is being deprecated. The ROCm 1.9 release is the last release of HCC supporting
C++AMP.

Microsoft C++ AMP is a C++ accelerator API with support for GPU offload. This mode is compatible with Version
1.2 of the C++ AMP specification.

C++ Parallel STL

2.4. Programming Guide 41

ReadTheDocs-Breathe Documentation, Release 1.0.0

HCC provides an initial implementation of the parallel algorithms described in the ISO C++ Extensions for Parallelism,
which enables parallel acceleration for certain STL algorithms.

2.4.2.3 Platform Requirements

Accelerated applications could be run on Radeon discrete GPUs from the Fiji family (AMD R9 Nano, R9 Fury, R9
Fury X, FirePro S9300 x2, Polaris 10, Polaris 11) paired with an Intel Haswell CPU or newer. HCC would work with
AMD HSA APUs (Kaveri, Carrizo); however, they are not our main support platform and some of the more advanced
compute capabilities may not be available on the APUs.

HCC currently only works on Linux and with the open source ROCK kernel driver and the ROCR runtime (see
Installation for details). It will not work with the closed source AMD graphics driver.

2.4.2.4 Compiler Backends

This backend compiles GPU kernels into native GCN ISA, which can be directly executed on the GPU hardware. It’s
being actively developed by the Radeon Technology Group in LLVM.

2.4.2.5 Installation

Prerequisites

Before continuing with the installation, please make sure any previously installed hcc compiler has been removed from
on your system. Install ROCm and make sure it works correctly.

2.4.2.6 Ubuntu

Ubuntu 14.04

Support for 14.04 has been deprecated.

Ubuntu 16.04

Follow the instruction here to setup the ROCm apt repository and install the rocm or the rocm-dev meta-package.
Fedora 24

Follow the instruction here to setup the ROCm apt repository and install the rocm or the rocm-dev meta-package.
RHEL 7.4/CentOS 7

Follow the instruction here to setup the ROCm apt repository and install the rocm or the rocm-dev meta-package for
RHEL/CentOS. Currently, HCC support for RHEL 7.4 and CentOS 7 is experimental and the compiler has to be built
from source. Note: CentOS 7 cmake is outdated, will need to use alternate cmake3.

openSUSE Leap 42.3

Currently, HCC support for openSUSE is experimental and the compiler has to be built from source.

2.4.2.7 Download HCC

The project now employs git submodules to manage external components it depends upon. It it advised
to add —recursive when you clone the project so all submodules are fetched automatically.

For example

42 Chapter 2. Solid Compilation Foundation and Language Support

http://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html
http://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html#installation-guide-ubuntu
http://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html#installation-guide-fedora
http://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html#installation-guide-fedora

ReadTheDocs-Breathe Documentation, Release 1.0.0

automatically fetches all submodules
git clone —--recursive -b clang_tot_upgrade https://github.com/RadeonOpenCompute/hcc.
—git

2.4.2.8 Build HCC from source

First, install the build dependencies

Ubuntu 14.04

sudo apt-get install git cmake make g++ g++-multilib gcc-multilib libc++-dev libc++1
—~libc++abi-dev libc++abil python findutils libelfl libpci3 file debianutils
—libunwind8-dev hsa-rocr-dev hsa-ext-rocr-dev hsakmt-roct-dev pkg-config rocm-utils

Ubuntu 16.04

sudo apt-get install git cmake make g++ g++-multilib gcc-multilib python findutils,
—1ibelfl libpci3 file debianutils libunwind- dev hsa-rocr-dev hsa-ext-rocr-dev,_
—hsakmt-roct-dev pkg-config rocm-utils

Fedora 23/24

sudo dnf install git cmake make gcc-c++ python findutils elfutils-libelf pciutils-
—1libs file pth rpm-build libunwind-devel hsa- rocr- dev hsa-ext-rocr-dev hsakmt-roct-
—dev pkgconfig rocm-utils

Clone the HCC source tree

automatically fetches all submodules
git clone —-recursive -b clang_tot_upgrade https://github.com/RadeonOpenCompute/hcc.
<—>glt

Create a build directory and run cmake in that directory to configure the build

mkdir build;
cd build;
cmake ../hcc

Compile HCC

’make -3

Run the unit tests

’make test

Create an installer package (DEB or RPM file)

’make package

To configure and build HCC from source, use the following steps

mkdir -p build; cd build
NUM_BUILD_ THREADS is optional
set the number to your CPU core numbers time 2 is recommended
in this example we set it to 96
cmake —-DNUM_BUILD_THREADS=96 \
-DCMAKE_BUILD_TYPE=Release \

(continues on next page)

2.4. Programming Guide 43

ReadTheDocs-Breathe Documentation, Release 1.0.0

(continued from previous page)

make

To install it, use the following steps

sudo make install

2.4.2.9 Use HCC

For C++AMP source codes

’hcc "clamp-config --cxxflags —--1ldflags foo.cpp

WARNING: From ROCm version 2.0 onwards C++AMP is no longer available in HCC.

For HC source codes

’hcc "hcc-config —--cxxflags —--ldflags™ foo.cpp

In case you build HCC from source and want to use the compiled binaries directly in the build directory:

For C++AMP source codes

notice the --build flag
bin/hcc "bin/clamp-config --build --cxxflags --ldflags foo.cpp

WARNING: From ROCm version 2.0 onwards C++AMP is no longer available in HCC.

For HC source codes

notice the --build flag

bin/hcc "bin/hcc-config --build --cxxflags --1ldflags foo.cpp

Compiling for Different GPU Architectures

By default, HCC will auto-detect all the GPU’s local to the compiling machine and set the correct GPU architectures.
Users could use the —amdgpu-target=<GCN Version> option to compile for a specific architecture and to disable the
auto-detection. The following table shows the different versions currently supported by HCC.

There exists an environment variable HCC_AMDGPU_TARGET to override the default GPU architecture globally
for HCC; however, the usage of this environment variable is NOT recommended as it is unsupported and it will be
deprecated in a future release.

GCN Ver- | GPU/APU Examples of Radeon GPU

sion Family

gfx701 GFX7 FirePro W8100, FirePro W9100, Radeon R9 290, Radeon R9 390

2fx801 Carrizo APU FX-8800P

gfx803 GFX8 R9 Fury, R9 Fury X, R9 Nano, FirePro S9300 x2, Radeon RX 480, Radeon RX
470, Radeon RX 460

2fx900 GFX9 VegalO

2.4.2.10 Multiple ISA

HCC now supports having multiple GCN ISAs in one executable file. You can do it in different ways: use :: —amdgpu-
target= command line option It’s possible to specify multiple —amdgpu-target= option.

44 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

Example

ISA for Hawaii (gfx701), Carrizo(gfx801), Tonga (gfx802) and Fiji(gfx803) would
be produced
hcc "hcc-config —-cxxflags —-1dflags™ \

—-—amdgpu-target=gfx701 \

——amdgpu-target=gfx801 \

——amdgpu-target=gfx802 \

—-—amdgpu-target=gfx803 \

foo.cpp

use :: HCC_AMDGPU_TARGET env var
Use, to delimit each AMDGPU target in HCC. Example

export HCC_AMDGPU_TARGET=gfx701,gfx801,gfx802,gfx803

ISA for Hawaii (gfx701), Carrizo(gfx801), Tonga (gfx802) and Fiji(gfx803) would
be produced

hcc "hcc-config --cxxflags —--1ldflags™ foo.cpp

configure HCC using the CMake HSA_AMDGPU_GPU_TARGET variable

If you build HCC from source, it’s possible to configure it to automatically produce multiple ISAs via ::
HSA_AMDGPU_GPU_TARGET CMake variable. Use ; to delimit each AMDGPU target. Example

ISA for Hawaii (gfx701), Carrizo(gfx801), Tonga (gfx802) and Fiji(gfx803) would
be produced by default
cmake \
-DCMAKE_BUILD_TYPE=Release \
-DROCM_DEVICE_LIB_DIR=~hcc/ROCm-Device-Libs/build/dist/lib \
—~DHSA_AMDGPU_GPU_TARGET="gfx701; gfx801;gfx802; gfx803" \
../hcc

2.4.2.11 CodeXL Activity Logger

To enable the CodeXL Activity Logger, use the USE_CODEXL_ACTIVITY_LOGGER environment variable.
Configure the build in the following way

cmake \
-DCMAKE_BUILD_TYPE=Release \
-DHSA_AMDGPU_GPU_TARGET=<AMD GPU ISA version string> \
-DROCM_DEVICE_LIB_DIR=<location of the ROCm-Device-Libs bitcode> \
-DUSE_CODEXL_ACTIVITY_LOGGER=1 \
<ToT HCC checkout directory>

In your application compiled using hcc, include the CodeXL Activiy Logger header

#include <CXLActivityLogger.h>

For information about the usage of the Activity Logger for profiling, please refer to documentation

2.4.3 HC Best Practices

HC comes with two header files as of now:

* hc.hpp : Main header file for HC

2.4. Programming Guide 45

https://documentation.help/CodeXL/amdtactivitylogger-library.htm
http://scchan.github.io/hcc/hc_8hpp.html

ReadTheDocs-Breathe Documentation, Release 1.0.0

¢ hc_math.hpp : Math functions for HC

Most HC APIs are stored under “hc” namespace, and the class name is the same as their counterpart in C++AMP
“Concurrency” namespace. Users of C++AMP should find it easy to switch from C++AMP to HC.

C++AMP HC

Concurrency: :accelerator hc::accelerator
Concurrency: :accelerator_view hc::accelerator_view
Concurrency: :extent hc::extent
Concurrency: :index hc::index
Concurrency: :completion_future | hc::completion_future
Concurrency::array hc::array
Concurrency::array_view hc::array_view

2.4.3.1 HCC built-in macros

Built-in macros:

Macro

Meaning

HCC

always be 1

hcc_major

major version number of HCC

hcc_minor

minor version number of HCC

__hcc_patchlevel_

patchlevel of HCC

hcc_version

combined string of __hcc_major__, __hcc_minor__,
_ _hcc_patchlevel

The rule for __hcc_patchlevel is: yyWW-(HCC driver git commit #)-(HCC clang git commit #)

* yy stands for the last 2 digits of the year

* WW stands for the week number of the year

Macros for language modes in use:

Macro Meaning
__KALMAR_AMP___ | 1in case in C++ AMP mode (-std=c++amp; Removed from ROCm 2.0 onwards)
___KALMAR_HC___ 1 in case in HC mode (-hc)

Compilation mode: HCC is a single-source compiler where kernel codes and host codes can reside in the same file.
Internally HCC would trigger 2 compilation iterations, and the following macros can be used by user programs to
determine which mode the compiler is in.

Macro Meaning
__KALMAR_ACCELERATOR___ | not 0 in case the compiler runs in kernel code compilation mode
_ KALMAR_CPU___ not 0 in case the compiler runs in host code compilation mode

2.4.3.2 HC-specific features

* relaxed rules in operations allowed in kernels

* new syntax of tiled_extent and tiled_index

* dynamic group segment memory allocation

46

Chapter 2. Solid Compilation Foundation and Language Support

http://scchan.github.io/hcc/hc__math_8hpp_source.html

ReadTheDocs-Breathe Documentation, Release 1.0.0

* true asynchronous kernel launching behavior

* additional HSA-specific APIs

2.4.3.3 Differences between HC API and C++ AMP

Despite HC and C++ AMP sharing many similar program constructs (e.g. parallel_for_each, array, array_view, etc.),
there are several significant differences between the two APIs.

Support for explicit asynchronous parallel_for_each In C++ AMP, the parallel_for_each appears as a synchronous
function call in a program (i.e. the host waits for the kernel to complete); howevever, the compiler may optimize it
to execute the kernel asynchronously and the host would synchronize with the device on the first access of the data
modified by the kernel. For example, if a parallel_for_each writes the an array_view, then the first access to this
array_view on the host after the parallel_for_each would block until the parallel_for_each completes.

HC supports the automatic synchronization behavior as in C++ AMP. In addition, HC’s parallel_for_each supports
explicit asynchronous execution. It returns a completion_future (similar to C++ std::future) object that other asyn-
chronous operations could synchronize with, which provides better flexibility on task graph construction and enables
more precise control on optimization.

Annotation of device functions

C++ AMP uses the restrict(amp) keyword to annotate functions that runs on the device.

void foo () restrict(amp) { .. } ... parallel_ for_each(...,[=] () restrict (amp) {_
—foo(); });

HC uses a function attribute ([[hc]] or __attribute__((hc))) to annotate a device function.

void foo () [[hc]l] { .. } ... parallel_for_each(...,[=] () [[hc]] { foo(); 1});

The [[hc]] annotation for the kernel function called by parallel_for_each is optional as it is automatically annotated
as a device function by the hcc compiler. The compiler also supports partial automatic [[hc]] annotation for functions
that are called by other device functions within the same source file:

Since bar is called by foo, which is a device function, the hcc compiler will automatically annotate bar as a device
function void bar () { ... } void foo() [[hc]l] { bar(); }

Dynamic tile size

C++ AMP doesn’t support dynamic tile size. The size of each tile dimensions has to be a compile-time constant
specified as template arguments to the tile_extent object:

extent<2> ex(X, y)

To create a tile extent of 8x8 from the extent object,note that the tile dimensions have to be constant
values:

tiled_extent<8,8> t_ex(ex)
parallel_for_each(t_ex, [=](tiled_index<8,8> t_id) restrict(amp) { ... });
HC supports both static and dynamic tile size:
extent<2> ex(X,y)

To create a tile extent from dynamically calculated values,note that the the tiled_extent template takes the rank instead
of dimensions

tx =test_x ? tx_a: tx_b;

ty =test_y ? ty_a: ty_b;

2.4. Programming Guide 47

http://scchan.github.io/hcc/classConcurrency_1_1extent.html
http://scchan.github.io/hcc/classConcurrency_1_1extent.html

ReadTheDocs-Breathe Documentation, Release 1.0.0

tiled_extent<2> t_ex(ex, tx, ty);
parallel_for_each(t_ex, [=](tiled_index<2>t_id) [[hc]] { ... });
Support for memory pointer
C++ AMP doesn’t support lambda capture of memory pointer into a GPU kernel.
HC supports capturing memory pointer by a GPU kernel.
allocate GPU memory through the HSA API .. code:: sh

int* gpu_pointer; hsa_memory_allocate(. .., &gpu_pointer); ... parallel_for_each(ext, [=](index i) [[hc]]
{ gpu_pointer[i[0]]++; }

For HSA APUs that supports system wide shared virtual memory, a GPU kernel can directly access system memory
allocated by the host: .. code:: sh

int* cpu_memory = (int*) malloc(...); ... parallel_for_each(ext, [=](index 1) [[hc]] {
cpu_memory[i[0]]++; });

2.4.3.4 HCC Profile Mode

HCC supports low-overhead profiler to trace or summarize command timestamp information to stderr for any HCC
or HIP program. Tho profiler messages are interleaved with the trace output from the application - which is handy
to identify the region-of-interest and can complement deeper analysis with the CodeXL GUI Additionally, the hcc
profiler requires only console mode access and can be used on machine where graphics are not available or are hard to
access.

Some other useful features:
* Calculates the actual bandwidth for memory transfers
* Identifies PeerToPeer memory copies
» Shows start / stop timestamps for each command (if requested)
* Shows barrier commands and the time they spent waiting to resolve (if requested)

Enable and configure

HCC_PROFILE=1 shows a summary of kernel and data commands when hcc exits (under development).
HCC_PROFILE=2 enables a profile message after each command (kernel or data movement) completes.

Additionally, the HCC_PROFILE_VERBOSE variable controls the information shown in the profile log. This is a
bit-vector:

0x2 : Show start and stop timestamps for each command.

0x4 : Show the device.queue.cmdseqnum for each command.

0x8 : Show the short CPU TID for each command (not supported).
0x10 : Show logs for barrier commands.

Sample Output

48 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

2.4.3.4.1 Kernel Commands

This shows the simplest trace output for kernel commands with no additional verbosity flags

$ HCC_PROFILE=2 ./my-hcc-app

profile: kernel; Im2Col; 17.8 us;
profile: kernel; tg_betac_alphaab; 32.6 us;
profile: kernel; MIOpenConvUni; 125.4 us;
PROFILE: TYPE; KERNEL_NAME ; DURATION;

This example shows profiled kernel commands with full verbose output

$ HCC_PROFILE=2 HCC_PROFILE_VERBOSE=0xf ./my—hcc—app
profile: kernel; Im2Col; 17.8 us; 94859076277181; 94859076294941; #0.3.
<—>l,’

profile: kernel; tg_betac_alphaab; 32.6 us; 94859537593679; 94859537626319; #0.3.

<~>2,’

profile: kernel; MIOpenConvUni; 125.4 us; 94860077852212; 94860077977651; #0.3.
37

PROFILE: TYPE; KERNEL_NAME ; DURATION; START ; STOP ; ID

PROFILE: always “profile:” to distinguish it from other output.

TYPE: the command type : kernel, copy, copyslo, or barrier. The examples and descriptions in this section are
all kernel commands.

KERNEL_NAME: the (short) kernel name.

DURATION: command duration measured in us. This is measured using the GPU timestamps and represents
the command execution on the accelerator device.

START: command start time in ns. (if HCC_PROFILE_VERBOSE & 0x2)
STOP: command stop time in ns. (if HCC_PROFILE_VERBOSE & 0x2)

ID: command id in device.queue.cmd format. (if HCC_PROFILE_VERBOSE & 0x4). The cmdsequm is a
unique monotonically increasing number per-queue, so the triple of device.queue.cmdseqnum uniquely identi-
fies the command during the process execution.

2.4.3.4.2 Memory Copy Commands

This example shows memory copy commands with full verbose output:

profile: copyslo; HostToDevice_sync_slow; 909.2 us; 94858703102; 94858704012; #0.0.

—0; 2359296 bytes; 2.2 MB; 2.5 GB/s;

profile: copy; DeviceToHost_sync_fast; 117.0 us; 94858726408; 94858726525; #0.0.
—0; 1228800 bytes; 1.2 MB; 10.0 GB/s;

profile: copy; DeviceToHost_sync_fast; 9.0 us; 94858726668; 94858726677; #0.0.
—0; 400 bytes; 0.0 MB; 0.0 GB/s;

profile: copy; HostToDevice_sync_fast; 15.2 us; 94858727639; 94858727654; #0.0.
—0; 9600 bytes; 0.0 MB; 0.6 GB/s;

profile: copy; HostToDevice_async_fast; 131.5 us; 94858729198; 94858729330; #0.6.
—1; 1228800 bytes; 1.2 MB; 8.9 GB/s;

PROFILE: TYPE; COPY_NAME ; DURATION; START; STOP; ID .
—; SIZE_BYTES; SIZE_MB; BANDWIDTH;

2.4. Programming Guide 49

ReadTheDocs-Breathe Documentation, Release 1.0.0

* PROFILE: always “profile:” to distinguish it from other output.

* TYPE: the command type : kernel, copy, copyslo,or barrier. The examples and descriptions in this section are
all copy or copyslo commands.

* COPY_NAME has 3 parts:

— Copy kind: HostToDevice, HostToHost, DeviceToHost, DeviceToDevice, or PeerToPeer. Device-
ToDevice indicates the copy occurs on a single device while PeerToPeer indicates a copy between
devices.

— Sync or Async. Synchronous copies indicate the host waits for the completion for the copy. Asyn-
chronous copies are launched by the host without waiting for the copy to complete.

— Fast or Slow. Fast copies use the GPUs optimized copy routines from the hsa_amd_memory_copy
routine. Slow copies typically involve unpinned host memory and can’t take the fast path.

For example HostToDevice_async_fast.

* DURATION: command duration measured in us. This is measured using the GPU timestamps and represents
the command execution on the accelerator device.

¢ START: command start time in ns. (if HCC_PROFILE_VERBOSE & 0x2)
e STOP: command stop time in ns. (if HCC_PROFILE_VERBOSE & 0x2)

e ID: command id in device.queue.cmd format. (if HCC_PROFILE_VERBOSE & 0x4). The cmdsequm is a
unique mononotically increasing number per-queue, so the triple of device.queue.cmdseqnum uniquely identi-
fies the command during the process execution.

» SIZE_BYTES: the size of the transfer, measured in bytes.
» SIZE_MB: the size of the transfer, measured in megabytes.
e BANDWIDTH: the bandwidth of the transfer, measured in GB/s.

2.4.3.4.3 Barrier Commands

Barrier commands are only enabled if HCC_PROFILE_VERBOSE 0x10

An example barrier command with full vebosity

profile: barrier; deps:0_acqg:none_rel:sys; 5.3 us; 94858731419410; 94858731424690;
~# 0.0.2;
PROFILE: TYPE; BARRIER_NAME ; DURATION; START ; STOP ;

[

* PROFILE: always “profile:” to distinguish it from other output.

e TYPE: the command type: either kernel, copy, copyslo, or barrier. The examples and descriptions in this
section are all copy commands. Copy indicates that the runtime used a call to the fast hsa memory copy routine
while copyslo indicates that the copy was implemented with staging buffers or another less optimal path. copy
computes the commands using device-side timestamps while copyslo computes the bandwidth based on host
timestamps.

¢« BARRIER_NAME has 3 parts:
— deps:# - the number of input dependencies into the barrier packet.

— acq: - the acquire fence for the barrier. May be none, acc(accelerator or agent), sys(system). See
HSA AQL spec for additional information.

50 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

— rel: - the release fence for the barrier. May be none, acc(accelerator or agent), sys(system). See HSA
AQL spec for additional information.

* DURATION: command duration measured in us. This is measured using the GPU timestamps from the time
the barrier reaches the head of the queue to when it executes. Thus this includes the time to wait for all input
dependencies, plus the previous command to complete, plus any fence operations performed by the barrier.

¢ START: command start time in ns. (if HCC_PROFILE_VERBOSE & 0x2)
e STOP: command stop time in ns. (if HCC_PROFILE_VERBOSE & 0x2)

¢ ID: the command id in device.queue.cmd format. (if HCC_PROFILE_VERBOSE & 0x4). The cmdsequm
is a unique mononotically increasing number per-queue, so the triple of device.queue.cmdseqnum uniquely
identifies the command during the process execution.

2.4.3.4.4 Overhead

The hce profiler does not add any additional synchronization between commands or queues. Profile information
is recorded when a command is deleted. The profile mode will allocate a signal for each command to record the
timestamp information. This can add 1-2 us to the overall program execution for command which do not already use
a completion signal. However, the command duration (start-stop) is still accurate. Trace mode will generate strings to
stderr which will likely impact the overall application exection time. However, the GPU duration and timestamps are
still valid. Summary mode accumulates statistics into an array and should have little impact on application execution
time.

2.4.3.4.5 Additional Details and tips

* Commands are logged in the order they are removed from the internal HCC command tracker. Typically
this is the same order that commands are dispatched, though sometimes these may diverge. For exam-
ple, commands from different devices,queues, or cpu threads may be interleaved on the hcc trace display
to stderr. If a single view in timeline order is required, enable and sort by the profiler START timestamps
(HCC_PROFILE_VERBOSE=0x2)

* If the application keeps a reference to a completion_future, then the command timestamp may be reported
significantly after it occurs.

¢ HCC_PROFILE has an (untested) feature to write to a log file.

2.4.3.5 APl documentation

API reference of HCC

2.4.4 HIP Programing Guide

HIP provides a C++ syntax that is suitable for compiling most code that commonly appears in compute kernels,
including classes, namespaces, operator overloading, templates and more. Additionally, it defines other language
features designed specifically to target accelerators, such as the following:

* A kernel-launch syntax that uses standard C++, resembles a function call and is portable to all HIP targets
» Short-vector headers that can serve on a host or a device
* Math functions resembling those in the “math.h” header included with standard C++ compilers

* Built-in functions for accessing specific GPU hardware capabilities

2.4. Programming Guide 51

https://scchan.github.io/hcc/

ReadTheDocs-Breathe Documentation, Release 1.0.0

This section describes the built-in variables and functions accessible from the HIP kernel. It’s intended for readers
who are familiar with Cuda kernel syntax and want to understand how HIP is different.

» HIP-GUIDE

2.4.5 HIP Best Practices

o HIP-porting-guide
e HIP-terminology
* hip_profiling
e HIP_Debugging
* Kernel_language
e HIP-Terms
* HIP-bug
* hipporting-driver-api
* CUDAAPIHIP
* CUDAAPIHIPTEXTURE
* HIP-FAQ
* HIP-Term?2
2.4.6 OpenCL Programing Guide

* Opencl-Programming-Guide

2.4.7 OpenCL Best Practices

¢ Optimization-Opencl

2.5 ROCm GPU Tuning Guides

2.5.1 GFX7 Tuning Guide
2.5.2 GFX8 Tuning Guide

2.5.3 Vega Tuning Guide
2.6 GCN ISA Manuals

2.6.1 GCN 1.1

ISA Manual for Hawaii pdf

52 Chapter 2. Solid Compilation Foundation and Language Support

http://developer.amd.com/wordpress/media/2013/07/AMD_Sea_Islands_Instruction_Set_Architecture1.pdf

ReadTheDocs-Breathe Documentation, Release 1.0.0

2.6.2 GCN 2.0

ISA Manual for Fiji and Polaris pdf

2.6.3 Vega

¢ testdocbook

2.6.4 Inline GCN ISA Assembly Guide

2.6.4.1 The Art of AMDGCN Assembly: How to Bend the Machine to Your Will

The ability to write code in assembly is essential to achieving the best performance for a GPU program. In a previous
blog we described how to combine several languages in a single program using ROCm and Hsaco. This article explains
how to produce Hsaco from assembly code and also takes a closer look at some new features of the GCN architecture.
I’d like to thank Ilya Perminov of Luxsoft for co-authoring this blog post. Programs written for GPUs should achieve
the highest performance possible. Even carefully written ones, however, won’t always employ 100% of the GPU’s
capabilities. Some reasons are the following:

* The program may be written in a high level language that does not expose all of the features available on the
hardware.

* The compiler is unable to produce optimal ISA code, either because the compiler needs to ‘play it safe’ while
adhering to the semantics of a language or because the compiler itself is generating un-optimized code.

Consider a program that uses one of GCN’s new features (source code is available on GitHub). Recent hardware
architecture updates—DPP and DS Permute instructions—enable efficient data sharing between wavefront lanes. To
become more familiar with the instruction set, review the GCN ISA Reference Guide. Note: the assembler is currently
experimental; some of syntax we describe may change.

2.6.4.2 DS Permute Instructions

Two new instructions, ds_permute_b32 and ds_bpermute_b32, allow VGPR data to move between lanes on the basis
of an index from another VGPR. These instructions use LDS hardware to route data between the 64 lanes, but they
don’t write to LDS memory. The difference between them is what to index: the source-lane ID or the destination-lane
ID. In other words, ds_permute_b32 says “put my lane data in lane i,” and ds_bpermute_b32 says “read data from
lane i.” The GCN ISA Reference Guide provides a more formal description. The test kernel is simple: read the initial
data and indices from memory into GPRs, do the permutation in the GPRs and write the data back to memory. An
analogous OpenCL kernel would have this form:

__kernel void hello_world(__global const uint * in, __global const uint » index, ___
—global uint * out)
{

size_t i = get_global_id(0);

out[i] = in[index[i] 1;

2.6.4.3 Passing Parameters to a Kernel

Formal HSA arguments are passed to a kernel using a special read-only memory segment called kernarg. Before a
wavefront starts, the base address of the kernarg segment is written to an SGPR pair. The memory layout of variables
in kernarg must employ the same order as the list of kernel formal arguments, starting at offset 0, with no padding

2.6. GCN ISA Manuals 53

http://developer.amd.com/wordpress/media/2013/12/AMD_GCN3_Instruction_Set_Architecture_rev1.1.pdf
https://gpuopen.com/rocm-with-harmony-combining-opencl-hcc-hsa-in-a-single-program/
https://gpuopen.com/rocm-with-harmony-combining-opencl-hcc-hsa-in-a-single-program/
https://github.com/RadeonOpenCompute/LLVM-AMDGPU-Assembler-Extra
https://github.com/olvaffe/gpu-docs/blob/master/amd-open-gpu-docs/AMD_GCN3_Instruction_Set_Architecture.pdf

ReadTheDocs-Breathe Documentation, Release 1.0.0

between variables—except to honor the requirements of natural alignment and any align qualifier. The example host
program must create the kernarg segment and fill it with the buffer base addresses. The HSA host code might look like
the following:

/ *
» This is the host-side representation of the kernel arguments that the simplePermute
—kernel expects.
*/
struct simplePermute_args_t {
uint32_t * in;
uint32_t * index;
uint32_t = out;
}i
/ *
* Allocate the kernel-argument buffer from the correct region.
*/
hsa_status_t status;
simplePermute_args_t * args = NULL;
status = hsa_memory_allocate (kernarg_region, sizeof (simplePermute_args_t), (voidsx) (&
—args));
assert (HSA_STATUS_SUCCESS == status);
agl->kernarg_address = args;
/ *
» Write the args directly to the kernargs buffer;
* the code assumes that memory is already allocated for the
» pbuffers that in_ptr, index_ptr and out_ptr point to

*/

args—>in = in_ptr;
args—>index = index_ptr;
args—>out = out_ptr;

The host program should also allocate memory for the in, index and out buffers. In the GitHub repository, all the
run-time-related stuff is hidden in the Dispatch and Buffer classes, so the sample code looks much cleaner:

// Create Kernarg segment
if (!'AllocateKernarg(3 x sizeof (voidx))) { return false; }

// Create buffers

Buffer xin, =*index, =*out;

in = AllocateBuffer(size);
index = AllocateBuffer(size);
out = AllocateBuffer (size);

// Fill Kernarg memory

Kernarg(in); // Add base pointer to “in” buffer

Kernarg (index); // Append base pointer to “index” buffer
Kernarg(out); // Append base pointer to “out” buffer

Initial Wavefront and Register State To launch a kernel in real hardware, the run time needs information about the
kernel, such as

* The LDS size
¢ The number of GPRs
* Which registers need initialization before the kernel starts

All this data resides in the amd_kernel_code_t structure. A full description of the structure is available in
the AMDGPU-ABI specification. This is what it looks like in source code:

54 Chapter 2. Solid Compilation Foundation and Language Support

http://rocm-documentation.readthedocs.io/en/latest/ROCm_Compiler_SDK/ROCm-Codeobj-format.html?highlight=finalizer#introduction

ReadTheDocs-Breathe Documentation, Release 1.0.0

.hsa_code_object_version 2,0
.hsa_code_object_isa 8, 0, 3, "AMD",

.text
.p2align 8
.amdgpu_hsa_kernel hello_world

hello_world:
.amd_kernel_ code_t

enable_sgpr_kernarg_segment_ptr = 1
is_ptr6d = 1

compute_pgm_rsrcl_vgprs = 1
compute_pgm_rsrcl_sgprs = 0
compute_pgm_rsrc2_user_sgpr = 2
kernarg_segment_byte_size = 24
wavefront_sgpr_count = 8
workitem_vgpr_count = 5

.end_amd_kernel_ code_t

s_load_dwordx2 s[4:5], s[0:1], Ox10
s_load_dwordx4 s[0:3], s[0:1], 0x00
v_1lshlrev_b32 v0, 2, vO

s_waitcnt lgkment (0)
v_add_u32 vl, vcc, s2, vO0
v_mov_b32 v2, s3

v_addc_u32 v2, vcc, v2, 0, vcc
v_add_u32 v3, vcec, s0, vO0
v_mov_b32 v4, sl

v_addc_u32 v4, vcc, v4, 0, vcc

flat_load_dword vl1, v[1:2]
flat_load_dword v2, v[3:4]
s_waitcnt vment (0) & lgkment (0)
v_1lshlrev_b32 wvl1, 2, vl
ds_bpermute_b32 wvl1, vl, v2

v_add_u32 v3, vcc, s4, vO0
v_mov_b32 v2, s5

v_addc_u32 v4, vcc, v2, 0, vcc
s_waitcnt lgkment (0)

flat_store_dword vI[3:4], vl
s_endpgm

"AMDGPU"

Currently, a programmer must manually set all non-default values to provide the necessary information. Hopefully,
this situation will change with new updates that bring automatic register counting and possibly a new syntax to fill
that structure. Before the start of every wavefront execution, the GPU sets up the register state on the basis of the
enable_sgpr_* and enable_vgpr_* flags. VGPR v0 is always initialized with a work-item ID in the x dimension.
Registers vl and v2 can be initialized with work-item IDs in the y and z dimensions, respectively. Scalar GPRs
can be initialized with a work-group ID and work-group count in each dimension, a dispatch ID, and pointers to
kernarg, the aql packet, the aql queue, and so on. Again, the AMDGPU-ABI specification contains a full list in
in the section on initial register state. For this example, a 64-bit base kernarg address will be stored in the s[0:1]
registers (enable_sgpr_kernarg_segment_ptr = 1), and the work-item thread ID will occupy vO (by default). Below is
the scheme showing initial state for our kernel. initial_state

2.6. GCN ISA Manuals

55

ReadTheDocs-Breathe Documentation, Release 1.0.0

2.6.4.4 The GPR Counting

The next amd_kernel_code_t fields are obvious: is_ptr64 = 1 says we are in 64-bit mode, and
kernarg_segment_byte_size = 24 describes the kernarg segment size. The GPR counting is less straightforward,
however. The workitem_vgpr_count holds the number of vector registers that each work item uses, and wave-
front_sgpr_count holds the number of scalar registers that a wavefront uses. The code above employs vO-v4, so
workitem_vgpr_count = 5. But wavefront_sgpr_count = 8 even though the code only shows s0—s5, since the special
registers VCC, FLAT_SCRATCH and XNACK are physically stored as part of the wavefront’s SGPRs in the highest-
numbered SGPRs. In this example, FLAT_SCRATCH and XNACK are disabled, so VCC has only two additional
registers. In current GCN3 hardware, VGPRs are allocated in groups of 4 registers and SGPRs in groups of 16. Pre-
vious generations (GCN1 and GCN2) have a VGPR granularity of 4 registers and an SGPR granularity of 8 registers.
The fields compute_pgm_rsrcl_*gprs contain a device-specific number for each register-block type to allocate for a
wavefront. As we said previously, future updates may enable automatic counting, but for now you can use following
formulas for all three GCN GPU generations:

compute_pgm_rsrcl_vgprs = (workitem_vgpr_count-1) /4

compute_pgm_rsrcl_sgprs = (wavefront_sgpr_count-1)/8

Now consider the corresponding assembly:

// initial state:
// s[0:1] - kernarg base address
// v0 - workitem id

s_load_dwordx2 s[4:5], s[0:1], 0x10 // load out_ptr into s[4:5] from kernarg
s_load_dwordx4 s[0:3], s[0:1], 0x00 // load in_ptr into s[0:1] and index_ptr into_
—~s[2:3] from kernarg

v_lshlrev_b32 wv0, 2, vO // v0 = 4;

s_wailtcnt lgkment (0) // wait for memory reads to finish

// compute address of corresponding element of index buffer

// i.e. v[1:2] = sindex[workitem_ id]
v_add_u32 vl, vcec, s2, vO0
v_mov_Db32 v2, s3

v_addc_u32 v2, vcc, v2, 0, vcc

// compute address of corresponding element of in buffer

// i.e. v[3:4] = sin[workitem_ id]
v_add_u32 v3, vcc, s0, vO0
v_mov_Db32 vd, sl

v_addc_u32 v4, vcc, v4, 0, vcc

flat_load_dword vl1l, v[1:2] // load index[workitem_id] into vl
flat_load_dword v2, v[3:4] // load in[workitem_id] into v2
s_waitcnt vment (0) & lgkment (0) // wait for memory reads to finish

// v1 %= 4; ds_bpermute_pb32 uses byte offset and registers are dwords
v_1lshlrev_b32 v1, 2, vl

// perform permutation

// temp[thread_id] = v2

// vl = temp[vl]

// effectively we got vl = in[index[thread_id]]
ds_bpermute_b32 vl1, vl, v2

// compute address of corresponding element of out buffer

(continues on next page)

56 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

(continued from previous page)

// i.e. v[3:4] = sout[workitem id]

v_add_u32 v3, vcc, s4, vO0

v_mov_b32 v2, s5

v_addc_u32 v4, vcc, v2, 0, vcc

s_wailtcnt lgkment (0) // wait for permutation to finish

// store final value in out buffer, i.e. out[workitem_id] = vl

flat_store_dword v[3:4], vl

s_endpgm

2.6.4.5 Compiling GCN ASM Kernel Into Hsaco

The next step is to produce a Hsaco from the ASM source. LLVM has added support for the AMDGCN assembler, so
you can use Clang to do all the necessary magic:

clang —x assembler -target amdgcn--amdhsa -mcpu=fiji -c -o test.o asm_source.s

clang -target amdgcn-—-amdhsa test.o -o test.co

The first command assembles an object file from the assembly source, and the second one links everything (you could
have multiple source files) into a Hsaco. Now, you can load and run kernels from that Hsaco in a program. The
GitHub examples use Cmake to automatically compile ASM sources. In a future post we will cover DPP, another
GCN cross-lane feature that allows vector instructions to grab operands from a neighboring lane.

2.7 ROCm API References

2.7.1 ROCr System Runtime API

* ROCr-API

2.7.2 HCC Language Runtime API

* HCC-API

2.7.3 HIP Language Runtime API

» HIP-API

2.7.4 HIP Math API

« HIP-MATH

2.7. ROCm API References 57

https://github.com/RadeonOpenCompute/LLVM-AMDGPU-Assembler-Extra

ReadTheDocs-Breathe Documentation, Release 1.0.0

2.7.5 Math Library API's

¢ hcRNG
e cIBLAS
* cISPARSE_api

2.7.6 Deep Learning API’s

e MIOpen API
* MIOpenGEMM API

2.8 ROCm Tools

2.8.1 HCC

HCC is an Open Source, Optimizing C++ Compiler for Heterogeneous Compute

This repository hosts the HCC compiler implementation project. The goal is to implement a compiler that takes a
program that conforms to a parallel programming standard such as C++ AMP, HC, C++ 17 ParallelSTL, or OpenMP,
and transforms it into the AMD GCN ISA.

The project is based on LLVM+CLANG. For more information, please visit the HCCwiki

2.8.1.1 Download HCC

The project now employs git submodules to manage external components it depends upon. It it advised to add —recur-
sive when you clone the project so all submodules are fetched automatically.

For example:

automatically fetches all submodules
git clone —--recursive -b clang_tot_upgrade https://github.com/RadeonOpenCompute/hcc.
—git

For more information about git submodules, please refer to git documentation.

2.8.1.2 Build HCC from source

To configure and build HCC from source, use the following steps:

mkdir -p build; cd build
cmake —-DCMAKE_BUILD_TYPE=Release ..
make

To install it, use the following steps:

sudo make install

58 Chapter 2. Solid Compilation Foundation and Language Support

http://hcrng-documentation.readthedocs.io/en/latest/
https://rocmsoftwareplatform.github.io/MIOpen/doc/html/
https://rocmsoftwareplatform.github.io/MIOpenGEMM/doc/html/
https://git-scm.com/book/en/v2/Git-Tools-Submodules

ReadTheDocs-Breathe Documentation, Release 1.0.0

2.8.1.3 Use HCC

For C++AMP source codes:

’hcc ‘clamp-config —--cxxflags —--1ldflags foo.cpp

WARNING: From ROCm version 2.0 onwards C++AMP is no longer available in HCC.

For HC source codes:

’hcc "hcc-config —--cxxflags —--ldflags™ foo.cpp

In case you build HCC from source and want to use the compiled binaries directly in the build directory:

For C++AMP source codes:

notice the --build flag
bin/hcc "bin/clamp-config --build --cxxflags --ldflags foo.cpp

WARNING: From ROCm version 2.0 onwards C++AMP is no longer available in HCC.

For HC source codes:

notice the —--build flag
bin/hcc "bin/hcc-config --build --cxxflags --1ldflags foo.cpp

2.8.1.4 Multiple ISA

HCC now supports having multiple GCN ISAs in one executable file. You can do it in different ways: use ‘‘~amdgpu-
target=‘‘ command line option

It’s possible to specify multiple ‘* —amdgpu-target= ‘‘ option.

Example:

ISA for Hawaii (gfx701), Carrizo(gfx801), Tonga (gfx802) and Fiji(gfx803) would
be produced
hcc "hcec-config —-cxxflags —-1ldflags’ \

——amdgpu-target=gfx701 \

——amdgpu-target=gfx801 \

—-—amdgpu-target=gfx802 \

——amdgpu-target=gfx803 \

foo.cpp

use “HCC_AMDGPU_TARGET* env var
use , to delimit each AMDGPU target in HCC. Example:

export HCC_AMDGPU_TARGET=gfx701,gfx801,gfx802,gfx803

ISA for Hawaii (gfx701), Carrizo(gfx801), Tonga (gfx802) and Fiji(gfx803) would
be produced

hcc "hcc-config --cxxflags —--1ldflags™ foo.cpp

configure HCC use CMake ‘““HSA_AMDGPU_GPU_TARGET*¢ variable

If you build HCC from source, it’s possible to configure it to automatically produce multiple ISAs via
HSA_AMDGPU_GPU_TARGET CMake variable.

Use ; to delimit each AMDGPU target. Example:

2.8. ROCm Tools 59

ReadTheDocs-Breathe Documentation, Release 1.0.0

ISA for Hawaii (gfx701), Carrizo (gfx801), Tonga (gfx802) and Fiji(gfx803) would
be produced by default
cmake \
-DCMAKE_BUILD_TYPE=Release \
-DROCM_DEVICE_LIB_DIR=~hcc/ROCm-Device-Libs/build/dist/lib \
-DHSA_AMDGPU_GPU_TARGET="gfx701;gfx801;gfx802;gfx803" \
../hcc

2.8.1.5 CodeXL Activity Logger

To enable the CodeXL Activity Logger, use the USE_CODEXL_ACTIVITY_LOGGER environment variable.

Configure the build in the following way:

cmake \
-DCMAKE_BUILD_TYPE=Release \
-DHSA_AMDGPU_GPU_TARGET=<AMD GPU ISA version string> \
-DROCM_DEVICE_LIB_DIR=<location of the ROCm-Device-Libs bitcode> \
-DUSE_CODEXL_ACTIVITY_LOGGER=1 \
<ToT HCC checkout directory>

In your application compiled using hcc, include the CodeXL Activiy Logger header:

#include <CXLActivityLogger.h>

For information about the usage of the Activity Logger for profiling, please refer to its documentation.

2.8.1.6 HCC with ThinLTO Linking

To enable the ThinL.TO link time, use the KMTHINLTO environment variable.

Set up your environment in the following way:

export KMTHINLTO=1

ThinLTO Phase 1 - Implemented

For applications compiled using hcc, ThinLTO could significantly improve link-time performance. This implementa-
tion will maintain kernels in their .bc file format, create module-summaries for each, perform llvm-1to’s cross-module
function importing and then perform clamp-device (which uses opt and llc tools) on each of the kernel files. These
files are linked with 11d into one .hsaco per target specified.

ThinLTO Phase 2 - Under development This ThinLTO implementation which will use llvm-1to LLVM tool to replace
clamp-device bash script. It adds an optllc option into ThinLTOGenerator, which will perform in-program opt and
codegen in parallel.

2.8.2 GCN Assembler and Disassembler

The ability to write code in assembly is essential to achieving the best performance for a GPU program. In a previous
blog we described how to combine several languages in a single program using ROCm and Hsaco. This article explains
how to produce Hsaco from assembly code and also takes a closer look at some new features of the GCN architecture.
I’d like to thank Ilya Perminov of Luxsoft for co-authoring this blog post. Programs written for GPUs should achieve
the highest performance possible. Even carefully written ones, however, won’t always employ 100% of the GPU’s
capabilities. Some reasons are the following:

60 Chapter 2. Solid Compilation Foundation and Language Support

https://github.com/RadeonOpenCompute/ROCm-Profiler/tree/master/CXLActivityLogger
https://github.com/RadeonOpenCompute/ROCm-Profiler/blob/master/CXLActivityLogger/doc/AMDTActivityLogger.pdf

ReadTheDocs-Breathe Documentation, Release 1.0.0

* The program may be written in a high level language that does not expose all of the features available on the
hardware.

* The compiler is unable to produce optimal ISA code, either because the compiler needs to ‘play it safe’ while
adhering to the semantics of a language or because the compiler itself is generating un-optimized code.

Consider a program that uses one of GCN’s new features (source code is available on GitHub). Recent hardware
architecture updates—DPP and DS Permute instructions—enable efficient data sharing between wavefront lanes. To
become more familiar with the instruction set, review the GCN ISA Reference Guide. Note: the assembler is currently
experimental; some of syntax we describe may change.

Two new instructions, ds_permute_b32 and ds_bpermute_b32, allow VGPR data to move between lanes on the basis
of an index from another VGPR. These instructions use LDS hardware to route data between the 64 lanes, but they
don’t write to LDS memory. The difference between them is what to index: the source-lane ID or the destination-lane
ID. In other words, ds_permute_b32 says “put my lane data in lane i,” and ds_bpermute_b32 says “read data from
lane i.” The GCN ISA Reference Guide provides a more formal description. The test kernel is simple: read the initial
data and indices from memory into GPRs, do the permutation in the GPRs and write the data back to memory. An
analogous OpenCL kernel would have this form:

__kernel void hello_world(__global const uint * in, __global const uint * index,
—~global uint * out)
{

size_t 1 = get_global_id(0);

out[i] = in[index[i] 1;

Formal HSA arguments are passed to a kernel using a special read-only memory segment called kernarg. Before a
wavefront starts, the base address of the kernarg segment is written to an SGPR pair. The memory layout of variables
in kernarg must employ the same order as the list of kernel formal arguments, starting at offset 0, with no padding
between variables—except to honor the requirements of natural alignment and any align qualifier. The example host
program must create the kernarg segment and fill it with the buffer base addresses. The HSA host code might look like
the following:

J/ *
* This is the host-side representation of the kernel arguments that the simplePermute_
—kernel expects.
*/
struct simplePermute_args_t {
uint32_t * in;
uint32_t * index;
uint32_t * out;
bi

J/ *
* Allocate the kernel-argument buffer from the correct region.
*/
hsa_status_t status;
simplePermute_args_t % args = NULL;
status = hsa_memory_allocate (kernarg_region, sizeof (simplePermute_args_t), (voidxx) (&
—args));
assert (HSA_STATUS_SUCCESS == status);
agl->kernarg_address = args;
/%

* Write the args directly to the kernargs buffer;

* the code assumes that memory is already allocated for the
* buffers that in_ptr, index_ptr and out_ptr point to

*/

args—>in = in_ptr;

(continues on next page)

2.8. ROCm Tools 61

https://github.com/RadeonOpenCompute/LLVM-AMDGPU-Assembler-Extra
https://github.com/olvaffe/gpu-docs/blob/master/amd-open-gpu-docs/AMD_GCN3_Instruction_Set_Architecture.pdf

ReadTheDocs-Breathe Documentation, Release 1.0.0

(continued from previous page)

args—>index = index_ptr;
args—>out = out_ptr;

The host program should also allocate memory for the in, index and out buffers. In the GitHub repository, all the
run-time-related stuff is hidden in the Dispatch and Buffer classes, so the sample code looks much cleaner:

// Create Kernarg segment
if (!AllocateKernarg(3 x sizeof (voidx))) { return false; }

// Create buffers

Buffer xin, *index, =*out;

in = AllocateBuffer(size);
index = AllocateBuffer(size);
out = AllocateBuffer (size);

// Fill Kernarg memory

Kernarg(in); // Add base pointer to "“in” buffer

Kernarg (index); // Append base pointer to “index” buffer
Kernarg(out); // Append base pointer to “out” buffer

Initial Wavefront and Register State To launch a kernel in real hardware, the run time needs information about the
kernel, such as

e The LDS size
* The number of GPRs
* Which registers need initialization before the kernel starts

All this data resides in the amd_kernel_code_t structure. A full description of the structure is available in
the AMDGPU-ABI specification. This is what it looks like in source code:

.hsa_code_object_version 2,0
.hsa_code_object_isa 8, 0, 3, "AMD", "AMDGPU"

.text
.p2align 8
.amdgpu_hsa_kernel hello_world

hello_world:

.amd_kernel_code_t

enable_sgpr_kernarg_segment_ptr = 1
is_ptr6d = 1
compute_pgm_rsrcl_vgprs = 1
compute_pgm_rsrcl_sgprs = 0
compute_pgm_rsrc2_user_sgpr = 2
kernarg_segment_byte_size = 24
wavefront_sgpr_count = 8
workitem_vgpr_count = 5

.end_amd_kernel_ code_t

s_load_dwordx2 s[4:5], s[0:1], Ox10
s_load_dwordx4 s[0:3], s[0:1], 0x00
v_1lshlrev_b32 v0, 2, vO

s_waitcnt lgkment (0)
v_add_u32 vl, vcc, s2, vO0
v_mov_b32 v2, s3

(continues on next page)

62 Chapter 2. Solid Compilation Foundation and Language Support

http://rocm-documentation.readthedocs.io/en/latest/ROCm_Compiler_SDK/ROCm-Codeobj-format.html?highlight=finalizer

ReadTheDocs-Breathe Documentation, Release 1.0.0

(continued from previous page)

v_addc_u32 v2, vcc, v2, 0, vcc
v_add_u32 v3, vcc, s0, vO0
v_mov_b32 v4, sl

v_addc_u32 v4, vcc, v4, 0, vcc

flat_load_dword vl1, v[1:2]
flat_load_dword v2, v[3:4]
s_wailtcnt vment (0) & lgkment (0)
v_1lshlrev_b32 wv1, 2, vl
ds_bpermute_b32 vl1, vl, v2

v_add_u32 v3, vcc, s4, vO0
v_mov_b32 v2, s5

v_addc_u32 v4, vcc, v2, 0, vcc
s_wailtcnt lgkment (0)
flat_store_dword v[3:4], vl
s_endpgm

Currently, a programmer must manually set all non-default values to provide the necessary information. Hopefully,
this situation will change with new updates that bring automatic register counting and possibly a new syntax to fill
that structure. Before the start of every wavefront execution, the GPU sets up the register state on the basis of the
enable_sgpr_* and enable_vgpr_* flags. VGPR vO0 is always initialized with a work-item ID in the x dimension.
Registers vl and v2 can be initialized with work-item IDs in the y and z dimensions, respectively. Scalar GPRs
can be initialized with a work-group ID and work-group count in each dimension, a dispatch ID, and pointers to
kernarg, the aql packet, the aql queue, and so on. Again, the AMDGPU-ABI specification contains a full list in
in the section on initial register state. For this example, a 64-bit base kernarg address will be stored in the s[0:1]
registers (enable_sgpr_kernarg_segment_ptr = 1), and the work-item thread ID will occupy v0 (by default). Below is
the scheme showing initial state for our kernel. initial_state

The next amd_kernel_code_t fields are obvious: is_ptr64 = 1 says we are in 64-bit mode, and
kernarg_segment_byte_size = 24 describes the kernarg segment size. The GPR counting is less straightforward,
however. The workitem_vgpr_count holds the number of vector registers that each work item uses, and wave-
front_sgpr_count holds the number of scalar registers that a wavefront uses. The code above employs vO-v4, so
workitem_vgpr_count = 5. But wavefront_sgpr_count = 8 even though the code only shows s0—s5, since the special
registers VCC, FLAT_SCRATCH and XNACK are physically stored as part of the wavefront’s SGPRs in the highest-
numbered SGPRs. In this example, FLAT_SCRATCH and XNACK are disabled, so VCC has only two additional
registers. In current GCN3 hardware, VGPRs are allocated in groups of 4 registers and SGPRs in groups of 16. Pre-
vious generations (GCN1 and GCN2) have a VGPR granularity of 4 registers and an SGPR granularity of 8 registers.
The fields compute_pgm_rsrcl_*gprs contain a device-specific number for each register-block type to allocate for a
wavefront. As we said previously, future updates may enable automatic counting, but for now you can use following
formulas for all three GCN GPU generations:

compute_pgm_rsrcl_vgprs = (workitem_vgpr_count-1) /4

compute_pgm_rsrcl_sgprs = (wavefront_sgpr_count-1)/8

Now consider the corresponding assembly:

// initial state:
// s[0:1] - kernarg base address
// v0 - workitem id

s_load_dwordx2 s[4:5], s[0:1], 0x10 // load out_ptr into s[4:5] from kernarg
s_load_dwordx4 s[0:3], s[0:1], 0x00 // load in_ptr into s[0:1] and index_ptr into_
—~s[2:3] from kernarg

v_1lshlrev_b32 wv0, 2, v0 // v0 == 4;

s_wailtcnt lgkment (0) // wait for memory reads to finish

(continues on next page)

2.8. ROCm Tools 63

ReadTheDocs-Breathe Documentation, Release 1.0.0

(continued from previous page)

// compute address of corresponding element of index buffer

// 1.e. v[1:2] = sindex[workitem_id]
v_add_u32 vl, vcc, s2, vO0
v_mov_b32 v2, s3

v_addc_u32 v2, vcc, v2, 0, vcc

// compute address of corresponding element of in buffer

// i.e. v[3:4] = s&in[workitem_ id]
v_add_u32 v3, vcc, s0, vO0
v_mov_b32 vd, sl

v_addc_u32 v4, vcc, v4, 0, vcc

flat_load_dword vl1l, v[1:2] // load index[workitem_id] into vl
flat_load_dword v2, v[3:4] // load in[workitem_id] into v2
s_waitcnt vment (0) & lgkment (0) // wait for memory reads to finish

// v1 %= 4; ds_bpermute_b32 uses byte offset and registers are dwords
v_1lshlrev_b32 wv1, 2, vl

// perform permutation

// temp[thread_id] = v2

// vl = temp[vl]

// effectively we got vl = in[index[thread_id]]
ds_bpermute_b32 vl1, vl, v2

// compute address of corresponding element of out buffer

// i.e. v[3:4] = &out[workitem id]

v_add_u32 v3, vcc, s4, vO0

v_mov_b32 v2, sb5

v_addc_u32 v4, vcc, v2, 0, vcc

s_wailtcnt lgkment (0) // wait for permutation to finish

// store final value in out buffer, i.e. out[workitem_id] = vl

flat_store_dword v[3:4], vl

s_endpgm

The next step is to produce a Hsaco from the ASM source. LLVM has added support for the AMDGCN assembler, so
you can use Clang to do all the necessary magic:

clang —-x assembler -target amdgcn--amdhsa -mcpu=fiji -c -o test.o asm_source.s

clang -target amdgcn--amdhsa test.o -o test.co

The first command assembles an object file from the assembly source, and the second one links everything (you could
have multiple source files) into a Hsaco. Now, you can load and run kernels from that Hsaco in a program. The
GitHub examples use Cmake to automatically compile ASM sources. In a future post we will cover DPP, another
GCN cross-lane feature that allows vector instructions to grab operands from a neighboring lane.

