

 Navigation

 	
 index

 	
 next |

 	dlmanager 0.1.1 documentation

Welcome to dlmanager’s documentation!

dlmanager is a Python 2 and 3 download manager library. It is hosted
on github [https://github.com/parkouss/dlmanager].

Contents:

	API
	DownloadManager

	Download

	PersistLimit

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Julien Pagès.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 previous |

 	dlmanager 0.1.1 documentation

API

DownloadManager

	
class dlmanager.DownloadManager(destdir, session=None, persist_limit=None)[source]

	DownloadManager is responsible of starting and managing downloads inside
a given directory. It will download a file only if a given filename
is not already there.

Note that background downloads needs to be stopped. For example, if
you have an exception while a download is occuring, python will only
exit when the download will finish. To get rid of that, there is a
possible idiom:

def download_things(manager):
 # do things with the manager
 manager.download(url1, f1)
 manager.download(url2, f2)
 ...

manager = DownloadManager(destdir)
try:
 download_things(manager)
finally:
 # ensure we cancel all background downloads to ask the end
 # of possible remainings threads
 manager.cancel()

	Parameters:	
	destdir – a directory where files are downloaded. It will be created
if it does not exists.

	session – a requests session. If None, one will be created for you.

	persist_limit – an instance of PersistLimit, to allow
limiting the size of the download dir. Defaults
to None, meaning no limit.

	
cancel(cancel_if=None)[source]

	Cancel downloads, if any.

if cancel_if is given, it must be a callable that take the download
instance as parameter, and return True if the download needs to be
canceled.

Note that download threads won’t be stopped directly.

	
download(url, fname=None, progress=None)[source]

	Returns a started Download instance, or None if fname is
already present in destdir.

if a download is already running for the given fname, it is just
returned. Else the download is created, started and returned.

	Parameters:	
	url – url of the file to download.

	fname – name to give for the downloaded file. If None, it will
be the name extracted in the url.

	progress – a callable to report the download progress, or None.
See Download.set_progress().

	
wait(raise_if_error=True)[source]

	Wait for all downloads to be finished.

Download

	
class dlmanager.Download(url, dest, finished_callback=None, chunk_size=16384, session=None, progress=None)[source]

	Download is reponsible of downloading one file in the background.

Example of use:

dl = Download(url, dest)
dl.start()
dl.wait() # this will block until completion / cancel / error

If a download fail or is canceled, the temporary dest is removed from
the disk.

Usually, Downloads are created by using DownloadManager.download().

	Parameters:	
	url – the url of the file to download

	dest – the local file path destination

	finished_callback – a callback that will be called in the thread
when the thread work is done. Takes the download
instance as a parameter.

	chunk_size – size of the chunk that will be read. The thread can
not be stopped while we are reading that chunk size.

	session – a requests.Session instance that will do do the real
downloading work. If None, requests module is used.

	progress – A callable to report the progress (default to None).
see set_progress().

	
cancel()[source]

	Cancel a previously started download.

	
error()[source]

	Returns None or a tuple of three values (type, value, traceback)
that give information about the exception.

	
get_dest()[source]

	Returns the dest.

	
get_url()[source]

	Returns the url.

	
is_canceled()[source]

	Returns True if we canceled this download.

	
is_running()[source]

	Returns True if the downloading thread is running.

	
raise_if_error()[source]

	Raise an error if any. If the download was canceled, raise
DownloadInterrupt.

	
set_progress(progress)[source]

	set a callable to report the progress of the download, or None to
disable any report.

The callable must take three parameters (download, current, total).
Note that this method is thread safe, you can call it during a
download.

	
start()[source]

	Start the thread that will do the download.

	
wait(raise_if_error=True)[source]

	Block until the downloading thread is finished.

	Parameters:	raise_if_error – if True (the default), raise_if_error()
will be called and raise an error if any.

	
class dlmanager.DownloadInterrupt[source]

	Raised when a download is interrupted.

PersistLimit

	
class dlmanager.PersistLimit(size_limit, file_limit=5)[source]

	Keep a list of files, removing the oldest ones when the size_limit
is reached.

The access time of a file is used to determine the oldests, e.g. the
last time a file was read.

