
DJOAuth2 Documentation
Release 0.6.0

Peter Downs

Sep 27, 2017

Contents

1 Important Links 1

2 What is DJOAuth2? 3

3 Why use DJOAuth2? 5

4 What is implemented? 7

5 Quickstart Guide 9
5.1 Requirements . 9
5.2 Installation . 9
5.3 Adding djoauth2 to an existing application . 9
5.4 Interacting as a Client . 13

6 The djoauth2 Code 17
6.1 access_token Module . 17
6.2 authorization Module . 17
6.3 conf Module . 17
6.4 decorators Module . 17
6.5 errors Module . 17
6.6 models Module . 18
6.7 views Module . 18

7 Contributing 19
7.1 Fork and clone the repository . 19
7.2 Install dependencies . 21
7.3 Making changes . 22

7.3.1 Schema Migrations . 22
7.3.2 Testing . 22
7.3.3 Coverage . 23
7.3.4 Updating Documentation . 23
7.3.5 Committing . 24

7.4 Submitting a pull request . 24

8 Indices and tables 29

Python Module Index 31

i

ii

CHAPTER 1

Important Links

• Source code: https://github.com/locu/djoauth2

• Documentation: http://djoauth2.readthedocs.org/

• Issue tracker: https://github.com/locu/djoauth2/issues

• Mailing list: https://groups.google.com/forum/#!forum/djoauth2

1

https://github.com/locu/djoauth2
http://djoauth2.readthedocs.org/
https://github.com/locu/djoauth2/issues
https://groups.google.com/forum/#!forum/djoauth2

DJOAuth2 Documentation, Release 0.6.0

2 Chapter 1. Important Links

CHAPTER 2

What is DJOAuth2?

DJOAuth2 is an implementation of a sane subset of the OAuth 2 specification, which is described by the OAuth
Website as

An open protocol to allow secure authorization in a simple and standard method from web, mobile and
desktop applications.

The goal of this implementation is to provide a well-structured Django application that can be easily installed to add
OAuth 2.0 provider capability to existing projects. The official specification is broad, and allows for many different
ways for clients and servers to interact with each other. This implementation is a secure subset of these interactions
in order to make it as easy as possible to reap the benefits of OAuth without having to struggle with the more difficult
parts of the spec.

OAuth, and this implementation, are best suited to solving the following problems:

• Allowing for fine-grained API control — you want your users to choose which applications have access to their
data.

• Acting as an authentication server, allowing other sites to “Log in with <your app>”.

3

http://tools.ietf.org/html/rfc6749
http://oauth.net/
http://oauth.net/

DJOAuth2 Documentation, Release 0.6.0

4 Chapter 2. What is DJOAuth2?

CHAPTER 3

Why use DJOAuth2?

In the fall of 2012, when this project began, we read an article by Daniel Greenfield (better known as pydanny)
criticizing the dearth of high-quality, open-source OAuth 2.0 provider implementations in Python. The article contains
a wishlist of features for any OAuth implementation:

• Near turnkey solution

• Working code (duplicates above bullet but I’m making a point)

• Working tutorials

• Documentation

• Commented code

• Linted code

• Test coverage > 80%

This project aims to meet all of these goals, and in particular strives to be:

• Easy to add to existing Django projects, with few dependencies or requirements.

• Easy to understand, by virtue of high-quality documentation and examples.

• Functionally compliant with the official specification.

• Sane and secure by default — the specification allows for insecure behavior, which has been exploited in many
existing implementations by programmers such as Egor Homakov.

• Well-documented and commented, in order to make it easy to understand how the implementation complies
with the specification.

• Well-tested (see the coverage details on the first page of these docs!)

5

http://pydanny.com/the-sorry-state-of-python-oauth-providers.html
http://homakov.blogspot.com/

DJOAuth2 Documentation, Release 0.6.0

6 Chapter 3. Why use DJOAuth2?

CHAPTER 4

What is implemented?