2.8.3 GCN Assembler Tools

This repository contains the following useful items related to AMDGPU ISA assembler:
* amdphdrs: utility to convert ELF produced by llvm-mc into AMD Code Object (v1)

64 Chapter 2. Solid Compilation Foundation and Language Support

https://github.com/RadeonOpenCompute/LLVM-AMDGPU-Assembler-Extra

ReadTheDocs-Breathe Documentation, Release 1.0.0

» examples/asm-kernel: example of AMDGPU kernel code
» examples/gfx8/ds_bpermute: transfer data between lanes in a wavefront with ds_bpermute_b32
» examples/gfx8/dpp_reduce: calculate prefix sum in a wavefront with DPP instructions
» examples/gfx8/s_memrealtime: use s_memrealtime instruction to create a delay
» examples/gfx8/s_memrealtime_inline: inline assembly in OpenCL kernel version of s_memrealtime
» examples/api/assemble: use LLVM API to assemble a kernel
 examples/api/disassemble: use LLVM API to disassemble a stream of instructions
* bin/sp3_to_mc.pl: script to convert some AMD sp3 legacy assembler syntax into LLVM MC
» examples/sp3: examples of sp3 convertable code
At the time of this writing (February 2016), LLVM trunk build and latest ROCR runtime is needed.
LLVM trunk (May or later) now uses 1ld as linker and produces AMD Code Object (v2).
Top-level CMakeLists.txt is provided to build everything included. The following CMake variables should be set:
* HSA_DIR (default /opt/hsa/bin): path to ROCR Runtime
e LLVM_DIR: path to LLVM build directory

To build everything, create build directory and run cmake and make:

mkdir build

cd build
cmake -DLLVM_DIR=/srv/git/llvm.git/build ..
make

Examples that require clang will only be built if clang is built as part of llvm.
Assembling to code object with llvm-mc from command line

The following llvm-mc command line produces ELF object asm.o from assembly source asm.s:

llvm—mc —-arch=amdgcn -mcpu=fiji —-filetype=obj -0 asm.o asm.s

Assembling to raw instruction stream with llvm-mc from command line

It is possible to extract contents of .text section after assembling to code object:

llvm-mc —-arch=amdgcn -mcpu=fiji -filetype=obj -0 asm.o asm.s
objdump -h asm.o | grep .text | awk '{print "dd if='asm.o' of='asm' bs=1 count=$[0x"
—$3 "] skip=$[0x" $6 "]"}' | bash

Disassembling code object from command line

The following command line may be used to dump contents of code object:

llvm-objdump -disassemble -mcpu=fiji asm.o

This includes text disassembly of .text section.
Disassembling raw instruction stream from command line

The following command line may be used to disassemble raw instruction stream (without ELF structure):

hexdump -v —-e '/1 "0x%02X "' asm | llvm-mc —-arch=amdgcn -mcpu=fiji -disassemble

2.8. ROCm Tools

65

ReadTheDocs-Breathe Documentation, Release 1.0.0

Here, hexdump is used to display contents of file in hexadecimal (0x.. form) which is then consumed by llvm-mc.
Refer to examples/api/assemble.

Refer to examples/api/disassemble.

Using amdphdrs

Note that normally standard 11d and Code Object version 2 should be used which is closer to standard ELF format.

amdphdrs (now obsolete) is complimentary utility that can be used to produce AMDGPU Code Object version 1. For
example, given assembly source in asm.s, the following will assemble it and link using amdphdrs:

llvm-mc -arch=amdgcn -mcpu=fiji -filetype=obj -o asm.o asm.s
andphdrs asm.o asm.co

Macro support

SP3 supports proprietary set of macros/tools. sp3_to_mc.pl script attempts to translate them into GAS syntax under-
stood by llvm-mc. flat_atomic_cmpswap instruction has 32-bit destination

LLVM AMDGPU:

’flat_atomic_cmpswap v7, v[9:10], v[7:8]

SP3:

’flat_atomic_cmpswap v[7:8], v[9:10], vI[7:8]

Atomic instructions that return value should have glc flag explicitly

LLVM AMDGPU:

’flat_atomic_swap_x2 v(0:1], v[0:1], vI[2:3] glc

SP3:

’flat_atomic_swap_x2 v[{0:1], v[0:1], v[2:3]

¢ LLVM Use Guide for AMDGPU Back-End
¢« AMD ISA Documents
— AMD GCN3 Instruction Set Architecture (2016)

— AMD_Southern_Islands_Instruction_Set_Architecture

2.8.4 ROC Profiler

ROC profiler library. Profiling with perf-counters and derived metrics. Library supports GFX8/GFXO9.

HW specific low-level performance analysis interface for profiling of GPU compute applications. The profiling in-
cludes HW performance counters with complex performance metrics and HW traces.

Profiling tool ‘rocprof’:
* Cmd-line tool for dumping public per kernel perf-counters/metrics and kernel timestamps
* Input file with counters list and kernels selecting parameters
» Multiple counters groups and app runs supported

¢ Kernel execution is serialized

66 Chapter 2. Solid Compilation Foundation and Language Support

http://llvm.org/docs/AMDGPUUsage.html
http://developer.amd.com/wordpress/media/2013/12/AMD_GCN3_Instruction_Set_Architecture_rev1.1.pdf
https://developer.amd.com/wordpress/media/2012/12/AMD_Southern_Islands_Instruction_Set_Architecture.pdf

ReadTheDocs-Breathe Documentation, Release 1.0.0

* HSA APl/activity stats and tracing

¢ Qutput results in CSV and JSON chrome tracing formats

2.8.4.1 Download

To clone ROC Profiler from GitHub use the folowing command:

git clone https://github.com/ROCm-Developer—-Tools/rocprofiler

The library source tree:
* bin
— rocprof - Profiling tool run script
¢ doc - Documentation
* inc/rocprofiler.h - Library public API
* src - Library sources
— core - Library API sources
— util - Library utils sources
— xml - XML parser

* test - Library test suite

tool - Profiling tool
tool.cpp - tool sources

% metrics.xml - metrics config file

ctrl - Test controll

util - Test utils

simple_convolution - Simple convolution test kernel

2.8.4.2 Build

Build environment:

export CMAKE PREFIX PATH=<path to hsa-runtime includes>:<path to hsa-runtime library>
export CMAKE_BUILD_ TYPE=<debug|release> # release by default
export CMAKE_DEBUG_TRACE=1 # to enable debug tracing

To configure, build, install to /opt/rocm/rocprofiler:

mkdir -p build

cd build

export SHFV?iPPF?Tiiriqu/opt/rocm
cmake —-DCMAKE_INSTALL_PREFIX=/opt/rocm
make

sudo make install

To test the built library:

2.8. ROCm Tools 67

ReadTheDocs-Breathe Documentation, Release 1.0.0

cd build
./run.sh

To enable error messages logging to ‘/tmp/rocprofiler_log.txt’:

’export ROCPROFILER_LOG=1

To enable verbose tracing:

export ROCPROFILER_TRACE=1

2.8.4.3 Profiling Tool ‘rocprof’ Usage

The following shows the command-line usage of the ‘rocprof’ tool:

rocprof [-h] [--list-basic] [--list-derived] [-i <input .txt/.xml file>] [-o <output,
—CSV file>] <app command line>

Options:
-h - this help
—--verbose - verbose mode, dumping all base counters used in the input metrics

—-list-basic - to print the list of basic HW counters
—-list-derived - to print the list of derived metrics with formulas

-1 <.txt|.xml file> - input file
Input file .txt format, automatically rerun application for every pmc line:

Perf counters group 1

pmc : Wavefronts VALUInsts SALUInsts SFetchInsts FlatVMemInsts LDSInsts,
—FlatLDSInsts GDSInsts VALUUtilization FetchSize

Perf counters group 2

pmc : WriteSize L2CacheHit

Filter by dispatches range, GPU index and kernel names

supported range formats: "3:9", "3:", "3"

range: 1 : 4

gpu: 0 1 2 3

kernel: simple Passl simpleConvolutionPass2

Input file .xml format, for single profiling run:

Metrics list definition, also the form "<block-name>:<event-id>" can be used

All defined metrics can be found in the 'metrics.xml'

There are basic metrics for raw HW counters and high-level metrics for,
—derived counters

<metric name=SQ:4,SQ_WAVES,VFetchInsts

></metric>

Filter by dispatches range, GPU index and kernel names
<metric
range formats: "3:9", "3:", "3"
range=""
list of gpu indexes "0,1,2,3"
gpu_index=""
list of matched sub-strings "Simplel,Convl,SimpleConvolution"
kernel=""
></metric>

(continues on next page)

68 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

(continued from previous page)

-0 <output file> - output CSV file [<input file base>.csv]
-d <data directory> - directory where profiler store profiling data including thread,
—treaces [/tmp]

The data directory is renoving autonatically if the directory is matching the_
—temporary one, which is the default.
-t <temporary directory> - to change the temporary directory [/tmp]

By changing the temporary directory you can prevent removing the profiling data,
—from /tmp or enable removing from not '/tmp' directory.

—-basenames <on|off> - to turn on/off truncating of the kernel full function names
—ti1ll the base ones [off]

——timestamp <on|off> - to turn on/off the kernel disoatches timestamps, dispatch/
—begin/end/complete [off]

——ctx—-limit <max number> - maximum number of outstanding contexts [0 - unlimited]
—-—heartbeat <rate sec> - to print progress heartbeats [0 - disabled]
—--hsa-trace - to trace HSA, generates API execution stats and JSON file viewable in_,
—chrome tracing

Requires to set three options '—--hsa-trace —--stats —-timestamp on'

Will be simplified to Jjust one option in the next release
Generated files: <output name>.stats.csv <output name>.hsa_stats.txt <output name>.
—Jjson

Configuration file:

You can set your parameters defaults preferences in the configuration file 'rpl rc.xml
—'. The search path sequence: .:/home/evgeny:<package path>

First the configuration file is looking in the current directory, then in your home,
—and then in the package directory.

Configurable options: 'basenames', 'timestamp', 'ctx-limit', 'heartbeat'.
An example of 'rpl rc.xml':
<defaults

~s=0ff

mp=off
ctx-1imit=0
neartbeat=0

></defaults>

senam

ba

timesta

2.8.5 ROCr Debug Agent

The ROCr Debug Agent is a library that can be loaded by ROCm Platform Runtime to provide the following function-
ality:

* Print the state of wavefronts that report memory violation or upon executing a s_trap 2 instruction.
e Allows SIGINT (ctrl c)or SIGTERM (kill -15) to print wavefront state of aborted GPU dispatches.
* Itis enabled on VegalO GPUs on ROCm2.7.

To use the ROCr Debug Agent set the following environment variable:

export HSA TOOLS LIB=librocr_debug_agent64.so

This will use the ROCr Debug Agent library installed at /opt/rocm/lib/librocr_debug_agent64.so by default
since the ROCm installation adds /opt/rocm/lib to the system library path. To use a different version set the
LD_LIBRARY_PATH, for example:

2.8. ROCm Tools 69

ReadTheDocs-Breathe Documentation, Release 1.0.0

export LD_LIBRARY PATH=/path_to_directory_containing_librocr_debug_agent64.so

To display the machine code instructions of wavefronts, together with the source text location, the ROCr Debug Agent
uses the llvm-objdump tool. Ensure that a version that supports AMD GCN GPUs is on your $SPATH. For example,
for ROCm 2.7:

export PATH=/opt/rocm/opencl/bin/x86_64/:5PATH

Execute your application.

If the application encounters a GPU error it will display the wavefront state of the GPU to stdout. Possible error
states include:

* The GPU executes a memory instruction that causes a memory violation. This is reported as an XNACK error
state.

¢ Queue error.

* The GPU executes an S_TRAP instruction. The __builtin_trap () language builtin can be used to gener-
ate a S_TRAP.

e A SIGINT (ctrl c)or SIGTERM (kill -15) signal is sent to the application while executing GPU code.
Enabled by the ROCM_DEBUG_ENABLE_LINUX_SIGNALS environment variable.

For example, a sample print out for GPU memory fault is:

Memory access fault by GPU agent: AMD gfx900
Node: 1
Address: 0x18DB4xxx (page not present;write access to a read-only page;)

64 wavefront (s) found in XNACK error state @PC: 0x0000001100E01310
printing the first one:

EXEC: OxFFFFFFFFFFFFFFFF
STATUS: 0x00412460
TRAPSTS: 0x30000000
MO: 0x00001010

s0: 0x00C00000 sl: 0x80000010 s2: 0x10000000 s3: 0xO0EA4FAC
s4: 0x17D78400 s5: 0x00000000 s6: 0x01039000 s7: 0x00000000
s8: 0x00000000 s9: 0x00000000 s10: 0x17D78400 sl1l: 0x04000000

sl2: 0x00000000 s13: 0x00000000 sl1l4: 0x00000000 s15: 0x00000000
sl6: 0x0103C000 s1l7: 0x00000000 s18: 0x00000000 s19: 0x00000000
s20: 0x01037060 s21: 0x00000000 s22: 0x00000000 s23: 0x00000011
s24: 0x00004000 s25: 0x00010000 s26: 0x04C00000 s27: 0x00000010
s28: OxFFFFFFFF s29: OxXFFFFFFFF s30: 0x00000000 s31: 0x00000000

Lane 0x0
v0: 0x00000003 vl: 0x18DB4400 v2: 0x18DB4400 v3: 0x00000000
v4: 0x00000000 v5: 0x00000000 v6: 0x00700000 v7: 0x00800000
Lane 0x1
v0: 0x00000004 vl: 0x18DB4400 v2: 0x18DB4400 v3: 0x00000000
v4: 0x00000000 v5: 0x00000000 v6: 0x00700000 v7: 0x00800000
Lane 0x2
v0: 0x00000005 vl: 0x18DB4400 v2: 0x18DB4400 v3: 0x00000000
v4: 0x00000000 v5: 0x00000000 v6: 0x00700000 v7: 0x00800000
Lane 0x3
v0: 0x00000006 vl: 0x18DB4400 v2: 0x18DB4400 v3: 0x00000000
v4: 0x00000000 v5: 0x00000000 v6: 0x00700000 v7: 0x00800000

(continues on next page)

70 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

(continued from previous page)

Lane 0x3C
v0: 0x0000001F vl: 0x18DB4400 v2: 0x18DB4400 v3: 0x00000000
v4: 0x00000000 v5: 0x00000000 v6: 0x00700000 v7: 0x00800000
Lane 0x3D
v0: 0x00000020 vl: 0x18DB4400 v2: 0x18DB4400 v3: 0x00000000
v4d: 0x00000000 v5: 0x00000000 v6: 0x00700000 v7: 0x00800000
Lane 0x3E

v0: 0x00000021 vl: 0x18DB4400 v2: 0x18DB4400 v3: 0x00000000

v4d: 0x00000000 v5: 0x00000000 v6: 0x00700000 v7: 0x00800000
Lane 0x3F

v0: 0x00000022 vl: 0x18DB4400 v2: 0x18DB4400 v3: 0x00000000

v4: 0x00000000 v5: 0x00000000 v6: 0x00700000 v7: 0x00800000

Faulty Code Object:

/tmp/ROCm_Tmp_PID_5764/ROCm_Code_Object_0: file format ELF64-amdgpu-hsacobj
Disassembly of section .text:

the_kernel:

; /home/gingchuan/tests/faulty_test/vector_add_kernel.cl:12
; d[100000000] = galgid & 31];

v_mov_b32_e32 vl, v2 // 0000000012F0:
—7E020302

v_mov_b32_e32 v4, v3 // 0000000012F4:
—7E080303

v_add_i32_e32 vl1, wvcc, sl1l0, vl // 0000000012F8:
—3202020A

v_mov_b32_e32 v5, s22 // 0000000012FC:
—7TEOAO216

v_addc_u32_e32 v4, vcc, v4, v5, vcc // 000000001300:
—38080B04

v_mov_b32_e32 v2, vl // 000000001304:
—7E040301

v_mov_b32_e32 v3, v4 // 000000001308:
—~7E060304

s_waitcnt lgkment (0) // 00000000130C:
—BF8CCO7F

flat_store_dword v[2:3], vO // 000000001310:

—DC700000 00000002
; /home/gingchuan/tests/faulty_test/vector_add_kernel.cl:13
i}
s_endpgm // 000000001318:
—BF810000

Faulty PC offset: 1310

Aborted (core dumped)

By default the wavefront dump is sent to stdout.

To save to a file use:

2.8. ROCm Tools 71

ReadTheDocs-Breathe Documentation, Release 1.0.0

export ROCM_DEBUG_WAVE_STATE_DUMP=file

This will create a file called ROCm_Wave_State_Dump in code object directory (see below).

To return to the default stdout use either of the following:

export ROCM_DEBUG_WAVE_STATE_DUMP=stdout
unset ROCM_DEBUG_WAVE_STATE_DUMP

The following environment variable can be used to enable dumping wavefront states when SIGINT (ctrl c) or
SIGTERM (kill -15) is sent to the application:

export ROCM_DEBUG_ENABLE_LINUX_SIGNALS=1

Either of the following will disable this behavior:

export ROCM_DEBUG_ENABLE_LINUX_SIGNALS=0
unset ROCM_DEBUG_ENABLE_LINUX_SIGNALS

When the ROCr Debug Agent is enabled, each GPU code object loaded by the ROCm Platform Runtime will be saved
in a file in the code object directory. By default the code object directory is /tmp/ROCm_Tmp_PID_XXXX/ where
XXXX is the application process ID. The code object directory can be specified using the following environent variable:

export ROCM_DEBUG_SAVE_CODE_OBJECT=code_object_directory

This will use the path /code_object_directory.

Loaded code objects will be saved in files named ROCm_Code_Object_N where N is a unique integer starting at 0
of the order in which the code object was loaded.

If the default code object directory is used, then the saved code object file will be deleted when it is unloaded with the
ROCm Platform Runtime, and the complete code object directory will be deleted when the application exits normally.
If a code object directory path is specified then neither the saved code objects, nor the code object directory will be
deleted.

To return to using the default code object directory use:

’unset ROCM_DEBUG_SAVE_CODE_OBJECT

By default ROCr Debug Agent logging is disabled. It can be enabled to display to stdout using:

’export ROCM_DEBUG_ENABLE_AGENTLOG=stdout

Or to a file using:

’export ROCM_DEBUG_ENABLE_AGENTLOG=<filename>

Which will write to the file <filename>_AgentLog_PID_XXXX.log.

To disable logging use:

’unset ROCM_DEBUG_ENABLE_AGENTLOG

2.8.6 ROCm-GDB

The ROCm-GDB is being revised to work with the ROCr Debug Agent to support debugging GPU kernels on Radeon
Open Compute platforms (ROCm) and will be available in an upcoming release.

72 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

2.8.7 Radeon Compute Profiler

The Radeon Compute Profiler (RCP) is a performance analysis tool that gathers data from the API run-time and GPU
for OpenCL™ and ROCm/HSA applications. This information can be used by developers to discover bottlenecks in
the application and to find ways to optimize the application’s performance.

Please see the RCP GitHub repository for more information.

2.8.8 ROC Tracer

ROC-tracer library, Runtimes Generic Callback/Activity APIs. The goal of the implementation is to provide a generic
independent from specific runtime profiler to trace API and asyncronous activity.

The API provides functionality for registering the runtimes API callbacks and asyncronous activity records pool sup-
port.

The library source tree:
e inc/roctracer.h - Library public API
¢ src - Library sources
— core - Library API sources
— util - Library utils sources
* test - test suit

— MatrixTranspose - test based on HIP MatrixTranspose sample

2.8.8.1 Documentation

- API description: inc/roctracer.h
- Code example: test/MatrixTranspose/MatrixTranspose.cpp

2.8.8.2 To build and run test

cd <your path>

- CLone development branches of roctracer and HIP/HCC:

git clone -b amd-master https://github.com/ROCmSoftwarePlatform/roctracer.git

git clone -b master https://github.com/ROCm-Developer-Tools/HIP.git

git clone —--recursive -b clang_tot_upgrade https://github.com/RadeonOpenCompute/hcc.
—git

- Set environment:

export HIP_PATH=<your path>/HIP
export HCC_HOME=<your path>/hcc/build
export ChnxhiijEinﬁﬁrh:/opt/rocm

- Build HCC:

cd <your path>/hcc && mkdir build && cd build &&

cmake -DUSE_PROF_API=1 -DPROF_API_HEADER_PATH=<your path>/roctracer/inc/ext .. &&
—make —-7j <nproc>

- Build HIP:

(continues on next page)

2.8. ROCm Tools 73

https://github.com/GPUOpen-Tools/RCP

ReadTheDocs-Breathe Documentation, Release 1.0.0

(continued from previous page)

cd <your path>/HIP && mkdir build && cd build &&

cmake —-DUSE_PROF_API=1 —-DPROF_API_HEADER_PATH=<your path>/roctracer/inc/ext .. &&
—make —-7j <nproc>

In -s <your path>/HIP/build <your path>/HIP/lib

- Build ROCtracer
cd <your path>/roctracer && mkdir build && cd build && cmake -DCMAKE_INSTALL_PREFIX=/
—opt/rocm .. && make —-7J <nproc>

- To build and run test
make mytest
run.sh

- To install

make install

or

make package && dpkg —-i *.deb

2.8.9 CodeXL

CodeXL is a comprehensive tool suite that enables developers to harness the benefits of GPUs and APUs. It includes
powerful GPU debugging, comprehensive GPU profiling, and static OpenCL™, OpenGL®, Vulkan® and DirectX®
kernel/shader analysis capabilities, enhancing accessibility for software developers to enter the era of heterogeneous
computing. CodeXL is available as a standalone user interface application for Windows® and Linux®.

Please see the CodeXL GitHub repository for more information.

2.8.10 GPUPerfAPI

The GPU Performance API (GPUPerfAPI, or GPA) is a powerful library, providing access to GPU Performance
Counters. It can help analyze the performance and execution characteristics of applications using a Radeon™ GPU.
This library is used by Radeon Compute Profiler and CodeXL as well as several third-party tools.

Please see the GPA GitHub repository for more information.

2.8.11 ROCm Binary Utilities

Documentation need to be updated.

2.8.12 MIVisionX

Ml YVisionX toolkit is a set of comprehensive computer vision and machine intelligence libraries, utilities, and ap-
plications bundled into a single toolkit. AMD MIVisionX delivers highly optimized open source implementation
of the Khronos OpenVX™ and OpenVX™ Extensions along with Convolution Neural Net Model Compiler &
Optimizer supporting ONNX, and Khronos NNEF™ exchange formats. The toolkit allows for rapid prototyp-
ing and deployment of optimized workloads on a wide range of computer hardware, including small embedded
x86 CPUs, APUs, discrete GPUs, and heterogeneous servers.

74 Chapter 2. Solid Compilation Foundation and Language Support

https://github.com/GPUOpen-Tools/CodeXL
https://github.com/GPUOpen-Tools/GPA

ReadTheDocs-Breathe Documentation, Release 1.0.0

2.8.12.1 AMD OpenVX (amd_openvx)

AMD OpenVX is a highly optimized open source implementation of the Khronos OpenVX computer vision specifi-
cation. It allows for rapid prototyping as well as fast execution on a wide range of computer hardware, including small
embedded x86 CPUs and large workstation discrete GPUs.

2.8.12.2 AMD OpenVX Extensions

The OpenVX framework provides a mechanism to add new vision functions to OpenVX by 3rd party vendors. This
project has below mentioned OpenVX modules and utilities to extend amd_openvx project, which contains the AMD
OpenVX Core Engine.

e amd_loomsl: AMD Radeon Loom stitching library for live 360 degree video applications
e amd_nn: OpenVX neural network module

e amd_opencv: OpenVX module that implements a mechanism to access OpenCV functionality as OpenVX
kernels

e amd_winml: WinML extension will allow developers to import a pre-trained ONNX model into an OpenVX
graph and add hundreds of different pre & post processing vision/generic/user-defined functions, available in
OpenVX and OpenCV interop, to the input and output of the neural net model. This will allow developers to
build an end to end application for inference.

2.8.12.2.1 Features

* The code is highly optimized for both x86 CPU and OpenCL for GPU

* Supported hardware spans the range from low power embedded APUs (like the new G series) to laptop, desktop
and workstation graphics

 Supports Windows, Linux, and OS X

¢ Includes a “graph optimizer” that looks at the entire processing pipeline and removes/replaces/merges functions
to improve performance and minimize bandwidth at runtime

* Scripting support allows for rapid prototyping, without re-compiling at production performance levels.

2.8.12.2.2 Pre-requisites:

¢ CPU: SSE4.1 or above CPU, 64-bit.

¢ GPU: Radeon Professional Graphics Cards or Vega Family of Products (16GB required for vx_loomsl and vx_nn librarie:

— Windows: install the latest drivers and OpenCL SDK Download.
— Linux: install ROCm.

¢ OpenCYV 3 (optional) download for RunVX
— Set OpenCV_DIR environment variable to OpenCV/build folder.

2.8. ROCm Tools 75

https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX/blob/1.3.0/amd_openvx_extensions#amd-openvx-extensions-amd_openvx_extensions
https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX/blob/1.3.0/amd_openvx#amd-openvx-amd_openvx
https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX/blob/1.3.0/amd_openvx_extensions/amd_loomsl
https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX/blob/1.3.0/amd_openvx_extensions/amd_nn#openvx-neural-network-extension-library-vx_nn
https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX/blob/1.3.0/amd_openvx_extensions/amd_opencv#amd-module-for-opencv-interop-from-openvx-vx_opencv
https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX/blob/1.3.0/amd_openvx_extensions/amd_winml#amd-winml-extension
https://github.com/GPUOpen-LibrariesAndSDKs/OCL-SDK/releases
https://rocm.github.io/ROCmInstall.html
https://github.com/opencv/opencv/releases

ReadTheDocs-Breathe Documentation, Release 1.0.0

2.8.12.2.3 Build Instructions

Build this project to generate AMD OpenVX library and RunVX executable.

* Refer to openvx/include/VX for Khronos OpenVX standard header files.

* Refer to openvx/include/vx_ext_amd.h for vendor extensions in AMD OpenVX library.
* Refer to runvx/README.md for RunVX details.

* Refer to runc/README.md for RunCL details.

2.8.12.2.4 Build using Visual Studio Professional 2013 on 64-bit Windows 10/8.1/7

Install OpenCV 3 with contrib download for RunVX tool to support camera capture and image display (optional)
OpenCV_DIR environment variable should point to OpenCV/build folder
Use amdovx-core/amdovx.sln to build for x64 platform

f AMD GPU (or OpenCL) is not available, set build flag ENABLE_OPENCL=0 in openvx/openvx.vcxproj and
runvx/runvx.vexproj.

2.8.12.2.5 Build using CMake

Install CMake 2.8 or newer download.

Install OpenCV 3 with contrib download for RunVX tool to support camera capture and image display (optional)
OpenCV_DIR environment variable should point to OpenCV/build folder

Install libssl-dev on linux (optional)

Use CMake to configure and generate Makefile

If AMD GPU (or OpenCL) is not available, use build flag -DCMAKE_DISABLE_FIND_PACKAGE_OpenCL=TRUE.

2.8.12.2.6 Radeon Loom Stitching Library (vx_loomsl)

Radeon Loom Stitching Library (beta preview) is a highly optimized library for 360 degree video stitching applica-

tions.

This library consists of:
Live Stitch API: stitching framework built on top of OpenVX kernels (see live_stitch_api.h for API)
OpenVX module [vx_loomsl]: additional OpenVX kernels needed for 360 degree video stitching

The loom_shell command-line tool can be used to build your application quickly. It provides direct access to Live
Stitch API by encapsulating the calls to enable rapid prototyping.

This software is provided under a MIT-style license, see the file COPYRIGHT.txt for details.

Features

Real-time live 360 degree video stitching optimized for Radeon Pro Graphics
Upto 31 cameras

Upto 7680x3840 output resolution

RGB and YUV 4:2:2 image formats

Overlay other videos on top of stitched video

76

Chapter 2. Solid Compilation Foundation and Language Support

https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/amd_openvx/openvx/include/VX/
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/amd_openvx/openvx/include/vx_ext_amd.h
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/amd_openvx/runvx/README.md
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/amd_openvx/runcl/README.md
https://github.com/opencv/opencv/releases
https://github.com/opencv/opencv/releases
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/amd_openvx_extensions/amd_loomsl/live_stitch_api.h
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/amd_openvx_extensions/utils/loom_shell/README.md

ReadTheDocs-Breathe Documentation, Release 1.0.0

* Support for 3rd party LoomlO plug-ins for camera capture and stitched output
 Support PtGui project export/import for camera calibration

Live Stitch API: Simple Example

Let’s consider a 360 rig that has 3 1080p cameras with Circular FishEye lenses. The below example demonstrates how

to stitch images from these cameras into a 4K Equirectangular buffer.

#include "vx_loomsl/live_stitch_api.h"
#include "utils/loom _shell/loom _shell util.h"

int main ()
{

define camera orientation and lens parameters

camera_params caml_par = { { 120,0,90,0,0,0},{176,1094,547,0,-37,ptgui_lens_

—~fisheye_circ,-0.1719,0.1539,1.0177} };

camera_params cam2_par = { { 0,0,90,0,0,0},{176,1094,547,0,-37,ptgui_lens_

—~fisheye_cirec,-0.1719,0.1539,1.0177} };

camera_params cam3_par = { {-120,0,90,0,0,0},{176,1094,547,0,-37,ptgui_lens_

—~fisheye_circ,-0.1719,0.1539,1.0177} };

create a live stitch instance and initialize

ls_context context;

context = lsCreateContext ();

lsSetOutputConfig (context,VX_DF_IMAGE_RGB, 3840,1920);
lsSetCameraConfig(context, 3,1,VX _DF_IMAGE_RGB,1920,1080%3);
lsSetCameraParams (context, 0, &caml_par);

lsSetCameraParams (context, 1, &cam2_par);

lsSetCameraParams (context, 2, &cam3_par);

lsInitialize (context);

Get OpenCL context and create OpenCL buffers for input and output
cl_context opencl_context;

cl_mem buf[2];

1sGetOpenCLContext (context, &opencl_context);

createBuffer (opencl_context,3x1920%x1080%3, &bufl0]);

createBuffer (opencl_context,3x3840x1920 , &bufll]);

load CAMOO.bmp, CAMOI.bmp, and CAMOZ2.bmp (1920x1080 each) into buf[0]

loadBufferFromMultipleImages (buf[0], "CAMZ02d.bmp", 3, 1, VX_DF_IMAGE_RGB, 1920,

—1080%3);

set input and output buffers and stitch a frame
lsSetCameraBuffer (context, &buf[0]);
lsSetOutputBuffer (context, &buf[l]);
lsScheduleFrame (context) ;

lsWaitForCompletion (context) ;

save the stitched output into "output.bmp"
saveBufferToImage (buf[1], "output.bmp",VX_DF_IMAGE_RGB,3840,1920);

release resources
releaseBuffer (&¢buf[0]);
releaseBuffer (&bufl[l]);
lsReleaseContext (&context) ;

return 0O;

2.8. ROCm Tools

77

ReadTheDocs-Breathe Documentation, Release 1.0.0

Live Stitch API: Real-time Live Stitch using LoomIO

This example makes use of a 3rd party LoomIO plug-ins for live camera capture and display.

#include "vx_ loomsl/live_stitch _api.h"
int main ()
{
// create context, configure, and initialize
ls_context context;
context = lsCreateContext ();
lsSetOutputConfig(context, VX_DF_IMAGE_RGB, 3840, 1920);
lsSetCameraConfig(context, 16, 1, VX_DF_IMAGE_RGB, 1920, 1080 % 16);
lsImportConfiguration (context, "pts", "myrig.pts");
lsSetCameraModule (context, "vx_loomio_bm", "com.amd.loomio_bm.capture", "30,0,0,
—1l6");
lsSetOutputModule (context, "vx_loomio_bm", "com.amd.loomio_bm.display", "30,0,0

lsInitialize (context);

// process live from camera until aborted by input capture plug-in
for(;;) {

vx_status status;

status = lsScheduleFrame (context) ;

if (status != VX_SUCCESS) break;

status = lsWaitForCompletion (context);

if (status != VX_SUCCESS) break;

// release the context
lsReleaseContext (&context) ;

return 0O;

2.8.12.2.7 OpenVX Neural Network Extension Library (vx_nn)

vx_nn is an OpenVX Neural Network extension module. This implementation supports only floating-point tensor
datatype and does not support 8-bit and 16-bit fixed-point datatypes specified in the OpenVX specification.

List of supported tensor and neural network layers:

Layer name | FunctionlKernel name | | ! ! [

ActivationlvxActivationLayerlorg.khronos.nn_extension.activation_layer | | Argmaxlvx ArgmaxLayerNodelcom.amd.nn_extension.argm:
| | Batch NormalizationlvxBatchNormalizationLayerlcom.amd.nn_extension.batch_normalization_layer | | Con-
catlvxConcatLayerlcom.amd.nn_extension.concat_layer | | ConvolutionlvxConvolutionLayerlorg.khronos.nn_extension.convolution_layz
| | DeconvolutionlvxDeconvolutionLayerlorg.khronos.nn_extension.deconvolution_layer | |

Fully ConnectedlvxFullyConnectedLayerlorg.khronos.nn_extension.fully_connected_layer I | Lo-
cal Response NormalizationlvxNormalizationLayerlorg.khronos.nn_extension.normalization_layer
| | PoolinglvxPoolingLayerlorg.khronos.nn_extension.pooling_layer | | ROI Pool-

inglvxROIPoolingLayerlorg.khronos.nn_extension.roi_pooling_layer || ScalelvxScaleLayerlcom.amd.nn_extension.scale_layer
|1 SlicelvxSliceLayerlcom.amd.nn_extension.slice_layer | | Softmax|vxSoftmaxLayerlorg.khronos.nn_extension.softmax_layer

| | Tensor AddlvxTensorAddNodelorg.khronos.openvx.tensor_add I | Tensor Convert
DepthlvxTensorConvertDepthNodelorg.khronos.openvx.tensor_convert_depth | I Tensor Convert

78 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

from ImagelvxConvertImageToTensorNodelcom.amd.nn_extension.convert_image_to_tensor | | Ten-
sor Convert to ImagelvxConvertTensorTolmageNodelcom.amd.nn_extension.convert_tensor_to_image
| | Tensor MultiplylvxTensorMultiplyNodelorg.khronos.openvx.tensor_multiply | | Tensor Sub-
tractlvxTensorSubtractNodelorg.khronos.openvx.tensor_subtract | I Upsample Nearest Neighbor-

hoodlvxUpsampleNearestLayerlcom.amd.nn_extension.upsample_nearest_layer |
Example 1: Convert an image to a tensor of type float32

Use the below GDF with RunVX.

import vx_ nn

data input = image:32,32,RGB2

data output = tensor:4,{32,32,3,1},VX_TYPE_FLOAT32,0

data a = scalar:FLOAT32,1.0

data b = scalar:FLOAT32,0.0

data reverse_channel_order = scalar:BOO0OL, 0

read input input.png

node com.amd.nn_extension.convert_image_to_tensor input output a b reverse_channel_
—order

write output input.£f32

Example 2: 2x2 Upsample a tensor of type float32
Use the below GDF with RunVX.

import vx_nn

data input = tensor:4,{80,80,3,1},VX_TYPE_FLOAT32,0

data output = tensor:4,{160,160,3,1},VX_TYPE_FLOAT32,0

read input tensor.f32

node com.amd.nn_extension.upsample_nearest_layer input output
write output upsample.f32

2.8.12.2.8 AMD Module for OpenCV-interop from OpenVX (vx_opencv)

The vx_opencv is an OpenVX module that implemented a mechanism to access OpenCV functionality as OpenVX
kernels. These kernels can be access from within OpenVX framework using OpenVX API call vxLoadKernels (con-
text, “vx_opencv”).

List of OpenCV-interop kernels

The following is a list of OpenCV functions that have been included in the vx_opencv module.

bilateralFilter org.opencv.bilateralfilter
blur org.opencv.blur
boxfilter org.opencv.boxfilter
buildPyramid org.opencv.buildpyramid
Dilate org.opencv.dilate

Erode org.opencv.erode
filter2D org.opencv.filter2d
GaussianBlur org.opencv.gaussianblur
MedianBlur org.opencv.medianblur
morphologyEx org.opencv.morphologyex
Laplacian org.opencv.laplacian
pyrDown org.opencv.pyrdown
pyrUp org.opencv.pyrup
sepFilter2D org.opencv.sepfilter2d
Sobel org.opencv.sobel

(continues on next page)

2.8. ROCm Tools 79

https://www.khronos.org/registry/OpenVX/specs/1.0.1/html/da/d83/group__group__user__kernels.html#gae00b6343fbb0126e3bf0f587b09393a3

ReadTheDocs-Breathe Documentation, Release 1.0.0

(continued from previous page)

Scharr org.opencv.scharr

FAST org.opencv. fast

MSER org.opencv.mser_detect

ORB org.opencv.orb_detect

ORB_Compute org.opencv.orb_compute

BRISK org.opencv.brisk_detect
BRISK_Compute org.opencv.brisk_compute
SimpleBlobDetector org.opencv.simple_blob_detect
SimpleBlobDetector_Init org.opencv.simple_blob_detect_initialize
SIFT_Detect org.opencv.sift_detect
SIFT_Compute org.opencv.sift_compute
SURF_Detect org.opencv.surf_detect
SURF_Compute org.opencv.surf_compute
STAR_FEATURE_Detector org.opencv.star_detect

Canny org.opencv.canny
GoodFeature_Detector org.opencv.good_features_to_track
buildOpticalFlowPyramid org.opencv.buildopticalflowpyramid
DistanceTransform org.opencv.distancetransform
Convert_Scale_Abs org.opencv.convertscaleabs
addWeighted org.opencv.addweighted

Transpose org.opencv.transpose

Resize org.opencv.resize
AdaptiveThreshold org.opencv.adaptivethreshold
Threshold org.opencv.threshold

cvtcolor org.opencv.cvtcolor

Flip org.opencv.flip
fastNlMeansDenoising org.opencv. fastnlmeansdenoising
fastN1lMeansDenoisingColored org.opencv.fastnlmeansdenoisingcolored
AbsDiff org.opencv.absdiff

Compare Org.opencv.compare

bitwise_and org.opencv.bitwise_and
bitwise_not org.opencv.bitwise_not

bitwise_or org.opencv.bitwise_or

bitwise_xor org.opencv.bitwise_xor

Add org.opencv.add

Subtract org.opencv.subtract

Multiply org.opencv.multiply

Divide org.opencv.divide

WarpAffine org.opencv.warpaffine
WarpPerspective org.opencv.warpperspective

2.8.12.2.8.1 Build Instructions

Pre-requisites
* OpenCV 3 download.
* CMake 2.8 or newer download.
* Build amdovx-core project at the same level folder as amdovx-modules build folder
* OpenCV_DIR environment variable should point to OpenCV/build folder
Build using Visual Studio Professional 2013 on 64-bit Windows 10/8.1/7
Use amdovx-modules/vx_opencv/vx_opencv.sin to build for x64 platform

Build using CMake on Linux (Ubuntu 15.10 64-bit)

80 Chapter 2. Solid Compilation Foundation and Language Support

https://github.com/opencv/opencv/releases
https://cmake.org/download/

ReadTheDocs-Breathe Documentation, Release 1.0.0

* Use CMake to configure and generate Makefile

2.8.12.3 Applications

MIVisionX has a number of applications built on top of OpenVX modules, it uses AMD optimized libraries to build
applications which can be used to prototype or used as models to develop a product.

2.8.12.3.1 Cloud Inference Application (cloud_inference)

* Cloud Inference Server: sample Inference Server

¢ Cloud Inference Client: sample Inference Client Application

2.8.12.3.2 Convert Neural Net models into AMD NNIR and OpenVX Code

This tool converts ONNX or Caffe models to AMD NNIR format and OpenVX code.
You need MIVisionX libraries to be able to build and run the generated OpenVX code.
Dependencies

* numpy

e onnx (0.2.1+)
How to use?

To convert an ONNX model into AMD NNIR model:

% python onnx2nnir.py model.pb nnirModelFolder

To convert a caffemodel into AMD NNIR model:

% python caffeZ2nnir.py <net.caffeModel> <nnirOutputFolder> —--input-dims n,c,h,w [——
—verbose 0]1]

To update batch size in AMD NNIR model:

)

% python nnir-update.py —-batch-size N nnirModelFolder nnirModelFolderN

To fuse operations in AMD NNIR model (like batch normalization into convolution):

[}

% python nnir-update.py ——-fuse-ops 1 nnirModelFolderN nnirModelFolderFused

To workaround groups using slice and concat operations in AMD NNIR model:

[}

% python nnir-update.py —-slice-groups 1 nnirModelFolderFused nnirModelFolderSliced

To convert an AMD NNIR model into OpenVX C code:

)

% python —-help

Usage: python nnir2openvx.py [OPTIONS] <nnirInputFolder> <outputFolder>
OPTIONS:

--argmax UINTS8 — argmax at the end with 8-bit output

2.8. ROCm Tools 81

https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX/blob/1.3.0/apps#applications
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/apps/cloud_inference/server_app/#anninferenceserver
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/apps/cloud_inference/client_app/#anninferenceapp
https://onnx.ai
http://caffe.berkeleyvision.org/

ReadTheDocs-Breathe Documentation, Release 1.0.0

--argmax UINT16 - argmax at the end with 16-bit output

—argmax <fileNamePrefix>rgb.txt — argmax at the end with RGB color mapping using LUT —argmax
<fileNamePrefix>rgba.txt — argmax at the end with RGBA color mapping using LUT —help — show
this help message

LUT File Format (RGB): 8-bit R G B values one per each label in text format RO GO BO R1 G1 B1

LUT File Format (RGBA): 8-bit R G B A values one per each label in text format R0 GO BO A0 R1
GIB1Al...

Here are few examples of OpenVX C code generation

Generate OpenVX and test code that can be used dump and compare raw tensor data:

o

python nnir2openvx.py nnirInputFolderFused openvxCodeFolder
mkdir openvxCodeFolder/build

cd openvxCodeFolder/build

cmake ..

make

./anntest

o° oo

o

o° oo

Usage: anntest <weights.bin> [<input-data-file(s)> [<output-data-file(s)>]]]
<input-data-file>: is filename to initialize tensor

.jpg or .png: decode and initialize for 3 channel tensors (use %04d in fileName to when batch-
size > 1: batch index starts from 0)

other: initialize tensor with raw data from the file

<output-data-file>[,<reference-for-compare>,<maxErrorLimit>,<rmsErrorLimit>]: <referece-to-
compare> is raw tensor data for comparision <maxErrorLimit> is max absolute error allowed

<rmsErrorLimit> is max RMS error allowed <output-data-file> is filename for saving output tensor
data

‘-* to ignore other: save raw tensor into the file
% .Janntest ../weights.bin input.f32 output.f32 reference.f32,1e-6,1e-9 ...

Generate OpenVX and test code with argmax that can be used dump and compare 16-bit argmax output tensor:

% python nnirZ2openvx.py argmax UINT16 nnirInputFolderFused openvxCodeFolder
% mkdir openvxCodeFolder/build
cd openvxCodeFolder/build
% cmake ..
% make
% ./anntest

°© oo

Usage: anntest <weights.bin> [<input-data-file(s)> [<output-data-file(s)>]]]
<input-data-file>: is filename to initialize tensor

.jpg or .png: decode and initialize for 3 channel tensors (use %04d in fileName to when batch-
size > 1: batch index starts from 0)

other: initialize tensor with raw data from the file

<output-data-file>[,<reference-for-compare>,<percentErrorLimit>]: <referece-to-compare> is raw
tensor data of argmax output for comparision <percentMismatchLimit> is max mismatch (percent-
age) allowed <output-data-file> is filename for saving output tensor data

‘-* to ignore other: save raw tensor into the file

82 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

% .Janntest ../weights.bin input-%04d.png output.ul6,reference.ul6,0.01 ...

Generate OpenVX and test code with argmax and LUT that is designed for semantic segmentation use cases. You can
dump output in raw format or PNGs and additionally compare with reference data in raw format.

python nnir2openvx.py ——argmax lut-rgb.txt nnirInputFolderFused openvxCodeFolder
mkdir openvxCodeFolder/build

cd openvxCodeFolder/build

cmake ..

make

./anntest

o° oo

o

o° oo

o

Usage: anntest <weights.bin> [<input-data-file(s)> [<output-data-file(s)>]]]
<input-data-file>: is filename to initialize tensor

.jpg or .png: decode and initialize for 3 channel tensors (use %04d in fileName to when batch-
size > 1: batch index starts from 0)

other: initialize tensor with raw data from the file

<output-data-file>[,<reference-for-compare>,<percentErrorLimit>]: <referece-to-compare> is raw
tensor data of LUT output for comparision <percentMismatchLimit> is max mismatch (percentage)
allowed <output-data-file> is filename for saving output tensor data

.png: save LUT output as PNG file(s) (use %04d in fileName when batch-size > 1:
batch index starts from 0)

‘-‘ to ignore other: save raw tensor into the file

% .Janntest ../weights.bin input-%04d.png output.rgb,reference.rgb,0.01 ... % ./anntest ../weights.bin input-%04d.png
output-%04d.png,reference.rgb,0.01 ...

2.8.12.3.3 Currently supported

Models
Support the below models from https://github.com/onnx/models
¢ resnet
* inception
* alexnet
* densenet
¢ sgeezenet
Operators
Supported ONNX operators are:
* Conv
* Relu
* MaxPool

* AveragePool

GlobalAveragePool
* LRN

2.8. ROCm Tools 83

https://github.com/onnx/models

ReadTheDocs-Breathe Documentation, Release 1.0.0

* BatchNormalization

 Concat

* Sum

* Add

e Sub

* Mul

* Softmax

* Dropout
License
Copyright (c) 2018 Advanced Micro Devices, Inc. All rights reserved.
Use of this source code is governed by the MIT License that can be found in the LICENSE file.

2.8.12.4 Samples

MIVisionX samples using OpenVX and OpenVX extension libraries

2.8.12.4.1 GDF - Graph Description Format

MIVisionX samples using runvx with GDF
skintonedetect.gdf

usage:

’runvx skintonedetect.gdf

canny.gdf

usage:

’runvx canny.gdf

skintonedetect-LIVE.gdf
Using live camera

usage:

runvx —frames:1live skintonedetect-LIVE.gdf

canny-LIVE.gdf
Using live camera

usage:

runvx —-frames:live canny-LIVE.gdf

OpenCV_orb-LIVE.gdf
Using live camera

usage:

84 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

runvx —frames:live OpenCV_orb-LIVE.gdf

2.8.12.5 MIVisionX Toolkit

AMD Ml VisionX Toolkit, is a comprehensive set of help tools for neural net creation, development, training and
deployment. The Toolkit provides you with help tools to design, develop, quantize, prune, retrain, and infer your
neural network work in any framework. The Toolkit is designed to help you deploy your work to any AMD or 3rd
party hardware, from embedded to servers.

MIVisionX provides you with tools for accomplishing your tasks throughout the whole neural net life-cycle, from
creating a model to deploying them for your target platforms.

2.8.12.6 Utilities
MIVisionX has utility applications which could be used by developers to test, quick prototype or develop sample
applications.

* inference_generator : generate inference library from pre-trained CAFFE models

* loom_shell : an interpreter to prototype 360 degree video stitching applications using a script

* RunVX : command-line utility to execute OpenVX graph described in GDF text file

¢ RunCL : command-line utility to build, execute, and debug OpenCL programs

If you’re interested in Neural Network Inference, start with the sample cloud inference application in apps folder.

Pre-trained
CAFFE model

‘ inference_generator

annmodule library

— —dog
Application
"h openvx and vx_nn libraries ‘l

MIOpenGEMM, MIOpen, and
OpenCL libraries

2.8.12.7 Prerequisites

¢ CPU: SSE4.1 or above CPU, 64-bit
* GPU: GFX7 or above [optional]
* APU: Carrizo or above [optional]

Note: Some modules in MIVisionX can be built for CPU only. To take advantage of advanced features and modules
we recommend using AMD GPUs or AMD APUs.

2.8. ROCm Tools 85

https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX/blob/1.3.0/toolkit#mivisionx-toolkit
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/utilities/inference_generator/#inference-generator
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/utilities/loom_shell/#radeon-loomsh
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/utilities/runvx/#amd-runvx
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/utilities/runcl/#amd-runcl
https://rocm.github.io/hardware.html

ReadTheDocs-Breathe Documentation, Release 1.0.0

2.8.12.7.1 Windows

¢ Windows 10
¢ Windows SDK
Visual Studio 2017

Install the latest drivers and OpenCL SDK <https://github.com/GPUOpen-LibrariesAndSDKs/OCL-
SDK/releases/tag/1.0>_

* OpenCV 34

— Set OpenCV_DIR environment variable to OpenCV/build folder
— Add %OpenCV_DIR%x64vc14bin or %OpenCV_DIR%x64vc15bin to your PATH

2.8.12.7.2 Linux

Install ROCm
* ROCm CMake, MIOpenGEMM & MIOpen for Neural Net Extensions (vx_nn)

CMake 2.8 or newer download
¢ Qt Creator for Cloud Inference Client
¢ Protobuf for inference generator & model compiler

— install libprotobuf-dev and protobuf-compiler needed for vx_nn
* OpenCV 34

— Set OpenCV_DIR environment variable to OpenCV/build folder
e FFMPEG n4.0.4 - Optional
— FFMPEG is required for amd_media & mv_deploy modules

2.8.12.7.3 Pre-requisites setup script - MIVisionX-setup.py

For the convenience of the developer, we here provide the setup script which will install all the dependencies required
by this project.

Ml VisionX-setup.py- This scipts builds all the prerequisites required by MIVisionX. The setup script creates a deps
folder and installs all the prerequisites, this script only needs to be executed once. If -d option for directory is not given
the script will install deps folder in ‘~/’ directory by default, else in the user specified folder.