	Parameters:	
	size_limit – the size limit in bytes. A value of 0 means no limit.

	file_limit – even if the size limit is reached, this force
to keep at least file_limit files.

	
register_dir_content(directory, pattern='*')[source]

	Register every files in a directory that match pattern.

	
register_file(path)[source]

	register a single file.

	
remove_old_files()[source]

	remove oldest registered files.

 Copyright 2016, Julien Pagès.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	dlmanager 0.1.1 documentation

Index

 C
 | D
 | E
 | G
 | I
 | P
 | R
 | S
 | W

C

 	

 	cancel() (dlmanager.Download method)

 	

 	(dlmanager.DownloadManager method)

D

 	

 	Download (class in dlmanager)

 	download() (dlmanager.DownloadManager method)

 	

 	DownloadInterrupt (class in dlmanager)

 	DownloadManager (class in dlmanager)

E

 	

 	error() (dlmanager.Download method)

G

 	

 	get_dest() (dlmanager.Download method)

 	

 	get_url() (dlmanager.Download method)

I

 	

 	is_canceled() (dlmanager.Download method)

 	

 	is_running() (dlmanager.Download method)

P

 	

 	PersistLimit (class in dlmanager)

R

 	

 	raise_if_error() (dlmanager.Download method)

 	register_dir_content() (dlmanager.PersistLimit method)

 	

 	register_file() (dlmanager.PersistLimit method)

 	remove_old_files() (dlmanager.PersistLimit method)

S

 	

 	set_progress() (dlmanager.Download method)

 	

 	start() (dlmanager.Download method)

W

 	

 	wait() (dlmanager.Download method)

 	

 	(dlmanager.DownloadManager method)

 Copyright 2016, Julien Pagès.
 Created using Sphinx 1.3.4.

 _modules/dlmanager/persist_limit.html

 Navigation

 		
 index

 		dlmanager 0.1.1 documentation »

 		Module code »

 Source code for dlmanager.persist_limit

import os
import stat

from collections import namedtuple
from glob import glob

from dlmanager import fs

File = namedtuple('File', ('path', 'stat'))

[docs]class PersistLimit(object):
 """
 Keep a list of files, removing the oldest ones when the size_limit
 is reached.

 The access time of a file is used to determine the oldests, e.g. the
 last time a file was read.

 :param size_limit: the size limit in bytes. A value of 0 means no limit.
 :param file_limit: even if the size limit is reached, this force
 to keep at least *file_limit* files.
 """
 def __init__(self, size_limit, file_limit=5):
 self.size_limit = size_limit
 self.file_limit = file_limit
 self.files = []
 self._files_size = 0

[docs] def register_file(self, path):
 """
 register a single file.
 """
 try:
 fstat = os.stat(path)
 except OSError:
 # file do not exists probably, just skip it
 # note this happen when backgound files are canceled
 return
 if stat.S_ISREG(fstat.st_mode):
 self.files.append(File(path=path, stat=fstat))
 self._files_size += fstat.st_size

[docs] def register_dir_content(self, directory, pattern="*"):
 """
 Register every files in a directory that match *pattern*.
 """
 for path in glob(os.path.join(directory, pattern)):
 self.register_file(path)

[docs] def remove_old_files(self):
 """
 remove oldest registered files.
 """
 if self.size_limit <= 0 or self.file_limit <= 0:
 return
 # sort by creation time, oldest first
 files = sorted(self.files, key=lambda f: f.stat.st_atime)
 while len(files) > self.file_limit and \
 self._files_size >= self.size_limit:
 f = files.pop(0)
 fs.remove(f.path)
 self._files_size -= f.stat.st_size
 self.files = files

 © Copyright 2016, Julien Pagès.
 Created using Sphinx 1.3.4.

_static/minus.png

_static/comment-close.png

search.html

 Navigation

 		
 index

 		dlmanager 0.1.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Julien Pagès.
 Created using Sphinx 1.3.4.

_static/down.png

_static/plus.png

_static/down-pressed.png

_static/comment.png

_modules/index.html

 Navigation

 		
 index

 		dlmanager 0.1.1 documentation »

 All modules for which code is available

		dlmanager.manager

		dlmanager.persist_limit

 © Copyright 2016, Julien Pagès.
 Created using Sphinx 1.3.4.