In order to best describe this implementation, we must first describe a few common terms used in the OAuth specifica-
tion:

OAuth defines four roles:

resource owner An entity capable of granting access to a protected resource. When the re-
source owner is a person, it is referred to as an end-user.

resource server The server hosting the protected resources, capable of accepting and respond-
ing to protected resource requests using access tokens.

client An application making protected resource requests on behalf of the resource owner and
with its authorization. The term “client” does not imply any particular implementation
characteristics (e.g., whether the application executes on a server, a desktop, or other
devices).

authorization server The server issuing access tokens to the client after successfully authen-
ticating the resource owner and obtaining authorization.

This implementation allows your application to act as a “resource server” and as an “authorization server”. Your
application’s users are the “resource owners”, and other applications which would like access to your users’ data are
the “clients”.

The specification describes two types of clients, “confidential” and “public”:

OAuth defines two client types, based on their ability to authenticate securely with the authorization server
(i.e., ability to maintain the confidentiality of their client credentials):

confidential Clients capable of maintaining the confidentiality of their credentials (e.g., client imple-
mented on a secure server with restricted access to the client credentials), or capable of secure client
authentication using other means.

public Clients incapable of maintaining the confidentiality of their credentials (e.g., clients executing on
the device used by the resource owner, such as an installed native application or a web browser-based
application), and incapable of secure client authentication via any other means.

7

http://tools.ietf.org/html/rfc6749#section-2.1

DJOAuth2 Documentation, Release 0.6.0

The client type designation is based on the authorization server’s definition of secure authentication and
its acceptable exposure levels of client credentials. The authorization server SHOULD NOT make as-
sumptions about the client type.

This implementation only supports “confidential” clients. Any web, mobile, or desktop application that acts as a client
must also use some sort of secured server in order to protect its client credentials. Apps that are entirely native, or built
entirely on the “client-side” of the web, are not supported.

The decisions that are most important to the security of your application are:

• The authorization endpoint will only return authorization codes, which can later be exchanged for access tokens.

• Password credentials grants, implicit grants, client credentials grants, and all extension grants are not supported.

• Public clients are not supported.

• Every client is required to register its redirect_uri.

• All authorization, token, and API requests are required to use TLS encryption in order to prevent credentials
from being leaked to a third-party. In addition, the registered redirect_uri must also be secured with TLS.

• Clients are required to CSRF-protect their redirection endpoints.

These decisions have been made in an attempt to decrease the attack surface-area of the implementation. The specifi-
cation has a great overview of security considerations that contains reasoning for many of these decisions.

In addition, we only support Bearer tokens in an effort to make interacting with the implementation as simple as
possible for clients. This means no fiddling with MAC-signing or hashing!

8 Chapter 4. What is implemented?

http://tools.ietf.org/html/rfc6749#section-10
http://tools.ietf.org/html/rfc6750

CHAPTER 5

Quickstart Guide

This guide will help you get set up to use djoauth2 with an existing Django project. The code repository also
includes a finished example for comparison; that page includes instructions for setting it up.

Requirements

DJOAuth2 has been tested and developed with the following:

• Python 2.7

• Django 1.4+

• Django AppConf 0.6

DJOAuth2 uses South for migrations. For the Django 1.4.X series we support South version 0.7.6; for Django 1.5.X
and 1.6.X we support South version 0.8.4.

Installation

1. Install the project with pip:

pip install djoauth2

Adding djoauth2 to an existing application

First, add djoauth2 to the INSTALLED_APPS list in your project’s settings.py:

INSTALLED_APPS = [
'django.contrib.auth',
'django.contrib.contenttypes',

9

https://github.com/Locu/djoauth2/tree/master/example
https://github.com/jezdez/django-appconf
http://south.aeracode.org/

DJOAuth2 Documentation, Release 0.6.0

'django.contrib.sessions',
'django.contrib.sites',
'django.contrib.messages',
'django.contrib.staticfiles',
'django.contrib.admin',
'south',
...
... your other custom apps
...
'djoauth2',

]

If you’re not already using South, make sure to also add south to the list of INSTALLED_APPS.

Optionally, for developing without SSL (NOT for production code), add the following setting to turn off
djoauth2‘s SSL-enforcement:

DJOAUTH2_SSL_ONLY = False

Do not set this to False in production code: SSL is mandated by the specification. This value is only designed to
make it easier to develop with OAuth.