2.8.12.7.4 Prerequisites for running the scripts

* ubuntu 16.04/18.04 or CentOS 7.5/7.6
* ROCm supported hardware
* ROCm

usage:

86 Chapter 2. Solid Compilation Foundation and Language Support

https://github.com/opencv/opencv/releases/tag/3.4.0
https://rocm.github.io/ROCmInstall.html
http://cmake.org/download/
https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX/blob/1.3.0/apps/cloud_inference/client_app/README.md
https://github.com/google/protobuf
https://github.com/opencv/opencv/releases/tag/3.4.0
https://github.com/FFmpeg/FFmpeg/releases/tag/n4.0.4
https://rocm.github.io/hardware.html
https://github.com/RadeonOpenCompute/ROCm#installing-from-amd-rocm-repositories

ReadTheDocs-Breathe Documentation, Release 1.0.0

python MIVisionX-setup.py —--directory [setup directory - optional]
——installer [Package management tool - optional (default:apt-
—get) [options: Ubuntu:apt-get;CentOS:yum]]
--miopen [MIOpen Version — optional (default:1.8.1)]
-—ffmpeg [FFMPEG Installation - optional (default:no),
— [options:Install ffmpeg - yes]]

2.8.12.8 Build MiVisionX

Note: use —installer yum for CentOS Refer to Wiki page for developer instructions.

2.8.12.9 Build & Install MIVisionX

Windows
Using .msi packages
* MIVisionX-installer.msi: MIVisionX
e MIVisionX_WinML-installer.msi: MIVisionX for WinML
Using Visual Studio 2017 on 64-bit Windows 10
¢ Install OpenCL_SDK
¢ Install OpenCV with/without contrib to support camera capture, image display, & opencv extensions
— Set OpenCV_DIR environment variable to OpenCV/build folder
— Add %OpenCV_DIR%x64vc14bin or %OpenCV_DIR%x64vc15bin to your PATH
* Use MIVisionX.sln to build for x64 platform
NOTE: vx_nn is not supported on Windows in this release
Linux

Using apt-get/yum

2.8.12.10 Prerequisites

* Ubuntu 16.04/18.04 or CentOS 7.5/7.6
* ROCm supported hardware
* ROCm

Ubuntu

’sudo apt—-get install mivisionx

CentOS

’sudo yum install mivisionx

Note:
» vx_winml is not supported on linux

* source code will not available with apt-get/yum install

2.8. ROCm Tools 87

https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX/wiki/Suggested-development-workflow
https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX/releases
https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX/releases
https://github.com/GPUOpen-LibrariesAndSDKs/OCL-SDK/releases/tag/1.0
https://github.com/opencv/opencv/releases/tag/3.4.0
https://github.com/opencv/opencv_contrib
https://rocm.github.io/hardware.html
https://github.com/RadeonOpenCompute/ROCm#installing-from-amd-rocm-repositories

ReadTheDocs-Breathe Documentation, Release 1.0.0

* executables placed in /opt/rocm/mivisionx/bin and libraries in /opt/rocm/mivisionx/lib
* OpenVX and module header files into /opt/rocm/mivisionx/include
* model compiler, toolkit, & samples placed in /opt/rocm/mivisionx

» Package (.deb & .rpm) install requires OpenCV v3.4.0 to execute AMD OpenCV extensions

2.8.12.10.1 Using MIVisionX-setup.py and CMake on Linux (Ubuntu 16.04/18.04 or CentOS 7.5/7.6)
with ROCm

¢ Install ROCm

* Use the below commands to setup and build MIVisionX

git clone https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX.git
cd MIVisionX

python MIVisionX-setup.py —--directory [setup directory - optional]

——installer [Package management tool - optional (default:apt-
—get) [options: Ubuntu:apt-get;CentOS:yum]]

—--miopen [MIOpen Version - optional (default:1.8.1)]

-—ffmpeg [FFMPEG Installation - optional (default:no).

— [options:Install ffmpeg - yes]]

Note: Use —installer yum for CentOS

mkdir build

cd build

cmake ../

make -38

sudo make install

Note:
e vx_winml is not supported on Linux
« the installer will copy all executables into /opt/rocm/mivisionx/bin and libraries into /opt/rocm/mivisionx/lib

* the installer also copies all the OpenVX and module header files into /opt/rocm/mivisionx/include folder

2.8.12.10.2 Build using CMake on Linux (Ubuntu 16.04 64-bit or CentOS 7.5/ 7.6) with ROCm

Install ROCm

* git clone, build and install other ROCm projects (using cmake and % make install) in the below order for vx_nn.

— rocm-cmake

— MIOpenGEMM

— MIOpen — make sure to use -DMIOPEN_BACKEND=OpenCL option with cmake
¢ install protobuf
¢ install OpenCV
* install FFMPEG n4.0.4 - Optional

¢ build and install (using cmake and % make install)

88 Chapter 2. Solid Compilation Foundation and Language Support

https://rocm.github.io/ROCmInstall.html
https://rocm.github.io/ROCmInstall.html
https://github.com/RadeonOpenCompute/rocm-cmake
https://github.com/ROCmSoftwarePlatform/MIOpenGEMM
https://github.com/ROCmSoftwarePlatform/MIOpen
https://github.com/protocolbuffers/protobuf/releases/tag/v3.5.2
https://github.com/opencv/opencv/releases/tag/3.3.0
https://github.com/FFmpeg/FFmpeg/releases/tag/n4.0.4

ReadTheDocs-Breathe Documentation, Release 1.0.0

executables will be placed in bin folder

libraries will be placed in lib folder

the installer will copy all executables into /opt/rocm/mivisionx/bin and libraries into /opt/rocm/lib

the installer also copies all the OpenVX and module header files into /opt/rocm/mivisionx/include
folder

¢ add the installed library path to LD_LIBRARY_PATH environment variable (default /opt/rocm/mivisionx/lib)

* add the installed executable path to PATH environment variable (default /opt/rocm/mivisionx/bin)

2.8.12.10.3 Build anninferenceApp using Qt Creator

* build annInference App.pro using Qt Creator

* or use annlnference App.py for simple tests

2.8.12.10.4 Build Radeon LOOM using Visual Studio Professional 2013 on 64-bit Windows 10/8.1/7

* Use loom.sln to build x64 platform

2.8.12.10.5 Verify the Installation

2.8.12.10.6 Linux

The installer will copy all executables into /opt/rocm/mivisionx/bin and libraries into /opt/rocm/mivisionx/lib

The installer also copies all the OpenVX and OpenVX module header files into /opt/rocm/mivisionx/include
folder

* Apps, Samples, Documents, Model Compiler and Toolkit are placed into /opt/rocm/mivisionx
* Run samples to verify the installation

— Canny Edge Detection

B edgesWindow x

2.8. ROCm Tools 89

https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/apps/cloud_inference/client_app/annInferenceApp.pro
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/apps/cloud_inference/client_app/annInferenceApp.py
https://gpuopen-professionalcompute-libraries.github.io/MIVisionX/amd_openvx_extensions/amd_loomsl/vx_loomsl.sln

ReadTheDocs-Breathe Documentation, Release 1.0.0

export PATH=$PATH:/opt/rocm/mivisionx/bin
export LD_LIBRARY_PATH=S$SLD_LIBRARY_PATH:/opt/rocm/mivisionx/lib
runvx /opt/rocm/mivisionx/samples/gdf/canny.gdf

Note: More samples are available here

2.8.12.11 Docker
MIVisionX provides developers with docker images for Ubuntu 16.04, Ubuntu 18.04, CentOS 7.5, & CentOS 7.6.

Using docker images developers can quickly prototype and build applications without having to be locked into a
single system setup or lose valuable time figuring out the dependencies of the underlying software.

2.8.12.11.1 MIVisionX Docker

Ubuntu 16.04
Ubuntu 18.04
CentOS 7.5

CentOS 7.6

2.8.12.11.2 Docker Workflow Sample on Ubuntu 16.04

Prerequisites
e Ubuntu 16.04

e rocm supported hardware

2.8.12.11.3 Workflow

Step 1 - Install rocm-dkms

sudo apt update

sudo apt dist-upgrade

sudo apt install libnuma-dev
sudo reboot

wget —gO — http://repo.radeon.com/rocm/apt/debian/rocm.gpg.key | sudo apt-key add -
echo 'deb [arch=amd64] http://repo.radeon.com/rocm/apt/debian/ xenial main' | sudo,,
—tee /etc/apt/sources.list.d/rocm.list

sudo apt update

sudo apt install rocm-dkms

sudo reboot

Step 2 - Setup Docker

sudo apt-get install curl

sudo curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu
—~S$(1lsb_release —-cs) stable"

sudo apt-get update

(continues on next page)

920 Chapter 2. Solid Compilation Foundation and Language Support

https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX/blob/1.3.0/samples#samples
https://hub.docker.com/r/mivisionx/ubuntu-16.04
https://hub.docker.com/r/mivisionx/ubuntu-18.04
https://hub.docker.com/r/mivisionx/centos-7.5
https://hub.docker.com/r/mivisionx/centos-7.6
https://rocm.github.io/hardware.html

ReadTheDocs-Breathe Documentation, Release 1.0.0

(continued from previous page)

apt-cache policy docker-ce
sudo apt-get install -y docker-ce
sudo systemctl status docker

Step 3 - Get Docker Image

sudo docker pull mivisionx/ubuntu-16.04

Step 4 - Run the docker image

sudo docker run —-it --device=/dev/kfd --device=/dev/dri --cap-add=SYS_RAWIO —-device=/
—dev/mem —--group-add video —--network host mivisionx/ ubuntu-16.04

¢ Optional: Map localhost directory on the docker image
— option to map the localhost directory with trained caffe models to be accessed on the docker image.

— usage: -v {LOCAL_HOST_DIRECTORY_PATH}:{ DOCKER_DIRECTORY_PATH}

sudo docker run —-it -v /home/:/root/hostDrive/ —--device=/dev/kfd --device=/dev/dri —-
—cap-add=SYS_RAWIO --device=/dev/mem --group-add video --network host mivisionx/
—ubuntu-16.04

Note: Display option with docker
* Using host display

xhost +local:root

sudo docker run -it --device=/dev/kfd --device=/dev/dri --cap-add=SYS_RAWIO --device=/
—dev/mem —--group—-add video

—-—-network host —--env DISPLAY=unix$DISPLAY --privileged --volume $XAUTH:/root/.
—Xauthority

——volume /tmp/.Xll-unix/:/tmp/.X1l-unix mivisionx/ubuntu-16.04:latest

¢ Test display with MIVisionX sample

export PATH=S$PATH:/opt/rocm/mivisionx/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/rocm/mivisionx/1lib
runvx /opt/rocm/mivisionx/samples/gdf/canny.gdf

2.8.12.11.4 Supported Neural Net Layers

Layer name
Activation

Argmax

Batch Normalization
Concat

Convolution
Deconvolution

Fully Connected
Local Response Normalization (LRN)
Pooling

Scale

Slice

Softmax

(continues on next page)

2.8. ROCm Tools 91

ReadTheDocs-Breathe Documentation, Release 1.0.0

(continued from previous page)

Tensor Add

Tensor Convert Depth

Tensor Convert from Image
Tensor Convert to Image
Tensor Multiply

Tensor Subtract

Upsample Nearest Neighborhood

2.8.12.12 Release Notes

2.8.12.12.1 Known issues

» Package (.deb & .rpm) install requires OpenCV v3.4.0 to execute AMD OpenCV extensions

2.8.12.12.2 Tested configurations

* Windows 10

* Linux: Ubuntu - 16.04/18.04 & CentOS - 7.5/7.6
* ROCm: rocm-dkms - 2.4.25

* rocm-cmake - github master:ac45c6e

* MIOpenGEMM - 1.1.5

e MIOpen - 1.8.1

* Protobuf - V3.5.2

* OpenCV -3.4.0

» Dependencies for all the above packages

2.9 ROCm Libraries

2.9.1 rocFFT

rocFFT is a software library for computing Fast Fourier Transforms (FFT) written in HIP. It is part of AMD’s software
ecosystem based on ROCm. In addition to AMD GPU devices, the library can also be compiled with the CUDA
compiler using HIP tools for running on Nvidia GPU devices.

The rocFFT library:
* Provides a fast and accurate platform for calculating discrete FFTs.
» Supports single and double precision floating point formats.
* Supports 1D, 2D, and 3D transforms.
* Supports computation of transforms in batches.
* Supports real and complex FFTs.

 Supports lengths that are any combination of powers of 2, 3, 5.

92 Chapter 2. Solid Compilation Foundation and Language Support

https://github.com/RadeonOpenCompute/rocm-cmake/tree/master
https://github.com/ROCmSoftwarePlatform/MIOpenGEMM/releases/tag/1.1.5
https://github.com/ROCmSoftwarePlatform/MIOpen/releases/tag/1.7.1
https://github.com/protocolbuffers/protobuf/releases/tag/v3.5.2
https://github.com/opencv/opencv/releases/tag/3.4.0

ReadTheDocs-Breathe Documentation, Release 1.0.0

2.9.1.1 API design

Please refer to the rocFFTAPI for current documentation. Work in progress.

2.9.1.2 Installing pre-built packages

Download pre-built packages either from ROCm’s package servers or by clicking the github releases tab and manually
downloading, which could be newer. Release notes are available for each release on the releases tab.

sudo apt update && sudo apt install rocfft

2.9.1.3 Quickstart rocFFT build

Bash helper build script (Ubuntu only) The root of this repository has a helper bash script install.sh to build and install
rocFFT on Ubuntu with a single command. It does not take a lot of options and hard-codes configuration that can be
specified through invoking cmake directly, but it’s a great way to get started quickly and can serve as an example of
how to build/install. A few commands in the script need sudo access, so it may prompt you for a password. * ./
install -h-showshelp* ./install -id - build library, build dependencies and install globally (-d flag only
needs to be specified once on a system) * ./install —-c —-cuda — build library and clients for cuda backend
into a local directory Manual build (all supported platforms) If you use a distro other than Ubuntu, or would like more
control over the build process, the rocfft build wiki has helpful information on how to configure cmake and manually
build.

2.9.1.4 Manual build (all supported platforms)

If you use a distro other than Ubuntu, or would like more control over the build process, the rocfft build wiki has
helpful information on how to configure cmake and manually build.
Library and API Documentation

Please refer to the Library documentation for current documentation.

2.9.1.5 Example

The following is a simple example code that shows how to use rocFFT to compute a 1D single precision 16-point
complex forward transform.

#include <iostream>

#include <vector>

#include "hip/hip_runtime api.h"
#include "hip/hip_vector_types.h"
#include "rocfft.h"

int main ()

{
// rocFFT gpu compute
// ===========s====s=========================

size_t N = 16;
size_t Nbytes = N * sizeof (float2);

// Create HIP device buffer
float2 +*x;

(continues on next page)

2.9. ROCm Libraries 93

https://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html
https://github.com/ROCmSoftwarePlatform/rocFFT/wiki/Build
https://github.com/ROCmSoftwarePlatform/rocFFT/wiki/Build
https://rocfft.readthedocs.io/en/latest/

ReadTheDocs-Breathe Documentation, Release 1.0.0

(continued from previous page)

hipMalloc (&x, Nbytes);

// Initialize data
std::vector<float2> cx(N);

for (size_t i = 0; i < N; i++)
{

cx[i]l.x = 1;

cx[il.y = -1;

// Copy data to device
hipMemcpy (x, cx.data(), Nbytes, hipMemcpyHostToDevice);

// Create rocFFT plan
rocfft_plan plan = NULL;
size_t length = N;

rocfft_plan_create(&¢plan, rocfft_placement_inplace, rocfft_transform_type_

—complex_forward, rocfft_precision_single, 1, &length,
—NULL) ;

// Execute plan
rocfft_execute(plan, (voidx=*) &x, NULL, NULL);

// Wait for execution to finish
hipDeviceSynchronize () ;

// Destroy plan
rocfft_plan_destroy(plan);

// Copy result back to host
std::vector<float2> y (N);
hipMemcpy (y.data (), x, Nbytes, hipMemcpyDeviceToHost);

// Print results
for (size_t i = 0; i < N; i++)
{

std::cout << y[i].x << ", " << y[i].y << std::endl;

// Free device buffer
hipFree(x);

return 0;

1

o

2.9.1.6 API

This section provides details of the library API

2.9.1.6.1 Types

There are few data structures that are internal to the library. The pointer types to these structures are given below. The

user would need to use these types to create handles and pass them between different library functions.

94 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

typedef struct rocfft_plan_t *rocfft_plan
Pointer type to plan structure.

This type is used to declare a plan handle that can be initialized with rocfft_plan_create

typedef struct rocfft_plan_description_t *rocfft_plan_description
Pointer type to plan description structure.

This type is used to declare a plan description handle that can be initialized with rocfft_plan_description_create

typedef struct rocfft_execution_info_t *rocfft_execution_info
Pointer type to execution info structure.

This type is used to declare an execution info handle that can be initialized with rocfft_execution_info_create

2.9.1.6.2 Library Setup and Cleanup

The following functions deals with initialization and cleanup of the library.

rocfft_status rocfft_setup ()
Library setup function, called once in program before start of library use.

rocfft_status rocfft_cleanup ()
Library cleanup function, called once in program after end of library use.

2.9.1.6.3 Plan

The following functions are used to create and destroy plan objects.

rocfft_status rocf£ft_plan_create (rocfft_plan *plan, rocfft_result_placement placement,
rocfft_transform_type transform_type, rocfft_precision preci-
sion, size_t dimensions, const size_t *lengths, size_t num-

ber_of _transforms, const rocfft_plan_description description)
Create an FFT plan.

This API creates a plan, which the user can execute subsequently. This function takes many of the fundamental
parameters needed to specify a transform. The parameters are self explanatory. The dimensions parameter can
take a value of 1,2 or 3. The ‘lengths’ array specifies size of data in each dimension. Note that lengths[0] is the
size of the innermost dimension, lengths[1] is the next higher dimension and so on. The ‘number_of_transforms’
parameter specifies how many transforms (of the same kind) needs to be computed. By specifying a value greater
than 1, a batch of transforms can be computed with a single api call. Additionally, a handle to a plan description
can be passed for more detailed transforms. For simple transforms, this parameter can be set to null ptr.
Parameters

* [out] plan: plan handle

* [in] placement: placement of result

* [in] transform_type: type of transform

* [in] precision: precision

e [in] dimensions: dimensions

* [in] lengths: dimensions sized array of transform lengths

e [in] number_of_transforms: number of transforms

* [in] description: description handle created by rocfft_plan_description_create; can be null ptr
for simple transforms

2.9. ROCm Libraries 95

ReadTheDocs-Breathe Documentation, Release 1.0.0

rocfft_status rocf£ft_plan_destroy (rocfft_plan plan)
Destroy an FFT plan.

This API frees the plan. This function destructs a plan after it is no longer needed.

Parameters
* [in] plan: plan handle
The following functions are used to query for information after a plan is created.
rocfft_status rocf£ft_plan_get_work_buffer size (const rocfft_plan plan, size_t *size_in_bytes)
Get work buffer size.
This is one of plan query functions to obtain information regarding a plan. This API gets the work buffer size.

Parameters
* [in] plan: plan handle

* [out] size_in_bytes: size of needed work buffer in bytes

rocfft_status rocfft_plan_get_print (const rocfft_plan plan)
Print all plan information.
This is one of plan query functions to obtain information regarding a plan. This API prints all plan info to stdout

to help user verify plan specification.

Parameters

* [in] plan: plan handle

2.9.1.6.4 Plan description

Most of the times, rocfft_plan_create () is all is needed to fully specify a transform. And the description
object can be skipped. But when a transform specification has more details a description object need to be created and
set up and the handle passed to the rocfft_plan_create (). Functions referred below can be used to manage
plan description in order to specify more transform details. The plan description object can be safely deleted after call

to the plan api rocfft_plan_create().

rocfft_status rocfft_plan_description_create (rocfft_plan_description *description)
Create plan description.

This API creates a plan description with which the user can set more plan properties

Parameters

* [out] description: plan description handle

rocfft_status roc£ft_plan_description_destroy (rocfft_plan_description description)
Destroy a plan description.

This API frees the plan description

Parameters

* [in] description: plan description handle

96 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

rocfft_status rocfft_plan_description_set_data_layout (rocfft_plan_description description,

rocfft_array_type in_array_type,
rocfft_array_type out_array_type,
const size_t *in_offsets,
const size_t *out_offsets, size_t
in_strides_size, const size_t
*in_strides, size_t in_distance, size_t
out_strides_size, const size_t

*out_strides, size_t out_distance)
Set data layout.

This is one of plan description functions to specify optional additional plan properties using the description
handle. This API specifies the layout of buffers. This function can be used to specify input and output array
types. Not all combinations of array types are supported and error code will be returned for unsupported cases.
Additionally, input and output buffer offsets can be specified. The function can be used to specify custom layout
of data, with the ability to specify stride between consecutive elements in all dimensions. Also, distance between
transform data members can be specified. The library will choose appropriate defaults if offsets/strides are set
to null ptr and/or distances set to 0.
Parameters

* [in] description: description handle

* [in] in_array_type: array type of input buffer

* [in] out_array_type: array type of output buffer

* [in] in_offsets: offsets, in element units, to start of data in input buffer

* [in] out_offsets: offsets, in element units, to start of data in output buffer

* [in] in_strides_size: size of in_strides array (must be equal to transform dimensions)

* [in] in_strides: array of strides, in each dimension, of input buffer; if set to null ptr library
chooses defaults

* [in] in_distance: distance between start of each data instance in input buffer
* [in] out_strides_size: size of out_strides array (must be equal to transform dimensions)

* [in] out_strides: array of strides, in each dimension, of output buffer; if set to null ptr library
chooses defaults

* [in] out_distance: distance between start of each data instance in output buffer

2.9.1.6.5 Execution

The following details the execution function. After a plan has been created, it can be used to compute a transform on
specified data. Aspects of the execution can be controlled and any useful information returned to the user.

rocfft_status roc£ft_execute (const rocfft_plan plan, void *in_buffer[], void *out_buffer[],
rocfft_execution_info info)

Execute an FFT plan.

This API executes an FFT plan on buffers given by the user. If the transform is in-place, only the input buffer
is needed and the output buffer parameter can be set to NULL. For not in-place transforms, output buffers have
to be specified. Note that both input and output buffer are arrays of pointers, this is to facilitate passing planar
buffers where real and imaginary parts are in 2 separate buffers. For the default interleaved format, just a unit
sized array holding the pointer to input/output buffer need to be passed. The final parameter in this function is

2.9. ROCm Libraries 97

ReadTheDocs-Breathe Documentation, Release 1.0.0

an execution_info handle. This parameter serves as a way for the user to control execution, as well as for the
library to pass any execution related information back to the user.
Parameters

* [in] plan: plan handle

* [inout] in_buffer: array (of size 1 for interleaved data, of size 2 for planar data) of input
buffers

* [inout] out_buffer: array (of size 1 for interleaved data, of size 2 for planar data) of output
buffers, can be nullptr for inplace result placement

* [in] info: execution info handle created by rocfft_execution_info_create

2.9.1.6.6 Execution info

The execution api rocfft_execute () takes arocfft_execution_info parameter. This parameter needs to be created
and setup by the user and passed to the execution api. The execution info handle encapsulates information such as
execution mode, pointer to any work buffer etc. It can also hold information that are side effect of execution such as
event objects. The following functions deal with managing execution info object. Note that the set functions below
need to be called before execution and get functions after execution.

rocfft_status rocf£ft_execution_info_create (rocfft_execution_info *info)
Create execution info.

This API creates an execution info with which the user can control plan execution & retrieve execution infor-
mation

Parameters
e [out] info: execution info handle

rocfft_status rocfft_execution_info_destroy (rocfft_execution_info info)
Destroy an execution info.

This API frees the execution info
Parameters
e [in] info: execution info handle

rocfft_status rocfft_execution_info_set_work_buffer (rocfft_execution_info info, void
*work_buffer, size_t size_in_bytes)
Set work buffer in execution info.

This is one of the execution info functions to specify optional additional information to control execution. This
API specifies work buffer needed. It has to be called before the call to rocfft_execute. When a non-zero value
is obtained from rocfft_plan_get_work_buffer_size, that means the library needs a work buffer to compute the
transform. In this case, the user has to allocate the work buffer and pass it to the library via this api.
Parameters

e [in] info: execution info handle

e [in] work_buffer: work buffer

* [in] size_in_bytes: size of work buffer in bytes

98 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

rocfft_status rocfft_execution_info_set_stream (rocfft_execution_info info, void *stream)

Set stream in execution info.

This is one of the execution info functions to specify optional additional information to control execution. This
API specifies compute stream. It has to be called before the call to rocfft_execute. It is the underlying device
queue/stream where the library computations would be inserted. The library assumes user has created such a

stream in the program and merely assigns work to the stream.

Parameters
e [in] info: execution info handle

* [in] stream: underlying compute stream

2.9.1.6.7 Enumerations

This section provides all the enumerations used.

enum rocfft status
rocfft status/error codes

Values:

rocfft status_success

rocfft_ status_failure
rocfft_status_invalid arg value
rocfft status_invalid dimensions
rocfft_status_invalid_array_ type
rocfft_status_invalid strides
rocfft_status_invalid_distance
rocfft status_invalid offset

enum rocfft_transform type
Type of transform.

Values:

rocfft_transform_ type complex forward
rocfft_transform type complex_inverse
rocfft_transform type real forward
rocfft_transform type real_ inverse

enum rocfft_precision
Precision.

Values:
rocfft_precision_single
rocfft_precision_double

enum rocfft_result_placement
Result placement.

Values:

2.9. ROCm Libraries

99

ReadTheDocs-Breathe Documentation, Release 1.0.0

rocfft_placement_inplace
rocfft_placement_notinplace

enum rocfft_ array_ type
Array type.

Values:

rocfft_array type complex_interleaved
rocfft_array type_complex_planar
rocfft_array type_ real

rocfft_array type hermitian_interleaved
rocfft_array type hermitian_planar

enum rocfft_ execution_mode
Execution mode.

Values:
rocfft_exec_mode_nonblocking
rocfft_exec_mode_nonblocking with_flush

rocfft_exec_mode_blocking

2.9.2 rocBLAS

Please refer rocBLLAS Github link

A BLAS implementation on top of AMD’s Radeon Open Compute ROCm runtime and toolchains. rocBLAS is
implemented in the HIP programming language and optimized for AMD’s latest discrete GPUs.

2.9.2.1 Prerequisites
* A ROCm enabled platform, more information here.
¢ Base software stack, which includes * HIP

2.9.2.2 Installing pre-built packages

Download pre-built packages either from ROCm’s package servers or by clicking the github releases tab and manually
downloading, which could be newer. Release notes are available for each release on the releases tab.

sudo apt update && sudo apt install rocblas

2.9.2.3 Quickstart rocBLAS build

Bash helper build script (Ubuntu only)

The root of this repository has a helper bash script install.sh to build and install rocBLAS on Ubuntu with a single
command. It does not take a lot of options and hard-codes configuration that can be specified through invoking cmake
directly, but it’s a great way to get started quickly and can serve as an example of how to build/install. A few commands
in the script need sudo access, so it may prompt you for a password.

100 Chapter 2. Solid Compilation Foundation and Language Support

https://github.com/ROCmSoftwarePlatform/rocBLAS
http://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html
http://rocm-documentation.readthedocs.io/en/latest/Programming_Guides/Programming-Guides.html#hip-programing-guide
https://rocm.github.io/install.html
https://github.com/ROCm-Developer-Tools/HIP
http://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html#installation-guide-ubuntu

ReadTheDocs-Breathe Documentation, Release 1.0.0

./install -h —- shows help
./install -id -- build library, build dependencies and install (-d flag only needs to_
—be passed once on a system)

2.9.2.4 Manual build (all supported platforms)

If you use a distro other than Ubuntu, or would like more control over the build process, the rocblaswiki has helpful
information on how to configure cmake and manually build.

Functions supported

A list of exported functions. from rocblas can be found on the wiki.

2.9.2.5 rocBLAS interface examples

In general, the rocBLAS interface is compatible with CPU oriented Netlib BLAS and the cuBLAS-v2 API, with the
explicit exception that traditional BLAS interfaces do not accept handles. The cuBLAS’ cublasHandle_t is replaced
with rocblas_handle everywhere. Thus, porting a CUDA application which originally calls the cuBLAS API to a HIP
application calling rocBLAS API should be relatively straightforward. For example, the rocBLAS SGEMYV interface
is

2.9.2.6 GEMV API

rocblas_status

rocblas_sgemv (rocblas_handle handle,
rocblas_operation trans,
rocblas_int m, rocblas_int n,
const float* alpha,
const float+ A, rocblas_int 1lda,
const float* x, rocblas_int incxk,
const float+ beta,
float y, rocblas_int incy);

2.9.2.7 Batched and strided GEMM API

rocBLAS GEMM can process matrices in batches with regular strides. There are several permutations of these API’s,
the following is an example that takes everything

rocblas_status
rocblas_sgemm_strided_batched(
rocblas_handle handle,
rocblas_operation transa, rocblas_operation transb,
rocblas_int m, rocblas_int n, rocblas_int k,
const floatx alpha,
const float* A, rocblas_int 1ls_a, rocblas_int 1d_a, rocblas_int bs_a,
const float* B, rocblas_int 1ls_b, rocblas_int 1d_b, rocblas_int bs_b,
const floatx beta,
floatx C, rocblas_int 1ls_c, rocblas_int 1d_c, rocblas_int bs_c,
rocblas_int batch_count)

rocBLAS assumes matrices A and vectors x, y are allocated in GPU memory space filled with data. Users are re-
sponsible for copying data from/to the host and device memory. HIP provides memcpy style API’s to facilitate data
management.

2.9. ROCm Libraries 101

https://rocm-documentation.readthedocs.io/en/latest/ROCm_Tools/rocblaswiki.html#exported-functions
http://www.netlib.org/blas/

ReadTheDocs-Breathe Documentation, Release 1.0.0

2.9.2.8 Asynchronous API

Except a few routines (like TRSM) having memory allocation inside preventing asynchronicity, most of the library
routines (like BLAS-1 SCAL, BLAS-2 GEMYV, BLAS-3 GEMM) are configured to operate in asynchronous fashion
with respect to CPU, meaning these library functions return immediately.

For more information regarding rocBLAS library and corresponding API documentation, refer rocBLAS

2.9.2.9 API

This section provides details of the library API

2.9.2.9.1 Types
2.9.2.9.1.1 Definitions
2.9.2.9.1.2 rocblas_int

typedef int32_t rocblas_int
To specify whether int32 or int64 is used.

2.9.2.9.1.3 rocblas_long

typedef int64_t rocblas_long

2.9.2.9.1.4 rocblas_float_complex

typedef float2 rocblas_float_complex

2.9.2.9.1.5 rocblas_double_complex

typedef double2 rocblas_double_complex

2.9.2.9.1.6 rocblas_half

typedef uintl6_t rocblas_half

2.9.2.9.1.7 rocblas_half_complex

typedef float2 rocblas_half complex

2.9.2.9.1.8 rocblas_handle

typedef struct _rocblas_handle *rocblas_handle

102 Chapter 2. Solid Compilation Foundation and Language Support

https://rocblas.readthedocs.io/en/latest/

ReadTheDocs-Breathe Documentation, Release 1.0.0

2.9.2.9.1.9 Enums

Enumeration constants have numbering that is consistent with CBLAS, ACML and most standard C BLAS libraries.

2.9.2.9.1.10 rocblas_operation

enum rocblas_operation
Used to specify whether the matrix is to be transposed or not.

parameter constants. numbering is consistent with CBLAS, ACML and most standard C BLAS libraries
Values:

rocblas_operation_none =111
Operate with the matrix.

rocblas_operation_transpose =112
Operate with the transpose of the matrix.

rocblas_operation_conjugate_transpose =113
Operate with the conjugate transpose of the matrix.

2.9.2.9.1.11 rocblas_fill

enum rocblas fill

Used by the Hermitian, symmetric and triangular matrix routines to specify whether the upper or lower triangle
is being referenced.

Values:

rocblas_fill_upper =121
Upper triangle.

rocblas_fill lower =122
Lower triangle.

rocblas f£ill full =123

2.9.2.9.1.12 rocblas_diagonal

enum rocblas_diagonal
It is used by the triangular matrix routines to specify whether the matrix is unit triangular.

Values:

rocblas_diagonal_non_unit =131
Non-unit triangular.

rocblas_diagonal_unit =132
Unit triangular.

2.9.2.9.1.13 rocblas_side

enum rocblas_side
Indicates the side matrix A is located relative to matrix B during multiplication.

2.9. ROCm Libraries 103

ReadTheDocs-Breathe Documentation, Release 1.0.0

Values:

rocblas_side_left =141
Multiply general matrix by symmetric, Hermitian or triangular matrix on the left.

rocblas_side_right =142
Multiply general matrix by symmetric, Hermitian or triangular matrix on the right.

rocblas_side both =143

2.9.2.9.1.14 rocblas_status

enum rocblas_status
rocblas status codes definition

Values:

rocblas_ status_success =0
success

rocblas_status_invalid handle=1
handle not initialized, invalid or null

rocblas_status_not_implemented =2
function is not implemented

rocblas_status_invalid_ pointer =3
invalid pointer parameter

rocblas status_invalid size =4
invalid size parameter

rocblas_status_memory_error =95
failed internal memory allocation, copy or dealloc

rocblas status_internal error=6
other internal library failure

2.9.2.9.1.15 rocblas_datatype

enum rocblas_datatype
Indicates the precision width of data stored in a blas type.

Values:
rocblas_datatype_£f16_r =150
rocblas_datatype_ £32_r =151
rocblas_datatype_ £f64_r =152
rocblas_datatype f16_c =153
rocblas_datatype_£32_c =154
rocblas_datatype f64_c =155
rocblas_datatype_i8_r =160
rocblas_datatype_u8_r =161
rocblas_datatype_i32_r =162

104 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

rocblas_datatype_u32_r =163
rocblas_datatype_ i8_c =164
rocblas_datatype_u8_c =165
rocblas_datatype_i32_c =166
rocblas_datatype_u32_c =167

2.9.2.9.1.16 rocblas_pointer_mode

enum rocblas_pointer_mode
Indicates the pointer is device pointer or host pointer.

Values:
rocblas_pointer_mode_host =0

rocblas_pointer_mode_device =1

2.9.2.9.1.17 rocblas_layer_mode

enum rocblas_layer_mode
Indicates if layer is active with bitmask.

Values:

rocblas_layer mode_none = 0b0000000000
rocblas_layer mode_log_trace = (0b0000000001
rocblas_layer_mode_log bench = 0b0000000010
rocblas_layer mode_log profile =(0b0000000100

2.9.2.9.1.18 rocblas_gemm_algo

enum rocblas_gemm algo
Indicates if layer is active with bitmask.

Values:

rocblas_gemm_algo_standard = 0b0000000000

2.9.2.9.2 Functions
2.9.2.9.2.1 Level 1 BLAS
2.9.2.9.2.2 rocblas_<type>scal()

rocblas_status rocblas_dscal (rocblas_handle handle, rocblas_int n, const double *alpha, double *x,
rocblas_int incx)

2.9. ROCm Libraries 105

ReadTheDocs-Breathe Documentation, Release 1.0.0

rocblas_status rocblas_sscal (rocblas_handle handle, rocblas_int n, const float *alpha, float *x,

rocblas_int incx)
BLAS Level 1 APIL

scal scal the vector x[i] with scalar alpha, fori=1,... ,n

x := alpha » x ,

Parameters
* [in] handle: rocblas_handle. handle to the rocblas library context queue.
e [in] n: rocblas_int.
e [in] alpha: specifies the scalar alpha.
* [inout] x: pointer storing vector x on the GPU.

* [in] incx: specifies the increment for the elements of x.

2.9.2.9.2.3 rocblas_<type>copy()

rocblas_status rocblas_dcopy (rocblas_handle handle, rocblas_int n, const double *x, rocblas_int incx,
double *y, rocblas_int incy)

rocblas_status rocblas_scopy (rocblas_handle handle, rocblas_int n, const float *x, rocblas_int incx,

float *y, rocblas_int incy)
BLAS Level 1 APIL

copy copies the vector x into the vector y, fori=1,... ,n

y = Xy

Parameters
* [in] handle: rocblas_handle. handle to the rocblas library context queue.
e [in] n: rocblas_int.
* [in] x: pointer storing vector x on the GPU.
* [in] incx: specifies the increment for the elements of x.
e [out] y: pointer storing vector y on the GPU.

* [in] dincy: rocblas_int specifies the increment for the elements of y.

2.9.2.9.2.4 rocblas_<type>dot()

rocblas_status roeblas_ddot (rocblas_handle handle, rocblas_int n, const double *x, rocblas_int incx,
const double *y, rocblas_int incy, double *result)

rocblas_status roeblas_sdot (rocblas_handle handle, rocblas int n, const float *x, rocblas int incx,

const float *y, rocblas_int incy, float *result)
BLAS Level 1 APIL

dot(u) perform dot product of vector x and y

result = x * y;

dotc perform dot product of complex vector x and complex y

106 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

result

= conjugate (x) * y;

Parameters

[in] handle: rocblas_handle. handle to the rocblas library context queue.
[in] n: rocblas_int.

[in] x: pointer storing vector x on the GPU.

[in] incx: rocblas_int specifies the increment for the elements of y.

[inout] result: store the dot product. either on the host CPU or device GPU. return is 0.0 if n
<=0.

2.9.2.9.2.5 rocblas_<type>swap()

rocblas_status rocblas_sswap (rocblas_handle handle, rocblas_int n, float *x, rocblas_int incx, float *y,

rocblas_int incy)

BLAS Level 1 APIL

swap interchange vector x[i] and y[i], fori=1,... ,n
y = X; X =Y
Parameters

[in] handle: rocblas_handle. handle to the rocblas library context queue.
[in] n: rocblas_int.

[inout] x: pointer storing vector x on the GPU.

[in] incx: specifies the increment for the elements of x.

[inout] vy: pointer storing vector y on the GPU.

[in] incy: rocblas_int specifies the increment for the elements of y.

rocblas_status rocblas_dswap (rocblas_handle handle, rocblas_int n, double *x, rocblas_int incx, double

*y, rocblas_int incy)

2.9.2.9.2.6 rocblas_<type>axpy()

rocblas_status rocblas_daxpy (rocblas_handle handle, rocblas_int n, const double *alpha, const dou-

ble *x, rocblas_int incx, double *y, rocblas_int incy)

rocblas_status rocblas_saxpy (rocblas_handle handle, rocblas_int n, const float *alpha, const float

*x, rocblas_int incx, float *y, rocblas_int incy)

rocblas_status rocblas_haxpy (rocblas_handle handle, rocblas_int n, const rocblas_half *alpha, const

rocblas_half *x, rocblas_int incx, rocblas_half *y, rocblas_int incy)

BLAS Level 1 APL

axpy compute y := alpha * x +y

Parameters

[in] handle: rocblas_handle. handle to the rocblas library context queue.

2.9. ROCm Libraries 107

ReadTheDocs-Breathe Documentation, Release 1.0.0

e [in] n: rocblas_int.

* [in] alpha: specifies the scalar alpha.

* [in] x: pointer storing vector x on the GPU.

* [in] incx: rocblas_int specifies the increment for the elements of x.
e [out] y: pointer storing vector y on the GPU.

* [inout] incy: rocblas_int specifies the increment for the elements of y.

2.9.2.9.2.7 rocblas_<type>asum()

rocblas_status roecblas_dasum (rocblas_handle handle, rocblas_int n, const double *x, rocblas_int incx,
double *result)

rocblas _status roeblas_sasum (rocblas_handle handle, rocblas_int n, const float *x, rocblas_int incx,

float *result)
BLAS Level 1 APIL

asum computes the sum of the magnitudes of elements of a real vector X, or the sum of magnitudes of the real
and imaginary parts of elements if x is a complex vector
Parameters

* [in] handle: rocblas_handle. handle to the rocblas library context queue.

e [in] n: rocblas_int.

* [in] x: pointer storing vector x on the GPU.

* [in] incx: rocblas_int specifies the increment for the elements of y.

* [inout] result: store the asum product. either on the host CPU or device GPU. return is 0.0 if
n, incx<=0.

2.9.2.9.2.8 rocblas_<type>nrm2()

rocblas_status roecblas_dnrm2 (rocblas_handle handle, rocblas_int n, const double *x, rocblas_int incx,
double *result)

rocblas_status roeblas_snrm2 (rocblas_handle handle, rocblas_int n, const float *x, rocblas_int incx,

float *result)
BLAS Level 1 APIL

nrm2 computes the euclidean norm of a real or complex vector := sqrt(x’*x) for real vector := sqrt(x**H*x)
for complex vector
Parameters

* [in] handle: rocblas_handle. handle to the rocblas library context queue.

e [in] n: rocblas_int.

* [in] x: pointer storing vector x on the GPU.

* [in] incx: rocblas_int specifies the increment for the elements of y.

* [inout] result: store the nrm2 product. either on the host CPU or device GPU. return is 0.0 if
n, incx<=0.

108 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

2.9.2.9.2.9 rocblas_i<type>amax()

rocblas_status roeblas_idamax (rocblas_handle handle, rocblas_int n, const double *x, rocblas_int incx,
rocblas_int *result)

rocblas_status rocblas_isamax (rocblas_handle handle, rocblas_int n, const float *x, rocblas_int incx,

rocblas_int *result)
BLAS Level 1 API.

amax finds the first index of the element of maximum magnitude of real vector x or the sum of magnitude of the
real and imaginary parts of elements if x is a complex vector
Parameters

* [in] handle: rocblas_handle. handle to the rocblas library context queue.

e [in] n: rocblas_int.

* [in] x: pointer storing vector x on the GPU.

e [in] incx: rocblas_int specifies the increment for the elements of y.

e [inout] result: store the amax index. either on the host CPU or device GPU. return is 0.0 if n,
incx<=0.

2.9.2.9.2.10 rocblas_i<type>amin()

rocblas_status roeblas_idamin (rocblas_handle handle, rocblas_int n, const double *x, rocblas_int incx,
rocblas_int *result)

rocblas_status roeblas_isamin (rocblas_handle handle, rocblas int n, const float *x, rocblas_int incx,

rocblas_int *result)
BLAS Level 1 APIL

amin finds the first index of the element of minimum magnitude of real vector x or the sum of magnitude of the
real and imaginary parts of elements if x is a complex vector
Parameters

* [in] handle: rocblas_handle. handle to the rocblas library context queue.

e [in] n: rocblas_int.

* [in] x: pointer storing vector x on the GPU.

* [in] incx: rocblas_int specifies the increment for the elements of y.

e [inout] result: store the amin index. either on the host CPU or device GPU. return is 0.0 if n,
incx<=0.

2.9.2.9.2.11 Level 2 BLAS

2.9.2.9.2.12 rocblas_<type>gemv()

rocblas_status rocblas_dgemv (rocblas_handle handle, rocblas_operation trans, rocblas_int m, rocblas_int
n, const double *alpha, const double *A, rocblas_int lda, const dou-
ble *x, rocblas_int incx, const double *beta, double *y, rocblas_int incy)

2.9. ROCm Libraries 109

ReadTheDocs-Breathe Documentation, Release 1.0.0

rocblas_status rocblas_sgemv (rocblas_handle handle, rocblas_operation trans, rocblas_int m, rocblas_int
n, const float *alpha, const float *A, rocblas_int lda, const float *x,

rocblas_int incx, const float *beta, float *y, rocblas_int incy)
BLAS Level 2 APIL.

xGEMYV performs one of the matrix-vector operations

y := alphaxAxx + betaxy, or
y := alphaxAx*xTxx + betaxry, or
y := alphaxAxxHxx + betaxry,

where alpha and beta are scalars, x and y are vectors and A is an m by n matrix.

Parameters
* [in] handle: rocblas_handle. handle to the rocblas library context queue.
* [in] trans: rocblas_operation
e [in] m: rocblas_int
e [in] n: rocblas_int
e [in] alpha: specifies the scalar alpha.
* [in] A: pointer storing matrix A on the GPU.
* [in] lda: rocblas_int specifies the leading dimension of A.
* [in] x: pointer storing vector x on the GPU.
* [in] incx: specifies the increment for the elements of x.
* [in] Dbeta: specifies the scalar beta.
e [out] y: pointer storing vector y on the GPU.

* [in] dincy: rocblas_int specifies the increment for the elements of y.

2.9.2.9.2.13 rocblas_<type>trsv()

rocblas_status rocblas_dtrsv (rocblas_handle handle, rocblas_fill uplo, rocblas_operation transA,
rocblas_diagonal diag, rocblas_int m, const double *A, rocblas_int lda,
double *x, rocblas_int incx)

rocblas_status rocblas_strsv (rocblas_handle handle, rocblas_fill uplo, rocblas_operation transA,
rocblas_diagonal diag, rocblas_int m, const float *A, rocblas_int Ilda,

float *x, rocblas_int incx)
BLAS Level 2 API.

trsv solves

Axx = alphaxb or Ax+xTxx = alphaxb,

where x and b are vectors and A is a triangular matrix.

The vector x is overwritten on b.

Parameters

* [in] handle: rocblas_handle. handle to the rocblas library context queue.

110 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

* [in] uplo: rocblas_fill. rocblas_fill_upper: A is an upper triangular matrix. rocblas_fill_lower: A
is a lower triangular matrix.

* [in] transA:rocblas_operation

* [in] diag: rocblas_diagonal. rocblas_diagonal_unit: A is assumed to be unit triangular.
rocblas_diagonal_non_unit: A is not assumed to be unit triangular.

e [in] m: rocblas_int m specifies the number of rows of b. m >= 0.

* [in] alpha: specifies the scalar alpha.

e [in] A: pointer storing matrix A on the GPU, of dimension (Ida, m)

* [in] lda: rocblas_int specifies the leading dimension of A. lda = max(1, m).
e [in] x: pointer storing vector x on the GPU.

* [in] incx: specifies the increment for the elements of x.

2.9.2.9.2.14 rocblas_<type>ger()

rocblas_status rocblas_dger (rocblas_handle handle, rocblas_int m, rocblas_int n, const double *alpha,
const double *x, rocblas_int incx, const double *y, rocblas_int incy, dou-
ble *A, rocblas_int lda)

rocblas_status rocblas_sger (rocblas_handle handle, rocblas_int m, rocblas_int n, const float *alpha,
const float *x, rocblas_int incx, const float *y, rocblas_int incy, float *A,

rocblas_int lda)
BLAS Level 2 API.

xHE(SY)MV performs the matrix-vector operation:

y := alphaxAxx + betaxry,

where alpha and beta are scalars, x and y are n element vectors and A is an n by n Hermitian(Symmetric) matrix.
BLAS Level 2 API
Parameters
* [in] handle: rocblas_handle. handle to the rocblas library context queue.
* [in] uplo: rocblas_fill. specifies whether the upper or lower
e [in] n: rocblas_int.
* [in] alpha: specifies the scalar alpha.
e [in] A: pointer storing matrix A on the GPU.
* [in] lda: rocblas_int specifies the leading dimension of A.
* [in] x: pointer storing vector x on the GPU.
* [in] incx: specifies the increment for the elements of x.
* [in] Dbeta: specifies the scalar beta.
e [out] y: pointer storing vector y on the GPU.
* [in] incy: rocblas_int specifies the increment for the elements of y.

xGER performs the matrix-vector operations

2.9. ROCm Libraries 111

ReadTheDocs-Breathe Documentation, Release 1.0.0

A := A + alpha*xxy*«T

where alpha is a scalars, x and y are vectors, and A is an m by n matrix.

Parameters
* [in] handle: rocblas_handle. handle to the rocblas library context queue.
e [in] m: rocblas_int
e [in] n: rocblas_int
e [in] alpha: specifies the scalar alpha.
* [in] x: pointer storing vector x on the GPU.
* [in] incx: rocblas_int specifies the increment for the elements of x.
* [in] y: pointer storing vector y on the GPU.
* [in] incy: rocblas_int specifies the increment for the elements of y.
e [inout] A: pointer storing matrix A on the GPU.

* [in] 1lda: rocblas_int specifies the leading dimension of A.

2.9.2.9.2.15 rocblas_<type>syr()

rocblas_status rocblas_dsyr (rocblas_handle handle, rocblas_fill uplo, rocblas_int n, const double *al-
pha, const double *x, rocblas_int incx, double *A, rocblas_int lda)

rocblas_status rocblas_ssyr (rocblas_handle handle, rocblas_fill uplo, rocblas_int n, const float *alpha,

const float *x, rocblas_int incx, float *A, rocblas_int lda)
BLAS Level 2 APL

xSYR performs the matrix-vector operations

A := A + alpha»x*x*xx*T

where alpha is a scalars, x is a vector, and A is an n by n symmetric matrix.

Parameters
* [in] handle: rocblas_handle. handle to the rocblas library context queue.
e [in] n: rocblas_int
* [in] alpha: specifies the scalar alpha.
e [in] x: pointer storing vector x on the GPU.
* [in] incx: rocblas_int specifies the increment for the elements of x.
e [inout] A: pointer storing matrix A on the GPU.

* [in] 1lda: rocblas_int specifies the leading dimension of A.

112 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

2.9.2.9.2.16 Level 3 BLAS
2.9.2.9.2.17 rocblas_<type>trtri_batched()

rocblas_status rocblas_dtrtri_batched (rocblas_handle handle, rocblas_fill uplo, rocblas_diagonal
diag, rocblas_int n, const double *A, rocblas_int lda,
rocblas _int stride_a, double *invA, rocblas int IldinvA,
rocblas_int bsinvA, rocblas_int batch_count)

rocblas_status rocblas_strtri_batched (rocblas_handle handle, rocblas_fill uplo, rocblas_diagonal
diag, rocblas_int n, const float *A, rocblas_int lda,
rocblas_int stride_a, float *invA, rocblas_int IdinvA,

rocblas_int bsinvA, rocblas_int batch_count)
BLAS Level 3 API.

trtri compute the inverse of a matrix A

inv (A);

Parameters
* [in] handle: rocblas_handle. handle to the rocblas library context queue.

* [in] uplo: rocblas_fill. specifies whether the upper ‘rocblas_fill_upper’ or lower
‘rocblas_fill_lower’

* [in] diag: rocblas_diagonal. = °‘rocblas_diagonal_non_unit’, A is non-unit triangular; =
‘rocblas_diagonal_unit’, A is unit triangular;

e [in] n: rocblas_int.
* [in] A: pointer storing matrix A on the GPU.
e [in] 1lda: rocblas_int specifies the leading dimension of A.

e [in] stride_a: rocblas_int “batch stride a”: stride from the start of one “A” matrix to the next

2.9.2.9.2.18 rocblas_<type>trsm()

rocblas_status roeblas_dtrsm (rocblas_handle handle, rocblas_side side, rocblas_fill uplo,
rocblas_operation transA, rocblas_diagonal diag, rocblas_int m,
rocblas_int n, const double *alpha, const double *A, rocblas_int
lda, double *B, rocblas_int ldb)

rocblas_status roeblas_strsm (rocblas_handle handle, rocblas_side side, rocblas_fill uplo,
rocblas_operation transA, rocblas_diagonal diag, rocblas_int m,
rocblas_int n, const float *alpha, const float *A, rocblas_int lda,

float *B, rocblas_int ldb)
BLAS Level 3 APL

trsm solves

op (A) *X = alpha*B or Xxop(A) = alphaxB,

where alpha is a scalar, X and B are m by n matrices, A is triangular matrix and op(A) is one of

2.9. ROCm Libraries 113

ReadTheDocs-Breathe Documentation, Release 1.0.0

op(A) = A or op(A) = A"T or op(A) = A"H.

The matrix X is overwritten on B.

Parameters
* [in] handle: rocblas_handle. handle to the rocblas library context queue.

* [in] side: rocblas_side. rocblas_side_left: op(A)*X = alpha*B. rocblas_side_right: X*op(A) =
alpha*B.

* [in] uplo: rocblas_fill. rocblas_fill_upper: A is an upper triangular matrix. rocblas_fill_lower: A
is a lower triangular matrix.

* [in] transA: rocblas_operation. transB: op(A) = A. rocblas_operation_transpose: op(A) = A"T.
rocblas_operation_conjugate_transpose: op(A) = A*H.

* [in] diag: rocblas_diagonal. rocblas_diagonal_unit: A is assumed to be unit triangular.
rocblas_diagonal_non_unit: A is not assumed to be unit triangular.

e [in] m: rocblas_int. m specifies the number of rows of B. m >= 0.
* [in] n: rocblas_int. n specifies the number of columns of B. n >= 0.

* [in] alpha: alpha specifies the scalar alpha. When alpha is &zero then A is not referenced and B
need not be set before entry.

e [in] A: pointer storing matrix A on the GPU. of dimension (lda, k), where k is m when
rocblas_side_left and is n when rocblas_side_right only the upper/lower triangular part is accessed.