_modules/dlmanager/manager.html

 Navigation

 		
 index

 		dlmanager 0.1.1 documentation »

 		Module code »

 Source code for dlmanager.manager

import os
import requests
import six
import sys
import tempfile
import threading

from contextlib import closing
from six.moves.urllib.parse import urlparse

from dlmanager import fs
from dlmanager.persist_limit import PersistLimit

[docs]class DownloadInterrupt(Exception):
 "Raised when a download is interrupted."

[docs]class Download(object):
 """
 Download is reponsible of downloading one file in the background.

 Example of use: ::

 dl = Download(url, dest)
 dl.start()
 dl.wait() # this will block until completion / cancel / error

 If a download fail or is canceled, the temporary dest is removed from
 the disk.

 Usually, Downloads are created by using :meth:`DownloadManager.download`.

 :param url: the url of the file to download
 :param dest: the local file path destination
 :param finished_callback: a callback that will be called in the thread
 when the thread work is done. Takes the download
 instance as a parameter.
 :param chunk_size: size of the chunk that will be read. The thread can
 not be stopped while we are reading that chunk size.
 :param session: a requests.Session instance that will do do the real
 downloading work. If None, `requests` module is used.
 :param progress: A callable to report the progress (default to None).
 see :meth:`set_progress`.
 """
 def __init__(self, url, dest, finished_callback=None,
 chunk_size=16 * 1024, session=None, progress=None):
 self.thread = threading.Thread(
 target=self._download,
 args=(url, dest, finished_callback, chunk_size,
 session or requests)
)
 self._lock = threading.Lock()
 self.__url = url
 self.__dest = dest
 self.__progress = progress
 self.__canceled = False
 self.__error = None

[docs] def start(self):
 """
 Start the thread that will do the download.
 """
 self.thread.start()

[docs] def cancel(self):
 """
 Cancel a previously started download.
 """
 self.__canceled = True

[docs] def is_canceled(self):
 """
 Returns True if we canceled this download.
 """
 return self.__canceled

[docs] def is_running(self):
 """
 Returns True if the downloading thread is running.
 """
 return self.thread.is_alive()

[docs] def wait(self, raise_if_error=True):
 """
 Block until the downloading thread is finished.

 :param raise_if_error: if True (the default), :meth:`raise_if_error`
 will be called and raise an error if any.
 """
 while self.thread.is_alive():
 try:
 # in case of exception here (like KeyboardInterrupt),
 # cancel the task.
 self.thread.join(0.02)
 except:
 self.cancel()
 raise
 # this will raise exception that may happen inside the thread.
 if raise_if_error:
 self.raise_if_error()

[docs] def error(self):
 """
 Returns None or a tuple of three values (type, value, traceback)
 that give information about the exception.
 """
 return self.__error

[docs] def raise_if_error(self):
 """
 Raise an error if any. If the download was canceled, raise
 :class:`DownloadInterrupt`.
 """
 if self.__error:
 six.reraise(*self.__error)
 if self.__canceled:
 raise DownloadInterrupt()

[docs] def set_progress(self, progress):
 """
 set a callable to report the progress of the download, or None to
 disable any report.

 The callable must take three parameters (download, current, total).
 Note that this method is thread safe, you can call it during a
 download.
 """
 with self._lock:
 self.__progress = progress

[docs] def get_dest(self):
 """
 Returns the dest.
 """
 return self.__dest

[docs] def get_url(self):
 """
 Returns the url.
 """
 return self.__url

 def _update_progress(self, current, total):
 with self._lock:
 if self.__progress:
 self.__progress(self, current, total)

 def _download(self, url, dest, finished_callback, chunk_size, session):
 # save the file under a temporary name
 # this allow to not use a broken file in case things went really bad
 # while downloading the file (ie the python interpreter is killed
 # abruptly)
 temp = None
 bytes_so_far = 0
 try:
 with closing(session.get(url, stream=True)) as response:
 total_size = response.headers.get('Content-length', '').strip()
 total_size = int(total_size) if total_size else None
 self._update_progress(bytes_so_far, total_size)
 # we use NamedTemporaryFile as raw open() call was causing
 # issues on windows - see:
 # https://bugzilla.mozilla.org/show_bug.cgi?id=1185756
 with tempfile.NamedTemporaryFile(
 delete=False,
 suffix='.tmp',
 dir=os.path.dirname(dest)) as temp:
 for chunk in response.iter_content(chunk_size):
 if self.is_canceled():
 break
 if chunk:
 temp.write(chunk)
 bytes_so_far += len(chunk)
 self._update_progress(bytes_so_far, total_size)
 response.raise_for_status()
 except:
 self.__error = sys.exc_info()
 try:
 if temp is None:
 pass # not even opened the temp file, nothing to do
 elif self.is_canceled() or self.__error:
 fs.remove(temp.name)
 else:
 # if all goes well, then rename the file to the real dest
 fs.remove(dest) # just in case it already existed
 fs.move(temp.name, dest)
 finally:
 if finished_callback:
 finished_callback(self)