Install the models:

python manage.py syncdb
python manage.py migrate djoauth2

In Django 1.5+, djoauth2 will respect your custom User model if you have one configured (with the
AUTH_USER_MODEL setting.) In Django 1.4, or 1.5+ if you’re not using a custom User model, the djoauth2
models will link to the django.contrib.auth.models.User object.

Run the tests — they should all pass!

python manage.py test djoauth2

Now that we know that djoauth2 works, it’s time to set up the URL endpoints so that clients can make requests.
Although the library handles all of the logic for us, we will have to set up some endpoints — to do so, we’ll update
our project’s urls.py file and add an application to hold the endpoints. For the purposes of this demo we’re going
to call it oauth2server, but you could name it anything you’d like.

Here’s what the urls.py file from our project should look like:

coding: utf-8
from django.conf.urls import patterns, include, url
from django.contrib import admin

admin.autodiscover()

urlpatterns = patterns('',
Admin, for creating new Client and Scope objects. You can also create
these from the command line but it's easiest from the Admin.
url(r'^admin/', include(admin.site.urls)),

The endpoint for creating and exchanging access tokens and refresh
tokens is handled entirely by the djoauth2 library.
(r'^oauth2/token/$', 'djoauth2.views.access_token_endpoint'),

The authorization endpoint, a page where each "resource owner" will

10 Chapter 5. Quickstart Guide

https://docs.djangoproject.com/en/dev/topics/auth/customizing/#substituting-a-custom-user-model
https://docs.djangoproject.com/en/1.6/topics/auth/customizing/#auth-custom-user

DJOAuth2 Documentation, Release 0.6.0

be shown the details of the permissions being requested by the
"client".
(r'^oauth2/authorization/$', 'oauth2server.views.authorization_endpoint'),

The page to show when Client redirection URIs are misconfigured or
invalid. This should be a nice, simple error page.
(r'^oauth2/missing_redirect_uri/$', 'oauth2server.views.missing_redirect_uri'),

An access-protected API endpoint, which we'll define later.
(r'^api/user_info/$', 'api.views.user_info'),

)

As you can see, it references an endpoint defined by djoauth2 (the access_token_endpoint) and two others
(authorization_endpoint and missing_redirect_uri) that we say exist in our oauth2server ap-
plication. The oauth2server application only exists to define those two views — here’s what the views.py file
should look like:

coding: utf-8
from django.shortcuts import render
from django.http import HttpResponse
from django.forms import Form

from djoauth2.authorization import make_authorization_endpoint

def missing_redirect_uri(request):
""" Display an error message when an authorization request fails and has no
valid redirect URI.

The Authorization flow depends on recognizing the Client that is requesting
certain permissions and redirecting the user back to an endpoint associated
with the Client. If no Client can be recognized from the request, or the
endpoint is invalid for some reason, we redirect the user to a page
describing that an error has occurred.
"""
return HttpResponse(content="Missing redirect URI!")

authorization_endpoint = make_authorization_endpoint(
The URI of a page to show when a "client" makes a malformed or insecure
request and their registered redirect URI cannot be shown. In general, it
should simply show a nice message describing that an error has occurred;
see the view definition above for more information.
missing_redirect_uri='/oauth2/missing_redirect_uri/',

This endpoint is being dynamically constructed, but it also needs to know
the URI at which it is set up so that it can create forms and handle
redirects, so we explicitly pass it the URI.
authorization_endpoint_uri='/oauth2/authorization/',

The name of the template to render to show the "resource owner" the details
of the "client's" request. See the documentation for more details on the
context used to render this template.
authorization_template_name='oauth2server/authorization_page.html')

The template passed to the make_authorization_endpoint helper will be rendered with the following context:

• form: a Django Form that may hold data internal to the djoauth2 application.

5.3. Adding djoauth2 to an existing application 11

DJOAuth2 Documentation, Release 0.6.0

• client: The djoauth2.models.Client requesting access to the user’s scopes.

• scopes: A list of djoauth2.models.Scope, one for each of the scopes requested by the client.

• form_action: The URI to which the form should be submitted – use this value in the action="" attribute
on a <form> element.

The template in our example application is included below. Please note that it is important to include the {{form}}
context — djoauth2 may use this to hold information across authorization requests. Currently, the user_action
values must be "Accept" and "Decline".