* [in] 1lda: rocblas_int. lda specifies the first dimension of A. if side = rocblas_side_left, 1da >=
max(1, m), if side = rocblas_side_right, lda >= max(1, n).

2.9.2.9.2.19 rocblas_<type>gemm()

rocblas_status rocblas_dgemm (rocblas_handle handle, rocblas_operation transa, rocblas_operation

transb, rocblas_int m, rocblas_int n, rocblas_int k, const double *al-
pha, const double *A, rocblas_int lda, const double *B, rocblas_int
ldb, const double *beta, double *C, rocblas_int ldc)

rocblas_status rocblas_sgemm (rocblas_handle handle, rocblas_operation transa, rocblas_operation

transb, rocblas_int m, rocblas_int n, rocblas_int k, const float *alpha,
const float *A, rocblas_int lda, const float *B, rocblas_int ldb, const
float *beta, float *C, rocblas_int ldc)

rocblas_status rocblas_hgemm (rocblas_handle handle, rocblas_operation transa, rocblas_operation

transb, rocblas_int m, rocblas_int n, rocblas_int k, const rocblas_half
*alpha, const rocblas_half *A, rocblas_int lda, const rocblas_half *B,
rocblas_int ldb, const rocblas_half *beta, rocblas_half *C, rocblas_int

ldc)
BLAS Level 3 APL

xGEMM performs one of the matrix-matrix operations

C = alpha*op(A)*xop(B) + betaxC,

where op(X) is one of

114

Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

op(X)
op(X)
op(X)

= X

or

= X*x*T or
= X*«*H,

alpha and beta are scalars, and A, B and C are matrices, with op(A) an m by k matrix, op(B) a k by n matrix
and C an m by n matrix.

Parameters

[in]
[in]
[in]
[in]
[in]
[in]
[in]
[in]
[in]
[in]
[in]

[in]

handle: rocblas_handle, handle to the rocblas library context queue.
transA: rocblas_operation, specifies the form of op(A)

transB: rocblas_operation, specifies the form of op(B)

m: rocblas_int, number or rows of matrices op(A) and C

n: rocblas_int, number of columns of matrices op(B) and C

k: rocblas_int, number of columns of matrix op(A) and number of rows of matrix op(B)
alpha: specifies the scalar alpha.

A: pointer storing matrix A on the GPU.

1lda: rocblas_int, specifies the leading dimension of A.

B: pointer storing matrix B on the GPU.

1db: rocblas_int, specifies the leading dimension of B.

beta: specifies the scalar beta.

[inout] C: pointer storing matrix C on the GPU.

[in]

1dc: rocblas_int, specifies the leading dimension of C.

2.9.2.9.2.20 rocblas_<type>gemm_strided_batched()

rocblas_status rocblas_dgemm_strided_batched (rochlas_handle handle, rocblas_operation

transa, rocblas_operation transb, rocblas_int
m, rocblas_int n, rocblas_int k, const dou-
ble *alpha, const double *A, rocblas_int
lda, rocblas_int stride_a, const double *B,
rocblas_int ldb, rocblas_int stride_b, const dou-
ble *beta, double *C, rocblas_int ldc, rocblas_int
stride_c, rocblas_int batch_count)

rocblas_status rocblas_sgemm_strided_batched (rochlas_handle handle, rocblas_operation

transa, rocblas_operation transb, rocblas_int
m, rocblas_int n, rocblas_int k, const float *al-
pha, const float *A, rocblas_int lda, rocblas_int
stride_a, const float *B, rocblas_int ldb,
rocblas_int stride_b, const float *beta, float *C,
rocblas_int ldc, rocblas_int stride_c, rocblas_int
batch_count)

2.9. ROCm Libraries 115

ReadTheDocs-Breathe Documentation, Release 1.0.0

rocblas_status rocblas_hgemm_strided_batched (rochlas_handle handle, rocblas_operation
transa, rocblas_operation transb, rocblas_int m,
rocblas_int n, rocblas_int k, const rocblas_half
*alpha, const rocblas_half *A, rocblas_int lda,
rocblas_int stride_a, const rocblas_half *B,
rocblas _int ldb, rocblas int stride_b, const
rocblas_half *beta, rocblas_half *C, rocblas_int

ldc, rocblas_int stride_c, rocblas_int batch_count)
BLAS Level 3 APL

xGEMM_STRIDED_BATCHED performs one of the strided batched matrix-matrix operations

C[i*stride_c] = alpha*op(A[ixstride_a])+op(Blixstride_b]) + betaxC[ixstride_
—c], for i in

[0,batch_count-1]

where op(X) is one of

op(X) =X or
op(X) = XxxT or
op(X) = Xx«H,

alpha and beta are scalars, and A, B and C are strided batched matrices, with op(A) an m by k by batch_count
strided_batched matrix, op(B) an k by n by batch_count strided_batched matrix and C an m by n by batch_count
strided_batched matrix.
Parameters

* [in] handle: rocblas_handle. handle to the rocblas library context queue.

* [in] transA:rocblas_operation specifies the form of op(A)

* [in] transB: rocblas_operation specifies the form of op(B)

e [in] m: rocblas_int. matrix dimention m.

e [in] n: rocblas_int. matrix dimention n.

e [in] k: rocblas_int. matrix dimention k.

* [in] alpha: specifies the scalar alpha.

e [in] A: pointer storing strided batched matrix A on the GPU.

e [in] lda: rocblas_int specifies the leading dimension of “A”.

e [in] stride_a: rocblas_int stride from the start of one “A” matrix to the next

* [in] B: pointer storing strided batched matrix B on the GPU.

e [in] 1db: rocblas_int specifies the leading dimension of “B”.

e [in] stride_b: rocblas_int stride from the start of one “B’ matrix to the next

* [in] Dbeta: specifies the scalar beta.

* [inout] C: pointer storing strided batched matrix C on the GPU.

e [in] ldc: rocblas_int specifies the leading dimension of “C”.

e [in] stride_c: rocblas_int stride from the start of one “C” matrix to the next

* [in] batch_count: rocblas_int number of gemm operatons in the batch

116 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

2.9.2.9.2.21 rocblas_<type>gemm_kernel_name()

rocblas_status rocblas_dgemm kernel_name (rocblas_handle handle, rocblas_operation transa,
rocblas_operation transb, rocblas_int m, rocblas_int n,
rocblas_int k, const double *alpha, const double
*A, rocblas_int lda, rocblas_int stride_a, const double
*B, rocblas_int ldb, rocblas_int stride_b, const double
*beta, double *C, rocblas_int ldc, rocblas_int stride_c,
rocblas_int batch_count)

rocblas_status rocblas_sgemm_kernel_name (rocblas_handle handle, rocblas_operation transa,
rocblas_operation transb, rocblas_int m, rocblas_int
n, rocblas_int k, const float *alpha, const float
*A, rocblas_int lda, rocblas_int stride_a, const float
*B, rocblas_int ldb, rocblas_int stride_b, const float
*beta, float *C, rocblas_int ldc, rocblas_int stride_c,
rocblas_int batch_count)

rocblas_status rocblas_hgemm kernel_name (rocblas_handle handle, rocblas_operation transa,
rocblas_operation transb, rocblas_int m, rocblas_int
n, rocblas_int k, const rocblas_half *alpha, const
rocblas_half *A, rocblas_int lda, rocblas_int stride_a,
const rocblas_half *B, rocblas_int ldb, rocblas_int
stride_b, const rocblas_half *beta, rocblas_half
*C, rocblas_int ldc, rocblas_int stride_c, rocblas_int
batch_count)

2.9.2.9.2.22 rocblas_<type>geam()

rocblas_status rocblas_dgeam (rocblas_handle handle, rocblas_operation transa, rocblas_operation
transb, rocblas_int m, rocblas_int n, const double *alpha, const double
*A, rocblas_int lda, const double *beta, const double *B, rocblas_int
ldb, double *C, rocblas_int ldc)

rocblas_status rocblas_sgeam (rocblas_handle handle, rocblas_operation transa, rocblas_operation
transb, rocblas_int m, rocblas_int n, const float *alpha, const float *A,
rocblas_int lda, const float *beta, const float *B, rocblas_int ldb, float

*C, rocblas_int ldc)
BLAS Level 3 APIL

XxGEAM performs one of the matrix-matrix operations

C = alpha*op(A) + betaxop(B),

where op(X) is one of

op(X) =X or
op(X) = Xx«T or
op(X) = XxxH,

alpha and beta are scalars, and A, B and C are matrices, with op(A) an m by n matrix, op(B) an m by n matrix,
and C an m by n matrix.

Parameters

* [in] handle: rocblas_handle. handle to the rocblas library context queue.

2.9. ROCm Libraries 117

ReadTheDocs-Breathe Documentation, Release 1.0.0

* [in]
* [in]
* [in]
* [in]
* [in]
* [in]
* [in]
* [in]
* [in]

* [in]

transA: rocblas_operation specifies the form of op(A)
transB: rocblas_operation specifies the form of op(B)
m: rocblas_int.

n: rocblas_int.

alpha: specifies the scalar alpha.

A: pointer storing matrix A on the GPU.

1da: rocblas_int specifies the leading dimension of A.
beta: specifies the scalar beta.

B: pointer storing matrix B on the GPU.

1db: rocblas_int specifies the leading dimension of B.

* [inout] C: pointer storing matrix C on the GPU.

* [in]

1dc: rocblas_int specifies the leading dimension of C.

2.9.2.9.2.23 BLAS Extensions

2.9.2.9.2.24 rocblas_gemm_ex()

rocblas_status rocblas_gemm_ex (rocblas_handle handle, rocblas_operation trans_a, rocblas_operation

trans_b, rocblas_int m, rocblas_int n, rocblas _int k, const void
*alpha, const void *a, rocblas_datatype a_type, rocblas_int lda,
const void *b, rocblas_datatype b_type, rocblas_int ldb, const void
*beta, const void *c, rochlas_datatype c_type, rocblas_int ldc, void
*d, rocblas_datatype d_type, rocblas_int ldd, rocblas_datatype com-
pute_type, rocblas_gemm_algo algo, int32_t solution_index, uint32_t
flags, size_t *workspace_size, void *workspace)

2.9.2.9.2.25 rocblas_gemm_strided_batched_ex()

rocblas_status rocblas_gemm_strided_batched_ex (rocblas_handle handle, rocblas_operation

BLAS EX APL

trans_a, rocblas_operation trans_b, rocblas_int
m, rocblas_int n, rocblas _int k, const void
*alpha, const void *a, rocblas_datatype
a_type, rocblas_int lda, rocblas_long stride_a,
const void *b, rocblas_datatype b_type,
rocblas_int ldb, rocblas_long stride_b, const
void *beta, const void *c, rocblas_datatype
c_type, rocblas_int ldc, rocblas_long
stride_c, void *d, rocblas_datatype d_type,
rocblas_int ldd, rocblas_long stride_d,
rocblas_int batch_count, rocblas_datatype
compute_type, rocblas_gemm_algo algo,
int32_t solution_index, uint32_t flags, size_t
*workspace_size, void *workspace)

GEMM_EX performs one of the matrix-matrix operations

118

Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

D = alphaxop(A)*op(B) + betaxC,

where op(X) is one of

op(X) =X or
op(X) = Xx«T or
op(X) = XxxH,

alpha and beta are scalars, and A, B, C, and D are matrices, with op(A) an m by k matrix, op(B) ak by n
matrix and C and D are m by n matrices.
Parameters
* [in] handle: rocblas_handle. handle to the rocblas library context queue.
* [in] transA: rocblas_operation specifies the form of op(A)
* [in] transB: rocblas_operation specifies the form of op(B)
e [in] m: rocblas_int. matrix dimension m
e [in] n: rocblas_int. matrix dimension n
e [in] k: rocblas_int. matrix dimension k
* [in] alpha: const void * specifies the scalar alpha. Same datatype as compute_type.
e [in] a: void * pointer storing matrix A on the GPU.
* [in] a_type: rocblas_datatype specifies the datatype of matrix A
* [in] 1lda: rocblas_int specifies the leading dimension of A.
* [in] b: void * pointer storing matrix B on the GPU.
* [in] b_type: rocblas_datatype specifies the datatype of matrix B
e [in] 1db: rocblas_int specifies the leading dimension of B.
* [in] beta: const void * specifies the scalar beta. Same datatype as compute_type.
e [in] c: void * pointer storing matrix C on the GPU.
* [in] c_type: rocblas_datatype specifies the datatype of matrix C
* [in] 1ldc: rocblas_int specifies the leading dimension of C.
* [out] d: void * pointer storing matrix D on the GPU.
* [in] d_type: rocblas_datatype specifies the datatype of matrix D
e [in] 1dd: rocblas_int specifies the leading dimension of D.
* [in] compute_type: rocblas_datatype specifies the datatype of computation
* [in] algo: rocblas_gemm_algo enumerant specifying the algorithm type.
e [in] solution_index: int32_t reserved for future use

* [in] flags: uint32_t reserved for future use

2.9. ROCm Libraries 119

ReadTheDocs-Breathe Documentation, Release 1.0.0

2.9.2.9.2.26 Build Information

2.9.2.9.2.27 rocblas_get_version_string()

rocblas_status rocblas_get_version_string (char *buf, size_t len)

BLAS EX APL
GEMM_STRIDED_BATCHED_EX performs one of the strided_batched matrix-matrix operations

D[ixstride_d] = alphaxop(A[ixstride_al])*op(B[ixstride_b]) + betaxCl[ixstride_c],
—for i in

[0,batch_count-1]

where op(X) is one of

op(X) =X or
op(X) = XxxT or
op(X) = XxxH,

alpha and beta are scalars, and A, B, C, and D are strided_batched matrices, with op(A) an m by k by
batch_count strided_batched matrix, op(B) a k by n by batch_count strided_batched matrix and C and D
are m by n by batch_count strided_batched matrices.

The strided_batched matrices are multiple matrices separated by a constant stride. The number of matrices is
batch_count.
Parameters
* [in] handle: rocblas_handle. handle to the rocblas library context queue.
* [in] transA: rocblas_operation specifies the form of op(A)
* [in] transB: rocblas_operation specifies the form of op(B)
e [in] m: rocblas_int. matrix dimension m
e [in] n: rocblas_int. matrix dimension n
e [in] k: rocblas_int. matrix dimension k
* [in] alpha: const void * specifies the scalar alpha. Same datatype as compute_type.
e [in] a: void * pointer storing matrix A on the GPU.
* [in] a_type: rocblas_datatype specifies the datatype of matrix A
* [in] 1lda: rocblas_int specifies the leading dimension of A.
* [in] stride_a: rocblas_long specifies stride from start of one “A” matrix to the next
* [in] b: void * pointer storing matrix B on the GPU.
* [in] Db_type: rocblas_datatype specifies the datatype of matrix B
* [in] 1db: rocblas_int specifies the leading dimension of B.
* [in] stride_b: rocblas_long specifies stride from start of one “B” matrix to the next
* [in] beta: const void * specifies the scalar beta. Same datatype as compute_type.
e [in] c: void * pointer storing matrix C on the GPU.

* [in] c_type: rocblas_datatype specifies the datatype of matrix C

120

Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

* [in]

* [in]

e [out]

* [in]
* [in]
* [in]
* [in]
* [in]
* [in]
* [in]

e [in]

1ldc: rocblas_int specifies the leading dimension of C.

stride_c: rocblas_long specifies stride from start of one “C” matrix to the next
d: void * pointer storing matrix D on the GPU.

d_type: rocblas_datatype specifies the datatype of matrix D

1dd: rocblas_int specifies the leading dimension of D.

stride_d: rocblas_long specifies stride from start of one “D” matrix to the next

batch_count: rocblas_int number of gemm operations in the batch

compute_type: rocblas_datatype specifies the datatype of computation

algo: rocblas_gemm_algo enumerant specifying the algorithm type.

solution_index: int32_t reserved for future use

flags: uint32_t reserved for future use

2.9.2.9.2.28 Auxiliary

2.9.2.9.2.29 rocblas_pointer_to_mode()

rocblas_pointer_mode rocblas_pointer_ to_mode (void *ptr)
indicates whether the pointer is on the host or device. currently HIP API can only recoginize the input ptr on
deive or not can not recoginize it is on host or not

2.9.2.9.2.30 rocblas_create_handle()

rocblas_status rocblas_create_handle (rocblas_handle *handle)

2.9.2.9.2.31 rocblas_destroy_handle()

rocblas_status rocblas_destroy_handle (rocblas_handle handle)

2.9.2.9.2.32 rocblas_add_stream()

rocblas_status rocblas_add_stream (rochlas_handle handle, hipStream_t stream)

2.9.2.9.2.33 rocblas_set_stream()

rocblas_status rocblas_set_stream (rochlas_handle handle, hipStream_t stream)

2.9.2.9.2.34 rocblas_get_stream()

rocblas_status rocblas_get_stream (rocblas_handle handle, hipStream_t *stream)

2.9. ROCm Libraries 121

ReadTheDocs-Breathe Documentation, Release 1.0.0

2.9.2.9.2.35 rocblas_set_pointer_mode()

rocblas_status rocblas_set_pointer_ mode (rocblas_handle handle, rocblas_pointer_mode
pointer_mode)

2.9.2.9.2.36 rocblas_get_pointer_mode()

rocblas_status rocblas_get_pointer_mode (rochlas_handle handle, rocblas_pointer_mode
*pointer_mode)

2.9.2.9.2.37 rocblas_set_vector()

rocblas_status rocblas_set_ wvector (rocblas _int n, rocblas_int elem_size, const void *x, rocblas_int
incx, void *y, rocblas_int incy)

2.9.2.9.2.38 rocblas_get_vector()

rocblas_status rocblas_get_vector (rochlas_int n, rocblas_int elem_size, const void *x, rocblas_int
incx, void *y, rocblas_int incy)

2.9.2.9.2.39 rocblas_set_matrix()

rocblas_status rocblas_set_matrix (rocblas_int rows, rocblas_int cols, rocblas_int elem_size, const
void *a, rocblas_int lda, void *b, rocblas_int ldb)

2.9.2.9.2.40 rocblas_get_matrix()

rocblas_status rocblas_get_matrix (rocblas_int rows, rocblas_int cols, rocblas_int elem_size, const
void *a, rocblas_int lda, void *b, rocblas_int ldb)

2.9.2.10 All API

namespace rocblas

Functions

void reinit_1logs ()

file rocblas—auxiliary.h
#include <hip/hip_runtime_api.h>#include “rocblas-types.h” rocblas-auxiliary.h provides auxilary functions
in rocblas

Defines

_ROCBLAS_AUXILIARY H

122 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

Functions

rocblas_pointer_mode rocblas_pointer_to_mode (void *ptr)
indicates whether the pointer is on the host or device. currently HIP API can only recoginize the input ptr
on deive or not can not recoginize it is on host or not

rocblas_status rocblas_create _handle (rocblas_handle *handle)

rocblas_status rocblas_destroy_handle (rocblas_handle handle)

rocblas_status rocblas_add_stream (rocblas_handle handle, hipStream_t stream)
rocblas_status rocblas_set_stream (rocblas_handle handle, hipStream_t stream)
rocblas_status rocblas_get_stream (rochlas_handle handle, hipStream_t *stream)

rocblas_status rocblas_set_pointer_mode (rocblas_handle handle, rocblas_pointer_mode
pointer_mode)

rocblas_status rocblas_get_pointer_mode (rocblas_handle handle, rocblas_pointer_mode
*pointer_mode)

rocblas_status rocblas_set_wvector (rocblas_int n, rocblas_int elem_size, const void *x,
rocblas_int incx, void *y, rocblas_int incy)

rocblas_status rocblas_get_vector (rochlas_int n, rocblas_int elem_size, const void *ux,
rocblas_int incx, void *y, rocblas_int incy)

rocblas_status rocblas_set_matrix (rocblas_int rows, rocblas_int cols, rocblas_int elem_size,
const void *a, rocblas_int lda, void *b, rocblas_int ldb)

rocblas_status rocblas_get_matrix (rocblas_int rows, rocblas_int cols, rocblas_int elem_size,
const void *a, rocblas_int lda, void *b, rocblas_int ldb)

file rocblas—functions.h
#include “rocblas-types.h” rocblas_functions.h provides Basic Linear Algebra Subprograms of Level 1, 2 and 3,
using HIP optimized for AMD HCC-based GPU hardware. This library can also run on CUDA-based NVIDIA
GPUs. This file exposes C89 BLAS interface

Defines

_ROCBLAS_FUNCTIONS_H

Functions

rocblas_status rocblas_sscal (rocblas_handle handle, rocblas_int n, const float *alpha, float *x,

rocblas_int incx)
BLAS Level 1 API

scal scal the vector x[i] with scalar alpha, fori=1,... ,n

X := alpha » x ,

Parameters
* [in] handle: rocblas_handle. handle to the rocblas library context queue.
e [in] n: rocblas_int.
* [in] alpha: specifies the scalar alpha.

* [inout] x: pointer storing vector x on the GPU.

2.9. ROCm Libraries 123

ReadTheDocs-Breathe Documentation, Release 1.0.0

* [in] incx: specifies the increment for the elements of x.

rocblas_status rocblas_dscal (rocblas_handle handle, rocblas_int n, const double *alpha, double
*x, rocblas_int incx)

rocblas_status rocblas_scopy (rocblas_handle handle, rocblas_int n, const float *x, rocblas_int

incx, float *y, rocblas_int incy)
BLAS Level 1 APIL

copy copies the vector x into the vector y, fori=1,... ,n

y = x,

Parameters
* [in] handle: rocblas_handle. handle to the rocblas library context queue.
e [in] n: rocblas_int.
* [in] x: pointer storing vector x on the GPU.
* [in] incx: specifies the increment for the elements of x.
* [out] y: pointer storing vector y on the GPU.
* [in] incy: rocblas_int specifies the increment for the elements of y.

rocblas_status rocblas_dcopy (rocblas_handle handle, rocblas_int n, const double *x, rocblas_int
incx, double *y, rocblas_int incy)

rocblas_status roeblas_sdot (rocblas _handle handle, rocblas_int n, const float *x, rocblas_int incx,

const float *y, rocblas_int incy, float *result)
BLAS Level 1 API

dot(u) perform dot product of vector x and y

’result = X * V;

dotc perform dot product of complex vector x and complex y

’result = conjugate (x) * y;

Parameters
* [in] handle: rocblas_handle. handle to the rocblas library context queue.
e [in] n: rocblas_int.
* [in] x: pointer storing vector x on the GPU.
* [in] incx: rocblas_int specifies the increment for the elements of y.
* [inout] result: store the dot product. either on the host CPU or device GPU. return is 0.0

if n<=0.

rocblas_status roeblas_ddot (rocblas_handle handle, rocblas_int n, const double *x, rocblas_int
incx, const double *y, rochlas_int incy, double *result)

rocblas_status rocblas_sswap (rocblas_handle handle, rocblas_int n, float *x, rocblas_int incx, float

*y, rocblas_int incy)
BLAS Level 1 APL

swap interchange vector x[i] and y[i], fori=1,... ,n

124 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

Parameters
* [in] handle: rocblas_handle. handle to the rocblas library context queue.
e [in] n: rocblas_int.
* [inout] x: pointer storing vector x on the GPU.
* [in] incx: specifies the increment for the elements of x.
* [inout] y: pointer storing vector y on the GPU.
* [in] incy: rocblas_int specifies the increment for the elements of y.

rocblas_status rocblas_dswap (rocblas_handle handle, rocblas_int n, double *x, rocblas_int incx,
double *y, rocblas_int incy)

rocblas_status rocblas_haxpy (rocblas_handle handle, rocblas_int n, const rocblas_half *al-
pha, const rocblas_half *x, rocblas_int incx, rocblas_half *y,

rocblas_int incy)
BLAS Level 1 APL

axpy compute y := alpha * x +y

Parameters
* [in] handle: rocblas_handle. handle to the rocblas library context queue.
e [in] n: rocblas_int.
* [in] alpha: specifies the scalar alpha.
* [in] x: pointer storing vector x on the GPU.
* [in] incx: rocblas_int specifies the increment for the elements of x.
* [out] y: pointer storing vector y on the GPU.
* [inout] incy: rocblas_int specifies the increment for the elements of y.
rocblas_status rocblas_saxpy (rocblas_handle handle, rocblas_int n, const float *alpha, const
float *x, rocblas_int incx, float *y, rocblas_int incy)

rocblas_status rocblas_daxpy (rocblas_handle handle, rocblas_int n, const double *alpha, const
double *x, rocblas_int incx, double *y, rocblas_int incy)

rocblas_status roecblas_sasum (rocblas_handle handle, rocblas_int n, const float *x, rocblas_int

incx, float *result)
BLAS Level 1 API.

asum computes the sum of the magnitudes of elements of a real vector x, or the sum of magnitudes of the
real and imaginary parts of elements if x is a complex vector
Parameters

* [in] handle: rocblas_handle. handle to the rocblas library context queue.

e [in] n: rocblas_int.

* [in] x: pointer storing vector x on the GPU.

* [in] incx: rocblas_int specifies the increment for the elements of y.

2.9.

ROCm Libraries 125

ReadTheDocs-Breathe Documentation, Release 1.0.0

* [inout] result: store the asum product. either on the host CPU or device GPU. return is
0.0 if n, incx<=0.

rocblas_status roeblas_dasum (rocblas_handle handle, rocblas_int n, const double *x, rocblas_int

incx, double *result)

rocblas_status roeblas_snrm2 (rocblas_handle handle, rocblas_int n, const float *x, rocblas_int

incx, float *result)
BLAS Level 1 API.

nrm2 computes the euclidean norm of a real or complex vector := sqrt(x’*x) for real vector := sqrt(
x**H*x) for complex vector
Parameters

* [in] handle: rocblas_handle. handle to the rocblas library context queue.

e [in] n: rocblas_int.

* [in] x: pointer storing vector X on the GPU.

* [in] incx: rocblas_int specifies the increment for the elements of y.

* [inout] result: store the nrm2 product. either on the host CPU or device GPU. return is
0.0 if n, incx<=0.

rocblas_status roeblas_dnrm2 (rocblas_handle handle, rocblas_int n, const double *x, rocblas_int

incx, double *result)

rocblas_status roeblas_isamax (rocblas_handle handle, rocblas_int n, const float *x, rocblas_int

incx, rocblas_int *result)
BLAS Level 1 APIL

amax finds the first index of the element of maximum magnitude of real vector x or the sum of magnitude
of the real and imaginary parts of elements if x is a complex vector
Parameters

* [in] handle: rocblas_handle. handle to the rocblas library context queue.

e [in] n: rocblas_int.

* [in] x: pointer storing vector x on the GPU.

* [in] incx: rocblas_int specifies the increment for the elements of y.

e [inout] result: store the amax index. either on the host CPU or device GPU. return is 0.0
if n, incx<=0.

rocblas_status roeblas_idamax (rocblas_handle handle, rocblas int n, const double *x,

rocblas_int incx, rocblas_int *result)

rocblas_status roeblas_isamin (rocblas_handle handle, rocblas int n, const float *x, rocblas_int

incx, rocblas_int *result)
BLAS Level 1 APL

amin finds the first index of the element of minimum magnitude of real vector x or the sum of magnitude
of the real and imaginary parts of elements if x is a complex vector
Parameters

* [in] handle: rocblas_handle. handle to the rocblas library context queue.

e [in] n: rocblas_int.

126

Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

* [in] x: pointer storing vector x on the GPU.
* [in] incx: rocblas_int specifies the increment for the elements of y.

e [inout] result: store the amin index. either on the host CPU or device GPU. return is 0.0
if n, incx<=0.

rocblas_status roeblas_idamin (rocblas_handle handle, rocblas int n, const double *x,
rocblas_int incx, rocblas_int *result)

rocblas_status rocblas_sgemv (rocblas_handle handle, rocblas_operation trans, rocblas_int m,
rocblas_int n, const float *alpha, const float *A, rocblas_int
lda, const float *x, rocblas_int incx, const float *beta, float *y,
rocblas_int incy)

BLAS Level 2 APL

xGEMYV performs one of the matrix-vector operations
y := alphaxAxx + betaxy, or

y := alpha*xAxxTxx + betaxry, or

y := alphaxAx+H*x + betaxry,

where alpha and beta are scalars, x and y are vectors and A is an m by n matrix.

Parameters

* [in] handle: rocblas_handle. handle to the rocblas library context queue.
* [in] trans: rocblas_operation
e [in] m: rocblas_int
* [in] n: rocblas_int
* [in] alpha: specifies the scalar alpha.
* [in] A: pointer storing matrix A on the GPU.
* [in] 1lda: rocblas_int specifies the leading dimension of A.
* [in] x: pointer storing vector x on the GPU.
* [in] incx: specifies the increment for the elements of x.
* [in] Dbeta: specifies the scalar beta.
* [out] y: pointer storing vector y on the GPU.
* [in] incy: rocblas_int specifies the increment for the elements of y.

rocblas_status rocblas_dgemv (rocblas_handle handle, rocblas_operation trans, rocblas_int m,

rocblas_int n, const double *alpha, const double *A, rocblas_int

lda, const double *x, rocblas_int incx, const double *beta, double
*y, rocblas_int incy)

rocblas_status rocblas_strsv (rocblas_handle handle, rocblas_fill uplo, rocblas_operation transA,
rocblas_diagonal diag, rocblas_int m, const float *A, rocblas_int

lda, float *x, rocblas_int incx)
BLAS Level 2 APL

trsv solves

Axx = alpha*b or AxxTxx = alphaxb,

. ROCm Libraries 127

ReadTheDocs-Breathe Documentation, Release 1.0.0

where x and b are vectors and A is a triangular matrix.

The vector x is overwritten on b.

Parameters
* [in] handle: rocblas_handle. handle to the rocblas library context queue.

* [in] uplo: rocblas_fill. rocblas_fill_upper: A is an upper triangular matrix.
rocblas_fill_lower: A is a lower triangular matrix.

* [in] transA:rocblas_operation

* [in] diag: rocblas_diagonal. rocblas_diagonal_unit: A is assumed to be unit triangular.
rocblas_diagonal_non_unit: A is not assumed to be unit triangular.

* [in] m: rocblas_int m specifies the number of rows of b. m >= 0.
* [in] alpha: specifies the scalar alpha.
* [in] A: pointer storing matrix A on the GPU, of dimension (lda, m)
* [in] 1lda: rocblas_int specifies the leading dimension of A. lda = max(1, m).
* [in] x: pointer storing vector X on the GPU.
* [in] incx: specifies the increment for the elements of x.
rocblas_status rocblas_dtrsv (rocblas_handle handle, rocblas_fill uplo, rocblas_operation transA,

rocblas_diagonal diag, rocblas_int m, const double *A, rocblas_int
lda, double *x, rocblas_int incx)

rocblas_status rocblas_sger (rocblas_handle handle, rocblas_int m, rocblas_int n, const float *al-
pha, const float *x, rocblas_int incx, const float *y, rocblas_int

incy, float *A, rocblas_int lda)
BLAS Level 2 APL

xHE(SY)MYV performs the matrix-vector operation:

y := alphaxAxx + betaxry,

where alpha and beta are scalars, x and y are n element vectors and A is an n by n Hermitian(Symmetric)
matrix.

BLAS Level 2 API
Parameters
* [in] handle: rocblas_handle. handle to the rocblas library context queue.
* [in] wuplo: rocblas_fill. specifies whether the upper or lower
e [in] n: rocblas_int.
* [in] alpha: specifies the scalar alpha.
* [in] A: pointer storing matrix A on the GPU.
* [in] 1lda: rocblas_int specifies the leading dimension of A.
* [in] x: pointer storing vector x on the GPU.
* [in] incx: specifies the increment for the elements of x.
* [in] Dbeta: specifies the scalar beta.

* [out] y: pointer storing vector y on the GPU.

128 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

* [in] incy: rocblas_int specifies the increment for the elements of y.

xGER performs the matrix-vector operations

A := A + alphaxxxy**T

where alpha is a scalars, x and y are vectors, and A is an m by n matrix.

Parameters

* [in] handle: rocblas_handle. handle to the rocblas library context queue.
e [in] m: rocblas_int
e [in] n: rocblas_int
* [in] alpha: specifies the scalar alpha.
* [in] x: pointer storing vector x on the GPU.
* [in] incx: rocblas_int specifies the increment for the elements of x.
* [in] vy: pointer storing vector y on the GPU.
* [in] incy: rocblas_int specifies the increment for the elements of y.
* [inout] A: pointer storing matrix A on the GPU.
* [in] 1lda: rocblas_int specifies the leading dimension of A.

rocblas_status rocblas_dger (rocblas_handle handle, rocblas_int m, rocblas_int n, const dou-

ble *alpha, const double *x, rocblas_int incx, const double *y,
rocblas_int incy, double *A, rocblas_int lda)

rocblas_status rocblas_ssyr (rochblas_handle handle, rocblas_fill uplo, rocblas_int n, const float

*alpha, const float *x, rocblas_int incx, float *A, rocblas_int lda)
BLAS Level 2 APL

xSYR performs the matrix-vector operations

A := A + alpha*x*x*«T

where alpha is a scalars, x is a vector, and A is an n by n symmetric matrix.

Parameters

* [in] handle: rocblas_handle. handle to the rocblas library context queue.
e [in] n: rocblas_int
* [in] alpha: specifies the scalar alpha.
* [in] x: pointer storing vector x on the GPU.
* [in] incx: rocblas_int specifies the increment for the elements of x.
* [inout] A: pointer storing matrix A on the GPU.
* [in] 1lda: rocblas_int specifies the leading dimension of A.

rocblas_status rocblas_dsyr (rocblas_handle handle, rocblas_fill uplo, rocblas_int n, const dou-

ble *alpha, const double *x, rocblas_int incx, double *A, rocblas_int
lda)

. ROCm Libraries 129

ReadTheDocs-Breathe Documentation, Release 1.0.0

rocblas_status rocblas_strtri (rocblas_handle handle, rocblas_fill uplo, rocblas_diagonal diag,
rocblas_int n, const float *A, rocblas_int lda, float *invA,

rocblas_int ldinvA)
BLAS Level 3 APL

trtri compute the inverse of a matrix A, namely, invA

and write the result into invA;

Parameters
* [in] handle: rocblas_handle. handle to the rocblas library context queue.

e [in] uplo: rocblas_fill. specifies whether the upper ‘rocblas_fill_upper’ or lower
‘rocblas_fill_lower’ if rocblas_fill_upper, the lower part of A is not referenced if
rocblas_fill_lower, the upper part of A is not referenced

* [in] diag: rocblas_diagonal. = ‘rocblas_diagonal_non_unit’, A is non-unit triangular; =
‘rocblas_diagonal_unit’, A is unit triangular;

e [in] n: rocblas_int. size of matrix A and invA
* [in] A: pointer storing matrix A on the GPU.

* [in] 1lda: rocblas_int specifies the leading dimension of A.

rocblas_status rocblas_dtrtri (rocblas_handle handle, rocblas_fill uplo, rocblas_diagonal diag,
rocblas_int n, const double *A, rocblas_int lda, double *invA,
rocblas_int ldinvA)

rocblas_status rocblas_strtri_ batched (rocblas handle handle, rocblas_fill uplo,
rocblas_diagonal diag, rocblas_int n, const float
*A, rocblas_int lda, rocblas_int stride_a, float *invA,
rocblas_int ldinvA, rocblas_int bsinvA, rocblas_int

batch_count)
BLAS Level 3 APIL

trtri compute the inverse of a matrix A

inv (A);

Parameters
* [in] handle: rocblas_handle. handle to the rocblas library context queue.

* [in] uplo: rocblas_fill. specifies whether the upper ‘rocblas_fill_upper’ or lower
‘rocblas_fill_lower’

* [in] diag: rocblas_diagonal. = ‘rocblas_diagonal_non_unit’, A is non-unit triangular; =
‘rocblas_diagonal_unit’, A is unit triangular;

e [in] n: rocblas_int.
* [in] A: pointer storing matrix A on the GPU.
* [in] 1lda: rocblas_int specifies the leading dimension of A.

e [in] stride_a: rocblas_int “batch stride a”: stride from the start of one “A” matrix to the
next

130 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

rocblas_status rocblas_dtrtri_batched (rocblas_handle handle, rocblas_fill uplo,
rocblas_diagonal diag, rocblas_int n, const double
*A, rocblas_int lda, rocblas_int stride_a, double *invA,
rocblas_int ldinvA, rocblas_int bsinvA, rocblas_int
batch_count)

rocblas_status rocblas_strsm (rocblas_handle handle, rocblas_side side, rocblas_fill uplo,
rocblas_operation transA, rocblas_diagonal diag, rocblas_int
m, rocblas_int n, const float *alpha, const float *A, rocblas_int

lda, float *B, rocblas_int ldb)
BLAS Level 3 API.

trsm solves

’op(A)*X = alpha*B or Xxop(A) = alphaxB,

where alpha is a scalar, X and B are m by n matrices, A is triangular matrix and op(A) is one of

op(A) = A or op(A) = A"T or op(A) = A"H.

The matrix X is overwritten on B.

Parameters
* [in] handle: rocblas_handle. handle to the rocblas library context queue.

* [in] side: rocblas_side. rocblas_side_left: op(A)*X = alpha*B. rocblas_side_right:
X*op(A) = alpha*B.
* [in] uplo: rocblas_fill. rocblas_fill_upper: A is an upper triangular matrix.

rocblas_fill_lower: A is a lower triangular matrix.

* [in] transA: rocblas_operation. transB: op(A) = A. rocblas_operation_transpose: op(A) =
ANT. rocblas_operation_conjugate_transpose: op(A) = A®H.

* [in] diag: rocblas_diagonal. rocblas_diagonal_unit: A is assumed to be unit triangular.
rocblas_diagonal_non_unit: A is not assumed to be unit triangular.

* [in] m: rocblas_int. m specifies the number of rows of B. m >= 0.
* [in] n: rocblas_int. n specifies the number of columns of B. n >=0.

* [in] alpha: alpha specifies the scalar alpha. When alpha is &zero then A is not referenced
and B need not be set before entry.

* [in] A: pointer storing matrix A on the GPU. of dimension (1da, k), where k is m when
rocblas_side_left and is n when rocblas_side_right only the upper/lower triangular part is ac-
cessed.

* [in] 1lda: rocblas_int. Ida specifies the first dimension of A. if side = rocblas_side_left, Ida >=
max(1, m), if side = rocblas_side_right, lda >= max(1, n).

rocblas_status rocblas_dtrsm (rocblas_handle handle, rocblas_side side, rocblas_fill uplo,
rocblas_operation transA, rocblas_diagonal diag, rocblas_int
m, rocblas_int n, const double *alpha, const double *A,
rocblas_int lda, double *B, rocblas_int ldb)

2.9.

ROCm Libraries 131

ReadTheDocs-Breathe Documentation, Release 1.0.0

rocblas_status rocblas_hgemm (rocblas_handle handle, rocblas_operation transa, rocblas_operation
transb, rocblas_int m, rocblas_int n, rocblas_int k, const
rocblas_half *alpha, const rocblas_half *A, rocblas_int lda,
const rocblas_half *B, rocblas_int ldb, const rocblas_half *beta,

rocblas_half *C, rocblas_int ldc)
BLAS Level 3 APL

xGEMM performs one of the matrix-matrix operations

C = alphaxop(A)*op(B) + betaxC,

where op(X) is one of

op(X) =X or
op(X) = XxxT or
op(X) = XxxH,

alpha and beta are scalars, and A, B and C are matrices, with op(A) an m by k matrix, op(B) ak by n
matrix and C an m by n matrix.
Parameters

* [in] handle: rocblas_handle, handle to the rocblas library context queue.

* [in] transA: rocblas_operation, specifies the form of op(A)

* [in] transB: rocblas_operation, specifies the form of op(B)

* [in] m: rocblas_int, number or rows of matrices op(A) and C

* [in] n: rocblas_int, number of columns of matrices op(B) and C

* [in] k: rocblas_int, number of columns of matrix op(A) and number of rows of matrix op(B

)
* [in] alpha: specifies the scalar alpha.
* [in] A: pointer storing matrix A on the GPU.
* [in] 1lda: rocblas_int, specifies the leading dimension of A.
* [in] B: pointer storing matrix B on the GPU.
* [in] 1db: rocblas_int, specifies the leading dimension of B.
* [in] Dbeta: specifies the scalar beta.
* [inout] C: pointer storing matrix C on the GPU.
* [in] 1ldc: rocblas_int, specifies the leading dimension of C.
rocblas_status rocblas_sgemm (rocblas_handle handle, rocblas_operation transa, rocblas_operation
transb, rocblas_int m, rocblas_int n, rocblas_int k, const float *al-

pha, const float *A, rocblas_int lda, const float *B, rocblas_int
ldb, const float *beta, float *C, rocblas_int ldc)

rocblas_status rocblas_dgemm (rocblas_handle handle, rocblas_operation transa, rocblas_operation
transb, rocblas_int m, rocblas_int n, rocblas_int k, const dou-
ble *alpha, const double *A, rocblas_int lda, const double *B,
rocblas_int ldb, const double *beta, double *C, rocblas_int ldc)

132 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

rocblas_status rocblas_hgemm_strided_batched (rochlas_handle handle, rocblas_operation
transa, rocblas_operation transb, rocblas_int
m, rocblas_int n, rocblas_int k, const
rocblas_half *alpha, const rocblas_half
*A, rocblas_int lda, rocblas int stride_a,
const rocblas_half *B, rocblas_int 1db,
rocblas_int stride_b, const rocblas_half
*heta, rocblas_half *C, rocblas_int
ldc, rocblas_int stride_c, rocblas_int

batch_count)
BLAS Level 3 API.

xGEMM_STRIDED_BATCHED performs one of the strided batched matrix-matrix operations

Cl[i*stride_c] = alphaxop(A[ixstride_al])*op(Blixstride_b]) +
—betaxC[irstride_c], for i in

[

[0,batch_count-1]

where op(X) is one of

op(X) =X or
op(X) = XxxT or
op(X) = XxxH,

alpha and beta are scalars, and A, B and C are strided batched matrices, with op(A) an m by k by
batch_count strided_batched matrix, op(B) an k by n by batch_count strided_batched matrix and C an m
by n by batch_count strided_batched matrix.
Parameters

* [in] handle: rocblas_handle. handle to the rocblas library context queue.

* [in] transA: rocblas_operation specifies the form of op(A)

* [in] transB: rocblas_operation specifies the form of op(B)

e [in] m: rocblas_int. matrix dimention m.

e [in] n: rocblas_int. matrix dimention n.

e [in] k: rocblas_int. matrix dimention k.

* [in] alpha: specifies the scalar alpha.

* [in] A: pointer storing strided batched matrix A on the GPU.

* [in] 1lda: rocblas_int specifies the leading dimension of “A”.

e [in] stride_a: rocblas_int stride from the start of one “A” matrix to the next

* [in] B: pointer storing strided batched matrix B on the GPU.

* [in] 1db: rocblas_int specifies the leading dimension of “B”.

e [in] stride_b: rocblas_int stride from the start of one “B” matrix to the next

* [in] Dbeta: specifies the scalar beta.

* [inout] C: pointer storing strided batched matrix C on the GPU.

* [in] 1ldc: rocblas_int specifies the leading dimension of “C”.

e [in] stride_c: rocblas_int stride from the start of one “C” matrix to the next

2.9. ROCm Libraries 133

ReadTheDocs-Breathe Documentation, Release 1.0.0

* [in] batch_count: rocblas_int number of gemm operatons in the batch

rocblas_status rocblas_sgemm_strided_batched (rochlas_handle handle, rocblas_operation
transa, rocblas_operation transb, rocblas_int
m, rocblas_int n, rocblas_int k, const
float *alpha, const float *A, rocblas_int
lda, rocblas_int stride_a, const float
*B, rocblas_int ldb, rocblas_int stride_b,
const float *beta, float *C, rocblas_int
ldc, rocblas_int stride_c, rocblas int
batch_count)

rocblas_status rocblas_dgemm_strided_batched (rochlas_handle handle, rocblas_operation
transa, rocblas_operation transb, rocblas_int
m, rocblas_int n, rocblas_int k, const dou-
ble *alpha, const double *A, rocblas_int
lda, rocblas int stride_a, const double
*B, rocblas_int ldb, rocblas_int stride_b,
const double *beta, double *C, rocblas_int
lde, rocblas_int stride_c, rocblas_int
batch_count)

rocblas_status rocblas_hgemm_kernel_name (rocblas_handle handle, rocblas_operation
transa, rocblas_operation transb, rocblas_int m,
rocblas_int n, rocblas_int k, const rocblas_half
*alpha, const rocblas_half *A, rocblas_int lda,
rocblas_int stride_a, const rocblas_half *B,
rocblas_int ldb, rocblas_int stride_b, const
rocblas_half *beta, rocblas_half *C, rocblas_int
ldc, rocblas_int stride_c, rocblas_int batch_count)

rocblas_status rocblas_sgemm_kernel_name (rocblas_handle handle, rocblas_operation
transa, rocblas_operation transb, rocblas_int
m, rocblas_int n, rocblas_int k, const float *al-
pha, const float *A, rocblas_int lda, rocblas_int
stride_a, const float *B, rocblas int ldb,
rocblas_int stride_b, const float *beta, float *C,
rocblas_int ldc, rocblas_int stride_c, rocblas_int
batch_count)

rocblas_status rocblas_dgemm_kernel_name (rocblas_handle handle, rocblas_operation
transa, rocblas_operation transb, rocblas_int m,
rocblas_int n, rocblas_int k, const double *alpha,
const double *A, rocblas_int lda, rocblas_int
stride_a, const double *B, rocblas_int ldb,
rocblas_int stride_b, const double *beta, dou-
ble *C, rocblas_int ldc, rocblas_int stride_c,
rocblas_int batch_count)

rocblas_status rocblas_sgeam (rocblas_handle handle, rocblas_operation transa, rocblas_operation
transb, rocblas_int m, rocblas_int n, const float *alpha, const
float *A, rocblas_int lda, const float *beta, const float *B,

rocblas_int ldb, float *C, rocblas_int ldc)
BLAS Level 3 APL

XxGEAM performs one of the matrix-matrix operations

134 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

C = alphaxop(A)

+ betaxop(B),

where op(X) is one of

op(X)
op(X)
op(X)

= X
= X*xxT

= X*xxH,

alpha and beta are scalars, and A, B and C are matrices, with op(A) an m by n matrix, op(B) an m by n

matrix, and C an m by n matrix.

Parameters

[in] handle: rocblas_handle. handle to the rocblas library context queue.

[in] transA: rocblas_operation specifies the form of op(A)

[in] transB: rocblas_operation specifies the form of op(B)

[in] m: rocblas_int.

[in] n: rocblas_int.

[in] alpha: specifies the scalar alpha.

[in] A: pointer storing matrix A on the GPU.

[in] 1lda: rocblas_int specifies the leading dimension of A.

[in] beta: specifies the scalar beta.

[in] B: pointer storing matrix B on the GPU.

[in] 1db: rocblas_int specifies the leading dimension of B.

[inout]

C: pointer storing matrix C on the GPU.

[in] 1dc: rocblas_int specifies the leading dimension of C.

rocblas_status rocblas_dgeam (rocblas_handle handle, rocblas_operation transa, rocblas_operation

transb, rocblas_int m, rocblas_int n, const double *alpha, const
double *A, rocblas_int lda, const double *beta, const double *B,
rocblas_int ldb, double *C, rocblas_int ldc)

rocblas_status rocblas_gemm_ex (rocblas_handle handle, rocblas_operation trans_a,

rocblas_operation trans_b, rocblas_int m, rocblas_int
n, rocblas_int k, const void *alpha, const void *a,
rocblas_datatype a_type, rocblas_int lda, const void *b,
rocblas_datatype b_type, rocblas_int ldb, const void *beta,
const void *c, rocblas_datatype c_type, rocblas_int ldc, void
*d, rocblas_datatype d_type, rocblas_int ldd, rocblas_datatype
compute_type, rocblas_gemm_algo algo, int32_t solution_index,
uint32_t flags, size_t *workspace_size, void *workspace)

2.9. ROCm Libraries

135

ReadTheDocs-Breathe Documentation, Release 1.0.0

rocblas_status rocblas_gemm_strided_batched_ex (rocblas_handle handle, rocblas_operation
trans_a, rocblas_operation trans_b,
rocblas_int m, rocblas_int n, rocblas_int
k, const void *alpha, const void *a,
rocblas_datatype a_type, rocblas_int lda,
rocblas_long stride_a, const void *b,
rocblas_datatype b_type, rocblas_int Idb,
rocblas_long stride_b, const void *beta,
const void *c, rocblas_datatype c_type,
rocblas_int ldc, rocblas_long stride_c,
void *d, rocblas_datatype d_type,
rocblas_int ldd, rocblas_long stride_d,
rocblas_int batch_count, rocblas_datatype
compute_type, rocblas_gemm_algo
algo, int32_t solution_index, uint32_t
flags, size_t *workspace_size, void

*workspace)
BLAS EX APL

GEMM_EX performs one of the matrix-matrix operations

D

alpha*op(A)*op(B) + betaxC,

where op(X) is one of

op(X) =X or
op(X) = XxxT or
op(X) = XxxH,

alpha and beta are scalars, and A, B, C, and D are matrices, with op(A) an m by k matrix, op(B) ak by
n matrix and C and D are m by n matrices.
Parameters
* [in] handle: rocblas_handle. handle to the rocblas library context queue.
* [in] transA: rocblas_operation specifies the form of op(A)
* [in] transB: rocblas_operation specifies the form of op(B)
e [in] m: rocblas_int. matrix dimension m
e [in] n: rocblas_int. matrix dimension n
e [in] k: rocblas_int. matrix dimension k
* [in] alpha: const void * specifies the scalar alpha. Same datatype as compute_type.
* [in] a: void * pointer storing matrix A on the GPU.
* [in] a_type: rocblas_datatype specifies the datatype of matrix A
* [in] 1lda: rocblas_int specifies the leading dimension of A.
* [in] b: void * pointer storing matrix B on the GPU.
* [in] b_type: rocblas_datatype specifies the datatype of matrix B
* [in] 1db: rocblas_int specifies the leading dimension of B.
* [in] beta: const void * specifies the scalar beta. Same datatype as compute_type.

* [in] c: void * pointer storing matrix C on the GPU.

136 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

[in]

[in]

[out]

[in]
[in]
[in]
[in]
[in]

[in]

c_type: rocblas_datatype specifies the datatype of matrix C
1dc: rocblas_int specifies the leading dimension of C.
d: void * pointer storing matrix D on the GPU.
d_type: rocblas_datatype specifies the datatype of matrix D
1dd: rocblas_int specifies the leading dimension of D.
compute_type: rocblas_datatype specifies the datatype of computation
algo: rocblas_gemm_algo enumerant specifying the algorithm type.
solution_index: int32_t reserved for future use

flags: uint32_t reserved for future use

rocblas_status rocblas_get_version_string (char *buf, size_t len)

BLAS EX APIL.
GEMM_STRIDED_BATCHED_EX performs one of the strided_batched matrix-matrix operations

D[i*stride_d] = alpha*op(A[i*stride_a])+*op(Blixstride_b]) + betaxC[ixstride_
—c], for i in

[0,batch_count-1]

where op(X) is one of

op(X)
op(X)
op(X)

= X

or

= X*xxT or
= X**H,

alpha and beta are scalars, and A, B, C, and D are strided_batched matrices, with op(A) an m by k by
batch_count strided_batched matrix, op(B) a k by n by batch_count strided_batched matrix and C and D
are m by n by batch_count strided_batched matrices.

The strided_batched matrices are multiple matrices separated by a constant stride. The number of matrices

is batch_count.

Parameters

[in]
[in]
[in]
[in]
[in]
[in]
[in]
[in]
[in]
[in]

[in]

handle: rocblas_handle. handle to the rocblas library context queue.

transA: rocblas_operation specifies the form of op(A)

transB: rocblas_operation specifies the form of op(B)

m: rocblas_int. matrix dimension m

n: rocblas_int. matrix dimension n

k: rocblas_int. matrix dimension k

alpha: const void * specifies the scalar alpha. Same datatype as compute_type.
a: void * pointer storing matrix A on the GPU.

a_type: rocblas_datatype specifies the datatype of matrix A

1da: rocblas_int specifies the leading dimension of A.

stride_a: rocblas_long specifies stride from start of one “A” matrix to the next

2.9. ROCm Libraries

137

ReadTheDocs-Breathe Documentation, Release 1.0.0

* [in] b: void * pointer storing matrix B on the GPU.