[docs]class DownloadManager(object):
 """
 DownloadManager is responsible of starting and managing downloads inside
 a given directory. It will download a file only if a given filename
 is not already there.

 Note that background downloads needs to be stopped. For example, if
 you have an exception while a download is occuring, python will only
 exit when the download will finish. To get rid of that, there is a
 possible idiom: ::

 def download_things(manager):
 # do things with the manager
 manager.download(url1, f1)
 manager.download(url2, f2)
 ...

 manager = DownloadManager(destdir)
 try:
 download_things(manager)
 finally:
 # ensure we cancel all background downloads to ask the end
 # of possible remainings threads
 manager.cancel()

 :param destdir: a directory where files are downloaded. It will be created
 if it does not exists.
 :param session: a requests session. If None, one will be created for you.
 :param persist_limit: an instance of :class:`PersistLimit`, to allow
 limiting the size of the download dir. Defaults
 to None, meaning no limit.
 """
 def __init__(self, destdir, session=None, persist_limit=None):
 self.destdir = destdir
 self.session = session or requests.Session()
 self._downloads = {}
 self._lock = threading.Lock()
 self.persist_limit = persist_limit or PersistLimit(0)
 self.persist_limit.register_dir_content(self.destdir)

 # if persist folder does not exist, create it
 if not os.path.isdir(destdir):
 os.makedirs(destdir)

 def get_dest(self, fname):
 return os.path.join(self.destdir, fname)

[docs] def cancel(self, cancel_if=None):
 """
 Cancel downloads, if any.

 if cancel_if is given, it must be a callable that take the download
 instance as parameter, and return True if the download needs to be
 canceled.

 Note that download threads won't be stopped directly.
 """
 with self._lock:
 for download in six.itervalues(self._downloads):
 if cancel_if is None or cancel_if(download):
 if download.is_running():
 download.cancel()

[docs] def wait(self, raise_if_error=True):
 """
 Wait for all downloads to be finished.
 """
 for download in self._downloads.values():
 download.wait(raise_if_error=raise_if_error)

[docs] def download(self, url, fname=None, progress=None):
 """
 Returns a started :class:`Download` instance, or None if fname is
 already present in destdir.

 if a download is already running for the given fname, it is just
 returned. Else the download is created, started and returned.

 :param url: url of the file to download.
 :param fname: name to give for the downloaded file. If None, it will
 be the name extracted in the url.
 :param progress: a callable to report the download progress, or None.
 See :meth:`Download.set_progress`.
 """
 if fname is None:
 fname = urlparse(url).path.split('/')[-1]
 dest = self.get_dest(fname)
 with self._lock:
 # if we are downloading, returns the instance
 if dest in self._downloads:
 dl = self._downloads[dest]
 if progress:
 dl.set_progress(progress)
 return dl

 if os.path.exists(dest):
 return None

 # else create the download (will be automatically removed of
 # the list on completion) start it, and returns that.
 with self._lock:
 download = Download(url, dest,
 session=self.session,
 finished_callback=self._download_finished,
 progress=progress)
 self._downloads[dest] = download
 download.start()
 self._download_started(download)
 return download

 def _download_started(self, dl):
 """
 Useful when sub-classing. Report the start event of a download.

 :param dl: The :class:`Download` instance.
 """
 pass

 def _download_finished(self, dl):
 """
 Useful when sub-classing. Report the end of a download.

 Note that this is executed in the download thread. Also, you should
 make sure to call the base implementation.

 :param dl: The :class:`Download` instance.
 """
 with self._lock:
 dest = dl.get_dest()
 del self._downloads[dest]
 self.persist_limit.register_file(dest)
 self.persist_limit.remove_old_files()

 © Copyright 2016, Julien Pagès.
 Created using Sphinx 1.3.4.

_static/file.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/comment-bright.png

_static/up.png