{% if client.image_url %}

{% endif %}

<p>{{client.name}} is requesting access to the following scopes:</p>

{% for scope in scopes %}
 {{scope.name}}: {{scope.description}}
{% endfor %}

<form action="{{form_action}}" method="POST">
{% csrf_token %}
<div style="display: none;"> {{form}} </div>
<input type="submit" name="user_action" value="Decline"/>
<input type="submit" name="user_action" value="Accept"/>

</form>

And with that, all of the OAuth routes are implemented! All that’s left is to set up an API endpoint that requires clients
to have been authorized via OAuth — we referenced it in the URL conf by the name api.views.user_info.
We’re going to create a new application, api, to hold this view. In your own app, there’s no need to create a new
application, and you can simply use existing API views.

The api/views.py file:

coding: utf-8
import json

from django.http import HttpResponse
from django.views.decorators.csrf import csrf_exempt

from djoauth2.decorators import oauth_scope

@csrf_exempt
@oauth_scope('user_info')
def user_info(access_token, request):
""" Return basic information about a user.

Limited to OAuth clients that have received authorization to the 'user_info'
scope.
"""
user = access_token.user
data = {

'username': user.username,
'first_name': user.first_name,
'last_name': user.last_name,

12 Chapter 5. Quickstart Guide

DJOAuth2 Documentation, Release 0.6.0

'email': user.email}

return HttpResponse(content=json.dumps(data),
content_type='application/json',
status=200)

(Any existing endpoint can be easily protected by our @oauth_scope decorator; just modify the signature so that it
expects a djoauth2.models.AccessToken as the first argument. For more information, see the djoauth2.
decorators.oauth_scope documentation.)

With our code all set up, we’re ready to set up the DB and start the webserver:

python manage.py syncdb
python manage.py migrate

python manage.py runserver 8080

Now, log in to the admin page and create a Client and a Scope. Set up the client so that the redirect_uri field
is a valid URI under your control. While testing we often use URIs like http://localhost:1111 that don’t
point to any server. The scope’s name should be the same as that used to protect the api.views.user_info
endpoint — in this case, user_info.

Interacting as a Client

We’re ready to begin making requests as a client! In this example, we’ll grant our client access to a scope, exchange
the resulting authorization code for an access token, and then make an API request. This is adapted from our example
project’s client_demo.py script, which you can edit and run yourself. Go and check it out!

The first step is to grant our client authorization. Open a browser and visit the following URL:

http://localhost:8080/oauth2/authorization/?
scope={the name of the scope you created}&
client_id={the 'key' value from the Client you created}&
response_type=code

If it worked, you should see the results of rendering your authorization template. If you confirm the request, you should
be redirected to the registered client’s redirect_uri. If you use a value like http://localhost:1111, your
browser will show a “could not load this page” message. This is unimportant — what really matters is the code GET
parameter in the URl. This is the value of the authorization code that was created by the server.

5.4. Interacting as a Client 13

https://github.com/Locu/djoauth2/blob/master/example/client_demo.py

DJOAuth2 Documentation, Release 0.6.0

We must now exchange this code for an access token. We do this by making a POST request like so:

POST http://localhost:8080/oauth2/token/ HTTP/1.1
Authorization: Basic {b64encode(client_id + ':' + client_secret)}

code={authorization code value}&grant_type=authorization_code

The Authorization header is used to identify us as the client that was granted the authorization code that we just
received. The value should be the result of joining the client ID, a :, and the client secret, and encoding the resulting
string with base 64. In Python, this might look like:

import requests
from base64 import b64encode
token_response = requests.post(

'http://localhost:8080/oauth2/token/',
data={
'code': 'Xl4ryuwLJ6h2cTkW5K09aUpBQegmf8',
'grant_type': 'authorization_code',

},
headers={
'Authorization': 'Basic {}'.format(

b64encode('{}:{}'.format(client_key, client_secret))),
})

assert token_response.status_code == 200

This will return a JSON dictionary with the access token, access token lifetime, and (if available) a refresh token.
Continuing the example from above:

14 Chapter 5. Quickstart Guide

DJOAuth2 Documentation, Release 0.6.0

import json

token_data = json.loads(token_response.content)
access_token = token_data['access_token']
refresh_token = token_data.get('refresh_token', None)
access_token_lifetime_seconds = token_data['expires_in']

With this access token, we can now make API requests on behalf of the user who granted us access! Again, continuing
from above:

api_response = requests.post(
'http://localhost:8080/api/user_info/',
headers={
'Authorization': 'Bearer {}'.format(token_data['access_token'])

},
data={})

assert api_response.status_code == 200
print api_response.content
{"username": "exampleuser",
"first_name": "Example",
"last_name": "User",
"email": "exampleuser@locu.com"}

While the access token has not expired, you will be able to continue making API requests. Once it has expired, any
API request will return an HTTP 401 Unauthorized. At that point, if you have a refresh token, you can exchange
it for a new access token like so:

token_response = requests.post(
'http://localhost:8080/oauth2/token/',
data={
'refresh_token': 'h9EY74_58aueZqHskUwVmMiTngcW3I',
'grant_type': 'refresh_token',

},
headers={
'Authorization': 'Basic {}'.format(

b64encode('{}:{}'.format(client_key, client_secret))),
})

assert token_response.status_code == 200

new_token_data = json.loads(token_response.content)
new_access_token = new_token_data['access_token']
new_refresh_token = new_token_data.get('refresh_token', None)
new_access_token_lifetime_seconds = new_token_data['expires_in']

As long as you have a refresh token, you can continue to exchange them for new access tokens. If your access token
expires and you have lost the refresh token value, the refresh request fails, or you were never issued a refresh token,
then you must begin again by redirecting the user to the authorization page.

5.4. Interacting as a Client 15

DJOAuth2 Documentation, Release 0.6.0

16 Chapter 5. Quickstart Guide

CHAPTER 6

The djoauth2 Code

access_token Module

authorization Module

conf Module

decorators Module

errors Module

exception djoauth2.errors.DJOAuthError
Base class for all OAuth-related errors.

error_name = ‘invalid_request’

status_code = 400

djoauth2.errors.get_error_details(error)
Return details about an OAuth error.

Returns a mapping with two keys, 'error' and 'error_description', that are used in all error re-
sponses described by the OAuth 2.0 specification. Read more at:

•http://tools.ietf.org/html/rfc6749

•http://tools.ietf.org/html/rfc6750

17

http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6750

DJOAuth2 Documentation, Release 0.6.0

models Module

views Module

18 Chapter 6. The djoauth2 Code

CHAPTER 7

Contributing

We <3 contributions; please feel free to check out the code! In general, this is a quick overview of how to contribute
to DJOAuth2 using the standard Github pull-request flow. For more information, Github has a nice overview here.

Fork and clone the repository

The first step of contributing is creating your own copy (“fork”) of the main DJOAuth2 repository. Do this through
the Github web interface:

19

https://help.github.com/articles/fork-a-repo

DJOAuth2 Documentation, Release 0.6.0

Now that you have a copy, copy the “SSH clone URL” from the right-most column:

20 Chapter 7. Contributing

DJOAuth2 Documentation, Release 0.6.0

and run the following commands from a local terminal:

cd ~

The git@github.com URL is the "SSH clone URL" that you copied.
git clone git@github.com:<YOUR_USER_NAME>/djoauth2.git
cd djoauth2

Install dependencies

We rely on virtualenv for managing dependencies in order to make it as easy as possible to start contributing. Before
contributing, run the following commands:

Install development dependencies inside a new virtualenv
make dev-env

Activate the virtualenv so that you have access to the dependencies that
were installed.
. dev-env/bin/activate

7.2. Install dependencies 21

http://docs.python-guide.org/en/latest/dev/virtualenvs/

DJOAuth2 Documentation, Release 0.6.0

Making changes

After setting up your virtualenv, check out a new branch locally:

git checkout -b 'my-feature-branch'

Now make your changes. Don’t forget to update the tests! Please follow our style guide:

• 2-space indents

• All indents are spaces, not tabs.

• Wrap lines at 80 characters.

vim djoauth2/...
vim djoauth2/tests/...

Schema Migrations

If your changes touched the models.py file, you must attempt to generate a South migration in case the schema has
changed.