* [in] b_type: rocblas_datatype specifies the datatype of matrix B

* [in] 1db: rocblas_int specifies the leading dimension of B.

* [in] stride_b: rocblas_long specifies stride from start of one “B” matrix to the next
* [in] Dbeta: const void * specifies the scalar beta. Same datatype as compute_type.

* [in] c: void * pointer storing matrix C on the GPU.

* [in] c_type: rocblas_datatype specifies the datatype of matrix C

* [in] 1ldc: rocblas_int specifies the leading dimension of C.

* [in] stride_c: rocblas_long specifies stride from start of one “C” matrix to the next
* [out] d: void * pointer storing matrix D on the GPU.

* [in] d_type: rocblas_datatype specifies the datatype of matrix D

* [in] 1dd: rocblas_int specifies the leading dimension of D.

* [in] stride_d: rocblas_long specifies stride from start of one “D” matrix to the next
* [in] batch_count: rocblas_int number of gemm operations in the batch

* [in] compute_type: rocblas_datatype specifies the datatype of computation

* [in] algo: rocblas_gemm_algo enumerant specifying the algorithm type.

e [in] solution_index: int32_t reserved for future use

e [in] flags: uint32_t reserved for future use

file rocblas-types.h

#include <stddef.h>#include <stdint.h>#include <hip/hip_vector_types.h> rocblas-types.h defines data types
used by rocblas

Defines

_ROCBLAS_TYPES_H_

Typedefs
typedef int32_t rocblas_int

To specify whether int32 or int64 is used.
typedef int64_t rocblas_long
typedef float2 rocblas_float_complex
typedef double2 rocblas_double_complex
typedef uintl6_t rocblas_half
typedef float2 rocblas_half_ complex

typedef struct _rocblas_handle *rocblas_handle

138

Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

Enums

enum rocblas_operation
Used to specify whether the matrix is to be transposed or not.

parameter constants. numbering is consistent with CBLAS, ACML and most standard C BLAS libraries
Values:

rocblas_operation_none =111
Operate with the matrix.

rocblas_operation_transpose =112
Operate with the transpose of the matrix.

rocblas_operation_conjugate_transpose =113
Operate with the conjugate transpose of the matrix.

enum rocblas fill
Used by the Hermitian, symmetric and triangular matrix routines to specify whether the upper or lower
triangle is being referenced.

Values:

rocblas_fill_upper =121
Upper triangle.

rocblas_fill lower =122
Lower triangle.

rocblas f£ill full =123

enum rocblas_diagonal
It is used by the triangular matrix routines to specify whether the matrix is unit triangular.

Values:

rocblas_diagonal_non_unit =131
Non-unit triangular.

rocblas_diagonal_unit =132
Unit triangular.

enum rocblas_side
Indicates the side matrix A is located relative to matrix B during multiplication.

Values:

rocblas_side_left = 141
Multiply general matrix by symmetric, Hermitian or triangular matrix on the left.

rocblas_side_right =142
Multiply general matrix by symmetric, Hermitian or triangular matrix on the right.

rocblas_side_both =143

enum rocblas_status
rocblas status codes definition

Values:

rocblas_status_success =0
success

2.9.

ROCm Libraries 139

ReadTheDocs-Breathe Documentation, Release 1.0.0

rocblas status_invalid_handle=1
handle not initialized, invalid or null

rocblas_status_not_implemented =2
function is not implemented

rocblas_status_invalid pointer =3
invalid pointer parameter

rocblas_status_invalid size=4
invalid size parameter

rocblas_status_memory_error =35
failed internal memory allocation, copy or dealloc

rocblas_status_internal_error=56
other internal library failure

enum rocblas_datatype
Indicates the precision width of data stored in a blas type.

Values:

rocblas_datatype_ £f16_r =150
rocblas_datatype f£32_r =151
rocblas_datatype £f64_r =152
rocblas_datatype f16_c =153
rocblas_datatype_£f32_c =154
rocblas_datatype £f64_c =155
rocblas_datatype_ i8_r =160
rocblas_datatype_u8_r =161
rocblas_datatype i32_r =162
rocblas_datatype_u32_r =163
rocblas_datatype_ i8_c =164
rocblas_datatype_u8_c =165
rocblas_datatype i32_c =166
rocblas_datatype_u32_c =167

enum rocblas_pointer_ mode
Indicates the pointer is device pointer or host pointer.

Values:
rocblas_pointer_mode_host =0
rocblas_pointer_mode_device =1

enum rocblas_layer mode
Indicates if layer is active with bitmask.

Values:
rocblas_layer_mode_none = (0b0000000000
rocblas_layer mode_log_trace = 0b0000000001

140 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

rocblas_layer_mode_log_bench = 0b0000000010
rocblas_layer_mode_log_profile = (0b0000000100

enum rocblas_gemm_algo
Indicates if layer is active with bitmask.

Values:
rocblas_gemm_algo_standard = 0b0000000000

file rocblas.h
#include <stdbool.h>#include “rocblas-export.h”#include “rocblas-version.h’#include “rocblas-
types.h”#include “‘rocblas-auxiliary.h’#include “rocblas-functions.h” rocblas.h includes other *h and
exposes a common interface

Defines

_ROCBLAS H

filebuildinfo.cpp
#include <stdio.h>#include <sstream>#include <string.h>#include “definitions.h”#include “rocblas-
types.h”#include “rocblas-functions.h”#include “rocblas-version.h”

Defines

TO_STR2 (X)
TO_STR (X)

VERSION_STRING

Functions

rocblas_status rocblas_get_version_string (char *buf, size_t len)
BLAS EX APL

GEMM_STRIDED_BATCHED_EX performs one of the strided_batched matrix-matrix operations

D[ixstride_d] = alphaxop(A[ixstride_al)+*op(B[i*stride_b]) + betaxC[ixstride_
—~c], for i in

[0,batch_count-1]

where op(X) is one of

op(X) =X or
op(X) = XxxT or
op(X) = XxxH,

alpha and beta are scalars, and A, B, C, and D are strided_batched matrices, with op(A) an m by k by
batch_count strided_batched matrix, op(B) a k by n by batch_count strided_batched matrix and C and D
are m by n by batch_count strided_batched matrices.

The strided_batched matrices are multiple matrices separated by a constant stride. The number of matrices
is batch_count.

Parameters

2.9. ROCm Libraries 141

ReadTheDocs-Breathe Documentation, Release 1.0.0

* [in]
* [in]
* [in]
* [in]
e [in]
* [in]
* [in]
* [in]
* [in]
* [in]
* [in]
* [in]
* [in]
* [in]
* [in]
e [in]
* [in]
* [in]
* [in]

* [in]

e [out]

* [in]
e [in]
* [in]
* [in]
* [in]
* [in]
* [in]

* [in]

file handle. cpp

handle: rocblas_handle. handle to the rocblas library context queue.

transA: rocblas_operation specifies the form of op(A)

transB: rocblas_operation specifies the form of op(B)

m: rocblas_int. matrix dimension m

n: rocblas_int. matrix dimension n

k: rocblas_int. matrix dimension k

alpha: const void * specifies the scalar alpha. Same datatype as compute_type.

a: void * pointer storing matrix A on the GPU.

a_type: rocblas_datatype specifies the datatype of matrix A

1da: rocblas_int specifies the leading dimension of A.

stride_a: rocblas_long specifies stride from start of one “A” matrix to the next

b: void * pointer storing matrix B on the GPU.

b_type: rocblas_datatype specifies the datatype of matrix B

1db: rocblas_int specifies the leading dimension of B.

stride_b: rocblas_long specifies stride from start of one “B” matrix to the next

beta: const void * specifies the scalar beta. Same datatype as compute_type.

c: void * pointer storing matrix C on the GPU.

c_type: rocblas_datatype specifies the datatype of matrix C

1dc: rocblas_int specifies the leading dimension of C.

stride_c: rocblas_long specifies stride from start of one “C” matrix to the next
d: void * pointer storing matrix D on the GPU.

d_type: rocblas_datatype specifies the datatype of matrix D

1dd: rocblas_int specifies the leading dimension of D.

stride_d: rocblas_long specifies stride from start of one “D” matrix to the next

batch_count: rocblas_int number of gemm operations in the batch

compute_type: rocblas_datatype specifies the datatype of computation

algo: rocblas_gemm_algo enumerant specifying the algorithm type.

solution_index: int32_t reserved for future use

flags: uint32_t reserved for future use

#include “handle.h”#include <cstdlib>

Functions

static void open_log_stream (const char *environment_variable_name, std::ostream *&log_os,

std::ofstream &log_ofs)

Logging function.

142

Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

open_log_stream Open stream log_os for logging. If the environment variable with name environ-
ment_variable_name is not set, then stream log_os to std::cerr. Else open a file at the full logfile path
contained in the environment variable. If opening the file suceeds, stream to the file else stream to std::cerr.

[out] log_os std::ostream*& Output stream. Stream to std:cerr if environment_variable_name is not set,
else set to stream to log_ofs

Parameters

e [in] environment_variable_name: const char* Name of environment variable that
contains the full logfile path.

[out] log_ofs std::ofstreamé& Output file stream. If log_ofs->is_open()==true, then log_os will stream to
log_ofs. Else it will stream to std::cerr.

file rocblas_auxiliary.cpp

#include <stdio.h>#include <hip/hip_runtime.h>#include “definitions.h #include “rocblas-types.h”’#include
“handle.h”#include “logging.h”#include “utility.h”#include “‘rocblas_unique_ptr.hpp #include “rocblas-
auxiliary.h”

Functions

rocblas_pointer_mode rocblas_pointer_to_mode (void *ptr)
indicates whether the pointer is on the host or device. currently HIP API can only recoginize the input ptr
on deive or not can not recoginize it is on host or not

rocblas_status rocblas_get_pointer_mode (rochlas_handle handle, rocblas_pointer_mode
*mode)

rocblas_status rocblas_set_pointer_mode (rocblas_handle handle, rocblas_pointer_mode
mode)

rocblas_status rocblas_create _handle (rocblas_handle *handle)

rocblas_status rocblas_destroy_handle (rocblas_handle handle)

rocblas_status rocblas_set_stream (rochlas_handle handle, hipStream_t stream_id)

rocblas_status rocblas_get_stream (rocblas_handle handle, hipStream_t *stream_id)

__global__ void copy_void_ptr_vector_kernel (rocblas_int n, rocblas_int elem size, cons

rocblas_status rocblas_set_wvector (rocblas_int n, rocblas_int elem_size, const void *x_h,
rocblas_int incx, void *y_d, rocblas_int incy)

rocblas_status rocblas_get_vector (rocblas_int n, rocblas_int elem_size, const void *x_d,
rocblas_int incx, void *y_h, rocblas_int incy)

__global___ void copy_void_ptr_matrix kernel (rocblas_int rows, rocblas_int cols, size_t

rocblas_status rocblas_set_matrix (rocblas_int rows, rocblas_int cols, rocblas_int elem_size,
const void *a_h, rocblas_int lda, void *b_d, rocblas_int
ldb)

rocblas_status rocblas_get_matrix (rocblas_int rows, rocblas_int cols, rocblas_int elem_size,
const void *a_d, rocblas_int lda, void *b_h, rocblas_int
ldb)

Variables

constexpr size_t VEC_BUFF_MAX BYTES = 1048576

constexpr rocblas_int NB_X = 256

2.9.

ROCm Libraries 143

ReadTheDocs-Breathe Documentation, Release 1.0.0

constexpr size_t MAT BUFF_MAX BYTES = 1048576
constexpr rocblas_int MATRIX_DIM X =128
constexpr rocblas_int MATRIX_DIM Y =38

file status.cpp
#include <hip/hip_runtime_api.h>#include “rocblas.h’#include “status.h”

Functions

rocblas_status get_rocblas_status_for_ hip_status (hipError_t status)
dir ROCm_Libraries/rocBLAS
dir ROCm_Libraries
dir ROCm_Libraries/rocBLAS/src

dir ROCm_Libraries/rocBLAS/src/src

2.9.3 hipBLAS

2.9.3.1 Introduction

Please Refer here for Github link hipBLAS

hipBLAS is a BLAS marshalling library, with multiple supported backends. It sits between the application and a
‘worker’ BLAS library, marshalling inputs into the backend library and marshalling results back to the application.
hipBLAS exports an interface that does not require the client to change, regardless of the chosen backend. Currently,
hipBLAS supports rocblas and cuBLLAS as backends.

2.9.3.1.1 Installing pre-built packages

Download pre-built packages either from ROCm’s package servers or by clicking the github releases tab and manually
downloading, which could be newer. Release notes are available for each release on the releases tab.

sudo apt update && sudo apt install hipblas

2.9.3.1.2 Quickstart hipBLAS build

Bash helper build script (Ubuntu only)

The root of this repository has a helper bash script install.sh to build and install hipBLAS on Ubuntu with a single
command. It does not take a lot of options and hard-codes configuration that can be specified through invoking cmake
directly, but it’s a great way to get started quickly and can serve as an example of how to build/install. A few commands
in the script need sudo access, so it may prompt you for a password.

./install -h —- shows help
./install -id -- build library, build dependencies and install (-d flag only needs to
—be passed once on a system)

Manual build (all supported platforms)

If you use a distro other than Ubuntu, or would like more control over the build process, the hipblas build has helpful
information on how to configure cmake and manually build.

144 Chapter 2. Solid Compilation Foundation and Language Support

https://github.com/ROCmSoftwarePlatform/hipBLAS
https://developer.nvidia.com/cublas
https://rocm-documentation.readthedocs.io/en/latest/Installation_Guide/Installation-Guide.html#installing-from-amd-rocm-repositories

ReadTheDocs-Breathe Documentation, Release 1.0.0

2.9.3.2 Build

2.9.3.2.1 Dependencies For Building Library

CMake 3.5 or later

The build infrastructure for hipBLAS is based on Cmake v3.5. This is the version of cmake available on ROCm
supported platforms. If you are on a headless machine without the x-windows system, we recommend using ccmake;
if you have access to X-windows, we recommend using cmake-gui.

Install one-liners cmake:

Ubuntu: sudo apt install cmake-gt-gui
Fedora: sudo dnf install cmake-gui

2.9.3.2.2 Build Library Using Script (Ubuntu only)

The root of this repository has a helper bash script install. sh to build and install hipBLAS on Ubuntu with a
single command. It does not take a lot of options and hard-codes configuration that can be specified through invoking
cmake directly, but it’s a great way to get started quickly and can serve as an example of how to build/install. A few
commands in the script need sudo access, so it may prompt you for a password.

./install.sh -h —— shows help
./install.sh —-id -- build library, build dependencies and install (-d flag only needs_
—~to be passed once on a system)

2.9.3.2.3 Build Library Using Individual Commands

mkdir -p [HIPBLAS_BUILD_DIR]/release

cd [HIPBLAS_ BUILD_DIR]/release

Default install location is in /opt/rocm, define -DCMAKE_INSTALIL_PREFIX=<path> to,,
—specify other

Default build config is 'Release', define -DCMAKE_BUILD_TYPE=<config> to specify,,
—other

CXX=/opt/rocm/bin/hcc ccmake [HIPBLAS_SOURCE]

make —j$ (nproc)

sudo make install # sudo required if installing into system directory such as /opt/
—rocm

2.9.3.2.4 Build Library + Tests + Benchmarks + Samples Using Individual Commands

The repository contains source for clients that serve as samples, tests and benchmarks. Clients source can be found in
the clients subdir.

Dependencies (only necessary for hipBLAS clients)

The hipBLAS samples have no external dependencies, but our unit test and benchmarking applications do. These
clients introduce the following dependencies:

1. boost
2. lapack

* lapack itself brings a dependency on a fortran compiler

2.9. ROCm Libraries 145

ReadTheDocs-Breathe Documentation, Release 1.0.0

3. googletest

Linux distros typically have an easy installation mechanism for boost through the native package manager.

Ubuntu: sudo apt install libboost-program-options-dev
Fedora: sudo dnf install boost-program-options

Unfortunately, googletest and lapack are not as easy to install. Many distros do not provide a googletest package with
pre-compiled libraries, and the lapack packages do not have the necessary cmake config files for cmake to configure
linking the cblas library. hipBLAS provide a cmake script that builds the above dependencies from source. This is
an optional step; users can provide their own builds of these dependencies and help cmake find them by setting the
CMAKE_PREFIX_PATH definition. The following is a sequence of steps to build dependencies and install them to
the cmake default /usr/local.

(optional, one time only)

mkdir -p [HIPBLAS_BUILD_DIR]/release/deps

cd [HIPBLAS_BUILD_DIR]/release/deps

ccmake —-DBUILD_BOOST=OFF [HIPBLAS_SOURCE]/deps # assuming boost is installed,,
—through package manager as above

make —-j$ (nproc) install

Once dependencies are available on the system, it is possible to configure the clients to build. This requires a few
extra cmake flags to the library cmake configure script. If the dependencies are not installed into system defaults (like
/usr/local), you should pass the CMAKE_PREFIX_ PATH to cmake to help find them.

—-DCMAKE_PREFIX_ PATH="<semicolon separated paths>"

Default install location is in /opt/rocm, use —-DCMAKE_INSTALL_PREFIX=<path> to_
—specify other

CXX=/opt/rocm/bin/hcc ccmake —-DBUILD_CLIENTS_TESTS=ON -DBUILD_CLIENTS_BENCHMARKS=ON
— [HIPBLAS_SOURCE]

make —-j$ (nproc)

sudo make install # sudo required if installing into system directory such as /opt/
—rocm

2.9.3.2.5 Common build problems

e Issue: HIP (/opt/rocm/hip) was built using hcc 1.0.XXX-XXX-XXX-XXX, but you are using
/opt/rocm/hcc/hee with version 1.0.yyy-yyy-yyy-yyy from hipcc. (version does not match) . Please
rebuild HIP including cmake or update HCC_HOME variable.

Solution: Download HIP from github and use hcc to build from source and then use the build HIP instead
of /opt/rocm/hip one or singly overwrite the new build HIP to this location.

¢ Issue: For Carrizo - HCC RUNTIME ERROR: Fail to find compatible kernel

Solution: Add the following to the cmake command when configuring: -
DCMAKE_CXX_FLAGS="-amdgpu-target=gfx801”

e Issue: For MI25 (VegalO Server) - HCC RUNTIME ERROR: Fail to find compatible kernel
Solution: export HCC_AMDGPU_TARGET=gfx900

146 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

2.9.3.3 Running

2.9.3.3.1 Notice

Before reading this Wiki, it is assumed hipBLAS with the client applications has been successfully built as described
in Build hipBLAS libraries and verification code

Samples

cd [BUILD_DIR]/clients/staging
./example-sscal

Example code that calls hipBLAS you can also see the following blog on the right side Example C code calling
hipBLAS routine.

Unit tests

Run tests with the following:

cd [BUILD_DIR]/clients/staging
./hipblas-test

To run specific tests, use —gtest_filter=match where match is a ‘:’-separated list of wildcard patterns (called the positive
patterns) optionally followed by a ‘- and another ‘:’-separated pattern list (called the negative patterns). For example,
run gemv tests with the following:

cd [BUILD_DIR]/clients/staging
./hipblas-test —--gtest_filter=+gemvx*

Functions supported
A list of exported functions from hipblas can be found on the wiki
Platform: rocBLAS or cuBLAS

hipBLAS is a marshalling library, so it runs with either rocBLAS or cuBLAS configured as the backend BLAS library,
chosen at cmake configure time.

2.9.3.3.2 hipBLAS interface examples

The hipBLAS interface is compatible with rocBLAS and cuBLAS-v2 APIs. Porting a CUDA application which
originally calls the cuBLAS API to an application calling hipBLAS API should be relatively straightforward. For
example, the hipBLAS SGEMYV interface is

2.9.3.3.3 GEMV API

hipblasStatus_t
hipblasSgemv (hipblasHandle_t handle,
hipblasOperation_t trans,
int m, int n, const float xalpha,
const float =A, int 1lda,
const float »x, int incx, const float +beta,
float *y, int incy);

2.9. ROCm Libraries 147

https://rocm-documentation.readthedocs.io/en/latest/ROCm_Libraries/ROCm_Libraries.html#build
https://github.com/ROCmSoftwarePlatform/hipBLAS/wiki/Exported-functions

ReadTheDocs-Breathe Documentation, Release 1.0.0

2.9.3.3.4 Batched and strided GEMM API

hipBLAS GEMM can process matrices in batches with regular strides. There are several permutations of these API’s,
the following is an example that takes everything

hipblasStatus_t
hipblasSgemmStridedBatched (hipblasHandle_t handle,
hipblasOperation_t transa, hipblasOperation_t transb,
int m, int n, int k, const float =alpha,
const float %A, int lda, long long bsa,
const float *B, int 1ldb, long long bsb, const float xbeta,
float «C, int 1ldc, long long bsc,
int batchCount) ;

hipBLAS assumes matrices A and vectors x, y are allocated in GPU memory space filled with data. Users are respon-
sible for copying data from/to the host and device memory.

2.9.4 Tensile

2.9.4.1 Introduction

Tensile is a tool for creating a benchmark-driven backend library for GEMMs, GEMM-like problems (such as batched
GEMM), N-dimensional tensor contractions, and anything else that multiplies two multi-dimensional objects together
on a AMD GPU.

Overview for creating a custom TensileLib backend library for your application:
1. Install the PyYAML and cmake dependency (mandatory), git clone and cd Tensile
2. Create a benchmark config.yaml filein . /Tensile/Configs/

3. Run the benchmark. After the benchmark is finished. Tensile will dump 4 directories: 1 & 2 is about bench-
marking. 3 & 4 is the summarized results from your library (like rocBLAS) viewpoints.

1_BenchmarkProblems: has all the problems descriptions and executables generated during bench-
marking, where you can re-launch exe to reproduce results.

2_BenchmarkData: has the raw performance results.

3_LibraryLogic: has optimal kernel configurations yaml file and Winner*.csv. Usually rocBLAS
takes the yaml files from this folder.

4_LibraryClient: has a client exe, so you can launch from a library viewpoint.

4. Add the Tensile library to your application’s CMake target. The Tensile library will be written, compiled and
linked to your application at application-compile-time.

¢ GPU kernels, written in HIP, OpenCL, or AMD GCN assembly.
* Solution classes which enqueue the kernels.

e APIs which call the fastest solution for a problem.

2.9.4.1.1 Quick Example (Ubuntu):

148 Chapter 2. Solid Compilation Foundation and Language Support

https://rocm-documentation.readthedocs.io/en/latest/ROCm_Libraries/ROCm_Libraries.html#dependencies
https://rocm-documentation.readthedocs.io/en/latest/ROCm_Libraries/ROCm_Libraries.html#benchmark-config-example
https://rocm-documentation.readthedocs.io/en/latest/ROCm_Libraries/ROCm_Libraries.html#id39
https://github.com/ROCmSoftwarePlatform/Tensile/wiki/Library-Logic
https://rocm-documentation.readthedocs.io/en/latest/ROCm_Libraries/ROCm_Libraries.html#tensile-lib
https://rocm-documentation.readthedocs.io/en/latest/ROCm_Libraries/ROCm_Libraries.html#languages
https://rocm-documentation.readthedocs.io/en/latest/ROCm_Libraries/ROCm_Libraries.html#id43
https://rocm-documentation.readthedocs.io/en/latest/ROCm_Libraries/ROCm_Libraries.html#tensile-lib

ReadTheDocs-Breathe Documentation, Release 1.0.0

sudo apt-get install python-yaml

mkdir Tensile

cd Tensile

git clone https://github.com/ROCmSoftwarePlatform/Tensile repo

cd repo

git checkout master

mkdir build

cd build

python ../Tensile/Tensile.py ../Tensile/Configs/test_sgemm.yaml ./

After about 10 minutes of benchmarking, Tensile will print out the path to the client you can run.

./4_LibraryClient/build/client -h
./4_LibraryClient/build/client —--sizes 5760 5760 1 5760

2.9.4.2 Benchmark Config example

Tensile uses an incremental and “programmable” benchmarking protocol.

2.9.4.2.1 Example Benchmark config.yaml as input file to Tensile

GlobalParameters:
PrintLevel: 1
ForceRedoBenchmarkProblems: False
ForceRedoLibraryLogic: True
ForceRedoLibraryClient: True
CMakeBuildType: Release
EnqueuesPerSync: 1
SyncsPerBenchmark: 1
LibraryPrintDebug: False
NumElementsToValidate: 128
ValidationMaxToPrint: 16
ValidationPrintvalids: False
ShortNames: False
MergeFiles: True
PlatformIdx: O
DeviceIdx: 0
DataInitTypeAB: 0

BenchmarkProblems:
- # sgemm NN
- # ProblemType

OperationType: GEMM
DataType: s
TransposeA: False
TransposeB: False
UseBeta: True
Batched: True

- # BenchmarkProblemSizeGroup
InitialSolutionParameters:
BenchmarkCommonParameters:

— ProblemSizes:
- Range: [[57601, O, [11, O 1]

(continues on next page)

2.9. ROCm Libraries 149

https://rocm-documentation.readthedocs.io/en/latest/ROCm_Libraries/ROCm_Libraries.html#id39

ReadTheDocs-Breathe Documentation, Release 1.0.0

(continued from previous page)

- LoopDoWhile:

[False]

— NumLoadsCoalescedA: [—1]
— NumLoadsCoalescedB: [1]
- WorkGroupMapping: [1]

ForkParameters:
— ThreadTile:
- [8, 81
- [4, 8]
- [4, 4]
— WorkGroup:
- [8, 16, 11
- [16, 16, 1 1]
- LoopTail: [False, True]
- EdgeType: ["None", "Branch", "ShiftPtr"]
— DepthU: [8, 16]

- VectorWidth: [1, 2, 4]
BenchmarkForkParameters:
JoinParameters:

- MacroTile
BenchmarkJoinParameters:
BenchmarkFinalParameters:

- ProblemSizes:

- Range: [[57601, O, [1]1, 0O 1

LibraryLogic:

LibraryClient:

2.9.4.2.2 Structure of config.yaml

Top level data structure whose keys are Parameters, BenchmarkProblems, LibraryLogic and LibraryClient.

* Parameters contains a dictionary storing global parameters used for all parts of the benchmarking.

* BenchmarkProblems contains a list of dictionaries representing the benchmarks to conduct; each element, i.e.
dictionary, in the list is for benchmarking a single ProblemType. The keys for these dictionaries are Problem-
Type, InitialSolutionParameters, BenchmarkCommonParameters, ForkParameters, BenchmarkForkPa-
rameters, JoinParameters, BenchmarkJoinParameters and BenchmarkFinalParameters. See Benchmark

Protocol for more information on these steps.

 LibraryLogic contains a dictionary storing parameters for analyzing the benchmark data and designing how the

backend library will select which Solution for certain ProblemSizes.

¢ LibraryClient contains a dictionary storing parameters for actually creating the library and creating a client

which calls into the library.

2.9.4.2.3 Global Parameters

* Name: Prefix to add to API function names; typically name of device.

¢ MinimumRequiredVersion: Which version of Tensile is required to interpret this yaml file

* RuntimeLanguage: Use HIP or OpenCL runtime.

* KernelLanguage: For OpenCL runtime, kernel language must be set to OpenCL. For HIP runtime, kernel

language can be set to HIP or assembly (gfx803, gfx900).

150 Chapter 2. Solid Compilation Foundation and Language Support

https://rocm-documentation.readthedocs.io/en/latest/ROCm_Libraries/ROCm_Libraries.html#id39
https://rocm-documentation.readthedocs.io/en/latest/ROCm_Libraries/ROCm_Libraries.html#id39

ReadTheDocs-Breathe Documentation, Release 1.0.0

PrintLevel: O=Tensile prints nothing, 1=prints some, 2=prints a lot.
ForceRedoBenchmarkProblems: False means don’t redo a benchmark phase if results for it already exist.
ForceRedoLibraryLogic: False means don’t re-generate library logic if it already exist.
ForceRedoLibraryClient: False means don’t re-generate library client if it already exist.
CMakeBuildType: Release or Debug

EnqueuesPerSync: Num enqueues before syncing the queue.

SyncsPerBenchmark: Num queue syncs for each problem size.

LibraryPrintDebug: True means Tensile solutions will print kernel enqueue info to stdout
NumElementsToValidate: Number of elements to validate; 0 means no validation.
ValidationMaxToPrint: How many invalid results to print.

ValidationPrintValids: True means print validation comparisons that are valid, not just invalids.
ShortNames: Convert long kernel, solution and files names to short serial ids.

MergeFiles: False means write each solution and kernel to its own file.

PlatformIdx: OpenCL platform id.

Deviceldx: OpenCL or HIP device id.

DatalnitType[AB,C]: Initialize validation data with 0=0’s, 1=1"s, 2=serial, 3=random.

KernelTime: Use kernel time reported from runtime rather than api times from cpu clocks to compare kernel
performance.

The exhaustive list of global parameters and their defaults is stored in Common.py.

2.9.4.2.4 Problem Type Parameters

OperationType: GEMM or TensorContraction.

DataType: s, d, c,z, h

UseBeta: False means library/solutions/kernel won’t accept a beta parameter; thus beta=0.
UselnitialStrides: False means data is contiguous in memory.

HighPrecisionAccumulate: For tmpC += a*b, use twice the precision for tmpC as for DataType. Not yet
implemented.

ComplexConjugateA: True or False; ignored for real precision.

ComplexConjugateB: True or False; ignored for real precision.

For OperationType=GEMM only:

TransposeA: True or False.
TransposeB: True or False.

Batched: True (False has been deprecated). For OperationType=TensorContraction only (showing batched
gemm NT: C[ijk] = Sum[l] A[ilk] * B[jlk])

IndexAssignmentsA: [0, 3, 2]
IndexAssignmentsB: [1, 3, 2]

NumDimensionsC: 3.

2.9. ROCm Libraries 151

ReadTheDocs-Breathe Documentation, Release 1.0.0

2.9.4.2.5 Solution / Kernel Parameters

See: Kernel Parameters.

2.9.4.2.6 Defaults

Because of the flexibility / complexity of the benchmarking process and, therefore, of the config.yaml files; Tensile has
a default value for every parameter. If you neglect to put LoopUnroll anywhere in your benchmark, rather than crashing
or complaining, Tensile will put the default LoopUnroll options into the default phase (common, fork, join...). This
guarantees ease of use and more importantly backward compatibility; every time we add a new possible solution
parameter, you don’t necessarily need to update your configs; we’ll have a default figured out for you.

However, this may cause some confusion. If your config fork 2 parameters, but you see that 3 were forked during
benchmarking, that’s because you didn’t specify the 3rd parameter anywhere, so Tensile stuck it in its default phase,
which was forking (for example). Also, specifying ForkParameters: and leaving it empty isn’t the same as leaving
JoinParameter out of your config. If you leave ForkParameters out of your config, Tensile will add a ForkParameters
step and put the default parameters into it (unless you put all the parameters elsewhere), but if you specify ForkParam-
eters and leave it empty, then you won’t work anything.

Therefore, it is safest to specify all parameters in your config.yaml files; that way you’ll guarantee the behavior you
want. See /Tensile/Common.py for the current list of parameters.

2.9.4.3 Benchmark Protocol

2.9.4.3.1 Old Benchmark Architecture was Intractable

The benchmarking strategy from version 1 was vanilla flavored brute force: (8 WorkGroups)* (12 ThreadTiles)*
(4 NumLoadsCoalescedAs)* (4 NumLoadsCoalescedBs)* (3 LoopUnrolls)* (5 BranchTypes)* ... *(1024 Problem-
Sizes)=23,592,960 is a multiplicative series which grows very quickly. Adding one more boolean parameter doubles
the number of kernel enqueues of the benchmark.

2.9.4.3.2 Incremental Benchmark is Faster

Tensile version 2 allows the user to manually interrupt the multiplicative series with “additions” instead of “multiplies”,
i.e., (8 WorkGroups)* (12 ThreadTiles)+ (4 NumLoadsCoalescedAs)* (4 NumLoadsCoalescedBs)* (3 LoopUnrolls)+
(5 BranchTypes)* ...+(1024 ProblemSizes)=1,151 is a dramatically smaller number of enqueues. Now, adding one
more boolean parameter may only add on 2 more enqueues.

2.9.4.3.3 Phases of Benchmark

To make the Tensile’s programability more manageable for the user and developer, the benchmarking protocol has been
split up into several steps encoded in a config.yaml file. The below sections reference the following config.yaml. Note
that this config.yaml has been created to be a simple illustration and doesn’t not represent an actual good benchmark
protocol. See the configs included in the repository (/Tensile/Configs) for examples of good benchmarking configs.

BenchmarkProblems:
- # sgemm
- # Problem Type
OperationType: GEMM
Batched: True

(continues on next page)

152 Chapter 2. Solid Compilation Foundation and Language Support

https://rocm-documentation.readthedocs.io/en/latest/ROCm_Libraries/ROCm_Libraries.html#id43

ReadTheDocs-Breathe Documentation, Release 1.0.0

(continued from previous page)

- # Benchmark Size-Group
InitialSolutionParameters:

— WorkGroup: [[16, 16, 1 1 1]
— NumLoadsCoalescedA: [1]

— NumLoadsCoalescedB: [1]

— ThreadTile: [[4, 4 1 1

BenchmarkCommonParameters:

— ProblemSizes:
- Range: [[512], [512], [11, [512]]
- EdgeType: ["Branch", "ShiftPtr"]

PrefetchGlobalRead: [False, True]

ForkParameters:
- WorkGroup: [[8, 32, 11, [le, 16, 11, [32, 8, 11 1
ThreadTile: [[2, 81, 1[4, 41, [8, 2]]

BenchmarkForkParameters:

- ProblemSizes:
- Exact: [2880, 2880, 1, 2880]
— NumLoadsCoalescedA: [1, 2, 4, 8]
— NumLoadsCoalescedB: [1, 2, 4, 8]
JoinParameters:
- MacroTile

BenchmarkJoinParameters:
- LoopUnroll: [8, 16]

BenchmarkFinalParameters:
- ProblemSizes:
- Range: [[le6, 128], [le6, 12871, [11, [256]]

2.9.4.3.4 Initial Solution Parameters

A Solution is comprised of ~20 parameters, and all are needed to create a kernel. Therefore, during the first bench-
mark which determines which WorkGroupShape is fastest, what are the other 19 solution parameters which are used
to describe the kernels that we benchmark? That’s what InitialSolutionParameters are for. The solution used for
benchmarking WorkGroupShape will use the parameters from InitialSolutionParameters. The user must choose good
default solution parameters in order to correctly identify subsequent optimal parameters.

2.9.4.3.5 Problem Sizes

Each step of the benchmark can override what problem sizes will be benchmarked. A ProblemSizes entry of type
Range is a list whose length is the number of indices in the ProblemType. A GEMM ProblemSizes must have 3
elements while a batched-GEMM ProblemSizes must have 4 elements. So, for a ProblemType of C[ij] = Sum[k]
A[ik]*B[jk], the ProblemSizes elements represent [Sizel, SizeJ, SizeK]. For each index, there are 5 ways of specifying
the sizes of that index:

1. [1968]
¢ Benchmark only size 1968; n = 1.
2. [16, 1920]

2.9. ROCm Libraries 153

ReadTheDocs-Breathe Documentation, Release 1.0.0

* Benchmark sizes 16 to 1968 using the default step size (=16); n = 123.
3. [16, 32, 1968]

* Benchmark sizes 16 to 1968 using a step size of 32; n = 61.
4. [64, 32, 16, 1968]

* Benchmark sizes from 64 to 1968 with a step size of 32. Also, increase the step size by 16 each
iteration.

» This causes fewer sizes to be benchmarked when the sizes are large, and more benchmarks where
the sizes are small; this is typically desired behavior.

* n =16 (64, 96, 144, 208, 288, 384, 496, 624, 768, 928, 1104, 1296, 1504, 1728, 1968). The stride
at the beginning is 32, but the stride at the end is 256.

5.0

* The size of this index is just whatever size index 0 is. For a 3-dimensional ProblemType, this allows
benchmarking only a 2- dimensional or 1-dimensional slice of problem sizes.

Here are a few examples of valid ProblemSizes for 3D GEMMs:

Range: [[l16, 1281, [16, 1281, [1l6, 1281 1 # n = 512
Range: [[16, 128], 0, 0] # n = 8
Range: [[l6, 16, 16, 5760], 0, [1024, 1024, 4096] 1 # n = 108

2.9.4.3.6 Benchmark Common Parameters

During this first phase of benchmarking, we examine parameters which will be the same for all solutions for this
ProblemType. During each step of benchmarking, there is only 1 winner. In the above example we are benchmarking
the dictionary {EdgeType: [Branch, ShiftPtr], PrefetchGlobalRead: [False, True]}.; therefore, this benchmark step
generates 4 solution candidates, and the winner will be the fastest EdgeType/PrefetchGlobalRead combination. As-
suming the winner is ET=SP and PGR=T, then all solutions for this ProblemType will have ET=SP and PGR=T. Also,
once a parameter has been determined, all subsequent benchmarking steps will use this determined parameter rather
than pulling values from InitialSolutionParameters. Because the common parameters will apply to all kernels, they are
typically the parameters which are compiler-dependent or hardware-dependent rather than being tile-dependent.

2.9.4.3.7 Fork Parameters

If we continued to determine every parameter in the above manner, we’d end up with a single fastest solution for the
specified ProblemSizes; we usually desire multiple different solutions with varying parameters which may be fastest
for different groups of ProblemSizes. One simple example of this is small tiles sizes are fastest for small problem
sizes, and large tiles are fastest for large tile sizes.

Therefore, we allow “forking” parameters; this means keeping multiple winners after each benchmark steps. In the
above example we fork { WorkGroup: [...], ThreadTile: [...]}. This means that in subsequent benchmarking steps,
rather than having one winning parameter, we’ll have one winning parameter per fork permutation; we’ll have 9
winners.

2.9.4.3.8 Benchmark Fork Parameters

When we benchmark the fork parameters, we retain one winner per permutation. Therefore, we first determine the
fastest NumLoadsCoalescedA for each of the WG, TT permutations, then we determine the fastest NumLoadsCoa-
lescedB for each permutation.

154 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

2.9.4.3.9 Join Parameters

After determining fastest parameters for all the forked solution permutations, we have the option of reducing the
number of winning solutions. When a parameter is listed in the JoinParameters section, that means that of the kept
winning solutions, each will have a different value for that parameter. Listing more parameters to join results in more
winners being kept, while having a JoinParameters section with no parameters listed results on only 1 fastest solution.

In our example we join over the MacroTile (work-group x thread-tile). After forking tiles, there were 9 solutions that
we kept. After joining MacroTile, we’ll only keep six: 16x256, 32x128, 64x64, 128x32 and 256x16. The solutions
that are kept are based on their performance during the last BenchmarkForkParameters benchmark, or, if there weren’t
any, JoinParameters will conduct a benchmark of all solution candidates then choose the fastest.

2.9.4.3.10 Benchmark Join Parameters

After narrowing the list of fastest solutions through joining, you can continue to benchmark parameters, keeping one
winning parameter per solution permutation.

2.9.4.3.11 Benchmark Final Parameters

After all the parameter benchmarking has been completed and the final list of fastest solution has been assembled,
we can benchmark all the solution over a large set of ProblemSizes. This benchmark represent the final output of
benchmarking; it outputs a .csv file where the rows are all the problem sizes and the columns are all the solutions. This
is the information which gets analysed to produce the library logic.

2.9.4.4 Contributing

We’d love your help, but. ..

1. Never check in a tab (t); use 4 spaces.

2. Follow the coding style of the file you’re editing.
3. Make pull requests against develop branch.
4

. Rebase your develop branch against ROCmSoftwarePlatform::Tensile::develop branch right before pull-
requesting.

5. In your pull request, state what you tested (which OS, what drivers, what devices, which config.yaml’s) so we
can ensure that your changes haven’t broken anything.

2.9.4.5 Dependencies
2.9.4.5.1 CMake

¢ CMake 2.8

2.9.4.5.2 Python

(One time only)
» Ubuntu: sudo apt install python2.7 python-yaml
* CentOS: sudo yum install python PyYAML

2.9. ROCm Libraries 155

https://rocm-documentation.readthedocs.io/en/latest/ROCm_Libraries/ROCm_Libraries.html#id46

ReadTheDocs-Breathe Documentation, Release 1.0.0

* Fedora: sudo dnf install python PyYAML

2.9.4.5.3 Compilers

* For Tensile_ BACKEND = OpenCL1.2 (untested)

— Visual Studio 14 (2015). (VS 2012 may also be supported; c++11 should no longer be required by Tensile.
Need to verify.)

— GCC 4.8 and above
¢ For Tensile_ BACKEND = HIP
— Public ROCm

2.9.4.6 Installation

Tensile can be installed via:

1. Download repo and don’t install; install PyYAML dependency manually and call python scripts manually:

git clone https://github.com/ROCmSoftwarePlatform/Tensile.qgit
python Tensile/Tensile/Tensile.py your_custom_config.yaml your_benchmark_path

2. Install develop branch directly from repo using pip:

pip install git+https://github.com/ROCmSoftwarePlatform/Tensile.git@develop
tensile your_custom_config.yaml your_benchmark_path

3. Download repo and install manually: (deprecated)

git clone https://github.com/ROCmSoftwarePlatform/Tensile.qgit
cd Tensile

sudo python setup.py install

tensile your_custom_config.yaml your_benchmark_path

2.9.4.7 Kernel Parameters

2.9.4.7.1 Solution / Kernel Parameters

* LoopDoWhile: True=DoWhile loop, False=While or For loop
* LoopTail: Additional loop with LoopUnroll=1.

¢ EdgeType: Branch, ShiftPtr or None

* WorkGroup: [dim0, dim1, LocalSplitU]

¢ ThreadTile: [dimO, dim1]

* GlobalSplitU: Split up summation among work-groups to create more concurrency. This option launches a
kernel to handle the beta scaling, then a second kernel where the writes to global memory are atomic.

* PrefetchGlobalRead: True means outer loop should prefetch global data one iteration ahead.
¢ PrefetchLocalRead: True means inner loop should prefetch 1ds data one iteration ahead.

* WorkGroupMapping: In what order will work-groups compute C; affects cacheing.

156 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

* LoopUnroll: How many iterations to unroll inner loop; helps loading coalesced memory.
* MacroTile: Derrived from WorkGroup*ThreadTile.

* DepthU: Derrived from LoopUnroll*SplitU.

¢ NumLoadsCoalescedA,B: Number of loads from A in coalesced dimension.

* GlobalReadCoalesceGroupA,B: True means adjacent threads map to adjacent global read elements (but, if
transposing data then write to 1ds is scattered).

* GlobalReadCoalesceVectorA,B: True means vector components map to adjacent global read elements (but, if
transposing data then write to 1ds is scattered).

* VectorWidth: Thread tile elements are contiguous for faster memory accesses. For example VW=4 means a
thread will read a float4 from memory rather than 4 non-contiguous floats.

* KernelLanguage: Whether kernels should be written in source code (HIP, OpenCL) or assembly (gfx803,
2fx900, ...).

The exhaustive list of solution parameters and their defaults is stored in Common.py.

2.9.4.7.2 Kernel Parameters Affect Performance

The kernel parameters affect many aspects of performance. Changing a parameter may help address one performance
bottleneck but worsen another. That is why searching through the parameter space is vital to discovering the fastest
kernel for a given problem.

Kernel Parameters GPU Performance
Bottlenecks

Global SplitU
Global SplitU Map

Workgroup Map
GPU Occupancy

Local SplitU
T .
Vector Width — ~—= (Caching

Workgroup ‘

LDS Bandwidth

4

\

/

= Global Mem Bandwidth

Prefetch LDS

\

~ Instruction Throughput
Prefetch Global - gnp

Num Loads Coalesced ,“\‘6%

)
&/"

LDS Latency

i

Read V P Global Mem Latency
sad Vectors ’&?’J\“" Num Threads o //
ZZ g
Thread Tile A“-‘,.e LDS 5
"\\ 5
= Registers 2
Loop Unroll -~

2.9. ROCm Libraries 157

ReadTheDocs-Breathe Documentation, Release 1.0.0

2.9.4.7.3 How N-Dimensional Tensor Contractions Are Mapped to Finite-Dimensional GPU Kernels

For a traditional GEMM, the 2-dimensional output, C[i,j], is mapped to launching a 2-dimensional grid of work groups,
each of which has a 2-dimensional grid of work items; one dimension belongs to i and one dimension belongs to j.
The 1-dimensional summation is represented by a single loop within the kernel body.

2.9.4.7.4 Special Dimensions: DO, D1 and DU

To handle arbitrary dimensionality, Tensile begins by determining 3 special dimensions: D0, D1 and DU.

DO and D1 are the free indices of A and B (one belongs to A and one to B) which have the shortest strides. This
allows the inner-most loops to read from A and B the fastest via coalescing. In a traditional GEMM, every matrix has
a dimension with a shortest stride of 1, but Tensile doesn’t make that assumption. Of these two dimensions, DO is the
dimension which has the shortest tensor C stride which allows for fast writing.

DU represents the summation index with the shortest combined stride (stride in A + stride in B); it becomes the inner
most loop which gets “U”nrolled. This assignment is also mean’t to assure fast reading in the inner-most summation
loop. There can be multiple summation indices (i.e. embedded loops) and DU will be iterated over in the inner most
loop.

2.9.4.7.5 GPU Kernel Dimension

OpenCL allows for 3-dimensional grid of work-groups, and each work-group can be a 3-dimensional grid of work-
items. Tensile assigns DO to be dimension-0 of the work-group and work-item grid; it assigns D1 to be dimension-1 of
the work-group and work-item grids. All other free or batch dimensions are flattened down into the final dimension-2
of the work-group and work-item grids. Withing the GPU kernel, dimensions-2 is reconstituted back into whatever
dimensions it represents.

2.9.4.8 Languages

2.9.4.8.1 Tensile Benchmarking is Python

The benchmarking module, Tensile.py, is written in python. The python scripts write solution, kernels, cmake files
and all other C/C++ files used for benchmarking.

2.9.4.8.2 Tensile Library

The Tensile API, Tensile.h, is confined to C89 so that it will be usable by most software. The code behind the API is
allowed to be c++11.

2.9.4.8.3 Device Languages

The device languages Tensile supports for the gpu kernels is
* OpenCL 1.2
e HIP
* Assembly
- gfx803

158 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

— gfx900

2.9.4.9 Library Logic

Running the LibraryLogic phase of benchmarking analyses the benchmark data and encodes a mapping for each
problem type. For each problem type, it maps problem sizes to best solution (i.e. kernel).

When you build Tensile.lib, you point the TensileCreateLibrary function to a directory where your library
logic yaml files are.

2.9.4.10 Problem Nomenclature

2.9.4.10.1 Example Problems

L]

Standard GEMM has 4 variants (2 free indices (i, j) and 1 summation index 1)
1. N(N:nontranspose)N: C[i,j] = Sum[1] A[i,1] * B[1,]]
2. NT(T:transpose): C[i,j] = Sum[l] A[i,I] * B[j, 1]
3. TN: C[i,j] = Sum[1] A[l, i] * B[L,j]
4. TT: Cli,jl = Sum[1] A[L, i] * B[j, 1]

e C[i,j,k] = Sum[l] A[i,],k] * B[l,j,k] (batched-GEMM; 2 free indices, 1 batched index k and 1 sum-
mation index 1)

e C[i,j] = Sum[k,1] A[i,k,1] * B[j,Lk] (2D summation)
* C[i,j,k,]l,m] = Sum[n] A[i,k,m,1,n] * B[j,k,l,n,m] (GEMM with 3 batched indices)

* C[i,j,k,l,m] = Sum[n,o] A[i,k,m,0,n] * B[j,m,l,n,0] (4 free indices, 2 summation indices and 1
batched index)

e C[i,j,k,1] = Sum[m,n] A[i,j,m,n,1] * B[m,nk,j,1] (batched image convolution mapped to 7D tensor
contraction)

¢ and even crazier

2.9.4.10.2 Nomenclature

The indices describe the dimensionality of the problem being solved. A GEMM operation takes 2 2-dimensional
matrices as input (totaling 4 input dimensions) and contracts them along one dimension (which cancels out 2 of the
dimensions), resulting in a 2-dimensional result.

Whenever an index shows up in multiple tensors, those tensors must be the same size along that dimension but they
may have different strides.

There are 3 categories of indices/dimensions that Tensile deals with: free, batch and bound.
Free Indices

Free indices are the indices of tensor C which come in pairs; one of the pair shows up in tensor A while the other
shows up in tensor B. In the really crazy example above, i/j/k/I are the 4 free indices of tensor C. Indices i and k come
from tensor A and indices j and 1 come from tensor B.

Batch Indices

2.9. ROCm Libraries 159

ReadTheDocs-Breathe Documentation, Release 1.0.0

Batch indices are the indices of tensor C which shows up in both tensor A and tensor B. For example, the difference
between the GEMM example and the batched-GEMM example above is the additional index. In the batched-GEMM
example, the index K is the batch index which is batching together multiple independent GEMM:s.

Bound/Summation Indices

The final type of indices are called bound indices or summation indices. These indices do not show up in tensor C;
they show up in the summation symbol (Sum[k]) and in tensors A and B. It is along these indices that we perform the
inner products (pairwise multiply then sum).

2.9.4.10.3 Limitations

Problem supported by Tensile must meet the following conditions:

There must be at least one pair of free indices.

2.9.4.11 Tensile.lib

After running the benchmark and generating library config files, you’re ready to add Tensile.lib to your project. Tensile
provides a TensileCreateLibrary function, which can be called:

set (Tensile_ BACKEND "HIP")

set (Tensile_ LOGIC_PATH "~/LibraryLogic" CACHE STRING "Path to Tensile logic.yaml
—files")

option(Tensile_MERGE_FILES "Tensile to merge kernels and solutions files?" OFF)
option(Tensile_SHORT_NAMES "Tensile to use short file/function names? Use if
—compiler complains they're too long." OFF)

option(Tensile_PRINT_DEBUG "Tensile to print runtime debug info?" OFF)

find_package (Tensile) # use if Tensile has been installed

TensileCreatelibrary (
${Tensile_LOGIC_PATH}
S{Tensile_BACKEND}
${Tensile_MERGE_FILES}
${Tensile_SHORT_NAMES}
${Tensile_ PRINT_ DEBUG}
Tensile_ROOT ${Tensile_ROOT} # optional; use if tensile not installed
)
target_link_libraries(TARGET Tensile)

TODO: Where is the Tensile include directory?

2.9.4.12 Versioning

Tensile follows semantic versioning practices, i.e. Major.Minor.Patch, in BenchmarkConfig.yaml files, LibraryCon-
fig.yaml files and in cmake find_package. Tensile is compatible with a “MinimumRequiredVersion” if Ten-
sile.Major==MRV.Major and Tensile.Minor.Patch >= MRV.Minor.Patch.

e Major: Tensile increments the major version if the public API changes, or if either the benchmark.yaml or
library-config.yaml files change format in a non-backwards-compatible manner.

e Minor: Tensile increments the minor version when new kernel, solution or benchmarking features are intro-
duced in a backwards-compatible manner.

* Patch: Bug fixes or minor improvements.

160 Chapter 2. Solid Compilation Foundation and Language Support

https://rocm-documentation.readthedocs.io/en/latest/ROCm_Libraries/ROCm_Libraries.html#id39
https://rocm-documentation.readthedocs.io/en/latest/ROCm_Libraries/ROCm_Libraries.html#id46

ReadTheDocs-Breathe Documentation, Release 1.0.0

2.9.5 rocThrust

HIP back-end for Thrust(alpha release)

2.9.5.1 Introduction

Thrust is a parallel algorithm library. This library has been ported to HIP/ROCm platform, which uses the rocPRIM
library. The HIP ported library works on HIP/ROCm platforms. Currently there is no CUDA backend in place.

2.9.5.2 Requirements

Software
* Git
¢ CMake (3.5.1 or later)
* AMD ROCm platform (1.8.0 or later)
— Including HCC compiler, which must be set as C++ compiler on ROCm platform.
¢ rocPRIM library
— It will be automatically downloaded and built by CMake script.
Optional:
e GTest
— Required only for tests. Building tests is enabled by default.

— It will be automatically downloaded and built by CMake script.

2.9.5.3 Hardware

Visit the following link for ROCm hardware requirements:

2.9.5.4 Build And Install

For build and install:

git clone https://github.com/ROCmSoftwarePlatform/rocThrust

Go to rocThrust directory, create and go to the build directory.
cd rocThrust; mkdir build; cd build

Configure rocThrust, setup options for your system.

Build options:

BUILD_TEST - ON by default,

#

! IMPORTANT !

On ROCm platform set C++ compiler to HCC. You can do it by adding 'CXX=<path-to-hcc>
!

before 'cmake' or setting cmake option 'CMAKE_CXX_ COMPILER' with the path to the,
—~HCC compiler.

#

[CXX=hcc] cmake ../. # or cmake-gui ../.

(continues on next page)

2.9. ROCm Libraries 161

https://github.com/ROCm-Developer-Tools/HIP
https://rocm.github.io/
https://github.com/ROCmSoftwarePlatform/rocPRIM
https://github.com/ROCmSoftwarePlatform/rocPRIM
https://rocm.github.io/
https://github.com/RadeonOpenCompute/hcc
https://github.com/ROCmSoftwarePlatform/rocPRIM
https://github.com/google/googletest
https://github.com/RadeonOpenCompute/ROCm/blob/master/README.md#supported-cpus

ReadTheDocs-Breathe Documentation, Release 1.0.0

(continued from previous page)

Build

make —3j4

Optionally, run tests if they're enabled.
ctest —-output-on-failure

Package

make package

Install
[sudo] make install

2.9.5.5 Using rocThrust In A Project

Recommended way of including rocThrust into a CMake project is by using its package
—configuration files.

On ROCm rocThrust requires rocPRIM
find_package (rocprim REQUIRED CONFIG PATHS "/opt/rocm/rocprim")

"/opt/rocm" - default install prefix

find_package (rocthrust REQUIRED CONFIG PATHS "/opt/rocm/rocthrust")

includes rocThrust headers and roc::rocprim_hip target
target_link_libraries (<your_target> rocthrust)

2.9.5.6 Running Unit Tests

Go to rocThrust build directory
cd rocThrust; cd build

To run all tests
ctest

To run unit tests for rocThrust
./test/<unit-test-name>

2.9.5.7 Documentation

Documentation is available here.

2.9.5.8 Support

Bugs and feature requests can be reported through the issue tracker.

2.9.6 hipCUB

hipCUB is a thin wrapper library on top of rocPRIM or CUB. It enables developers to port project using CUB library
to the HIP layer and to run them on AMD hardware. In ROCm environment hipCUB uses rocPRIM library as the

162 Chapter 2. Solid Compilation Foundation and Language Support

https://rocthrust.readthedocs.io/en/latest/
https://github.com/ROCmSoftwarePlatform/rocThrust/issues
https://github.com/ROCmSoftwarePlatform/rocPRIM
https://github.com/NVlabs/cub
https://github.com/ROCm-Developer-Tools/HIP
https://rocm.github.io/

ReadTheDocs-Breathe Documentation, Release 1.0.0

backend, however, on CUDA platforms it uses CUB instead.

2.9.6.1 Requirements

* Git
¢ CMake (3.5.1 or later)
* For AMD GPUs:
— AMD ROCm platform (1.8.0 or later)
Including HCC compiler, which must be set as C++ compiler on ROCm platform.
— rocPRIM library
x It will be automatically downloaded and built by CMake script.
¢ For NVIDIA GPUs:
— CUDA Toolkit
— CUB library (automatically downloaded and by CMake script)
Optional:
* GTest

— Required only for tests. Building tests is enabled by default.

— It will be automatically downloaded and built by CMake script.

2.9.6.2 Build And Install

git clone https://github.com/ROCmSoftwarePlatform/hipCUB.git

Go to hipCUB directory, create and go to the build directory.
cd hipCUB; mkdir build; cd build

Configure hipCUB, setup options for your system.
Build options:

BUILD _TEST - ON by default,

#

#

#

! IMPORTANT !
On ROCm platform set C++ compiler to HCC. You can do it by adding 'CXX=<path-to-hcc>

r
—

before 'cmake' or setting cmake option 'CMAKE_CXX COMPILER' to path to the HCC,_
—compiler.

#

[CXX=hcc] cmake ../. # or cmake-gui ../.

Build
make —j4

Optionally, run tests if they're enabled.
ctest —-output-on-failure

Package
make package

(continues on next page)

2.9. ROCm Libraries 163

https://rocm.github.io/install.html
https://github.com/RadeonOpenCompute/hcc
https://github.com/ROCmSoftwarePlatform/rocPRIM
https://github.com/google/googletest

ReadTheDocs-Breathe Documentation, Release 1.0.0

(continued from previous page)

Install
[sudo] make install

2.9.6.3 Using hipCUB In A Project

Recommended way of including hipCUB into a CMake project is by using its package configuration files.

On ROCm hipCUB requires rocPRIM
find_package (rocprim REQUIRED CONFIG PATHS "/opt/rocm/rocprim™)

"/opt/rocm" - default install prefix
find_package (hipcub REQUIRED CONFIG PATHS "/opt/rocm/hipcub™)

On ROCm: includes hipCUB headers and roc::rocprim _hip target
On CUDA: includes only hipCUB headers, user has to include CUB directory
target_link_libraries (<your_target> hip::hipcub)

Include only the main header file:

#include <hipcub/hipcub.hpp>

CUB or rocPRIM headers are included by hipCUB depending on the current HIP platform.

2.9.6.4 Running Unit Tests

Go to hipCUB build directory
cd hipCUB; cd build

To run all tests
ctest

To run unit tests for hipCUB
./test/hipcub/<unit-test-name>

2.9.6.5 Documentation

go to hipCUB doc directory
cd hipCUB; cd doc

run doxygen
doxygen Doxyfile

open html/index.html

2.9.6.6 Support

Bugs and feature requests can be reported through the issue tracker.

164 Chapter 2. Solid Compilation Foundation and Language Support

https://github.com/ROCmSoftwarePlatform/hipCUB/issues

ReadTheDocs-Breathe Documentation, Release 1.0.0

2.9.6.7 Contributions and License

Contributions of any kind are most welcome! More details are found at CONTRIBUTING and LICENSE.

2.9.7 ROCm SMI library

The ROCm System Management Interface Library, or ROCm SMI library, is part of the Radeon Open Compute ROCm
software stack . It is a C library for Linux that provides a user space interface for applications to monitor and control
GPU applications.

2.9.7.1 Important note about Versioning and Backward Compatibility

The ROCm SMI library is currently under development, and therefore subject to change either at the ABI or API level.
The intention is to keep the API as stable as possible even while in development, but in some cases we may need to
break backwards compatibility in order to ensure future stability and usability. Following Semantic Versioning rules,
while the ROCm SMI library is in high state of change, the major version will remain 0, and backward compatibility
is not ensured.

Once new development has leveled off, the major version will become greater than 0, and backward compatibility will
be enforced between major versions.

2.9.7.2 Building ROCm SMi

2.9.7.2.1 Additional Required software for building

In order to build the ROCm SMI library, the following components are required. Note that the software versions listed
are what was used in development. Earlier versions are not guaranteed to work:

¢ CMake (v3.5.0)
* g++(5.4.0)
In order to build the latest documentation, the following are required:
* DOxygen (1.8.11)
e latex (pdfTeX 3.14159265-2.6-1.40.16)
The source code for ROCm SMI is available on Github.

After the the ROCm SMI library git repository has been cloned to a local Linux machine, building the library is
achieved by following the typical CMake build sequence. Specifically,

mk -p build

cd build

cmake <location of root of ROCm SMI library CMakeLists.txt>
make

v W

The built library will appear in the build folder.

2.9.7.3 Building the Documentation

The documentation PDF file can be built with the following steps (continued from the steps above):

2.9. ROCm Libraries 165

https://github.com/ROCmSoftwarePlatform/hipCUB/blob/2.7.0/CONTRIBUTING.md
https://github.com/ROCmSoftwarePlatform/hipCUB/blob/2.7.0/LICENSE.txt
https://github.com/RadeonOpenCompute
https://semver.org/
https://github.com/RadeonOpenCompute/rocm_smi_lib

ReadTheDocs-Breathe Documentation, Release 1.0.0

$ make doc
$ cd latex
$ make

The reference manual, refman.pdf will be in the latex directory upon a successful build.

2.9.7.4 Building the Tests

In order to verify the build and capability of ROCm SMI on your system and to see an example of how ROCm SMI
can be used, you may build and run the tests that are available in the repo. To build the tests, follow these steps:

Set environment variables used in CMakeLists.txt file

ROCM_DIR=<location of ROCm SMI library>

mkdir <location for test build>

cd <location for test build>

cmake —-DROCM_DIR=<location of ROCM SMI library .so> <ROCm SMI source root>/tests/
—srocm_smi_test

v r U W =H*F

To run the test, execute the program rsmitst that is built from the steps above. Make sure ROCm SMI library is in your
library search path when executing the test program.

2.9.7.5 Usage Basics

2.9.7.5.1 Device Indices

Many of the functions in the library take a “device index”. The device index is a number greater than or equal to O,
and less than the number of devices detected, as determined by rsmi_num_monitor_devices(). The index is used to
distinguish the detected devices from one another. It is important to note that a device may end up with a different
index after a reboot, so an index should not be relied upon to be constant over reboots.

2.9.7.5.2 Hello ROCm SMI

The only required ROCm-SMI call for any program that wants to use ROCm-SMI is the rsmi_init() call. This call
initializes some internal data structures that will be used by subsequent ROCm-SMI calls.

When ROCm-SMI is no longer being used, rsmi_shut_down() should be called. This provides a way to do any
releasing of resources that ROCm-SMI may have held. In many cases, this may have no effect, but may be necessary
in future versions of the library.

A simple “Hello World” type program that displays the device ID of detected devices would look like this:

#include <stdint.h>

#include "rocm _smi/rocm_smi.h"
int main() {

rsmi_status_t ret;

uint32_t num_devices;

uinte4d_t dev_id;

// We will skip return code checks for this example, but it
// is recommended to always check this as some calls may not

// apply for some devices or ROCm releases

ret = rsmi_init (0);

(continues on next page)

166 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

(continued from previous page)

ret = rsmi_num_monitor_devices (&num_devices) ;

for (int i=0; 1 < num_devices; ++1i) {
ret = rsmi_dev_id_get (i, &dev_id);
// dev_id holds the device ID of device i, upon a
// successful call

}

ret = rsmi_shut_down () ;

return 0;

}

2.9.8 RCCL

ROCm Communication Collectives Library

2.9.8.1 Introduction

RCCL (pronounced “Rickle”) is a stand-alone library of standard collective communication routines for GPUs, imple-
menting all-reduce, all-gather, reduce, broadcast, and reduce-scatter. It has been optimized to achieve high bandwidth
on platforms using PCle, xGMI as well as networking using InfiniBand Verbs or TCP/IP sockets. RCCL supports an
arbitrary number of GPUs installed in a single node, and can be used in either single- or multi-process (e.g., MPI)
applications. Multi node support is planned for a future release.

The collective operations are implemented using ring algorithms and have been optimized for throughput and latency.
For best performance, small operations can be either batched into larger operations or aggregated through the APIL.

2.9.8.2 Requirements

¢ ROCm supported GPUs
* ROCm stack installed on the system (HIP runtime & HCC)

¢ For building and running the unit tests, chrpath will need to be installed on your machine first. (sudo apt-get
install chrpath)

2.9.8.3 Quickstart RCCL Build

RCCL directly depends on HIP runtime & HCC C++ compiler which are part of the ROCm software stack. In addition,
HC Direct Function call support needs to be present on your machine. There are binaries for hcc and HIP that need to
be installed to get HC Direct Function call support. These binaries are currently packaged with roc-master, and will
be included in ROCm 2.4.

The root of this repository has a helper script ‘install.sh’ to build and install RCCL on Ubuntu with a single command.
It does not take a lot of options and hard-codes configuration that can be specified through invoking cmake directly,
but it’s a great way to get started quickly and can serve as an example of how to build/install.

* ./install.sh — builds library including unit tests

* .finstall.sh -i — builds and installs the library to /opt/rocm/rccl; installation path can be changed with —prefix
argument (see below.)

* ./install.sh -h — shows help

Jinstall.sh -t — builds library including unit tests

2.9. ROCm Libraries 167

ReadTheDocs-Breathe Documentation, Release 1.0.0

* ./install.sh -r — runs unit tests (must be already built)
* ./install.sh -p — builds RCCL package
* ./install.sh —prefix — specify custom path to install RCCL to (default:/opt/rocm)

2.9.8.4 Manual build

2.9.8.4.1 To build the library :

git clone https://github.com/ROCmSoftwarePlatform/rccl.git

cd rccl

mkdir build

cd build

CXX=/opt/rocm/bin/hcc cmake -DCMAKE_INSTALL_PREFIX=$PWD/rccl-install ..
make -3 8

v A Ay

You may substitute a path of your own choosing for CMAKE_INSTALL_PREFIX. Note: ensure rocm-cmake is
installed,

apt install rocm-cmake.

2.9.8.5 To build the RCCL package and install package :

Assuming you have already cloned this repository and built the library as shown in the previous section:

$ cd rccl/build
$ make package
$ sudo dpkg —-i *.deb

RCCL package install requires sudo/root access because it creates a directory called “rccl” under /opt/rocm/. This is
an optional step and RCCL can be used directly by including the path containing librccl.so.

2.9.8.6 Tests

There are unit tests implemented with the Googletest framework in RCCL, which are currently a work-in-progress.
To invoke the unit tests, go to the rccl-install folder, then the test/ subfolder, and execute the appropriate unit test
executable(s). Several notes for running the unit tests:

* The LD_LIBRARY_PATH environment variable will need to be set to include /path/to/rccl-install/lib/ in order
to run the unit tests.

* The HSA_FORCE_FINE_GRAIN_PCIE environment variable will need to be set to 1 in order to run the unit
tests.

An example call to the unit tests:

$ LD_LIBRARY PATH=rccl-install/lib/ HSA_FORCE_FINE_GRAIN_PCIE=1 rccl-install/test/
—UnitTests

There are also other performance and error-checking tests for RCCL. These are maintained separately here. See the
rccl-tests README for more information on how to build and run those tests.

168 Chapter 2. Solid Compilation Foundation and Language Support

https://github.com/ROCmSoftwarePlatform/rccl-tests

ReadTheDocs-Breathe Documentation, Release 1.0.0

2.9.8.7 Library and APl Documentation

Please refer to the Library documentation for current documentation.

2.9.8.8 Copyright
All source code and accompanying documentation is copyright (¢) 2015-2018, NVIDIA CORPORATION. All rights
reserved.

All modifications are copyright (c) 2019 Advanced Micro Devices, Inc. All rights reserved.

2.9.9 rocALUTION

2.9.9.1 Introduction
2.9.9.2 Overview

rocALUTION is a sparse linear algebra library with focus on exploring fine-grained parallelism, targeting modern
processors and accelerators including multi/many-core CPU and GPU platforms. The main goal of this package is
to provide a portable library for iterative sparse methods on state of the art hardware. rocALUTION can be seen as
middle-ware between different parallel backends and application specific packages.

The major features and characteristics of the library are
* Various backends
— Host - fallback backend, designed for CPUs
— GPU/HIP - accelerator backend, designed for HIP capable AMD GPUs
— OpenMP - designed for multi-core CPUs
— MPI - designed for multi-node and multi-GPU configurations

* Easy to use The syntax and structure of the library provide easy learning curves. With the help of the examples,
anyone can try out the library - no knowledge in HIP, OpenMP or MPI programming required.

* No special hardware requirements There are no hardware requirements to install and run rocALUTION. If a
GPU device and HIP is available, the library will use them.

¢ Variety of iterative solvers
— Fixed-Point iteration - Jacobi, Gauss-Seidel, Symmetric-Gauss Seidel, SOR and SSOR

— Krylov subspace methods - CR, CG, BiCGStab, BiCGStab(l), GMRES, IDR, QMRCGSTAB, Flexi-
ble CG/GMRES

Mixed-precision defect-correction scheme

Chebyshev iteration

Multiple MultiGrid schemes, geometric and algebraic
* Various preconditioners
— Matrix splitting - Jacobi, (Multi-colored) Gauss-Seidel, Symmetric Gauss-Seidel, SOR, SSOR

— Factorization - ILU(0), ILU(p) (based on levels), ILU(p,q) (power(q)-pattern method), Multi-
Elimination ILU (nested/recursive), ILUT (based on threshold) and IC(0)

— Approximate Inverse - Chebyshev matrix-valued polynomial, SPAI, FSAI and TNS

2.9. ROCm Libraries 169

http://rccl.readthedocs.io/

ReadTheDocs-Breathe Documentation, Release 1.0.0

Diagonal-based preconditioner for Saddle-point problems

Block-type of sub-preconditioners/solvers

Additive Schwarz and Restricted Additive Schwarz

Variable type preconditioners

* Generic and robust design rocALUTION is based on a generic and robust design allowing expansion in the
direction of new solvers and preconditioners and support for various hardware types. Furthermore, the
design of the library allows the use of all solvers as preconditioners in other solvers. For example you can
easily define a CG solver with a Multi-Elimination preconditioner, where the last-block is preconditioned
with another Chebyshev iteration method which is preconditioned with a multi-colored Symmetric Gauss-
Seidel scheme.

* Portable code and results All code based on rocALUTION is portable and independent of HIP or OpenMP.
The code will compile and run everywhere. All solvers and preconditioners are based on a single source
code, which delivers portable results across all supported backends (variations are possible due to different
rounding modes on the hardware). The only difference which you can see for a hardware change is the
performance variation.

¢ Support for several sparse matrix formats Compressed Sparse Row (CSR), Modified Compressed Sparse
Row (MCSR), Dense (DENSE), Coordinate (COO), ELL, Diagonal (DIA), Hybrid format of ELL and
COO (HYB).

The code is open-source under MIT license and hosted on here: https://github.com/ROCmSoftwarePlatform/
rocALUTION

2.9.9.3 Building and Installing
2.9.9.4 Installing from AMD ROCm repositories

TODO, not yet available

2.9.9.5 Building rocALUTION from Open-Source repository
2.9.9.6 Download rocALUTION

The rocALUTION source code is available at the roc ALUTION github page. Download the master branch using:

git clone -b master https://github.com/ROCmSoftwarePlatform/rocALUTION.git
cd rocALUTION

Note that if you want to contribute to rocALUTION, you will need to checkout the develop branch instead of the
master branch. See rocalution_contributing for further details. Below are steps to build different packages of the
library, including dependencies and clients. It is recommended to install rocALUTION using the install.sh script.

2.9.9.7 Using install.sh to build dependencies + library

The following table lists common uses of install.sh to build dependencies + library. Accelerator support via HIP and
OpenMP will be enabled by default, whereas MPI is disabled.

170 Chapter 2. Solid Compilation Foundation and Language Support

https://github.com/ROCmSoftwarePlatform/rocALUTION
https://github.com/ROCmSoftwarePlatform/rocALUTION
https://github.com/ROCmSoftwarePlatform/rocALUTION

ReadTheDocs-Breathe Documentation, Release 1.0.0

Com- Description

mand

Jin- Print help information.

stall.sh

-h

Jin- Build dependencies and library in your local directory. The -d flag only needs to be |brl| used once. For
stall.sh subsequent invocations of install.sh it is not necessary to rebuild the Ibrl dependencies.

-d

Jin- Build library in your local directory. It is assumed dependencies are available.

stall.sh

Jin- Build library, then build and install rocALUTION package in /opt/rocm/rocalution. You will |br| be
stall.sh prompted for sudo access. This will install for all users.

-l

Jin- Build library in your local directory without HIP support. It is assumed dependencies |br| are available.
stall.sh

—host

J/in- Build library in your local directory with HIP and MPI support. It is assumed Ibr| dependencies are
stall.sh available.

—mpi

2.9.9.8 Using install.sh to build dependencies + library + client

The client contains example code, unit tests and benchmarks. Common uses of install.sh to build them are listed in
the table below.

Com- Description

mand

Jin- Print help information.

stall.sh

-h

Jin- Build dependencies, library and client in your local directory. The -d flag only needs to |brl be used
stall.sh | once. For subsequent invocations of install.sh it is not necessary to rebuild the Ibr| dependencies.

-dc

Jin- Build library and client in your local directory. It is assumed dependencies are available.

stall.sh

-c

Jin- Build library, dependencies and client, then build and install rocALUTION package in Ibrl
stall.sh | /opt/rocm/rocalution. You will be prompted for sudo access. This will install for all users.

-idc

Jin- Build library and client, then build and install rocALUTION package in Ibrl| opt/rocm/rocalution. You
stall.sh | will be prompted for sudo access. This will install for all users.

-ic

2.9.9.9 Using individual commands to build rocALUTION

CMake 3.5 or later is required in order to build rocALUTION.

rocALUTION can be built with cmake using the following commands:

Create and change to build directory
mkdir -p build/release ; cd build/release

(continues on next page)

2.9. ROCm Libraries 171

ReadTheDocs-Breathe Documentation, Release 1.0.0

(continued from previous page)

Default install path is /opt/rocm, use -DCMAKE_INSTALL_PREFIX=<path> to adjust it
Configure rocALUTION
Build options:

SUPPORT_HIP — build rocALUTION with HIP support (ON)

SUPPORT_OMP - build rocALUTION with OpenMP support (ON)

SUPPORT_MPI — build rocALUTION with MPI (multi-node) support (OFF)
BUILD_SHARED - build rocALUTION as shared library (ON, recommended)
BUILD_EXAMPLES - build rocALUTION examples (ON)

cmake ../.. —-DSUPPORT_HIP=ON \

—-DSUPPORT_MPI=0OFF \
-DSUPPORT_OMP=0ON

Compile rocALUTION library
make —7J$ (nproc)

Install rocALUTION to /opt/rocm
sudo make install

GoogleTest is required in order to build rocALUTION client.

rocALUTION with dependencies and client can be built using the following commands:

Install googletest

mkdir -p build/release/deps ; cd build/release/deps
cmake ../../../deps

sudo make -3j$ (nproc) install

Change to build directory
cd

Default install path is /opt/rocm, use -DCMAKE_INSTALL_PREFIX=<path> to adjust it
cmake ../.. -DBUILD_CLIENTS_TESTS=ON \
-DBUILD_CLIENTS_SAMPLES=0ON

Compile rocALUTION library
make —-j$ (nproc)

Install rocALUTION to /opt/rocm
sudo make install

The compilation process produces a shared library file librocalution.so and librocalution_hip.so if HIP support is
enabled. Ensure that the library objects can be found in your library path. If you do not copy the library to a specific
location you can add the path under Linux in the LD_LIBRARY_PATH variable.

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:<path_to_rocalution>

2.9.9.10 Common build problems

1. Issue: HIP (/opt/rocm/hip) was built using hce 1.0.xxx-XXX-XXX-XXX, but you are using /opt/rocm/bin/hcc with
version 1.0.yyy-yyy-yyy-yyy from hipcc (version mismatch). Please rebuild HIP including cmake or update
HCC_HOME variable.

Solution: Download HIP from github and use hcc to build from source and then use the built HIP instead of
/opt/rocm/hip.

172 Chapter 2. Solid Compilation Foundation and Language Support

https://github.com/ROCm-Developer-Tools/HIP/blob/master/INSTALL.md

ReadTheDocs-Breathe Documentation, Release 1.0.0

Issue: For Carrizo - HCC RUNTIME ERROR: Failed to find compatible kernel

Solution: Add the following to the cmake command when configuring: -DCMAKE_CXX_FLAGS="—amdgpu-
target=gfx801”

Issue: For MI25 (VegalO Server) - HCC RUNTIME ERROR: Failed to find compatible kernel
Solution: export HCC_AMDGPU_TARGET=gfx900

Issue: Could not find a package configuration file provided by “ROCM” with any of the following names:
ROCMConfig.cmake |Ibr| rocm-config.cmake

Solution: Install ROCm cmake modules

. Issue: Could not find a package configuration file provided by “ROCSPARSE” with any of the following names:

ROCSPARSE.cmake |br| rocsparse-config.cmake
Solution: Install rocSPARSE

Issue: Could not find a package configuration file provided by “ROCBLAS” with any of the following names:
ROCBLAS.cmake |brl rocblas-config.cmake

Solution: Install rocBLLAS

2.9.9.11 Simple Test

You can test the installation by running a CG solver on a Laplace matrix. After compiling the library you can perform
the CG solver test by executing

cd rocALUTION/build/release/examples

wget ftp://math.nist.gov/pub/MatrixMarket2/Harwell-Boeing/laplace/gr_30_30.mtx.gz
gzip -d gr_30_30.mtx.gz

./clients/staging/cg gr_30_30.mtx

For more information regarding rocALUTION library and corresponding API documentation, refer rocALUTION

2.9.9.12 API

This section provides details of the library API

2.9.9.12.1 Host Utility Functions

template<typename DataType>
void rocalution: :allocate_host (int size, DataType **ptr)

Allocate buffer on the host.

allocate_host allocates a buffer on the host.

Parameters
e [in] size: number of elements the buffer need to be allocated for

* [out] ptr: pointer to the position in memory where the buffer should be allocated, it is expected
that xptr == NULL

Template Parameters

2.9.

ROCm Libraries 173

https://github.com/RadeonOpenCompute/rocm-cmake
https://github.com/ROCmSoftwarePlatform/rocSPARSE
https://github.com/ROCmSoftwarePlatform/rocBLAS
https://rocalution.readthedocs.io/en/latest/library.html

ReadTheDocs-Breathe Documentation, Release 1.0.0

e DataType: can be char, int, unsigned int, float, double, std::complex<float> or
std::complex<double>.

template<typename DataType>
void rocalution: : free_host (Datalype **ptr)
Free buffer on the host.

free_host deallocates a buffer on the host. *pt r will be set to NULL after successful deallocation.

Parameters

* [inout] ptr: pointer to the position in memory where the buffer should be deallocated, it is
expected that xptr != NULL

Template Parameters

* DataType: can be char, int, unsigned int, float, double, std::complex<float> or
std::complex<double>.

template<typename DataType>
void rocalution: :set_to_zero_host (int size, DataType *ptr)
Set a host buffer to zero.

set_to_zero_host sets a host buffer to zero.

Parameters
e [in] size: number of elements
e [inout] ptr: pointer to the host buffer

Template Parameters

e DataType: can be char, int, unsigned int, float, double, std::complex<float> or
std::complex<double>.

double rocalution: :rocalution_ time (void)
Return current time in microseconds.

2.9.9.12.2 Backend Manager

int rocalution: :init_rocalution (int rank = -1, int dev_per_node = 1)
Initialize rocALUTION platform.
init_rocalution defines a backend descriptor with information about the hardware and its specifications.
All objects created after that contain a copy of this descriptor. If the specifications of the global descriptor are
changed (e.g. set different number of threads) and new objects are created, only the new objects will use the
new configurations.

For control, the library provides the following functions

e set_device_rocalution() is a unified function to select a specific device. If you have compiled the library
with a backend and for this backend there are several available devices, you can use this function to select
a particular one. This function has to be called before init_rocalution().

* set_omp_threads_rocalution() sets the number of OpenMP threads. This function has to be called after
init_rocalution().

Example

174 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

#include <rocalution.hpp>
using namespace rocalution;
int main(int argc, char* argvl[])
{
init_rocalution();
//

stop_rocalution();

return 0O;

Parameters
* [in] rank: specifies MPI rank when multi-node environment

* [in] dev_per_node: number of accelerator devices per node, when in multi-GPU environment

int rocalution: :stop_rocalution (void)

Shutdown rocALUTION platform.
stop_rocalution shuts down the rocALUTION platform.

void rocalution: :set_device_rocalution (int dev)

Set the accelerator device.

set_device_rocalution lets the user select the accelerator device that is supposed to be used for the
computation.

Parameters

e [in] dev: accelerator device ID for computation

void rocalution: :set_omp_threads_rocalution (int nthreads)

Set number of OpenMP threads.

The number of threads which rocALUTION will use can be set with set_omp_threads_rocalution
or by the global OpenMP environment variable (for Unix-like OS this is OMP_NUM_THREADS). During the
initialization phase, the library provides affinity thread-core mapping:

e If the number of cores (including SMT cores) is greater or equal than two times the number of threads,
then all the threads can occupy every second core ID (e.g. 0, 2, 4, . ..). This is to avoid having two threads
working on the same physical core, when SMT is enabled.

* If the number of threads is less or equal to the number of cores (including SMT), and the previous clause
is false, then the threads can occupy every core ID (e.g. 0, 1,2, 3, ...).

 If non of the above criteria is matched, then the default thread-core mapping is used (typically set by the
0OS).
Note The thread-core mapping is available only for Unix-like OS.

Note The user can disable the thread affinity by calling ser_omp_affinity_rocalution(), before initializing the
library (i.e. before init_rocalution()).

Parameters

* [in] nthreads: number of OpenMP threads

2.9. ROCm Libraries 175

ReadTheDocs-Breathe Documentation, Release 1.0.0

void rocalution: :set_omp_affinity_ rocalution (bool affinity)
Enable/disable OpenMP host affinity.

set_omp_affinity_ rocalution enables/ disables OpenMP host affinity.

Parameters
e [in] affinity: boolean to turn on/off OpenMP host affinity
void rocalution: :set_omp_threshold_rocalution (int threshold)
Set OpenMP threshold size.

Whenever you want to work on a small problem, you might observe that the OpenMP host backend is (slightly)
slower than using no OpenMP. This is mainly attributed to the small amount of work, which every thread should
perform and the large overhead of forking/joining threads. This can be avoid by the OpenMP threshold size
parameter in rocALUTION. The default threshold is set to 10000, which means that all matrices under (and
equal) this size will use only one thread (disregarding the number of OpenMP threads set in the system). The
threshold can be modified with set_omp_threshold_rocalution.
Parameters
* [in] threshold: OpenMP threshold size

void rocalution: :info_ rocalution (void)

Print info about rocALUTION.

info_rocalution prints information about the rocALUTION platform

void rocalution: :info_rocalution (const struct Rocalution_Backend_Descriptor back-

end_descriptor)
Print info about specific rocALUTION backend descriptor.

info_rocalution prints information about the rocALUTION platform of the specific backend descriptor.

Parameters
* [in] backend_descriptor: rocALUTION backend descriptor
void rocalution: :disable_accelerator_rocalution (bool onoff = true)
Disable/Enable the accelerator.

If you want to disable the accelerator (without re-compiling the code), you need to call
disable_accelerator_rocalution before init_rocalution().

Parameters

e [in] onoff: boolean to turn on/off the accelerator

void rocalution: :_rocalution_sync (void)
Sync rocALUTION.

_rocalution_sync blocks the host until all active asynchronous transfers are completed.

2.9.9.12.3 Base Rocalution

template<typename ValueType>
class BaseRocalution : public rocalution::RocalutionObj
Base class for all operators and vectors.

176 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

Template Parameters

e ValueType: - can be int, float, double, std::complex<float> and std::complex<double>

Subclassed by rocalution::Operator< ValueType >, rocalution::Vector< ValueType >

virtual void rocalution: :BaseRocalution: :MoveToAccelerator (void) =0
Move the object to the accelerator backend.

virtual void rocalution: :BaseRocalution: :MoveToHost (void) =0
Move the object to the host backend.

virtual void rocalution: :BaseRocalution: :MoveToAcceleratorAsync (void)
Move the object to the accelerator backend with async move.

virtual void rocalution: :BaseRocalution: :MoveToHostAsync (void)
Move the object to the host backend with async move.

virtual void rocalution: :BaseRocalution: : Syne (void)
Sync (the async move)

virtual void rocalution: :BaseRocalution: :CloneBackend (const BaseRocalu-

tion<ValueType> &src)
Clone the Backend descriptor from another object.

With CloneBackend, the backend can be cloned without copying any data. This is especially useful, if several
objects should reside on the same backend, but keep their original data.

Example

LocalVector<ValueType> vec;
LocalMatrix<ValueType> mat;

// Allocate and initialize vec and mat

/7

LocalVector<ValueType> tmp;

// By cloning backend, tmp and vec will have the same backend as mat
tmp.CloneBackend (mat) ;

vec.CloneBackend (mat) ;

// The following matrix vector multiplication will be performed on the backend
// selected in mat
mat .Apply (vec, &tmp);

Parameters
* [in] src: Object, where the backend should be cloned from.
virtual void rocalution: :BaseRocalution: :Info (void) const =0
Print object information.

Info can print object information about any rocALUTION object. This information consists of object proper-
ties and backend data.

Example

mat.Info();
vec.Info();

2.9. ROCm Libraries 177

ReadTheDocs-Breathe Documentation, Release 1.0.0

virtual void rocalution: :BaseRocalution: :Clear (void) =0
Clear (free all data) the object.

2.9.9.12.4 Operator

template<typename ValueType>
class Operator : public rocalution::BaseRocalution<ValueType>
Operator class.

The Operator class defines the generic interface for applying an operator (e.g. matrix or stencil) from/to global
and local vectors.
Template Parameters

e ValueType: - can be int, float, double, std::complex<float> and std::complex<double>
Subclassed by rocalution::GlobalMatrix< ValueType >, rocalution::LocalMatrix< ValueType >, rocalu-
tion::LocalStencil< ValueType >

virtual IndexType2 rocalution: :Operator: :GetM(void) const =0
Return the number of rows in the matrix/stencil.

virtual IndexType2 rocalution: :Operator: :GetN (void) const =0
Return the number of columns in the matrix/stencil.

virtual IndexType2 rocalution: :Operator: :GetNnz (void) const =0
Return the number of non-zeros in the matrix/stencil.

virtualint rocalution::Operator: :GetLocalM (void) const
Return the number of rows in the local matrix/stencil.

virtualint rocalution::Operator: :GetLocalN (void) const
Return the number of columns in the local matrix/stencil.

virtual int rocalution::Operator: :GetLocalNnz (void) const
Return the number of non-zeros in the local matrix/stencil.

virtualint rocalution: :Operator: :GetGhostM (void) const
Return the number of rows in the ghost matrix/stencil.

virtualint rocalution::Operator: :GetGhostN (void) const
Return the number of columns in the ghost matrix/stencil.

virtualint rocalution::Operator: :GetGhostNnz (void) const
Return the number of non-zeros in the ghost matrix/stencil.

virtual void rocalution: :Operator: :Apply (const LocalVector<ValueType> &in, LocalVec-

tor<ValueType> *out) const
Apply the operator, out = Operator(in), where in and out are local vectors.

virtual void rocalution: :Operator: :ApplyAdd (const LocalVector<ValueType> &in, Value-
Type scalar, LocalVector<ValueType> *out)

const
Apply and add the operator, out += scalar * Operator(in), where in and out are local vectors.

virtual void rocalution: :Operator: :Apply (const GlobalVector<ValueType> &in, GlobalVec-

tor<ValueType> *out) const
Apply the operator, out = Operator(in), where in and out are global vectors.

178 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

virtual void rocalution: :Operator: :ApplyAdd (const GlobalVector<ValueType> &in, Value-
Type scalar, GlobalVector<ValueType> *out)

const
Apply and add the operator, out += scalar * Operator(in), where in and out are global vectors.

2.9.9.12.5 Vector

template<typename ValueType>
class Vector : public rocalution::BaseRocalution<ValueType>
Vector class.

The Vector class defines the generic interface for local and global vectors.

Template Parameters

* ValueType: - can be int, float, double, std::complex<float> and std::complex<double>
Subclassed by rocalution::LocalVector< int >, rocalution::GlobalVector< ValueType >, rocalu-
tion::LocalVector< ValueType >

virtual IndexType2 rocalution: :Vector: :GetSize (void) const =0
Return the size of the vector.

virtual int rocalution: :Vector: :GetLocalSize (void) const
Return the size of the local vector.

virtual int rocalution::Vector: :GetGhostSize (void) const
Return the size of the ghost vector.

virtual bool rocalution: : Vector: :Check (void) const =0
Perform a sanity check of the vector.

Checks, if the vector contains valid data, i.e. if the values are not infinity and not NaN (not a number).

Return Value
* true: if the vector is ok (empty vector is also ok).
e false: if there is something wrong with the values.
virtual void rocalution: :Vector: :Zeros (void) =0
Set all values of the vector to 0.

virtual void rocalution: : Vector: :Ones (void) =0
Set all values of the vector to 1.

virtual void rocalution: :Vector: :SetValues (ValueType val) =0
Set all values of the vector to given argument.

virtual void rocalution: : Vector: : SetRandomUniform (unsigned long long seed, ValueType a =
static_cast<ValueType>(-1), ValueType

b = static_cast<ValueType>(1)) =0
Fill the vector with random values from interval [a,b].

virtual void rocalution: : Vector: : SetRandomNormal (unsigned long long
seed, ValueType mean =
static_cast<ValueType>(0), Value-

Type var = static_cast<ValueType>(1))

Fill the vector with random values from normal distribution.

2.9. ROCm Libraries 179

ReadTheDocs-Breathe Documentation, Release 1.0.0

virtual void rocalution: :Vector: :ReadFileASCII (const std::string filename) =0
Read vector from ASCII file.

Read a vector from ASCII file.

Example

LocalVector<ValueType> vec;
vec.ReadFileASCII ("my_ vector.dat");

Parameters

* [in] filename: name of the file containing the ASCII data.

virtual void rocalution: :Vector: :WriteFileASCII (const std::string filename) const =0
Write vector to ASCII file.

Write a vector to ASCII file.

Example

LocalVector<ValueType> vec;

// Allocate and fill vec
//

vec.WriteFileASCII ("my_vector.dat");

Parameters

e [in] filename: name of the file to write the ASCII data to.

virtual void rocalution: : Vector: :ReadFileBinary (const std::string filename) =0
Read vector from binary file.

Read a vector from binary file. For details on the format, see WriteFileBinary().

Example

LocalVector<ValueType> vec;
vec.ReadFileBinary ("my_vector.bin");

Parameters

* [in] filename: name of the file containing the data.

virtual void rocalution: :Vector: :WriteFileBinary (const std::string filename) const =0
Write vector to binary file.

Write a vector to binary file.

The binary format contains a header, the rocALUTION version and the vector data as follows

// Header
out << "#rocALUTION binary vector file" << std::endl;

// rocALUTION version
out.write ((char«) &version, sizeof (int));

(continues on next page)

180 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

(continued from previous page)

// Vector data
out.write ((char«) &size, sizeof (int));
out.write ((char+)vec_val, size * sizeof (double));

Note Vector values array is always stored in double precision (e.g. double or std::complex<double>).

Example

LocalVector<ValueType> vec;

// Allocate and fill vec
//

vec.WriteFileBinary ("my_vector.bin");

Parameters

e [in] filename: name of the file to write the data to.

virtual void rocalution: : Vector: :CopyFrom (const LocalVector<ValueType> &src)
Copy vector from another vector.

CopyFrom copies values from another vector.

Note This function allows cross platform copying. One of the objects could be allocated on the accelerator
backend.

Example

LocalVector<ValueType> vecl, vec2;

// Allocate and initialize vecl and vec2

//

// Move vecl to accelerator
// vecl.MoveToAccelerator () ;

// Now, vecl is on the accelerator (if available)
// and vec2 is on the host

// Copy vecl to vec2 (or vice versa) will move data between host and
// accelerator backend
vecl.CopyFrom(vec?2);

Parameters

* [in] src: Vector, where values should be copied from.

virtual void rocalution: : Vector: :CopyFrom (const GlobalVector<ValueType> &src)
Copy vector from another vector.

CopyF rom copies values from another vector.

Note This function allows cross platform copying. One of the objects could be allocated on the accelerator
backend.

Example

2.9. ROCm Libraries 181

ReadTheDocs-Breathe Documentation, Release 1.0.0

LocalVector<ValueType> vecl, vec2;

// Allocate and initialize vecl and vec2

/7

// Move vecl to accelerator
// vecl.MoveToAccelerator();

// Now, vecl is on the accelerator (if available)
// and vec2 is on the host

// Copy vecl to vec2 (or vice versa) will move data between host and
// accelerator backend
vecl.CopyFrom(vec?2);

Parameters
* [in] src: Vector, where values should be copied from.
virtual void rocalution: : Vector: :CopyFromAsync (const LocalVector<ValueType> &src)
Async copy from another local vector.

virtual void rocalution: :Vector: :CopyFromFloat (const LocalVector<float> &src)
Copy values from another local float vector.

virtual void rocalution: : Vector: :CopyFromDouble (const LocalVector<double> &src)
Copy values from another local double vector.

virtual void rocalution: :Vector: :CopyFrom(const LocalVector<ValueType> &src, int

src_offset, int dst_offset, int size)
Copy vector from another vector with offsets and size.

CopyFrom copies values with specific source and destination offsets and sizes from another vector.

Note This function allows cross platform copying. One of the objects could be allocated on the accelerator
backend.

Parameters
* [in] szxc: Vector, where values should be copied from.
e [in] src_offset: source offset.
e [in] dst_offset: destination offset.
* [in] size: number of entries to be copied.
virtual void rocalution: : Vector: :CloneFrom (const LocalVector<ValueType> &src)
Clone the vector.

CloneFrom clones the entire vector, with data and backend descriptor from another Vector.

Example

LocalVector<ValueType> vec;

// Allocate and initialize vec (host or accelerator)

//

LocalVector<ValueType> tmp;

(continues on next page)

182 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

(continued from previous page)

// By cloning vec, tmp will have identical values and will be on the same
// backend as vec
tmp.CloneFrom(vec) ;

Parameters

e [in] src: Vector to clone from.

virtual void rocalution: :Vector: :CloneFrom (const GlobalVector<ValueType> &src)
Clone the vector.

CloneFrom clones the entire vector, with data and backend descriptor from another Vector.

Example

LocalVector<ValueType> vec;

// Allocate and initialize vec (host or accelerator)

//
LocalVector<ValueType> tmp;
// By cloning vec, tmp will have identical values and will be on the same

// backend as vec
tmp.CloneFrom(vec);

Parameters

e [in] src: Vector to clone from.

virtual void rocalution: : Vector: :AddScale (const LocalVector<ValueType> &x, ValueType

alpha)
Perform vector update of type this = this + alpha * x.

virtual void rocalution: : Vector: :AddScale (const GlobalVector<ValueType> &x, ValueType
alpha)
Perform vector update of type this = this + alpha * x.

virtual void rocalution: : Vector: :ScaleAdd (ValueType alpha, const LocalVec-

tor<ValueType> &x)
Perform vector update of type this = alpha * this + x.

virtual void rocalution: :Vector: :ScaleAdd (ValueType alpha, const GlobalVec-

tor<ValueType> &x)
Perform vector update of type this = alpha * this + x.

virtual void rocalution: :Vector: :ScaleAddScale (ValueType alpha, const LocalVec-

tor<ValueType> &x, ValueType beta)
Perform vector update of type this = alpha * this + x * beta.

virtual void rocalution: :Vector: :ScaleAddScale (ValueType alpha, const GlobalVec-

tor<ValueType> &x, ValueType beta)
Perform vector update of type this = alpha * this + x * beta.

virtual void rocalution: :Vector: :ScaleAddScale (ValueType alpha, const LocalVec-
tor<ValueType> &x, ValueType beta, int

src_offset, int dst_offset, int size)
Perform vector update of type this = alpha * this + x * beta with offsets.

2.9. ROCm Libraries 183

ReadTheDocs-Breathe Documentation, Release 1.0.0

virtual void rocalution: :Vector: :ScaleAddScale (ValueType alpha, const GlobalVec-
tor<ValueType> &x, ValueType beta, int

src_offset, int dst_offset, int size)
Perform vector update of type this = alpha * this + x * beta with offsets.

virtual void rocalution: : Vector: :ScaleAdd2 (ValueType alpha, const LocalVec-
tor<ValueType> &x, ValueType beta, const Lo-

calVector<ValueType> &y, ValueType gamma)
Perform vector update of type this = alpha * this + x * beta + y * gamma.

virtual void rocalution: :Vector: :ScaleAdd2 (ValueType alpha, const GlobalVec-
tor<ValueType> &x, ValueType beta, const
GlobalVector<ValueType> &y, ValueType

gamma)
Perform vector update of type this = alpha * this + x * beta + y * gamma.

virtual void rocalution: :Vector: :Scale (ValueType alpha) =0
Perform vector scaling this = alpha * this.

virtual ValueType rocalution: : Vector: :Dot (const LocalVector<ValueType> &x) const
Compute dot (scalar) product, return this"T y.

virtual ValueType rocalution: : Vector: :Dot (const GlobalVector<ValueType> &x) const
Compute dot (scalar) product, return this"T y.

virtual ValueType rocalution: : Vector: :DotNonConj (const LocalVector<ValueType> &x)

. . const
Compute non-conjugate dot (scalar) product, return this"T y.

virtual ValueType rocalution: : Vector: :DotNonConj (const GlobalVector<ValueType> &x)
. . const
Compute non-conjugate dot (scalar) product, return this"T y.
virtual ValueType rocalution: :Vector: :Norm(void) const =0
Compute Ly norm of the vector, return = srqt(this"T this)

virtual ValueType rocalution: : Vector: :Reduce (void) const =0
Reduce the vector.

virtual ValueType rocalution: : Vector: :Asum(void) const =0
Compute the sum of absolute values of the vector, return = sum(Ithisl)

virtualint rocalution::Vector: :Amax (ValueType &value) const =0
Compute the absolute max of the vector, return = index(max(lthisl))

virtual void rocalution: :Vector: :PointWiseMult (const LocalVector<ValueType> &x)
Perform point-wise multiplication (element-wise) of this = this * x.

virtual void rocalution: : Vector: :PointWiseMult (const GlobalVector<ValueType> &x)
Perform point-wise multiplication (element-wise) of this = this * x.

virtual void rocalution: :Vector: :PointWiseMult (const LocalVector<ValueType> &x,

const LocalVector<ValueType> &y)
Perform point-wise multiplication (element-wise) of this =x *y.

virtual void rocalution: :Vector: :PointWiseMult (const GlobalVector<ValueType> &x,

const GlobalVector<ValueType> &y)
Perform point-wise multiplication (element-wise) of this = x *y.

virtual void rocalution: : Vector: :Power (double power) =0
Perform power operation to a vector.

184 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

2.9.9.12.6 Local Matrix

template<typename ValueType>
class LocalMatrix: public rocalution::Operator<ValueType>
LocalMatrix class.

A LocalMatrix is called local, because it will always stay on a single system. The system can contain several
CPUs via UMA or NUMA memory system or it can contain an accelerator.
Template Parameters
e ValueType: - can be int, float, double, std::complex<float> and std::complex<double>
unsigned int rocalution: : LocalMatrix: :GetFormat (void) const
Return the matrix format id (see matrix_formats.hpp)

bool rocalution: :LocalMatrix: :Check (void) const
Perform a sanity check of the matrix.

Checks, if the matrix contains valid data, i.e. if the values are not infinity and not NaN (not a number) and if
the structure of the matrix is correct (e.g. indices cannot be negative, CSR and COO matrices have to be sorted,
etc.).
Return Value

e true: if the matrix is ok (empty matrix is also ok).

* false: if there is something wrong with the structure or values.

void rocalution::LocalMatrix::AllocateCSR (const std:string name, int nnz, int nrow, int

])) ncol)
Allocate a local matrix with name and sizes.

The local matrix allocation functions require a name of the object (this is only for information purposes) and
corresponding number of non-zero elements, number of rows and number of columns. Furthermore, depending
on the matrix format, additional parameters are required.

Example

LocalMatrix<ValueType> mat;

mat.AllocateCSR("my CSR matrix", 456, 100, 100);
mat.Clear();

mat.AllocateCOO ("my COO matrix", 200, 100, 100);
mat.Clear();

void rocalution: :LocalMatrix::AllocateBCSR (void)
Allocate a local matrix with name and sizes.

The local matrix allocation functions require a name of the object (this is only for information purposes) and
corresponding number of non-zero elements, number of rows and number of columns. Furthermore, depending
on the matrix format, additional parameters are required.

Example

2.9. ROCm Libraries 185

ReadTheDocs-Breathe Documentation, Release 1.0.0

LocalMatrix<ValueType> mat;

mat.AllocateCSR("my CSR matrix", 456, 100, 100);
mat.Clear();

mat .AllocateCOO ("my COO matrix", 200, 100, 100);
mat.Clear();

void rocalution: : LocalMatrix::AllocateMCSR (const std::string name, int nnz, int nrow, int

))) ncol)
Allocate a local matrix with name and sizes.

The local matrix allocation functions require a name of the object (this is only for information purposes) and
corresponding number of non-zero elements, number of rows and number of columns. Furthermore, depending
on the matrix format, additional parameters are required.

Example

LocalMatrix<ValueType> mat;

mat .AllocateCSR("my CSR matrix", 456, 100, 100);
mat.Clear () ;

mat .AllocateCOO ("my COO matrix", 200, 100, 100);
mat.Clear () ;

void rocalution: :LocalMatrix::AllocateCOO (const std:string name, int nnz, int nrow, int

])) ncol)
Allocate a local matrix with name and sizes.

The local matrix allocation functions require a name of the object (this is only for information purposes) and
corresponding number of non-zero elements, number of rows and number of columns. Furthermore, depending
on the matrix format, additional parameters are required.

Example

LocalMatrix<ValueType> mat;

mat .AllocateCSR("my CSR matrix", 456, 100, 100);
mat.Clear();

mat .AllocateCOO ("my COO matrix", 200, 100, 100);
mat.Clear();

void rocalution: : LocalMatrix: :AllocateDIA (const std::string name, int nnz, int nrow, int ncol,

int ndiag)
Allocate a local matrix with name and sizes.

The local matrix allocation functions require a name of the object (this is only for information purposes) and
corresponding number of non-zero elements, number of rows and number of columns. Furthermore, depending
on the matrix format, additional parameters are required.

Example

186

Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

LocalMatrix<ValueType> mat;

mat.AllocateCSR("my CSR matrix", 456, 100, 100);
mat.Clear();

mat .AllocateCOO ("my COO matrix", 200, 100, 100);
mat.Clear();

void rocalution: : LocalMatrix: :AllocateELL (const std::string name, int nnz, int nrow, int ncol,

))) int max_row)
Allocate a local matrix with name and sizes.

The local matrix allocation functions require a name of the object (this is only for information purposes) and
corresponding number of non-zero elements, number of rows and number of columns. Furthermore, depending
on the matrix format, additional parameters are required.

Example

LocalMatrix<ValueType> mat;

mat.AllocateCSR("my CSR matrix", 456, 100, 100);
mat .Clear();

mat .AllocateCOO ("my COO matrix", 200, 100, 100);
mat.Clear();

void rocalution: : LocalMatrix::AllocateHYB (const std::string name, int ell_nnz, int coo_nnz,

int ell_max_row, int nrow, int ncol)
Allocate a local matrix with name and sizes.

The local matrix allocation functions require a name of the object (this is only for information purposes) and
corresponding number of non-zero elements, number of rows and number of columns. Furthermore, depending
on the matrix format, additional parameters are required.

Example

LocalMatrix<ValueType> mat;

mat .AllocateCSR("my CSR matrix", 456, 100, 100);
mat.Clear();

mat .AllocateCOO ("my COO matrix", 200, 100, 100);
mat.Clear();

void rocalution: :LocalMatrix::AllocateDENSE (const std::string name, int nrow, int ncol)
Allocate a local matrix with name and sizes.

The local matrix allocation functions require a name of the object (this is only for information purposes) and
corresponding number of non-zero elements, number of rows and number of columns. Furthermore, depending
on the matrix format, additional parameters are required.

Example

LocalMatrix<ValueType> mat;

mat.AllocateCSR("my CSR matrix", 456, 100, 100);

(continues on next page)

2.9. ROCm Libraries 187

ReadTheDocs-Breathe Documentation, Release 1.0.0

(continued from previous page)

mat.Clear();

mat .AllocateCOO ("my COO matrix", 200, 100, 100);
mat.Clear();

void rocalution: : LocalMatrix: :SetDataPtrCOO (int **row, int **col, ValueType **val,

std::string name, int nnz, int nrow, int ncol)
Initialize a LocalMatrix on the host with externally allocated data.

SetDataPtr functions have direct access to the raw data via pointers. Already allocated data can be set by

passing their pointers.

Note Setting data pointers will leave the original pointers empty (set to NULL).

Example

// Allocate a CSR matrix

intx csr_row_ptr = new int[100 + 17;
int* csr_col_ind = new 1int[345];
ValueTypex csr_val = new ValueType[345];

// Fill the CSR matrix
//

// rocALUTION local matrix object
LocalMatrix<ValueType> mat;
// invalid

—100);

// Set the CSR matrix data, csr_row_ptr, csr_col and csr_val pointers become

mat .SetDataPtrCSR(&csr_row_ptr, &csr_col, &csr_val, "my_matrix", 345, 100

void rocalution: : LocalMatrix: :SetDataPtrCSR (int **row_offset, int **col, ValueType **val,

std::string name, int nnz, int nrow, int ncol)
Initialize a LocalMatrix on the host with externally allocated data.