It’s important that for backwards-compatibility reasons you use South version 0.7.6 and Django 1.4.3 to generate
migration files. After entering the dev-env virtualenv, run the following commands:

pip install Django==1.4.3
pip install South==0.7.6

Then, generate the migrations with the included script:

./generate_migrations.py

Now, test to see that they apply without an error.
./generate_migrations.py --test-migrations

Testing

DJOAuth2 is a standalone Django application, which can be hard to test. To obviate a need for installing and re-
installing inside of a test project, we provide a script (runtests.py) that sets up a minimal Django environment To
use it, enter your shell and run:

Run all of the tests
./runtests.py
or
make tests

Run a group of tests
./runtests.py djoauth2.tests.TestAuthorizationCodeEndpoint

Run an individual test
./runtests.py djoauth2.tests.TestAuthorizationCodeEndpoint.test_get_requests_succeed

22 Chapter 7. Contributing

http://south.readthedocs.org/en/latest/whataremigrations.html#what-are-migrations

DJOAuth2 Documentation, Release 0.6.0

Coverage

While we don’t fetishize 100% coverage, it can be useful to double check that testing actually exercised the code that
you added.

To get a coverage report, run make coverage. This will output a brief summary report in the terminal and also
generate an interactive HTML version of the report. The interactive version will display the code line-by-line and
highlight any code that was not covered by the tests.

Generate the coverage report
make coverage

Fire up a webserver to view the interactive HTML version
cd docs/coverage/
python -m SimpleHTTPServer 8080

Now navigate to localhost:8080 in a browser

Updating Documentation

Made changes that require documentation (hint: probably)? Rebuild the docs:

7.3. Making changes 23

DJOAuth2 Documentation, Release 0.6.0

make docs

And view them in your browser locally:

cd docs/_build/html
python -m SimpleHTTPServer 8080

Now navigate to localhost:8080 in a browser

By the way, if you have any questions, concerns, or complaints about the current documentation, please let us know
and/or submit a pull request! We’re committed to making the docs as easy to use as possible, so if something is not
working we’d love to hear it.

Committing

Once your changes are finished (including tests and documentation) it’s time to commit them:

git commit -a -m "Add my new feature."

Submitting a pull request

Once your changes are locally committed and tested, it’s time to submit a pull request to get your changes reviewed
and merged upstream. Again, Github has a nice overview here.

• Push your changes to your github repository:

git push origin my-feature-branch

• In Github, switch to my-feature-branch

24 Chapter 7. Contributing

https://help.github.com/articles/fork-a-repo

DJOAuth2 Documentation, Release 0.6.0

• Click on the large green “compare & pull request” button:

7.4. Submitting a pull request 25

DJOAuth2 Documentation, Release 0.6.0

• Write up a nice explanation of your changes and fire it off!

26 Chapter 7. Contributing

DJOAuth2 Documentation, Release 0.6.0

7.4. Submitting a pull request 27

DJOAuth2 Documentation, Release 0.6.0

28 Chapter 7. Contributing

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

29

DJOAuth2 Documentation, Release 0.6.0

30 Chapter 8. Indices and tables

Python Module Index

d
djoauth2, 17
djoauth2.errors, 17

31

DJOAuth2 Documentation, Release 0.6.0

32 Python Module Index

Index

D
djoauth2 (module), 17
djoauth2.errors (module), 17
DJOAuthError, 17

E
error_name (djoauth2.errors.DJOAuthError attribute), 17

G
get_error_details() (in module djoauth2.errors), 17

S
status_code (djoauth2.errors.DJOAuthError attribute), 17

33

	Important Links
	What is DJOAuth2?
	Why use DJOAuth2?
	What is implemented?
	Quickstart Guide
	Requirements
	Installation
	Adding djoauth2 to an existing application
	Interacting as a Client

	The djoauth2 Code
	access_token Module
	authorization Module
	conf Module
	decorators Module
	errors Module
	models Module
	views Module

	Contributing
	Fork and clone the repository
	Install dependencies
	Making changes
	Schema Migrations
	Testing
	Coverage
	Updating Documentation
	Committing

	Submitting a pull request

	Indices and tables
	Python Module Index