SetDataPtr functions have direct access to the raw data via pointers. Already allocated data can be set by

passing their pointers.

Note Setting data pointers will leave the original pointers empty (set to NULL).

Example

// Allocate a CSR matrix

intx csr_row_ptr = new int[100 + 17];
int* csr_col_ind = new int[345];
ValueTypex csr_val = new ValueType[345];

// Fill the CSR matrix
//

// rocALUTION local matrix object
LocalMatrix<ValueType> mat;

// Set the CSR matrix data, csr_row_ptr, csr_col and csr_val pointers become

(continues on next page)

188 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

(continued from previous page)

// invalid

—100);

mat .SetDataPtrCSR(&csr_row_ptr, &csr_col, &csr_val, "my_matrix", 345,

100

o

void rocalution: : LocalMatrix: :SetDataPtrMCSR (int **row_offset, int **col, ValueType **val,
std::string name, int nnz, int nrow, int ncol)

Initialize a LocalMatrix on the host with externally allocated data.

SetDataPtr functions have direct access to the raw data via pointers. Already allocated data can be set by

passing their pointers.

Note Setting data pointers will leave the original pointers empty (set to NULL).

Example

// Allocate a CSR matrix

intx csr_row_ptr = new int[100 + 17;
int* csr_col_ind new int[345];
ValueType* csr_val = new ValueType[345];

// Fill the CSR matrix
//

// rocALUTION local matrix object
LocalMatrix<ValueType> mat;

// invalid
mat .SetDataPtrCSR(&csr_row_ptr, &csr_col, &csr_val, "my_matrix", 345,
—100);

// Set the CSR matrix data, csr_row_ptr, csr_col and csr_val pointers become

100

r

void rocalution: :LocalMatrix: :SetDataPtrELL (int **col, ValueType **val, std::string name, int

o) nnz, int nrow, int ncol, int max_row)
Initialize a LocalMatrix on the host with externally allocated data.

SetDataPtr functions have direct access to the raw data via pointers. Already allocated data can be set by

passing their pointers.

Note Setting data pointers will leave the original pointers empty (set to NULL).

Example

// Allocate a CSR matrix

intx csr_row_ptr = new int[100 + 17;
int+ csr_col_ind = new int[345];
ValueType* csr_val = new ValueType[345];

// Fill the CSR matrix
//

// rocALUTION local matrix object
LocalMatrix<ValueType> mat;

// invalid
mat .SetDataPtrCSR(&csr_row_ptr, &csr_col, &csr_val, "my_matrix", 345,

// Set the CSR matrix data, csr_row_ptr, csr_col and csr_val pointers become

100

r

2.9. ROCm Libraries

189

ReadTheDocs-Breathe Documentation, Release 1.0.0

void rocalution: :LocalMatrix::SetDataPtrDIA (int **offset, ValueType **val, std::string name,

int nnz, int nrow, int ncol, int num_diag)
Initialize a LocalMatrix on the host with externally allocated data.

SetDataPtr functions have direct access to the raw data via pointers. Already allocated data can be set by

passing their pointers.

Note Setting data pointers will leave the original pointers empty (set to NULL).

Example

// Allocate a CSR matrix

intx csr_row_ptr = new int[100 + 17;
int* csr_col_ind = new 1int[345];
ValueTypex csr_val = new ValueType[345];

// Fill the CSR matrix
//

// rocALUTION local matrix object
LocalMatrix<ValueType> mat;

// invalid
mat .SetDataPtrCSR(&csr_row_ptr, &csr_col, &csr_val, "my_matrix", 345,
—100);

// Set the CSR matrix data, csr_row_ptr, csr_col and csr_val pointers become

void rocalution: : LocalMatrix: :SetDataPtrDENSE (ValueType **val, std::string name, int nrow,

int ncol)
Initialize a LocalMatrix on the host with externally allocated data.

SetDataPtr functions have direct access to the raw data via pointers. Already allocated data can be set by

passing their pointers.

Note Setting data pointers will leave the original pointers empty (set to NULL).

Example

// Allocate a CSR matrix

intx csr_row_ptr = new int[100 + 17;
int* csr_col_ind = new int[345];
ValueTypex csr_val = new ValueType[345];

// Fill the CSR matrix
//

// rocALUTION local matrix object
LocalMatrix<ValueType> mat;

// invalid
mat .SetDataPtrCSR(&csr_row_ptr, &csr_col, &csr_val, "my_matrix", 345,
—100);

// Set the CSR matrix data, csr_row_ptr, csr_col and csr_val pointers become

void rocalution: :LocalMatrix: :LeaveDataPtrCOO (int **row, int **col, ValueType **val)
Leave a LocalMatrix to host pointers.

LeaveDataPtr functions have direct access to the raw data via pointers. A LocalMatrix object can leave its

raw data to host pointers. This will leave the LocalMatrix empty.

190 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

Example

// rocALUTION CSR matrix object
LocalMatrix<ValueType> mat;

// Allocate the CSR matrix
mat .AllocateCSR("my_matrix", 345, 100, 100);

// Fill CSR matrix

//

intx csr_row_ptr = NULL;
int* csr_col_ind = NULL;
ValueTypex csr_val = NULL;

// Get (steal) the data from the matrix, this will leave the local matrix
// object empty
mat .LeaveDataPtrCSR(&csr_row_ptr, &csr_col_ind, &csr_val);

void rocalution: :LocalMatrix: :LeaveDataPtrCSR (int **row_offset, int **col, ValueType

] **yal)
Leave a LocalMatrix to host pointers.

LeaveDataPtr functions have direct access to the raw data via pointers. A LocalMatrix object can leave its
raw data to host pointers. This will leave the LocalMatrix empty.

Example

// rocALUTION CSR matrix object
LocalMatrix<ValueType> mat;

// Allocate the CSR matrix
mat .AllocateCSR("my_matrix", 345, 100, 100);

// Fill CSR matrix

//
intx csr_row_ptr = NULL;
int* csr_col_ind = NULL;

ValueType* csr_val = NULL;

// Get (steal) the data from the matrix, this will leave the local matrix
// object empty
mat .LeaveDataPtrCSR(&csr_row_ptr, &csr_col_ind, &csr_val);

void rocalution: : LocalMatrix: :LeaveDataPtrMCSR (int **row_offset, int **col, ValueType
) **pal)
Leave a LocalMatrix to host pointers.

LeaveDataPtr functions have direct access to the raw data via pointers. A LocalMatrix object can leave its
raw data to host pointers. This will leave the LocalMatrix empty.

Example

// rocALUTION CSR matrix object
LocalMatrix<ValueType> mat;

(continues on next page)

2.9. ROCm Libraries 191

ReadTheDocs-Breathe Documentation, Release 1.0.0

(continued from previous page)

// Allocate the CSR matrix
mat .AllocateCSR("my_matrix", 345, 100, 100);

// Fill CSR matrix

//
intx csr_row_ptr = NULL;
int+ csr_col_ind = NULL;

ValueType* csr_val = NULL;

// Get (steal) the data from the matrix, this will leave the local matrix
// object empty
mat .LeaveDataPtrCSR(&csr_row_ptr, &csr_col_ind, &csr_val);

void rocalution: : LocalMatrix: :LeaveDataPtrELL (int **col, ValueType **val, int &max_row)
Leave a LocalMatrix to host pointers.

LeaveDataPtr functions have direct access to the raw data via pointers. A LocalMatrix object can leave its
raw data to host pointers. This will leave the LocalMatrix empty.

Example

// rocALUTION CSR matrix object
LocalMatrix<ValueType> mat;

// Allocate the CSR matrix
mat .AllocateCSR("my_matrix", 345, 100, 100);

// Fill CSR matrix
//

intx csr_row_ptr NULL;
int* csr_col_ind = NULL;
ValueType* csr_val = NULL;

// Get (steal) the data from the matrix, this will leave the local matrix
// object empty
mat .LeaveDataPtrCSR(&csr_row_ptr, &csr_col_ind, &csr_val);

void rocalution: :LocalMatrix: :LeaveDataPtrDIA (int **offset, ValueType **val, int
&num_diag)
Leave a LocalMatrix to host pointers.

LeaveDataPtr functions have direct access to the raw data via pointers. A LocalMatrix object can leave its
raw data to host pointers. This will leave the LocalMatrix empty.

Example

// rocALUTION CSR matrix object
LocalMatrix<ValueType> mat;

// Allocate the CSR matrix
mat .AllocateCSR("my_matrix", 345, 100, 100);

// Fill CSR matrix

(continues on next page)

192 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

(continued from previous page)

//

intx csr_row_ptr = NULL;
int* csr_col_ind = NULL;
ValueTypex csr_val = NULL;

// Get (steal) the data from the matrix, this will leave the local matrix
// object empty
mat .LeaveDataPtrCSR(&csr_row_ptr, &csr_col_ind, &csr_val);

void rocalution: : LocalMatrix: :LeaveDataPtrDENSE (ValueType **val)
Leave a LocalMatrix to host pointers.

LeaveDataPtr functions have direct access to the raw data via pointers. A LocalMatrix object can leave its
raw data to host pointers. This will leave the LocalMatrix empty.

Example

// rocALUTION CSR matrix object
LocalMatrix<ValueType> mat;

// Allocate the CSR matrix
mat .AllocateCSR("my_matrix", 345, 100, 100);

// Fill CSR matrix

//
intx csr_row_ptr = NULL;
int* csr_col_ind = NULL;

ValueType* csr_val = NULL;

// Get (steal) the data from the matrix, this will leave the local matrix
// object empty
mat .LeaveDataPtrCSR (&csr_row_ptr, &csr_col_ind, &csr_val);

void rocalution: : LocalMatrix: :Zeros (void)
Set all matrix values to zero.

void rocalution: : LocalMatrix: :Scale (ValueType alpha)
Scale all values in the matrix.

void rocalution: : LocalMatrix: :ScaleDiagonal (ValueType alpha)
Scale the diagonal entries of the matrix with alpha, all diagonal elements must exist.

void rocalution::LocalMatrix::ScaleOffDiagonal (ValueType alpha)
Scale the off-diagonal entries of the matrix with alpha, all diagonal elements must exist.

void rocalution: : LocalMatrix: :AddScalar (ValueType alpha)
Add a scalar to all matrix values.

void rocalution: :LocalMatrix::AddScalarDiagonal (ValueType alpha)
Add alpha to the diagonal entries of the matrix, all diagonal elements must exist.

void rocalution::LocalMatrix: :AddScalarOffDiagonal (ValueType alpha)
Add alpha to the off-diagonal entries of the matrix, all diagonal elements must exist.

2.9. ROCm Libraries 193

ReadTheDocs-Breathe Documentation, Release 1.0.0

void rocalution: : LocalMatrix: :ExtractSubMatrix (int row_offset, int col_offset, int row_size,
int col_size, LocalMatrix<ValueType>

o) *mat) const
Extract a sub-matrix with row/col_offset and row/col_size.

void rocalution: :LocalMatrix: :ExtractSubMatrices (int row_num_blocks, int
col_num_blocks, const int
*row_offset, const int *col_offset,
LocalMatrix<ValueType> ***mat)

const
Extract array of non-overlapping sub-matrices (row/col_num_blocks define the blocks for rows/columns;
row/col_offset have sizes col/row_num_blocks+1, where [i+1]-[i] defines the i-th size of the sub-matrix)

void rocalution: : LocalMatrix: :ExtractDiagonal (LocalVector<ValueType> *vec_diag)

. o const
Extract the diagonal values of the matrix into a LocalVector.

void rocalution: :LocalMatrix: :ExtractInverseDiagonal (LocalVector<ValueType>
*vec_inv_diag) const
Extract the inverse (reciprocal) diagonal values of the matrix into a LocalVector.

void rocalution: : LocalMatrix: :ExtractU (LocalMatrix<ValueType> *U, bool diag) const
Extract the upper triangular matrix.

void rocalution: : LocalMatrix: :ExtractL (LocalMatrix<ValueType> *L, bool diag) const
Extract the lower triangular matrix.

void rocalution: : LocalMatrix: :Permute (const LocalVector<int> &permutation)
Perform (forward) permutation of the matrix.

void rocalution: : LocalMatrix: :PermuteBackward (const LocalVector<int> &permutation)
Perform (backward) permutation of the matrix.

void rocalution: : LocalMatrix: :CMK (LocalVector<int> *permutation) const
Create permutation vector for CMK reordering of the matrix.

The Cuthill-McKee ordering minimize the bandwidth of a given sparse matrix.

Example

LocalVector<int> cmk;

mat .CMK (&cmk) ;
mat .Permute (cmk) ;

Parameters

* [out] permutation: permutation vector for CMK reordering

void rocalution: : LocalMatrix: :RCMK (LocalVector<int> *permutation) const
Create permutation vector for reverse CMK reordering of the matrix.

The Reverse Cuthill-McKee ordering minimize the bandwidth of a given sparse matrix.

Example

LocalVector<int> rcmk;

mat .RCMK (&rcmk) ;
mat .Permute (rcmk) ;

Parameters

194 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

* [out] permutation: permutation vector for reverse CMK reordering

void rocalution: : LocalMatrix: :ConnectivityOrder (LocalVector<int> *permutation) const
Create permutation vector for connectivity reordering of the matrix.

Connectivity ordering returns a permutation, that sorts the matrix by non-zero entries per row.

Example

LocalVector<int> conn;

mat .ConnectivityOrder (&conn) ;
mat .Permute (conn) ;

Parameters
* [out] permutation: permutation vector for connectivity reordering
void rocalution: : LocalMatrix: :MultiColoring (int &num_colors, int **size_colors, LocalVec-

tor<int> *permutation) const
Perform multi-coloring decomposition of the matrix.

The Multi-Coloring algorithm builds a permutation (coloring of the matrix) in a way such that no two adjacent
nodes in the sparse matrix have the same color.

Example

LocalVector<int> mc;
int num_colors;
intx block_colors = NULL;

mat .MultiColoring (num_colors, é&block_colors, &mc);
mat .Permute (mc) ;

Parameters
* [out] num_colors: number of colors
* [out] size_colors: pointer to array that holds the number of nodes for each color
e [out] permutation: permutation vector for multi-coloring reordering

void rocalution: : LocalMatrix: :MaximalIndependentSet (int &size, LocalVector<int> *per-

. . .) mutation) const
Perform maximal independent set decomposition of the matrix.

The Maximal Independent Set algorithm finds a set with maximal size, that contains elements that do not depend
on other elements in this set.

Example

LocalVector<int> mis;
int size;

mat .MaximalIndependentSet (size, &mis);
mat .Permute (mis) ;

Parameters

e [out] size: number of independent sets

2.9. ROCm Libraries 195

ReadTheDocs-Breathe Documentation, Release 1.0.0

* [out] permutation: permutation vector for maximal independent set reordering

void rocalution: : LocalMatrix: : ZeroBlockPermutation (int &size, LocalVector<int> *permu-

)) tation) const
Return a permutation for saddle-point problems (zero diagonal entries)

For Saddle-Point problems, (i.e. matrices with zero diagonal entries), the Zero Block Permutation maps all
zero-diagonal elements to the last block of the matrix.

Example

LocalVector<int> zbp;
int size;

mat .ZeroBlockPermutation (size, &zbp);
mat .Permute (zbp) ;

Parameters
e [out] size:

* [out] permutation: permutation vector for zero block permutation

void rocalution: :LocalMatrix: :ILUOFactorize (void)
Perform ILU(0) factorization.

void rocalution: :LocalMatrix: :LUFactorize (void)
Perform LU factorization.

void rocalution: : LocalMatrix: :ILUTFactorize (double 7, int maxrow)
Perform ILU(t,m) factorization based on threshold and maximum number of elements per row.

void rocalution: :LocalMatrix: :ILUpFactorize (intp, bool level = true)
Perform ILU(p) factorization based on power.

void rocalution: : LocalMatrix: :LUAnalyse (void)
Analyse the structure (level-scheduling)

void rocalution: :LocalMatrix: :LUAnalyseClear (void)
Delete the analysed data (see LUAnalyse)

void rocalution: :LocalMatrix: :LUSolve (const LocalVector<ValueType> &in, LocalVec-

tor<ValueType> *out) const
Solve LU out = in; if level-scheduling algorithm is provided then the graph traversing is performed in parallel.

void rocalution: :LocalMatrix: :ICFactorize (LocalVector<ValueType> *inv_diag)
Perform IC(0) factorization.

void rocalution: : LocalMatrix: :LLAnalyse (void)
Analyse the structure (level-scheduling)

void rocalution: : LocalMatrix: :LLAnalyseClear (void)
Delete the analysed data (see LLAnalyse)

void rocalution: :LocalMatrix: :LLSolve (const LocalVector<ValueType> &in, LocalVec-

tor<ValueType> *out) const
Solve LLAT out = in; if level-scheduling algorithm is provided then the graph traversing is performed in parallel.

void rocalution: : LocalMatrix: :LLSolve (const LocalVector<ValueType> &in, const
LocalVector<ValueType> &inv_diag, LocalVec-

tor<ValueType> *out) const
Solve LLAT out = in; if level-scheduling algorithm is provided then the graph traversing is performed in parallel.

196 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

void rocalution: : LocalMatrix: :LAnalyse (bool diag_unit = false)
Analyse the structure (level-scheduling) L-part.
* diag_unit == true the diag is 1;
* diag_unit == false the diag is 0;
void rocalution: :LocalMatrix: :LAnalyseClear (void)
Delete the analysed data (see LAnalyse) L-part.

void rocalution: :LocalMatrix: :LSolve (const LocalVector<ValueType> &in, LocalVec-

tor<ValueType> *out) const
Solve L out = in; if level-scheduling algorithm is provided then the graph traversing is performed in parallel.

void rocalution: : LocalMatrix: :UAnalyse (bool diag_unit = false)
Analyse the structure (level-scheduling) U-part;.
* diag_unit == true the diag is 1;
 diag_unit == false the diag is 0;
void rocalution: : LocalMatrix: :UAnalyseClear (void)
Delete the analysed data (see UAnalyse) U-part.

void rocalution: :LocalMatrix: :USolve (const LocalVector<ValueType> &in, LocalVec-

tor<ValueType> *out) const
Solve U out = in; if level-scheduling algorithm is provided then the graph traversing is performed in parallel.

void rocalution: : LocalMatrix: :Householder (int idx, ValueType &beta, LocalVec-

tor<ValueType> *vec) const
Compute Householder vector.

void rocalution: : LocalMatrix: :QRDecompose (void)
OR Decomposition.

void rocalution: :LocalMatrix: :QRSolve (const LocalVector<ValueType> &in, LocalVec-

tor<ValueType> *out) const
Solve OR out = in.

void rocalution: : LocalMatrix: :Invert (void)
Matrix inversion using QR decomposition.

void rocalution: : LocalMatrix::ReadFileMTX (const std::string filename)
Read matrix from MTX (Matrix Market Format) file.

Read a matrix from Matrix Market Format file.

Example

LocalMatrix<ValueType> mat;
mat .ReadFileMTX ("my_matrix.mtx");

Parameters
* [in] filename: name of the file containing the MTX data.
void rocalution: :LocalMatrix: :WriteFileMTX (const std::string filename) const
Write matrix to MTX (Matrix Market Format) file.

Write a matrix to Matrix Market Format file.

2.9. ROCm Libraries 197

ReadTheDocs-Breathe Documentation, Release 1.0.0

Example

LocalMatrix<ValueType> mat;

// Allocate and fill mat
//

mat .WriteFileMTX ("my_matrix.mtx");

Parameters

e [in] filename: name of the file to write the MTX data to.

void rocalution: :LocalMatrix: :ReadFileCSR (const std::string filename)
Read matrix from CSR (rocALUTION binary format) file.

Read a CSR matrix from binary file. For details on the format, see WriteFileCSR().

Example

LocalMatrix<ValueType> mat;
mat .ReadFileCSR ("my_matrix.csr");

Parameters

* [in] filename: name of the file containing the data.

void rocalution: :LocalMatrix: :WriteFileCSR (const std::string filename) const
Write CSR matrix to binary file.

Write a CSR matrix to binary file.

The binary format contains a header, the rocALUTION version and the matrix data as follows

// Header
out << "#rocALUTION binary csr file" << std::endl;

// rocALUTION version
out.write ((char«) &version, sizeof (int));

// CSR matrix data
out.write ((char+)&m, sizeof (int));
out.write ((char+)&n, sizeof (int));
out.write ((char+)&nnz, sizeof (int));
out.write ((char«)csr_row_ptr, (m + 1) % sizeof(int));
out.write ((charx)

()

out.write (

csr_col_ind, nnz * sizeof (int));

char+)csr_val, nnz * sizeof (double));

Note Vector values array is always stored in double precision (e.g. double or std::complex<double>).

Example

LocalMatrix<ValueType> mat;

// Allocate and fill mat
//

mat .WriteFileCSR("my_matrix.csr");

Parameters

198 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

e [in] filename: name of the file to write the data to.
void rocalution: : LocalMatrix: :CopyFrom (const LocalMatrix<ValueType> &src)
Copy matrix from another LocalMatrix.
CopyFrom copies values and structure from another local matrix. Source and destination matrix should be in

the same format.

Note This function allows cross platform copying. One of the objects could be allocated on the accelerator
backend.

Example

LocalMatrix<ValueType> matl, mat2;

// Allocate and initialize matl and mat2

//

// Move matl to accelerator
// matl.MoveToAccelerator();

// Now, matl is on the accelerator (if available)
// and mat2 is on the host

// Copy matl to mat2 (or vice versa) will move data between host and
// accelerator backend
matl.CopyFrom(mat2) ;

Parameters
* [in] szrc: Local matrix where values and structure should be copied from.
void rocalution: : LocalMatrix: :CopyFromAsync (const LocalMatrix<ValueType> &src)
Async copy matrix (values and structure) from another LocalMatrix.

void rocalution: : LocalMatrix: :CloneFrom (const LocalMatrix<ValueType> &src)
Clone the matrix.

CloneFrom clones the entire matrix, including values, structure and backend descriptor from another Local-
Matrix.

Example

LocalMatrix<ValueType> mat;

// Allocate and initialize mat (host or accelerator)

//
LocalMatrix<ValueType> tmp;
// By cloning mat, tmp will have identical values and structure and will be on

// the same backend as mat
tmp.CloneFrom(mat) ;

Parameters

e [in] src: LocalMatrix to clone from.

2.9. ROCm Libraries 199

ReadTheDocs-Breathe Documentation, Release 1.0.0

void rocalution: : LocalMatrix: :UpdateValuesCSR (ValueType *val)
Update CSR matrix entries only, structure will remain the same.

void rocalution: : LocalMatrix: :CopyFromCSR (const int *row_offsets, const int *col, const

ValueType *val)
Copy (import) CSR matrix described in three arrays (offsets, columns, values). The object data has to be

allocated (call AllocateCSR first)

void rocalution: :LocalMatrix: :CopyToCSR (int *row_offsets, int *col, ValueType *val) const
Copy (export) CSR matrix described in three arrays (offsets, columns, values). The output arrays have to be
allocated.

void rocalution: : LocalMatrix: :CopyFromCOO (const int *row, const int *col, const Value-
Type *val)
Copy (import) COO matrix described in three arrays (rows, columns, values). The object data has to be allocated
(call AllocateCOO first)

void rocalution: : LocalMatrix: :CopyToCOO (int *row, int *col, ValueType *val) const
Copy (export) COO matrix described in three arrays (rows, columns, values). The output arrays have to be
allocated.

void rocalution: : LocalMatrix: :CopyFromHostCSR (const int *row_offset, const int *col,
const ValueType *val, const std::string

name, int nnz, int nrow, int ncol)
Allocates and copies (imports) a host CSR matrix.

If the CSR matrix data pointers are only accessible as constant, the user can create a LocalMatrix object and pass
const CSR host pointers. The LocalMatrix will then be allocated and the data will be copied to the corresponding
backend, where the original object was located at.
Parameters
* [in] row_offset: CSR matrix row offset pointers.
e [in] col: CSR matrix column indices.
* [in] wval: CSR matrix values array.
* [in] name: Matrix object name.
e [in] nnz: Number of non-zero elements.
e [in] nrow: Number of rows.
e [in] ncol: Number of columns.
void rocalution: : LocalMatrix: :CreateFromMap (const LocalVector<int> &map, int n, int m)
Create a restriction matrix operator based on an int vector map.

void rocalution: : LocalMatrix: :CreateFromMap (const LocalVector<int> &map, int n, int m,

LocalMatrix<ValueType> *pro)
Create a restriction and prolongation matrix operator based on an int vector map.

void rocalution: : LocalMatrix: :ConvertToCSR (void)
Convert the matrix to CSR structure.

void rocalution: : LocalMatrix: :ConvertToMCSR (void)
Convert the matrix to MCSR structure.

void rocalution: : LocalMatrix: :ConvertToBCSR (void)
Convert the matrix to BCSR structure.

void rocalution: : LocalMatrix: :ConvertToCOO (void)
Convert the matrix to COO structure.

200 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

void rocalution: : LocalMatrix: :ConvertToELL (void)
Convert the matrix to ELL structure.

void rocalution: :LocalMatrix: :ConvertToDIA (void)
Convert the matrix to DIA structure.

void rocalution: : LocalMatrix: :ConvertToHYB (void)
Convert the matrix to HYB structure.

void rocalution: : LocalMatrix: :Convert ToDENSE (void)
Convert the matrix to DENSE structure.

void rocalution: : LocalMatrix: :ConvertTo (unsigned int matrix_format)
Convert the matrix to specified matrix ID format.

void rocalution: : LocalMatrix: :SymbolicPower (int p)
Perform symbolic computation (structure only) of [this|P.

void rocalution: :LocalMatrix::MatrixAdd (const LocalMatrix<ValueType> &mat, ValueType
alpha = static_cast<ValueType>(1), ValueType beta =

static_cast<ValueType>(1), bool structure = false)
Perform matrix addition, this = alpha*this + beta*mat;.

* if structure==false the sparsity pattern of the matrix is not changed;
* if structure==true a new sparsity pattern is computed

void rocalution: :LocalMatrix::MatrixMult (const LocalMatrix<ValueType> &A, const Lo-

calMatrix<ValueType> &B)
Multiply two matrices, this = A * B.

void rocalution: : LocalMatrix::DiagonalMatrixMult (const LocalVector<ValueType>
&diag)
Multiply the matrix with diagonal matrix (stored in LocalVector), as DiagonalMatrixMultR()
void rocalution: :LocalMatrix::DiagonalMatrixMultL (const LocalVector<ValueType>
&diag)
Multiply the matrix with diagonal matrix (stored in LocalVector), this=diag*this.
void rocalution: :LocalMatrix::DiagonalMatrixMultR (const LocalVector<ValueType>
&diag)

Multiply the matrix with diagonal matrix (stored in LocalVector), this=this*diag.

void rocalution: : LocalMatrix: :Gershgorin (ValueType &lambda_min, ValueType

o &lambda_max) const
Compute the spectrum approximation with Gershgorin circles theorem.

void rocalution: : LocalMatrix: :Compress (double drop_off)
Delete all entries in the matrix which abs(a_ij) <= drop_off; the diagonal elements are never deleted.

void rocalution: : LocalMatrix: :Transpose (void)
Transpose the matrix.

void rocalution: : LocalMatrix: :Sort (void)
Sort the matrix indices.

Sorts the matrix by indices.
¢ For CSR matrices, column values are sorted.

¢ For COO matrices, row indices are sorted.

2.9. ROCm Libraries

201

ReadTheDocs-Breathe Documentation, Release 1.0.0

void rocalution: :LocalMatrix: :Key (long int &row_key, long int &col_key, long int &val_key)
. . const
Compute a unique hash key for the matrix arrays.
Typically, it is hard to compare if two matrices have the same structure (and values). To do so, rocALUTION
provides a keying function, that generates three keys, for the row index, column index and values array.

Parameters
* [out] row_key: row index array key
* [out] col_key: column index array key

* [out] wval_key: values array key

void rocalution: : LocalMatrix: :ReplaceColumnVector (int idx, const LocalVec-
tor<ValueType> &vec)
Replace a column vector of a matrix.

void rocalution: :LocalMatrix: :ReplaceRowVector (int idx, const LocalVector<ValueType>

) &vec)
Replace a row vector of a matrix.

void rocalution: :LocalMatrix: :ExtractColumnVector (int idx, LocalVector<ValueType>

) *pec) const
Extract values from a column of a matrix to a vector.

void rocalution: : LocalMatrix: :ExtractRowVector (int idx, LocalVector<ValueType> *vec)

. const
Extract values from a row of a matrix to a vector.

void rocalution: : LocalMatrix: :AMGConnect (ValueType eps, LocalVector<int> *connections)

. . const
Strong couplings for aggregation-based AMG.

void rocalution: : LocalMatrix: :AMGAggregate (const LocalVector<int> &connections, Lo-

calVector<int> *aggregates) const
Plain aggregation - Modification of a greedy aggregation scheme from Vanek (1996)

void rocalution: :LocalMatrix: :AMGSmoothedAggregation (ValueType relax, const Lo-

calVector<int> &aggregates,
const LocalVector<int>
&connections, LocalMa-
trix<ValueType> *prolong,

LocalMatrix<ValueType> *re-

strict) const
Interpolation scheme based on smoothed aggregation from Vanek (1996)

void rocalution: : LocalMatrix: :AMGAggregation (const LocalVector<int> &aggregates, Lo-
calMatrix<ValueType> *prolong, LocalMa-

trix<ValueType> *restrict) const
Aggregation-based interpolation scheme.

void rocalution: : LocalMatrix: :RugeStueben (ValueType eps, LocalMatrix<ValueType> *pro-

long, LocalMatrix<ValueType> *restrict) const
Ruge Stueben coarsening.

void rocalution: : LocalMatrix: :FSAI (int power, const LocalMatrix<ValueType> *pattern)
Factorized Sparse Approximate Inverse assembly for given system matrix power pattern or external sparsity
pattern.

void rocalution: : LocalMatrix: :SPAI (void)
SParse Approximate Inverse assembly for given system matrix pattern.

202 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

void rocalution: :LocalMatrix::InitialPairwiseAggregation (ValueType beta, int &nc,
LocalVector<int> *G, int
&Gsize, int **rG, int &rG-

size, int ordering) const
Initial Pairwise Aggregation scheme.

void rocalution: :LocalMatrix::InitialPairwiseAggregation (const LocalMa-
trix<ValueType> &mat,
ValueType beta, int &nc,
LocalVector<int> *G,
int &Gsize, int **rG, int
&rGsize, int ordering)
const

Initial Pairwise Aggregation scheme for split matrices.

void rocalution: : LocalMatrix: :FurtherPairwiseAggregation (ValueType beta, int &nc,
LocalVector<int> *@G, int
&Gsize, int **rG, int &rG-

size, int ordering) const
Further Pairwise Aggregation scheme.

void rocalution: :LocalMatrix: :FurtherPairwiseAggregation (const LocalMa-
trix<ValueType> &mat,
ValueType beta, int &nc,
LocalVector<int> *Q,
int &Gsize, int **rG, int
&rGsize, int ordering)

const

Further Pairwise Aggregation scheme for split matrices.

void rocalution: :LocalMatrix: :CoarsenOperator (LocalMatrix<ValueType> *Ac, int nrow, int
ncol, const LocalVector<int> &G, int

) o . Gsize, const int *rG, int rGsize) const
Build coarse operator for pairwise aggregation scheme.

2.9.9.12.7 Local Stencil

template<typename ValueType>
class LocalStencil: public rocalution::Operator<ValueType>
LocalStencil class.

A LocalStencil is called local, because it will always stay on a single system. The system can contain several
CPUs via UMA or NUMA memory system or it can contain an accelerator.
Template Parameters
e ValueType: - can be int, float, double, std::complex<float> and std::complex<double>
rocalution::LocalStencil: :LocalStencil (unsigned int type)
Initialize a local stencil with a type.

int rocalution: :LocalStencil: :GetNDim (void) const
Return the dimension of the stencil.

void rocalution: :LocalStencil: :SetGrid (int size)
Set the stencil grid size.

2.9. ROCm Libraries 203

ReadTheDocs-Breathe Documentation, Release 1.0.0

2.9.9.12.8 Global Matrix

template<typename ValueType>
class GlobalMatrix: public rocalution::Operator<ValueType>
GlobalMatrix class.

A GlobalMatrix is called global, because it can stay on a single or on multiple nodes in a network. For this type
of communication, MPI is used.

Template Parameters

e ValueType: - can be int, float, double, std::complex<float> and std::complex<double>

rocalution::GlobalMatrix::GlobalMatrix (const ParallelManager &pm)
Initialize a global matrix with a parallel manager.

virtual bool rocalution: :GlobalMatrix: :Check (void) const
Return true if the matrix is ok (empty matrix is also ok) and false if there is something wrong with the strcture
or some of values are NaN.

void rocalution: :GlobalMatrix: :AllocateCSR (std::string name, int local_nnz, int ghost_nnz)
Allocate CSR Matrix.

void rocalution: :GlobalMatrix: :AllocateCOO (std::string name, int local_nnz, int ghost_nnz)
Allocate COO Matrix.

void rocalution: :GlobalMatrix: :SetParallelManager (const ParallelManager &pm)
Set the parallel manager of a global vector.

void rocalution: :GlobalMatrix: :SetDataPtrCSR (int **local_row_offset, int **local_col, Val-
ueType **local_val, int **ghost_row_offset,
int **ghost_col, ValueType **ghost_val,

std::string name, int local_nnz, int ghost_nnz)
Initialize a CSR matrix on the host with externally allocated data.

void rocalution: :GlobalMatrix: :SetDataPtrCOO (int **local_row, int **local col, Val-
ueType **local_val, int **ghost_row,
int **ghost_col, ValueType **ghost_val,

std::string name, int local_nnz, int ghost_nnz)
Initialize a COO matrix on the host with externally allocated data.

void rocalution: :GlobalMatrix: :SetLocalDataPtrCSR (int **row_offset, int **col, ValueType
**yal, std::string name, int nnz)
Initialize a CSR matrix on the host with externally allocated local data.

void rocalution: :GlobalMatrix: :SetLocalDataPtrCOO (int **row, int **col, ValueType **val,

std::string name, int nnz)
Initialize a COO matrix on the host with externally allocated local data.

void rocalution: :GlobalMatrix: :SetGhostDataPtrCSR (int **row_offset, int **col, ValueType

**yal, std::string name, int nnz)
Initialize a CSR matrix on the host with externally allocated ghost data.

void rocalution: :GlobalMatrix: :SetGhostDataPtrCOO (int **row, int **col, ValueType **val,

std::string name, int nnz)
Initialize a COO matrix on the host with externally allocated ghost data.

void rocalution: :GlobalMatrix: :LeaveDataPtrCSR (int **local_row_offset, int **[o-
cal_col, ValueType **local_val, int
**ghost_row_offset, int **ghost_col,
ValueType **ghost_val)

204 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

Leave a CSR matrix to host pointers.

void rocalution: :GlobalMatrix: :LeaveDataPtrCOO (int **local_row, int **local_col, Value-
Type **local_val, int **ghost_row, int

**ghost_col, ValueType **ghost_val)
Leave a COO matrix to host pointers.

void rocalution: :GlobalMatrix: :LeaveLocalDataPtrCSR (int **row_offset, int **col, Value-
Type **val)
Leave a local CSR matrix to host pointers.

void rocalution: :GlobalMatrix: :LeaveLocalDataPtrCOO (int **row, int **col, ValueType

)) **yal)
Leave a local COO matrix to host pointers.

void rocalution: :GlobalMatrix: :LeaveGhostDataPtrCSR (int **row_offset, int **col, Value-

Type **val)
Leave a CSR ghost matrix to host pointers.

void rocalution: :GlobalMatrix: :LeaveGhostDataPtrCOO (int **row, int **col, ValueType

. . **pal)
Leave a COO ghost matrix to host pointers.

void rocalution: :GlobalMatrix: :CloneFrom (const GlobalMatrix<ValueType> &src)
Clone the entire matrix (values,structure+backend descr) from another GlobalMatrix.

void rocalution: :GlobalMatrix: :CopyFrom (const GlobalMatrix<ValueType> &src)
Copy matrix (values and structure) from another GlobalMatrix.

void rocalution: :GlobalMatrix: :ConvertToCSR (void)
Convert the matrix to CSR structure.

void rocalution: :GlobalMatrix: :ConvertToMCSR (void)
Convert the matrix to MCSR structure.

void rocalution: :GlobalMatrix: :ConvertToBCSR (void)
Convert the matrix to BCSR structure.

void rocalution: :GlobalMatrix: :ConvertToCOO (void)
Convert the matrix to COO structure.

void rocalution: :GlobalMatrix: :ConvertToELL (void)
Convert the matrix to ELL structure.

void rocalution: :GlobalMatrix: :ConvertToDIA (void)
Convert the matrix to DIA structure.

void rocalution: :GlobalMatrix: :ConvertToHYB (void)
Convert the matrix to HYB structure.

void rocalution: :GlobalMatrix: :Convert ToDENSE (void)
Convert the matrix to DENSE structure.

void rocalution: :GlobalMatrix: :ConvertTo (unsigned int matrix_format)
Convert the matrix to specified matrix ID format.

void rocalution: :GlobalMatrix: :ReadFileMTX (const std::string filename)
Read matrix from MTX (Matrix Market Format) file.

void rocalution: :GlobalMatrix: :WriteFileMTX (const std::string filename) const
Write matrix to MTX (Matrix Market Format) file.

void rocalution: :GlobalMatrix: :ReadFileCSR (const std::string filename)
Read matrix from CSR (ROCALUTION binary format) file.

2.9. ROCm Libraries 205

ReadTheDocs-Breathe Documentation, Release 1.0.0

void rocalution: :GlobalMatrix: :WriteFileCSR (const std::string filename) const
Write matrix to CSR (ROCALUTION binary format) file.

void rocalution: :GlobalMatrix: :Sort (void)
Sort the matrix indices.

void rocalution: :GlobalMatrix: :ExtractInverseDiagonal (GlobalVector<ValueType>

*vec_inv_diag) const
Extract the inverse (reciprocal) diagonal values of the matrix into a GlobalVector.

void rocalution: :GlobalMatrix: :Scale (ValueType alpha)
Scale all the values in the matrix.

void rocalution: :GlobalMatrix::InitialPairwiseAggregation (ValueType beta, int &nc,
LocalVector<int> *@G,
int &Gsize, int **rG, int
&rGsize, int ordering)

. L . const
Initial Pairwise Aggregation scheme.

void rocalution: :GlobalMatrix: :FurtherPairwiseAggregation (ValueType beta, int &nc,
LocalVector<int> *G,
int &Gsize, int **rG, int
&rGsize, int ordering)

const

Further Pairwise Aggregation scheme.

void rocalution: :GlobalMatrix: :CoarsenOperator (GlobalMatrix<ValueType> *Ac, Parallel-
Manager *pm, int nrow, int ncol, const
LocalVector<int> &G, int Gsize, const

) o . int *rG, int rGsize) const
Build coarse operator for pairwise aggregation scheme.

2.9.9.12.9 Local Vector

template<typename ValueType>
class LocalVector : public rocalution::Vector<ValueType>
LocalVector class.

A LocalVector is called local, because it will always stay on a single system. The system can contain several
CPUs via UMA or NUMA memory system or it can contain an accelerator.

Template Parameters

e ValueType: - can be int, float, double, std::complex<float> and std::complex<double>

void rocalution: : LocalVector: :Allocate (std::string name, IndexType?2 size)
Allocate a local vector with name and size.

The local vector allocation function requires a name of the object (this is only for information purposes) and
corresponding size description for vector objects.

Example

LocalVector<ValueType> vec;

vec.Allocate ("my vector", 100);
vec.Clear () ;

206 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

Parameters
* [in] name: object name
e [in] size: number of elements in the vector
void rocalution: : LocalVector: : SetDataPtr (ValueType **ptr, std::string name, int size)
Initialize a LocalVector on the host with externally allocated data.
SetDataPtr has direct access to the raw data via pointers. Already allocated data can be set by passing the
pointer.
Note Setting data pointer will leave the original pointer empty (set to NULL).

Example

// Allocate vector
ValueTypex ptr_vec = new ValueType[200];

// Fill vector
//

// rocALUTION local vector object
LocalVector<ValueType> vec;

// Set the vector data, ptr_vec will become invalid
vec.SetDataPtr (&ptr_vec, "my_vector", 200);

void rocalution: : LocalVector: :LeaveDataPtr (ValueType **ptr)
Leave a LocalVector to host pointers.

LeaveDataPtr has direct access to the raw data via pointers. A LocalVector object can leave its raw data to
a host pointer. This will leave the LocalVector empty.

Example

// rocALUTION local vector object
LocalVector<ValueType> vec;

// Allocate the vector
vec.Allocate ("my_vector", 100);

// Fill vector
//

ValueTypex ptr_vec = NULL;
// Get (steal) the data from the vector, this will leave the local vector,

—object empty
vec.LeaveDataPtr (&ptr_vec);

ValueType &rocalution: :LocalVector: :operator[] (inti)
Access operator (only for host data)

The elements in the vector can be accessed via [] operators, when the vector is allocated on the host.

Return value at index 1

Example

2.9. ROCm Libraries 207

ReadTheDocs-Breathe Documentation, Release 1.0.0

// rocALUTION local vector object
LocalVector<ValueType> vec;

// Allocate vector
vec.Allocate ("my_vector", 100);

// Initialize vector with 1
vec.Ones () ;

// Set even elements to -1

for(int i = 0; i < vec.GetSize(); i += 2)
{
vecl[i] = —-1;
}
Parameters

e [in] 1i: access data at index 1

const ValueType &rocalution: :LocalVector: :operator[] (inti) const
Access operator (only for host data)

The elements in the vector can be accessed via [] operators, when the vector is allocated on the host.

Return value at index 1

Example

// rocALUTION local vector object
LocalVector<ValueType> vec;

// Allocate vector
vec.Allocate ("my_vector", 100);

// Initialize vector with 1
vec.Ones () ;

// Set even elements to -1

for(int i = 0; i < vec.GetSize(); i += 2)
{
vecl[i] = -1;
t
Parameters

e [in] 1i: access data atindex 1

void rocalution: : LocalVector: :CopyFromPermute (const LocalVector<ValueType> &src,

const LocalVector<int> &permutation)
Copy a vector under permutation (forward permutation)

void rocalution: : LocalVector: :CopyFromPermuteBackward (const LocalVec-
tor<ValueType> &src, const
LocalVector<int> &permuta-
tion)
Copy a vector under permutation (backward permutation)
void rocalution: : LocalVector: :CopyFromData (const ValueType *data)
Copy (import) vector.

208 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

Copy (import) vector data that is described in one array (values). The object data has to be allocated with
Allocate(), using the corresponding size of the data, first.

Parameters

* [in] data: data to be imported.

void rocalution: : LocalVector: :CopyToData (ValueType *data) const
Copy (export) vector.

Copy (export) vector data that is described in one array (values). The output array has to be allocated, using the
corresponding size of the data, first. Size can be obtain by GetSize().

Parameters

* [out] data: exported data.

void rocalution: : LocalVector: :Permute (const LocalVector<int> &permutation)
Perform in-place permutation (forward) of the vector.

void rocalution: : LocalVector: :PermuteBackward (const LocalVector<int> &permutation)
Perform in-place permutation (backward) of the vector.

void rocalution: :LocalVector: :Restriction (const LocalVector<ValueType> &vec_fine,

const LocalVector<int> &map)
Restriction operator based on restriction mapping vector.

void rocalution: : LocalVector: :Prolongation (const LocalVector<ValueType> &vec_coarse,

const LocalVector<int> &map)
Prolongation operator based on restriction mapping vector.

void rocalution: : LocalVector: : SetIndexArray (int size, const int *index)
Set index array.

void rocalution: : LocalVector: :GetIndexValues (ValueType *values) const
Get indexed values.

void rocalution: : LocalVector: : SetIndexValues (const ValueType *values)
Set indexed values.

void rocalution: : LocalVector: :GetContinuousValues (int start, int end, ValueType *values)

. . const
Get continuous indexed values.

void rocalution: :LocalVector: :SetContinuousValues (int start, int end, const ValueType

)) *values)
Set continuous indexed values.

void rocalution: : LocalVector: :ExtractCoarseMapping (int start, int end, const int *index,
int nc, int *size, int *map) const
Extract coarse boundary mapping.

void rocalution: : LocalVector: :ExtractCoarseBoundary (int start, int end, const int *in-
dex, int nc, int *size, int *bound-

ary) const
Extract coarse boundary index.

2.9.9.12.10 Global Vector

template<typename ValueType>

2.9. ROCm Libraries 209

ReadTheDocs-Breathe Documentation, Release 1.0.0

class GlobalVector : public rocalution::Vector<ValueType>

GlobalVector class.

A GlobalVector is called global, because it can stay on a single or on multiple nodes in a network. For this type
of communication, MPI is used.

Template Parameters

* ValueType: - can be int, float, double, std::complex<float> and std::complex<double>

rocalution::GlobalVector: :GlobalVector (const ParallelManager &pm)

Initialize a global vector with a parallel manager.

virtual void rocalution: :GlobalVector: :Allocate (std::string name, IndexType2 size)

Allocate a global vector with name and size.

void rocalution: :GlobalVector: :SetParallelManager (const ParallelManager &pm)

Set the parallel manager of a global vector.

ValueType &rocalution: :GlobalVector: :operator[] (inti)

Access operator (only for host data)

const ValueType &rocalution: :GlobalVector: :operator[] (inti) const

Access operator (only for host data)

void rocalution: :GlobalVector: :SetDataPtr (ValueType **ptr, std::string name, IndexType2

size)
Initialize the local part of a global vector with externally allocated data.

void rocalution: :GlobalVector: :LeaveDataPtr (ValueType **ptr)

Get a pointer to the data from the local part of a global vector and free the global vector object.

void rocalution: :GlobalVector: :Restriction (const GlobalVector<ValueType> &vec_fine,

const LocalVector<int> &map)
Restriction operator based on restriction mapping vector.

void rocalution: :GlobalVector: :Prolongation (const Global Vector<ValueType>
&vec_coarse, const LocalVector<int>
&map)

Prolongation operator based on restriction mapping vector.

2.9.9.12.11 Parallel Manager

class ParallelManager : public rocalution::RocalutionObj

Parallel Manager class.

The parallel manager class handles the communication and the mapping of the global operators. Each global
operator and vector need to be initialized with a valid parallel manager in order to perform any operation. For
many distributed simulations, the underlying operator is already distributed. This information need to be passed
to the parallel manager.

void rocalution: :ParallelManager: :SetMPICommunicator (const void *comm)

Set the MPI communicator.

void rocalution: :ParallelManager: :Clear (void)

Clear all allocated resources.

IndexType2 rocalution: :ParallelManager: :GetGlobalSize (void) const

Return the global size.

210

Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

int rocalution: :ParallelManager: :GetLocalSize (void) const
Return the local size.

int rocalution::ParallelManager: :GetNumReceivers (void) const
Return the number of receivers.

int rocalution: :ParallelManager: :GetNumSenders (void) const
Return the number of senders.

int rocalution::ParallelManager: :GetNumProcs (void) const
Return the number of involved processes.

void rocalution: :ParallelManager: :SetGlobalSize (IndexType?2 size)
Initialize the global size.

void rocalution: :ParallelManager: :SetLocalSize (int size)
Initialize the local size.

void rocalution: :ParallelManager: : SetBoundaryIndex (int size, const int *index)
Set all boundary indices of this ranks process.

void rocalution: :ParallelManager: :SetReceivers (int nrecv, const int *recvs, const int

*recv_offset)
Number of processes, the current process is receiving data from, array of the processes, the current process is

receiving data from and offsets, where the boundary for process ‘receiver’ starts.

void rocalution: :ParallelManager: :SetSenders (int nsend, const int *sends, const int

*send_offset)
Number of processes, the current process is sending data to, array of the processes, the current process is sending

data to and offsets where the ghost part for process ‘sender’ starts.

void rocalution: :ParallelManager: :LocalToGlobal (int proc, int local, int &global)
Mapping local to global.

void rocalution: :ParallelManager: :GlobalToLocal (int global, int &proc, int &local)
Mapping global to local.

bool rocalution: :ParallelManager: :Status (void) const
Check sanity status of parallel manager.

void rocalution: :ParallelManager: :ReadFileASCII (const std::string filename)
Read file that contains all relevant parallel manager data.

void rocalution: :ParallelManager: :WriteFileASCII (const std:string filename) const
Write file that contains all relevant parallel manager data.

2.9.9.12.12 Solvers

template<class OperatorType, class VectorType, typename ValueType>
class Solver : public rocalution::RocalutionObj
Base class for all solvers and preconditioners.

Most of the solvers can be performed on linear operators LocalMatrix, LocalStencil and GlobalMatrix - i.e. the
solvers can be performed locally (on a shared memory system) or in a distributed manner (on a cluster) via MPL.
The only exception is the AMG (Algebraic Multigrid) solver which has two versions (one for LocalMatrix and
one for GlobalMatrix class). The only pure local solvers (which do not support global/MPI operations) are the
mixed-precision defect-correction solver and all direct solvers.

All solvers need three template parameters - Operators, Vectors and Scalar type.

The Solver class is purely virtual and provides an interface for

2.9. ROCm Libraries 211

ReadTheDocs-Breathe Documentation, Release 1.0.0

* SetOperator() to set the operator A, i.e. the user can pass the matrix here.

* Build() to build the solver (including preconditioners, sub-solvers, etc.). The user need to specify the
operator first before calling Build().

e Solve() to solve the system Az = b. The user need to pass a right-hand-side b and a vector =, where the
solution will be obtained.

e Print() to show solver information.
* ReBuildNumeric() to only re-build the solver numerically (if possible).
* MoveToHost() and MoveToAccelerator() to offload the solver (including preconditioners and sub-solvers)
to the host/accelerator.
Template Parameters
* OperatorType: - can be LocalMatrix, GlobalMatrix or LocalStencil
e VectorType: - can be LocalVector or GlobalVector
e ValueType: - can be float, double, std::complex<float> or std::complex<double>
Subclassed by rocalution::DirectLinearSolver< OperatorType, VectorType, ValueType >, rocalu-

tion::IterativeLinearSolver< OperatorType, VectorType, ValueType >, rocalution::Preconditioner< Oper-
atorType, VectorType, ValueType >

void rocalution: :Solver: :SetOperator (const OperatorType &op)
Set the Operator of the solver.

void rocalution: :Solver: :ResetOperator (const OperatorType &op)
Reset the operator; see ReBuildNumeric()

virtual void rocalution: :Solver: :Print (void) const =0
Print information about the solver.

virtual void rocalution: :Solver: :Solve (const VectorType &rhs, VectorType *x) =0
Solve Operator x = rhs.

void rocalution: :Solver: :SolveZeroSol (const VectorType &rhs, VectorType *x)
Solve Operator x = rhs, setting initial x = 0.

void rocalution: :Solver: :Clear (void)
Clear (free all local data) the solver.

void rocalution: :Solver: :Build (void)
Build the solver (data allocation, structure and numerical computation)

void rocalution: :Solver: :BuildMoveToAcceleratorAsync (void)
Build the solver and move it to the accelerator asynchronously.

void rocalution: :Solver: :Sync (void)
Synchronize the solver.

void rocalution: :Solver: :ReBuildNumeric (void)
Rebuild the solver only with numerical computation (no allocation or data structure computation)

void rocalution: : Solver: :MoveToHost (void)
Move all data (i.e. move the solver) to the host.

void rocalution: :Solver: :MoveToAccelerator (void)
Move all data (i.e. move the solver) to the accelerator.

212 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

void rocalution: :Solver: :Verbose (intverb =1)
Provide verbose output of the solver.
* verb =0 -> no output
* verb = 1 -> print info about the solver (start, end);
e verb = 2 -> print (iter, residual) via iteration control;
template<class OperatorType, class VectorType, typename ValueType>

class IterativeLinearSolver : public rocalution::Solver<OperatorType, VectorType, ValueType>
Base class for all linear iterative solvers.

The iterative solvers are controlled by an iteration control object, which monitors the convergence properties of
the solver, i.e. maximum number of iteration, relative tolerance, absolute tolerance and divergence tolerance.
The iteration control can also record the residual history and store it in an ASCII file.

e [nit(), InitMinlter(), InitMaxlIter() and InitTol() initialize the solver and set the stopping criteria.
* RecordResidualHistory() and RecordHistory() start the recording of the residual and write it into a file.

» Verbose() sets the level of verbose output of the solver (0 - no output, 2 - detailed output, including residual
and iteration information).

* SetPreconditioner() sets the preconditioning.
All iterative solvers are controlled based on
* Absolute stopping criteria, when |r4|z, €4ps
* Relative stopping criteria, when |r¢ |z, /|r1|L, < €re
* Divergence stopping criteria, when |r¢|z, /|71]1, > €div
¢ Maximum number of iteration IV, when k = N

where £ is the current iteration, r, the residual for the current iteration & (i.e. 1, = b — Axy) and r the starting
residual (i.e. 11 = b — Ax;p4). In addition, the minimum number of iterations M can be specified. In this case,
the solver will not stop to iterate, before k > M.

The L, norm is used for the computation, where p could be 1, 2 and co. The norm computation can be set
with SetResidualNorm() with 1 for Ly, 2 for Ly and 3 for L.,. For the computation with L., the index of
the maximum value can be obtained with GetAmaxResiduallndex(). If this function is called and L., was not
selected, this function will return -1.

The reached criteria can be obtained with GerSolverStatus(), returning
¢ 0, if no criteria has been reached yet
¢ 1, if absolute tolerance has been reached
¢ 2 if relative tolerance has been reached
3, if divergence tolerance has been reached

¢ 4, if maximum number of iteration has been reached

Template Parameters
e OperatorType: - can be LocalMatrix, GlobalMatrix or LocalStencil
* VectorType: - can be LocalVector or GlobalVector

* ValueType: - can be float, double, std::complex<float> or std::complex<double>

2.9. ROCm Libraries 213

ReadTheDocs-Breathe Documentation, Release 1.0.0

Subclassed by rocalution::BaseMultiGrid< OperatorType, VectorType, ValueType >, rocalution::BiCGStab<
OperatorType, VectorType, ValueType >, rocalution::BiCGStabl< OperatorType, VectorType, ValueType
>, rocalution::CG< OperatorType, VectorType, ValueType >, rocalution::Chebyshev< OperatorType, Vec-
torType, ValueType >, rocalution::CR< OperatorType, VectorType, ValueType >, rocalution::FCG< Opera-
torType, VectorType, ValueType >, rocalution::FGMRES< OperatorType, VectorType, ValueType >, rocalu-
tion::FixedPoint< OperatorType, VectorType, ValueType >, rocalution::GMRES< OperatorType, VectorType,
ValueType >, rocalution::IDR< OperatorType, VectorType, ValueType >, rocalution::QMRCGStab< Opera-
torType, VectorType, ValueType >

void rocalution:: TterativelLinearSolver: :Init (double abs_tol, double rel_tol, double div_tol,
o))) int max_iter)))

Initialize the solver with absolute/relative/divergence tolerance and maximum number of iterations.

void rocalution: : TterativelLinearSolver: :Init (double abs_tol, double rel_tol, double div_tol,
int min_iter, int max_iter)

Initialize the solver with absolute/relative/divergence tolerance and minimum/maximum number of iterations.
void rocalution::TterativelLinearSolver: :InitMinIter (int min_iter)

Set the minimum number of iterations.

void rocalution: : IterativelLinearSolver: :InitMaxIter (int max_iter)
Set the maximum number of iterations.

void rocalution::IterativelLinearSolver: :InitTol (double abs, double rel, double div)
Set the absolute/relative/divergence tolerance.

void rocalution:: IterativelLinearSolver: :SetResidualNorm (int resnorm)
Set the residual norm to L1, Ly or L, norm.
e resnorm = 1 -> [,; norm
e resnorm = 2 -> L norm
e resnorm = 3 -> L., norm
void rocalution:: IterativelLinearSolver: :RecordResidualHistory (void)
Record the residual history.

void rocalution::IterativeLinearSolver: :RecordHistory (const std:string filename)
. . const
Write the history to file.
void rocalution: : IterativelLinearSolver: :Verbose (intverb=1)
Set the solver verbosity output.

void rocalution: : IterativeLinearSolver: :Solve (const VectorType &rhs, VectorType *x)
Solve Operator x = ths.

void rocalution:: IterativelLinearSolver: :SetPreconditioner (Solver<OperatorType,
VectorType, ValueType>

&precond)
Set a preconditioner of the linear solver.

int rocalution::IterativelLinearSolver: :GetIterationCount (void)
Return the iteration count.

double rocalution::IterativeLinearSolver: :GetCurrentResidual (void)
Return the current residual.

int rocalution::IterativelLinearSolver: :GetSolverStatus (void)
Return the current status.

214 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

int rocalution::IterativelLinearSolver: :GetAmaxResidualIndex (void)
Return absolute maximum index of residual vector when using L, norm.

template<class OperatorType, class VectorType, typename ValueType>
class FixedPoint : public rocalution::/terativeLinearSolver<OperatorType, VectorType, ValueType>
Fixed-Point Iteration Scheme.

The Fixed-Point iteration scheme is based on additive splitting of the matrix A = M + N. The scheme reads
Tpe1 = M7(b— Nay,).
It can also be reformulated as a weighted defect correction scheme
Tpi1 = T —wMH(Axy, — b).

The inversion of M can be performed by preconditioners (Jacobi, Gauss-Seidel, /LU, etc.) or by any type of
solvers.
Template Parameters
* OperatorType: - can be LocalMatrix, GlobalMatrix or LocalStencil
e VectorType: - can be LocalVector or GlobalVector
e ValueType: - can be float, double, std::complex<float> or std::complex<double>
void rocalution: :FixedPoint: :SetRelaxation (ValueType omega)
Set relaxation parameter w.

template<class OperatorTypeH, class VectorTypeH, typename ValueTypeH, class OperatorTypel, class VectorTypel,
class MixedPrecisionDC : public rocalution::/terativeLinearSolver<OperatorTypeH, VectorTypeH, ValueType H>
Mixed-Precision Defect Correction Scheme.

The Mixed-Precision solver is based on a defect-correction scheme. The current implementation of the library
is using host based correction in double precision and accelerator computation in single precision. The solver is
implemeting the scheme

—1
Tpt1 =X + A 1g,

where the computation of the residual 7, = b — Axy, and the update xy 1 = xx + dj, are performed on the host
in double precision. The computation of the residual system Ady, = ry, is performed on the accelerator in single
precision. In addition to the setup functions of the iterative solver, the user need to specify the inner (Ady, = 1)
solver.
Template Parameters

e OperatorTypeH: - can be LocalMatrix

* VectorTypeH: - can be LocalVector

e ValueTypeH: - can be double

e OperatorTypel: - can be LocalMatrix

* VectorTypelL: - can be LocalVector

e ValueTypel: - can be float

void rocalution: :MixedPrecisionDC: : Set (Solver<OperatorTypeL, VectorTypeL, ValueTypelL>

&Solver_L)
Set the inner solver for Ady, = ry,.

2.9. ROCm Libraries 215

ReadTheDocs-Breathe Documentation, Release 1.0.0

template<class OperatorType, class VectorType, typename ValueType>
class Chebyshev : public rocalution::/terativeLinearSolver<OperatorType, VectorType, ValueType>
Chebyshev Iteration Scheme.

The Chebyshev Iteration scheme (also known as acceleration scheme) is similar to the CG method but requires
minimum and maximum eigenvalues of the operator. templates
Template Parameters
* OperatorType: - can be LocalMatrix, GlobalMatrix or LocalStencil
* VectorType: - can be LocalVector or GlobalVector
* ValueType: - can be float, double, std::complex<float> or std::complex<double>
void rocalution: : Chebyshev: : Set (ValueType lambda_min, ValueType lambda_max)
Set the minimum and maximum eigenvalues of the operator.

template<class OperatorType, class VectorType, typename ValueType>
class BiCGStab : public rocalution::/terativeLinearSolver<OperatorType, VectorType, ValueType>
Bi-Conjugate Gradient Stabilized Method.

The Bi-Conjugate Gradient Stabilized method is a variation of CGS and solves sparse (non) symmetric linear
systems Ax = b. SAAD
Template Parameters
e OperatorType: - can be LocalMatrix, GlobalMatrix or LocalStencil
* VectorType: - can be LocalVector or GlobalVector
* ValueType: - can be float, double, std::complex<float> or std::complex<double>
template<class OperatorType, class VectorType, typename ValueType>

class BiCGStabl : public rocalution::/terativeLinearSolver<OperatorType, VectorType, ValueType>
Bi-Conjugate Gradient Stabilized (1) Method.

The Bi-Conjugate Gradient Stabilized (1) method is a generalization of BiCGStab for solving sparse (non) sym-
metric linear systems Az = b. It minimizes residuals over /-dimensional Krylov subspaces. The degree [can
be set with SetOrder (). bicgstabl

Template Parameters
e OperatorType: - can be LocalMatrix or GlobalMatrix
* VectorType: - can be LocalVector or GlobalVector
* ValueType: - can be float, double, std::complex<float> or std::complex<double>
void rocalution: :BiCGStabl: : SetOrder (int!)
Set the order.

template<class OperatorType, class VectorType, typename ValueType>
class CG: public rocalution::/terativeLinearSolver<OperatorType, VectorType, ValueType>
Conjugate Gradient Method.

The Conjugate Gradient method is the best known iterative method for solving sparse symmetric positive definite
(SPD) linear systems Az = b. It is based on orthogonal projection onto the Krylov subspace K, (¢, A), where
ro is the initial residual. The method can be preconditioned, where the approximation should also be SPD.
SAAD

216 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

Template Parameters
e OperatorType: - can be LocalMatrix, GlobalMatrix or LocalStencil
* VectorType: - can be LocalVector or GlobalVector
* ValueType: - can be float, double, std::complex<float> or std::complex<double>
template<class OperatorType, class VectorType, typename ValueType>

class CR:public rocalution::/terativeLinearSolver<OperatorType, VectorType, ValueType>
Conjugate Residual Method.

The Conjugate Residual method is an iterative method for solving sparse symmetric semi-positive definite linear
systems Az = b. It is a Krylov subspace method and differs from the much more popular Conjugate Gradient
method that the system matrix is not required to be positive definite. The method can be preconditioned where
the approximation should also be SPD or semi-positive definite. SAAD
Template Parameters

e OperatorType: - can be LocalMatrix, GlobalMatrix or LocalStencil

* VectorType: - can be LocalVector or GlobalVector

* ValueType: - can be float, double, std::complex<float> or std::complex<double>

template<class OperatorType, class VectorType, typename ValueType>

class FCG: public rocalution::/terativeLinearSolver<OperatorType, VectorType, ValueType>
Flexible Conjugate Gradient Method.

The Flexible Conjugate Gradient method is an iterative method for solving sparse symmetric positive definite
linear systems Ax = b. It is similar to the Conjugate Gradient method with the only difference, that it allows
the preconditioner M ~! to be not a constant operator. This can be especially helpful if the operation M~z is
the result of another iterative process and not a constant operator. fcg
Template Parameters

e OperatorType: - can be LocalMatrix or GlobalMatrix

e VectorType: - can be LocalVector or GlobalVector

e ValueType: - can be float, double, std::complex<float> or std::complex<double>

template<class OperatorType, class VectorType, typename ValueType>

class GMRES : public rocalution::/terativeLinearSolver<OperatorType, VectorType, ValueType>
Generalized Minimum Residual Method.

The Generalized Minimum Residual method (GMRES) is a projection method for solving sparse (non) symmet-
ric linear systems Ax = b, based on restarting technique. The solution is approximated in a Krylov subspace
K = K,, and £ = AK,, with minimal residual, where C,, is the m-th Krylov subspace with v; = ro/||7o]|2-
SAAD

The Krylov subspace basis size can be set using SetBasisSize(). The default size is 30.

Template Parameters
e OperatorType: - can be LocalMatrix, GlobalMatrix or LocalStencil
* VectorType: - can be LocalVector or GlobalVector

* ValueType: - can be float, double, std::complex<float> or std::complex<double>

2.9. ROCm Libraries 217

ReadTheDocs-Breathe Documentation, Release 1.0.0

void rocalution: : GMRES: : SetBasisSize (int size_basis)
Set the size of the Krylov subspace basis.

template<class OperatorType, class VectorType, typename ValueType>
class FGMRES : public rocalution::/terativeLinearSolver<OperatorType, VectorType, ValueType>
Flexible Generalized Minimum Residual Method.

The Flexible Generalized Minimum Residual method (FGMRES) is a projection method for solving sparse (non)
symmetric linear systems Ax = b. It is similar to the GMRES method with the only difference, the FGMRES is
based on a window shifting of the Krylov subspace and thus allows the preconditioner M ~! to be not a constant
operator. This can be especially helpful if the operation M ~!z is the result of another iterative process and not
a constant operator. SAAD

The Krylov subspace basis size can be set using SerBasisSize(). The default size is 30.

Template Parameters
* OperatorType: - can be LocalMatrix, GlobalMatrix or LocalStencil
e VectorType: - can be LocalVector or GlobalVector
e ValueType: - can be float, double, std::complex<float> or std::complex<double>
void rocalution: : FGMRES : : SetBasisSize (int size_basis)
Set the size of the Krylov subspace basis.

template<class OperatorType, class VectorType, typename ValueType>
class IDR: public rocalution::/terativeLinearSolver<OperatorType, VectorType, ValueType>
Induced Dimension Reduction Method.

The Induced Dimension Reduction method is a Krylov subspace method for solving sparse (non) symmetric
linear systems Ax = b. IDR(s) generates residuals in a sequence of nested subspaces. IDR1 IDR2

The dimension of the shadow space can be set by SetShadowSpace(). The default size of the shadow space is 4.

Template Parameters
e OperatorType: - can be LocalMatrix, GlobalMatrix or LocalStencil
e VectorType: - can be LocalVector or GlobalVector
* ValueType: - can be float, double, std::complex<float> or std::complex<double>
void rocalution: : IDR: : SetShadowSpace (int s)
Set the size of the Shadow Space.

void rocalution: : IDR: : SetRandomSeed (unsigned long long seed)
Set random seed for ONB creation (seed must be greater than 0)

template<class OperatorType, class VectorType, typename ValueType>
class QMRCGStab : public rocalution::/terativeLinearSolver<OperatorType, VectorType, ValueType>
Quasi-Minimal Residual Conjugate Gradient Stabilized Method.

The Quasi-Minimal Residual Conjugate Gradient Stabilized method is a variant of the Krylov subspace
BiCGStab method for solving sparse (non) symmetric linear systems Az = b. qmrcgstab
Template Parameters

e OperatorType: - can be LocalMatrix or GlobalMatrix

* VectorType: - can be LocalVector or GlobalVector

* ValueType: - can be float, double, std::complex<float> or std::complex<double>

218 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

template<class OperatorType, class VectorType, typename ValueType>
class BaseMultiGrid : public rocalution::/terativeLinearSolver<OperatorType, VectorType, ValueType>
Base class for all multigrid solvers Trottenberg2003.

Template Parameters
e OperatorType: - can be LocalMatrix or GlobalMatrix
* VectorType: - can be LocalVector or GlobalVector

* ValueType: - can be float, double, std::complex<float> or std::complex<double>

Subclassed by rocalution::BaseAMG< OperatorType, VectorType, ValueType >, rocalution::MultiGrid< Oper-
atorType, VectorType, ValueType >

void rocalution: :BaseMultiGrid: :SetSolver (Solver<OperatorType, VectorType, ValueType>

&solver)
Set the coarse grid solver.

void rocalution: : BaseMultiGrid: : SetSmoother (lterativeLinearSolver<OperatorType, Vec-

torType, ValueType> **smoother)
Set the smoother for each level.

void rocalution: :BaseMultiGrid: : SetSmootherPrelIter (int ifer)
Set the number of pre-smoothing steps.

void rocalution: :BaseMultiGrid: : SetSmootherPostIter (int iter)
Set the number of post-smoothing steps.

virtual void rocalution: :BaseMultiGrid: : SetRestrictOperator (OperatorType **op) =0
Set the restriction operator for each level.

virtual void rocalution: :BaseMultiGrid: : SetProlongOperator (OperatorType **op) =0
Set the prolongation operator for each level.

virtual void rocalution: :BaseMultiGrid: : SetOperatorHierarchy (OperatorType **op) =

0
Set the operator for each level.

void rocalution: :BaseMultiGrid: :SetScaling (bool scaling)
Enable/disable scaling of intergrid transfers.

void rocalution: :BaseMultiGrid: : SetHostLevels (int levels)
Force computation of coarser levels on the host backend.

void rocalution: :BaseMultiGrid: :SetCycle (unsigned int cycle)
Set the MultiGrid Cycle (default: Vcycle)

void rocalution: :BaseMultiGrid: : SetKeycleFull (bool kcycle_full)
Set the MultiGrid Kcycle on all levels or only on finest level.

void rocalution: :BaseMultiGrid: : InitLevels (int levels)
Set the depth of the multigrid solver.

template<class OperatorType, class VectorType, typename ValueType>
class MultiGrid: public rocalution::BaseMultiGrid<OperatorType, VectorType, ValueType>
MultiGrid Method.

The MultiGrid method can be used with external data, such as externally computed restriction, prolongation
and operator hierarchy. The user need to pass all this information for each level and for its construction. This
includes smoothing step, prolongation/restriction, grid traversing and coarse grid solver. This data need to be
passed to the solver. Trottenberg2003

2.9. ROCm Libraries 219

ReadTheDocs-Breathe Documentation, Release 1.0.0

* Restriction and prolongation operations can be performed in two ways, based on Restriction() and Prolon-
gation() of the LocalVector class, or by matrix-vector multiplication. This is configured by a set function.

» Smoothers can be of any iterative linear solver. Valid options are Jacobi, Gauss-Seidel, /LU, etc. using a
FixedPoint iteration scheme with pre-defined number of iterations. The smoothers could also be a solver
such as CG, BiCGStab, etc.

¢ Coarse grid solver could be of any iterative linear solver type. The class also provides mechanisms to
specify, where the coarse grid solver has to be performed, on the host or on the accelerator. The coarse
grid solver can be preconditioned.

* Grid scaling based on a L, norm ratio.

* Operator matrices need to be passed on each grid level.

Template Parameters
* OperatorType: - can be LocalMatrix or GlobalMatrix
* VectorType: - can be LocalVector or GlobalVector
e ValueType: - can be float, double, std::complex<float> or std::complex<double>
template<class OperatorType, class VectorType, typename ValueType>

class BaseAMG : public rocalution::BaseMultiGrid<OperatorType, VectorType, ValueType>
Base class for all algebraic multigrid solvers.

The Algebraic MultiGrid solver is based on the BaseMultiGrid class. The coarsening is obtained by different
aggregation techniques. The smoothers can be constructed inside or outside of the class.

All parameters in the Algebraic MultiGrid class can be set externally, including smoothers and coarse grid
solver.
Template Parameters

* OperatorType: - can be LocalMatrix or GlobalMatrix

e VectorType: - can be LocalVector or GlobalVector

e ValueType: - can be float, double, std::complex<float> or std::complex<double>
Subclassed by rocalution::GlobalPairwiseAMG< OperatorType, VectorType, ValueType >, rocalu-
tion:: PairwiseAMG< OperatorType, VectorType, ValueType >, rocalution::RugeStuebenAMG< OperatorType,

VectorType, ValueType >, rocalution::SAAMG< OperatorType, VectorType, ValueType >, rocalution::UAAMG<
OperatorType, VectorType, ValueType >

void rocalution: : BaseAMG: :ClearLocal (void)
Clear all local data.

void rocalution: : BaseAMG: :BuildHierarchy (void)
Create AMG hierarchy.

void rocalution: : BaseAMG: :BuildSmoothers (void)
Create AMG smoothers.

void rocalution: : BaseAMG: : SetCoarsestLevel (int coarse_size)
Set coarsest level for hierarchy creation.

void rocalution: : BaseAMG: : SetManualSmoothers (bool sm_manual)
Set flag to pass smoothers manually for each level.

void rocalution: : BaseAMG: : SetManualSolver (bool s_manual)
Set flag to pass coarse grid solver manually.

220 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

void rocalution: : BaseAMG: : SetDefault SmootherFormat (unsigned int op_format)
Set the smoother operator format.

void rocalution: : BaseAMG: : SetOperatorFormat (unsigned int op_format)
Set the operator format.

int rocalution: : BaseAMG: :GetNumLevels (void)
Returns the number of levels in hierarchy.

template<class OperatorType, class VectorType, typename ValueType>
class UAAMG : public rocalution::BaseAMG<OperatorType, VectorType, ValueType>
Unsmoothed Aggregation Algebraic MultiGrid Method.

The Unsmoothed Aggregation Algebraic MultiGrid method is based on unsmoothed aggregation based interpo-
lation scheme. stuben
Template Parameters
e OperatorType: - can be LocalMatrix
e VectorType: - can be LocalVector
* ValueType: - can be float, double, std::complex<float> or std::complex<double>
void rocalution: : UAAMG: : SetCouplingStrength (ValueType eps)
Set coupling strength.

void rocalution: : UAAMG: : SetOverInterp (ValueType overlnterp)
Set over-interpolation parameter for aggregation.

template<class OperatorType, class VectorType, typename ValueType>
class SAAMG : public rocalution::BaseAMG<OperatorType, VectorType, ValueType>
Smoothed Aggregation Algebraic MultiGrid Method.

The Smoothed Aggregation Algebraic MultiGrid method is based on smoothed aggregation based interpolation
scheme. vanek
Template Parameters
e OperatorType: - can be LocalMatrix
* VectorType: - can be LocalVector
* ValueType: - can be float, double, std::complex<float> or std::complex<double>
void rocalution: : SAAMG: : SetCouplingStrength (ValueType eps)
Set coupling strength.

void rocalution: : SAAMG: : SetInterpRelax (ValueType relax)
Set the relaxation parameter.

template<class OperatorType, class VectorType, typename ValueType>
class RugeStuebenAMG : public rocalution::BaseAMG<OperatorType, VectorType, ValueType>
Ruge-Stueben Algebraic MultiGrid Method.

The Ruge-Stueben Algebraic MultiGrid method is based on the classic Ruge-Stueben coarsening with direct
interpolation. The solver provides high-efficiency in terms of complexity of the solver (i.e. number of iterations).
However, most of the time it has a higher building step and requires higher memory usage. stuben

Template Parameters

* OperatorType: - can be LocalMatrix

2.9. ROCm Libraries 221

ReadTheDocs-Breathe Documentation, Release 1.0.0

e VectorType: - can be LocalVector
e ValueType: - can be float, double, std::complex<float> or std::complex<double>
void rocalution: : RugeStuebenAMG: : SetCouplingStrength (ValueType eps)
Set coupling strength.

template<class OperatorType, class VectorType, typename ValueType>
class PairwiseAMG : public rocalution::BaseAMG<OperatorType, VectorType, ValueType>
Pairwise Aggregation Algebraic MultiGrid Method.

The Pairwise Aggregation Algebraic MultiGrid method is based on a pairwise aggregation matching scheme. It
delivers very efficient building phase which is suitable for Poisson-like equation. Most of the time it requires
K-cycle for the solving phase to provide low number of iterations. pairwiseamg
Template Parameters
* OperatorType: - can be LocalMatrix
e VectorType: - can be LocalVector
e ValueType: - can be float, double, std::complex<float> or std::complex<double>
void rocalution: :PairwiseAMG: : SetBeta (ValueType beta)
Set beta for pairwise aggregation.

void rocalution: :PairwiseAMG: : SetOrdering (unsigned int ordering)
Set re-ordering for aggregation.

void rocalution: :PairwiseAMG: : SetCoarseningFactor (double factor)
Set target coarsening factor.

template<class OperatorType, class VectorType, typename ValueType>
class GlobalPairwiseAMG : public rocalution::BaseAMG<OperatorType, VectorType, ValueType>
Pairwise Aggregation Algebraic MultiGrid Method (multi-node)

The Pairwise Aggregation Algebraic MultiGrid method is based on a pairwise aggregation matching scheme.
It delivers very efficient building phase which is suitable for Poisson-like equation. Most of the time it re-
quires K-cycle for the solving phase to provide low number of iterations. This version has multi-node support.
pairwiseamg
Template Parameters

e OperatorType: - can be GlobalMatrix

e VectorType: - can be GlobalVector

* ValueType: - can be float, double, std::complex<float> or std::complex<double>

void rocalution: :GlobalPairwiseAMG: : SetBeta (ValueType beta)

Set beta for pairwise aggregation.

void rocalution: :GlobalPairwiseAMG: : SetOrdering (const _aggregation_ordering ordering)
Set re-ordering for aggregation.

void rocalution: :GlobalPairwiseAMG: : SetCoarseningFactor (double factor)
Set target coarsening factor.

template<class OperatorType, class VectorType, typename ValueType>

222 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

class DirectLlinearSolver : public rocalution::Solver<OperatorType, VectorType, ValueType>
Base class for all direct linear solvers.

The library provides three direct methods - LU, OR and Inversion (based on QR decomposition). The user can
pass a sparse matrix, internally it will be converted to dense and then the selected method will be applied. These
methods are not very optimal and due to the fact that the matrix is converted to a dense format, these methods
should be used only for very small matrices.
Template Parameters

* OperatorType: - can be LocalMatrix

e VectorType: - can be LocalVector

e ValueType: - can be float, double, std::complex<float> or std::complex<double>
Subclassed by rocalution::Inversion< OperatorType, VectorType, ValueType >, rocalution::LU< OperatorType,
VectorType, ValueType >, rocalution::QR< OperatorType, VectorType, ValueType >

template<class OperatorType, class VectorType, typename ValueType>
class Inversion: public rocalution::DirectLinearSolver<OperatorType, VectorType, ValueType>
Matrix Inversion.

Full matrix inversion based on OR decomposition.

Template Parameters
e OperatorType: - can be LocalMatrix
* VectorType: - can be LocalVector
* ValueType: - can be float, double, std::complex<float> or std::complex<double>
template<class OperatorType, class VectorType, typename ValueType>

class LU: public rocalution::DirectLinearSolver<OperatorType, VectorType, ValueType>
LU Decomposition.

Lower-Upper Decomposition factors a given square matrix into lower and upper triangular matrix, such that
A=LU.
Template Parameters
* OperatorType: - can be LocalMatrix
e VectorType: - can be LocalVector
e ValueType: - can be float, double, std::complex<float> or std::complex<double>
template<class OperatorType, class VectorType, typename ValueType>

class QR :public rocalution::DirectLinearSolver<OperatorType, VectorType, ValueType>
OR Decomposition.

The QR Decomposition decomposes a given matrix into A = @QR, such that) is an orthogonal matrix and R
an upper triangular matrix.
Template Parameters

e OperatorType: - can be LocalMatrix

* VectorType: - can be LocalVector

* ValueType: - can be float, double, std::complex<float> or std::complex<double>

2.9. ROCm Libraries 223

ReadTheDocs-Breathe Documentation, Release 1.0.0

2.9.9.12.13 Preconditioners

template<class OperatorType, class VectorType, typename ValueType>
class Preconditioner : public rocalution::Solver<OperatorType, VectorType, ValueType>

Base class for all preconditioners.

Template Parameters
* OperatorType: - can be LocalMatrix or GlobalMatrix
e VectorType: - can be LocalVector or GlobalVector

e ValueType: - can be float, double, std::complex<float> or std::complex<double>

Subclassed by rocalution::AIChebyshev< OperatorType, VectorType, ValueType >, rocalution::AS<
OperatorType, VectorType, ValueType >, rocalution::BlockJacobi< OperatorType, VectorType, Val-
ueType >, rocalution::BlockPreconditioner< OperatorType, VectorType, ValueType >, rocalu-
tion::DiagJacobiSaddlePointPrecond< OperatorType, VectorType, ValueType >, rocalution::FSAI< Opera-
torType, VectorType, ValueType >, rocalution::GS< OperatorType, VectorType, ValueType >, rocalution::1C<
OperatorType, VectorType, ValueType >, rocalution::ILU< OperatorType, VectorType, ValueType >, rocalu-
tion::ILUT< OperatorType, VectorType, ValueType >, rocalution::Jacobi< OperatorType, VectorType, Value-
Type >, rocalution::MultiColored< OperatorType, VectorType, ValueType >, rocalution::MultiElimination<
OperatorType, VectorType, ValueType >, rocalution::SGS< OperatorType, VectorType, ValueType >, rocalu-
tion::SPAI< OperatorType, VectorType, ValueType >, rocalution:: TNS< OperatorType, VectorType, ValueType
>, rocalution::VariablePreconditioner< OperatorType, VectorType, ValueType >

template<class OperatorType, class VectorType, typename ValueType>
class AIChebyshev : public rocalution::Preconditioner<OperatorType, VectorType, ValueType>

Approximate Inverse - Chebyshev Preconditioner.
The Approximate Inverse - Chebyshev Preconditioner is an inverse matrix preconditioner with values from a
linear combination of matrix-valued Chebyshev polynomials. chebpoly
Template Parameters
e OperatorType: - can be LocalMatrix
e VectorType: - can be LocalVector

* ValueType: - can be float, double, std::complex<float> or std::complex<double>

void rocalution: : AIChebyshev: :Set (int p, ValueType lambda_min, ValueType lambda_max)

Set order, min and max eigenvalues.

template<class OperatorType, class VectorType, typename ValueType>
class FSAI : public rocalution::Preconditioner<OperatorType, VectorType, ValueType>

Factorized Approximate Inverse Preconditioner.

The Factorized Sparse Approximate Inverse preconditioner computes a direct approximation of M ~! by min-
imizing the Frobenius norm ||I/GL||r, where L denotes the exact lower triangular part of A and G := M 1.
The FSAI preconditioner is initialized by ¢, based on the sparsity pattern of | A9|. However, it is also possible to
supply external sparsity patterns in form of the LocalMatrix class. kolotilina

Note The FSAI preconditioner is only suited for symmetric positive definite matrices.

Template Parameters

e OperatorType: - can be LocalMatrix

e VectorType: - can be LocalVector

224

Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

* ValueType: - can be float, double, std::complex<float> or std::complex<double>
void rocalution: : FSATI: : Set (int power)
Set the power of the system matrix sparsity pattern.

void rocalution: : FSAT: : Set (const OperatorType &pattern)
Set an external sparsity pattern.

void rocalution: : FSAT: :SetPrecondMatrixFormat (unsigned int mat_format)
Set the matrix format of the preconditioner.

template<class OperatorType, class VectorType, typename ValueType>
class SPAI : public rocalution::Preconditioner<OperatorType, VectorType, ValueType>
SParse Approximate Inverse Preconditioner.

The SParse Approximate Inverse algorithm is an explicitly computed preconditioner for general sparse linear
systems. In its current implementation, only the sparsity pattern of the system matrix is supported. The SPA/
computation is based on the minimization of the Frobenius norm ||AM I||r. grote
Template Parameters
e OperatorType: - can be LocalMatrix
* VectorType: - can be LocalVector
* ValueType: - can be float, double, std::complex<float> or std::complex<double>
void rocalution: : SPAT: :SetPrecondMatrixFormat (unsigned int mat_format)
Set the matrix format of the preconditioner.

template<class OperatorType, class VectorType, typename ValueType>
class TNS : public rocalution::Preconditioner<OperatorType, VectorType, ValueType>
Truncated Neumann Series Preconditioner.

The Truncated Neumann Series (7NS) preconditioner is basedon M~! = KT D71 K, where K = (I - LD~ +
(LD~1)?), with the diagonal D of A and the strictly lower triangular part L of A. The preconditioner can be
computed in two forms - explicitly and implicitly. In the implicit form, the full construction of M is performed
via matrix-matrix operations, whereas in the explicit from, the application of the preconditioner is based on
matrix-vector operations only. The matrix format for the stored matrices can be specified.

Template Parameters
e OperatorType: - can be LocalMatrix
e VectorType: - can be LocalVector
* ValueType: - can be float, double, std::complex<float> or std::complex<double>
void rocalution: : TNS: : Set (bool imp)
Set implicit (true) or explicit (false) computation.

void rocalution: : TNS: : SetPrecondMatrixFormat (unsigned int mat_format)
Set the matrix format of the preconditioner.

template<class OperatorType, class VectorType, typename ValueType>
class AS :public rocalution::Preconditioner<OperatorType, VectorType, ValueType>
Additive Schwarz Preconditioner.

The Additive Schwarz preconditioner relies on a preconditioning technique, where the linear system Az = b
can be decomposed into small sub-problems based on A; = RiTARi, where R; are restriction operators. Those

2.9. ROCm Libraries 225

ReadTheDocs-Breathe Documentation, Release 1.0.0

restriction operators produce sub-matrices wich overlap. This leads to contributions from two preconditioners
on the overlapped area which are scaled by 1/2. RAS
Template Parameters

* OperatorType: - can be LocalMatrix

e VectorType: - can be LocalVector

e ValueType: - can be float, double, std::complex<float> or std::complex<double>

Subclassed by rocalution::RAS< OperatorType, VectorType, ValueType >

void rocalution: : AS: :Set (int nb, int overlap, Solver<OperatorType, VectorType, ValueType> **pre-

conds)
Set number of blocks, overlap and array of preconditioners.

template<class OperatorType, class VectorType, typename ValueType>
class RAS: public rocalution::AS<OperatorType, VectorType, ValueType>
Restricted Additive Schwarz Preconditioner.

The Restricted Additive Schwarz preconditioner relies on a preconditioning technique, where the linear system
Az = b can be decomposed into small sub-problems based on A; = RI AR;, where R; are restriction opera-
tors. The RAS method is a mixture of block Jacobi and the AS scheme. In this case, the sub-matrices contain
overlapped areas from other blocks, too. RAS
Template Parameters

* OperatorType: - can be LocalMatrix

* VectorType: - can be LocalVector

e ValueType: - can be float, double, std::complex<float> or std::complex<double>

template<class OperatorType, class VectorType, typename ValueType>

class BlockJacobi : public rocalution::Preconditioner<OperatorType, VectorType, ValueType>
Block-Jacobi Preconditioner.

The Block-Jacobi preconditioner is designed to wrap any local preconditioner and apply it in a global block
fashion locally on each interior matrix.
Template Parameters

e OperatorType: - can be GlobalMatrix

e VectorType: - can be GlobalVector

* ValueType: - can be float, double, std::complex<float> or std::complex<double>

void rocalution: : BlockJacobi: : Set (Solver<LocalMatrix<ValueType>, LocalVector<ValueType>,

ValueType> &precond)
Set local preconditioner.

template<class OperatorType, class VectorType, typename ValueType>
class BlockPreconditioner : public rocalution::Preconditioner<OperatorType, VectorType, ValueType>
Block-Preconditioner.

When handling vector fields, typically one can try to use different preconditioners and/or solvers for the different
blocks. For such problems, the library provides a block-type preconditioner. This preconditioner builds the

226 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

following block-type matrix

A 0 .0
p_ By By . 0
Zy Zy . Zg

The solution of P can be performed in two ways. It can be solved by block-lower-triangular sweeps with
inversion of the blocks A, ... Z,; and with a multiplication of the corresponding blocks. This is set by SezL-
Solver() (which is the default solution scheme). Alternatively, it can be used only with an inverse of the diagonal
Ay ... Z4 (Block-Jacobi type) by using SetDiagonalSolver().
Template Parameters

e OperatorType: - can be LocalMatrix

* VectorType: - can be LocalVector

* ValueType: - can be float, double, std::complex<float> or std::complex<double>

void rocalution: :BlockPreconditioner: :Set (intn, const int *size, Solver<OperatorType, Vec-

torType, ValueType> **D_solver)
Set number, size and diagonal solver.

void rocalution: :BlockPreconditioner: :SetDiagonalSolver (void)
Set diagonal solver mode.

void rocalution: :BlockPreconditioner: :SetLSolver (void)
Set lower triangular sweep mode.

void rocalution: :BlockPreconditioner: :SetExternalLastMatrix (const OperatorType

&mat)
Set external last block matrix.

void rocalution: :BlockPreconditioner: :SetPermutation (const LocalVector<int>

&perm)
Set permutation vector.

template<class OperatorType, class VectorType, typename ValueType>
class Jacobi : public rocalution::Preconditioner<OperatorType, VectorType, ValueType>
Jacobi Method.

The Jacobi method is for solving a diagonally dominant system of linear equations Az = b. It solves for each
diagonal element iteratively until convergence, such that

i—1 n
k+1 k w k k
xg T = (1 fw):nz()+ — | b fZaiij) fZal-ij(.)
i j=1 j=i
Template Parameters

e OperatorType: - can be LocalMatrix or GlobalMatrix

* VectorType: - can be LocalVector or GlobalVector

* ValueType: - can be float, double, std::complex<float> or std::complex<double>
template<class OperatorType, class VectorType, typename ValueType>

class GS : public rocalution::Preconditioner<OperatorType, VectorType, ValueType>
Gauss-Seidel / Successive Over-Relaxation Method.

2.9. ROCm Libraries 227

ReadTheDocs-Breathe Documentation, Release 1.0.0

The Gauss-Seidel / SOR method is for solving system of linear equations Ax = b. It approximates the solution
iteratively with

(2

(1) _ W W [,) NS, ()
T, =(1—-w)z; —l—af bz—Zamm]— Zamxj ,
j=i

withw € (0, 2).

Template Parameters
e OperatorType: - can be LocalMatrix
e VectorType: - can be LocalVector
* ValueType: - can be float, double, std::complex<float> or std::complex<double>
template<class OperatorType, class VectorType, typename ValueType>

class SGS: public rocalution::Preconditioner<OperatorType, VectorType, ValueType>
Symmetric Gauss-Seidel / Symmetric Successive Over-Relaxation Method.

The Symmetric Gauss-Seidel / SSOR method is for solving system of linear equations Ax = b. It approximates
the solution iteratively.
Template Parameters
* OperatorType: - can be LocalMatrix
e VectorType: - can be LocalVector
e ValueType: - can be float, double, std::complex<float> or std::complex<double>
template<class OperatorType, class VectorType, typename ValueType>

class ILU: public rocalution::Preconditioner<OperatorType, VectorType, ValueType>
Incomplete LU Factorization based on levels.

The Incomplete LU Factorization based on levels computes a sparse lower and sparse upper triangular matrix
such that A = LU — R.
Template Parameters
e OperatorType: - can be LocalMatrix
e VectorType: - can be LocalVector
* ValueType: - can be float, double, std::complex<float> or std::complex<double>
void rocalution: : ILU: : Set (int p, bool level = true)
Initialize ILU(p) factorization.
Initialize ILU(p) factorization based on power. SAAD
¢ level = true build the structure based on levels
¢ level = false build the structure only based on the power(p+1)

template<class OperatorType, class VectorType, typename ValueType>
class ILUT : public rocalution::Preconditioner<OperatorType, VectorType, ValueType>
Incomplete LU Factorization based on threshold.

The Incomplete LU Factorization based on threshold computes a sparse lower and sparse upper triangular matrix
such that A = LU — R. Fill-in values are dropped depending on a threshold and number of maximal fill-ins per
row. SAAD

228 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

Template Parameters
e OperatorType: - can be LocalMatrix
* VectorType: - can be LocalVector
* ValueType: - can be float, double, std::complex<float> or std::complex<double>
void rocalution: : ILUT: : Set (double ¢)
Set drop-off threshold.

void rocalution: : ILUT: : Set (double ¢, int maxrow)
Set drop-off threshold and maximum fill-ins per row.

template<class OperatorType, class VectorType, typename ValueType>
class IC:public rocalution::Preconditioner<OperatorType, VectorType, ValueType>
Incomplete Cholesky Factorization without fill-ins.

The Incomplete Cholesky Factorization computes a sparse lower triangular matrix such that A = LLT — R.
Additional fill-ins are dropped and the sparsity pattern of the original matrix is preserved.

Template Parameters
* OperatorType: - can be LocalMatrix
e VectorType: - can be LocalVector
e ValueType: - can be float, double, std::complex<float> or std::complex<double>
template<class OperatorType, class VectorType, typename ValueType>

class VariablePreconditioner : public rocalution::Preconditioner<OperatorType, VectorType, ValueType>
Variable Preconditioner.

The Variable Preconditioner can hold a selection of preconditioners. Thus, any type of preconditioners can be
combined. As example, the variable preconditioner can combine Jacobi, GS and ILU — then, the first iteration of
the iterative solver will apply Jacobi, the second iteration will apply GS and the third iteration will apply /LU.
After that, the solver will start again with Jacobi, GS, ILU.

Template Parameters
e OperatorType: - can be LocalMatrix
* VectorType: - can be LocalVector
* ValueType: - can be float, double, std::complex<float> or std::complex<double>
void rocalution: :VariablePreconditioner: :SetPreconditioner (int n,
Solver<OperatorType,
VectorType, ValueType>

**precond)
Set the preconditioner sequence.

template<class OperatorType, class VectorType, typename ValueType>
class MultiColored : public rocalution::Preconditioner<OperatorType, VectorType, ValueType>
Base class for all multi-colored preconditioners.
Template Parameters
e OperatorType: - can be LocalMatrix
* VectorType: - can be LocalVector

* ValueType: - can be float, double, std::complex<float> or std::complex<double>

2.9. ROCm Libraries 229

ReadTheDocs-Breathe Documentation, Release 1.0.0

Subclassed by rocalution::MultiColoredILU< OperatorType, VectorType, ValueType >, rocalu-
tion::MultiColoredSGS< OperatorType, VectorType, ValueType >

void rocalution: :MultiColored: : SetPrecondMatrixFormat (unsigned int mat_format)
Set a specific matrix type of the decomposed block matrices.

void rocalution: :MultiColored: : SetDecomposition (bool decomp)
Set if the preconditioner should be decomposed or not.

template<class OperatorType, class VectorType, typename ValueType>
class MultiColoredSGS : public rocalution::MultiColored<OperatorType, VectorType, ValueType>
Multi-Colored Symmetric Gauss-Seidel / SSOR Preconditioner.

The Multi-Colored Symmetric Gauss-Seidel / SSOR preconditioner is based on the splitting of the original
matrix. Higher parallelism in solving the forward and backward substitution is obtained by performing a multi-
colored decomposition. Details on the Symmetric Gauss-Seidel / SSOR algorithm can be found in the SGS
preconditioner.
Template Parameters

e OperatorType: - can be LocalMatrix

* VectorType: - can be LocalVector

* ValueType: - can be float, double, std::complex<float> or std::complex<double>

Subclassed by rocalution::MultiColoredGS< OperatorType, VectorType, ValueType >

void rocalution: :MultiColoredSGS: : SetRelaxation (ValueType omega)
Set the relaxation parameter for the SOR/SSOR scheme.

template<class OperatorType, class VectorType, typename ValueType>
class MultiColoredGS : public rocalution::MultiColoredSGS<OperatorType, VectorType, ValueType>
Multi-Colored Gauss-Seidel / SOR Preconditioner.

The Multi-Colored Symmetric Gauss-Seidel / SOR preconditioner is based on the splitting of the original matrix.
Higher parallelism in solving the forward substitution is obtained by performing a multi-colored decomposition.
Details on the Gauss-Seidel / SOR algorithm can be found in the GS preconditioner.
Template Parameters
* OperatorType: - can be LocalMatrix
e VectorType: - can be LocalVector
e ValueType: - can be float, double, std::complex<float> or std::complex<double>
template<class OperatorType, class VectorType, typename ValueType>

class MultiColoredILU : public rocalution::MultiColored<OperatorType, VectorType, ValueType>
Multi-Colored Incomplete LU Factorization Preconditioner.

Multi-Colored Incomplete LU Factorization based on the ILU(p) factorization with a power(q)-pattern method.
This method provides a higher degree of parallelism of forward and backward substitution compared to the
standard ILU(p) preconditioner. Lukarski2012
Template Parameters

e OperatorType: - can be LocalMatrix

e VectorType: - can be LocalVector

e ValueType: - can be float, double, std::complex<float> or std::complex<double>

230 Chapter 2. Solid Compilation Foundation and Language Support

ReadTheDocs-Breathe Documentation, Release 1.0.0

void rocalution: :MultiColoredILU: :Set (intp)
Initialize a multi-colored /LU(p, p+1) preconditioner.

void rocalution: :MultiColoredILU: :Set (intp, int g, bool level = true)
Initialize a multi-colored ILU(p, q) preconditioner.

level = true will perform the factorization with levels level = false will perform the factorization only on the
power(q)-pattern

template<class OperatorType, class VectorType, typename ValueType>
class MultiElimination : public rocalution::Preconditioner<OperatorType, VectorType, ValueType>
Multi-Elimination Incomplete LU Factorization Preconditioner.

The Multi-Elimination Incomplete LU preconditioner is based on the following decomposition

1= ¢)=(eo 1)< (5 3)

where A = C' — ED~'F. To make the inversion of D easier, we permute the preconditioning before the
factorization with a permutation P to obtain only diagonal elements in D. The permutation here is based on
a maximal independent set. This procedure can be applied to the block matrix A, in this way we can perform
the factorization recursively. In the last level of the recursion, we need to provide a solution procedure. By the
design of the library, this can be any kind of solver. SAAD

Template Parameters
* OperatorType: - can be LocalMatrix
e VectorType: - can be LocalVector
e ValueType: - can be float, double, std::complex<float> or std::complex<double>
int rocalution::MultiElimination: :GetSizeDiagBlock (void) const
Returns the size of the first (diagonal) block of the preconditioner.

int rocalution::MultiElimination: :GetLevel (void) const
Return the depth of the current level.

void rocalution: :MultiElimination: : Set (Solver<OperatorType, VectorType, ValueType>

&AA_Solver, int level, double drop_off = 0.0)
Initialize (recursively) ME-ILU with level (depth of recursion)

AA_Solvers - defines the last-block solver drop_off - defines drop-off tolerance

void rocalution: :MultiElimination: :SetPrecondMatrixFormat (unsigned int mat_format)
Set a specific matrix type of the decomposed block matrices.

template<class OperatorType, class VectorType, typename ValueType>
class DiagJacobiSaddlePointPrecond : public rocalution::Preconditioner<OperatorType, VectorType, ValueType>
Diagonal Preconditioner for Saddle-Point Problems.

A:(Ibf 5)

For such problems we can construct a diagonal Jacobi-type preconditioner of type

K 0
r=(o5)

with § = ED7'F, where D are the diagonal elements of K. The matrix S is fully constructed
(via sparse matrix-matrix multiplication). The preconditioner needs to be initialized with two external
solvers/preconditioners - one for the matrix K and one for the matrix S.

Consider the following saddle-point problem

2.9. ROCm Libraries 231

ReadTheDocs-Breathe Documentation, Release 1.0.0

Template Parameters
e OperatorType: - can be LocalMatrix
* VectorType: - can be LocalVector
* ValueType: - can be float, double, std::complex<float> or std::complex<double>
void rocalution: :DiagdacobiSaddlePointPrecond: : Set (Solver<OperatorType, Vec-
torType, ValueType> &K_Solver,

Solver<OperatorType, VectorType,

ValueType> &S_Solver)
Initialize solver for K and S.

2.9.10 rocSPARSE

2.9.10.1 Introduction
rocSPARSE is a library that contains basic linear algebra subroutines for sparse matrices and vectors written in HiP
for GPU devices. It is designed to be used from C and C++ code.
The functionality of rocSPARSE is organized in the following categories:
» Sparse Auxiliary Functions describe available helper functions that are required for subsequent library calls.
» Sparse Level 1 Functions describe operations between a vector in sparse format and a vector in dense format.
» Sparse Level 2 Functions describe operations between a matrix in sparse format and a vector in dense format.

» Sparse Level 3 Functions describe operations between a matrix in sparse format and multiple vectors in dense
format.

* Preconditioner Functions describe manipulations on a matrix in sparse format to obtain a preconditioner.
 Sparse Conversion Functions describe operations on a matrix in sparse format to obtain a different matrix format.

The code is open and hosted here: https://github.com/ROCmSoftwarePlatform/rocSPARSE

2.9.10.2 Device and Stream Management

hipSetDevice() and hipGetDevice() are HIP device management APIs. They are NOT part of the rocSPARSE API.

2.9.10.2.1 Asynchronous Execution

All rocSPARSE library functions, unless otherwise stated, are non blocking and executed asynchronously with respect
to the host. They may return before the actual computation has finished. To force synchronization, hipDeviceSynchro-
nize() or hipStreamSynchronize() can be used. This will ensure that all previously executed rocSPARSE functions on
the device / this particular stream have completed.

2.9.10.2.2 HIP Device Management

Before a HIP kernel invocation, users need to call hipSetDevice() to set a device, e.g. device 1. If users do not explicitly
call it, the system by default sets it as device 0. Unless users explicitly call hipSetDevice() to set to another device,
their HIP kernels are always launched on device 0.

232 Chapter 2. Solid Compilation Foundation and Language Support

https://rocsparse.readthedocs.io/en/latest/library.html#rocsparse-auxiliary-functions
https://rocsparse.readthedocs.io/en/latest/library.html#rocsparse-level1-functions
https://rocsparse.readthedocs.io/en/latest/library.html#rocsparse-level2-functions
https://rocsparse.readthedocs.io/en/latest/library.html#rocsparse-level3-functions
https://rocsparse.readthedocs.io/en/latest/library.html#rocsparse-precond-functions
https://rocsparse.readthedocs.io/en/latest/library.html#rocsparse-conversion-functions
https://github.com/ROCmSoftwarePlatform/rocSPARSE

ReadTheDocs-Breathe Documentation, Release 1.0.0

The above is a HIP (and CUDA) device management approach and has nothing to do with rocSPARSE. rocSPARSE
honors the approach above and assumes users have already set the device before a rocSPARSE routine call.

Once users set the device, they create a handle with rocsparse_create_handle().

Subsequent rocSPARSE routines take this handle as an input parameter. rocSPARSE ONLY queries (by hipGetDe-
vice()) the user’s device; rocSPARSE does NOT set the device for users. If rocSPARSE does not see a valid device, it
returns an error message. It is the users’ responsibility to provide a valid device to rocSPARSE and ensure the device
safety.

Users CANNOT switch devices between rocsparse_create_handle() and rocsparse_destroy_handle(). If users want to
change device, they must destroy the current handle and create another rocSPARSE handle.

2.9.10.2.3 HIP Stream Management

HIP kernels are always launched in a queue (also known as stream).

If users do not explicitly specify a stream, the system provides a default stream, maintained by the system. Users
cannot create or destroy the default stream. However, users can freely create new streams (with hipStreamCreate())
and bind it to the rocSPARSE handle. HIP kernels are invoked in rocSPARSE routines. The rocSPARSE handle is
always associated with a stream, and rocSPARSE passes its stream to the kernels inside the routine. One rocSPARSE
routine only takes one stream in a single invocation. If users create a stream, they are responsible for destroying it.

2.9.10.2.4 Multiple Streams and Multiple Devices

If the system under test has multiple HIP devices, users can run multiple rocSPARSE handles concurrently, but can
NOT run a single rocSPARSE handle on different discrete devices. Each handle is associated with a particular singular
device, and a new handle should be created for each additional device.

2.9.10.3 Building and Installing

2.9.10.3.1 Installing from AMD ROCm repositories

rocSPARSE can be installed from AMD ROCm repositories by

sudo apt install rocsparse

2.9.10.3.2 Building rocSPARSE from Open-Source repository

Download rocSPARSE
The rocSPARSE source code is available at the rocSPARSE github page. Download the master branch using:

git clone -b master https://github.com/ROCmSoftwarePlatform/rocSPARSE.git
cd rocSPARSE

Note that if you want to contribute to rocSPARSE, you will need to checkout the develop branch instead of the master
branch.

Below are steps to build different packages of the library, including dependencies and clients. It is recommended to
install rocSPARSE using the install.sh script.

2.9. ROCm Libraries 233

https://rocsparse.readthedocs.io/en/latest/library.html#rocsparse-create-handle
https://rocsparse.readthedocs.io/en/latest/library.html#rocsparse-create-handle
https://rocsparse.readthedocs.io/en/latest/library.html#rocsparse-destroy-handle
https://rocm.github.io/ROCmInstall.html#installing-from-amd-rocm-repositories
https://github.com/ROCmSoftwarePlatform/rocSPARSE

ReadTheDocs-Breathe Documentation, Release 1.0.0

2.9.10.3.3 Using install.sh to build dependencies + library

The following table lists common uses of install.sh to build dependencies + library.

2.9.10.3.4 Using install.sh to build dependencies + library + client

The client contains example code, unit tests and benchmarks. Common uses of install.sh to build them are listed in
the table below.

Com- Description

mand

Jin- Print help information.

stall.sh

-h

Jin- Build dependencies, library and client in your local directory. The -d flag only needs to be Ibr| used

stall.sh | once. For subsequent invocations of install.sh it is not necessary to rebuild the Ibr| dependencies.
-dc

Jin- Build librar