

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	djangoes 0.3.0 documentation

Djangoes documentation

	Connections to ElasticSearch
	Threading and multiprocessing

	Perform queries
	Search

	Single index operation

	Advanced usage

	Multiple connections and indices

	Configure your django project
	Settings

	Timeout and retry on error

	Backends
	Available backends

	Custom backends

	Package documentation
	backends

	test

Warning

This project is not production-ready yet, and it’s published as Alpha
version on Pypi. It works, it can be used, but its internal and public
interfaces are not stable yet, and may change in a near future without
warnings.

As soon as the application is considered stable, this warning will be
removed and the package published on Pypi will be marked as beta, then
stable/production ready.

Deprecration warnings will be used, and a release cycle will be exposed,
with all the version management we all wish to have.

Install

To install djangoes and its dependencies, the simple way is to use pip:

$ pip install djangoes django elasticsearch

You should always use pip to install djangoes.

You will also need an ElasticSearch server. See the official documentation
for that, but if you are running on Debian or Ubuntu, it will be as simple
as adding a repository to your sources list and shoot an apt-get install
in your favorite shell.

Short introduction

When you have installed djangoes, you can configure your Django project
with two news settings, like this:

in your settings file
ES_SERVERS = {
 'default': {
 'HOSTS': ['localhost',],
 'INDICES': ['my_index'],
 }
}

ES_INDICES = {
 'my_index': {
 'NAME': 'index_dev',
 }
}

See also

Configure your django project

Then you can build your first view and use djangoes.connection to
query ElasticSearch:

in a views.py
from django.shortcuts import render
from djangoes import connection

def search_blog_entries(request):
 search_term = request.GET['q']
 query = {
 'query': {
 'match': {
 'text': search_term
 }
 }
 }
 result = connection.search(doc_type='entry', body=query)
 return render(request, 'search/results.html', {'results': result})

See also

Connections to ElasticSearch and Perform queries

And finally in your template, you can display the result with this:

<h1>Blog post found</h1>

{% for hit in results.hits.hits %}
 <article>
 <h2>{{hit._source.title}}</h2>
 {{hit._source.text}}
 </article>
{% endfor %}

Note that this example uses the raw result, without any specific modification.
It’s because djangoes provides the connection layer only - everything else
remains up to the developer to decide (for example by using the official DSL
library, named elasticsearch-dsl [http://elasticsearch-dsl.readthedocs.org/en/latest/]).

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Florian Strzelecki.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	djangoes 0.3.0 documentation

Connections to ElasticSearch

The djangoes package provides a simple way to use and to access the
default connection to your ElasticSearch server. In any of your python file of
your Django project, simply import connection like this:

from djangoes import connection

Then in any function or method you need to perform a query, you can use the
methods from the ElasticSearch python library by using this connection
object:

def search_blog_entries(words):
 """Search for all blog entries with ``words`` found in entry body."""
 doc_type = 'entry'
 search = {
 'query': {
 'term': {
 'text': words
 }
 }
 }
 result = connection.search(doc_type, search)

 # Result from ES "as is", not modified by djangoes.
 return result.get('hits', {}).get('hits', [])

If you want to select a specific connection, you can import
connections instead:

from djangoes import connections

And it can be used like this:

in some function or method
conn = connections['connection_alias']

In fact, the connection object is a simple proxy to the
default connection, simply named default:

>>> from djangoes import connection, connections
>>> connection == connections['default']
True

Threading and multiprocessing

Using connection or connections is thread-safe, but you should
never use a connection object itself in multiple threads. If you need to
“share” a connection from one thread to another, simply use its alias and get
it using connections[alias] into the threaded code.

The same way, you shoulw never share a connection object between multiple
process (either with multiprocessing or forking), and instead use the
connection shortcut or connections[alias] to get any connection.

Connection’s methods are not thread or multi-process safe by themselves, and an
unappropriate usage may end in unexpected behavior.

 Copyright 2014, Florian Strzelecki.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	djangoes 0.3.0 documentation

Perform queries

Now that you have a connection to your ElasticSearch servers, you may want to
perform queries. The connection object has an equivalent interface as the
official elasticsearch.client.Elasticsearch class, but simplifies
most method by removing the index parameter.

See also

The official ElasticSearch API documentation [http://elasticsearch-py.readthedocs.org/en/master/api.html#elasticsearch].

Search

The most common query to perform is the search - which is expected for a
software named “ElasticSearch”. When using djangoes, performing a search
query is as simple as using the official elasticsearch library. For
example, to perform a search query on the configured index, using the document
type “blog entry”:

>>> from djangoes import connection
>>> search = {'query': {'match_all': {}}}
>>> result = connection.search(doc_type='blog_entry', body=search)
>>> result.get('hits', {}).get('hits', [])
[... list of all indexed blog entries ...]

OK, but why the last line with the chained get? Better to read both
documentations of the search method [http://elasticsearch-py.readthedocs.org/en/master/api.html?highlight=search#elasticsearch.Elasticsearch.search], and the search API [http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-request-body.html] - the last
giving a sample response example:

{
 "_shards":{
 "total" : 5,
 "successful" : 5,
 "failed" : 0
 },
 "hits":{
 "total" : 1,
 "hits" : [
 {
 "_index" : "twitter",
 "_type" : "tweet",
 "_id" : "1",
 "_source" : {
 "user" : "kimchy",
 "postDate" : "2009-11-15T14:12:12",
 "message" : "trying out Elasticsearch"
 }
 }
]
 }
}

As you can see, the results is a dict that contains meta information about
the request (stats on shards), and the hits, a dict that contains the
results of the query: the total number of documents that match the search
query, and the list of documents for the current page.

Single index operation

Not all operation can be performed accross multiple indices: get,
create or update queries are single index operations. They can not be
performed on a list of indices, nor on an alias mapped to more than one index.

Advanced usage

To perform any advanced queries, such as getting the list of aliases for an
index, the client attribute is available on each connection: it is the
underlying client implementation, ie. an instance of
from elasticsearch.client.Elasticsearch.

Warning

At the moment, the client attribute is not well documented as the
behavior of the backend is supposed to change in a near future, with a more
stable API.

Multiple connections and indices

There are way too many possible configurations for your application, your
ElasticSearch servers and indices. Therefore, djangoes tries to stay
agnostic about your way of using ElasticSearch.

Let’s see an example of configuration and how to use it.

See also

Configure your django project

Search & Single-operation configuration

In this situation, one wants to perform search queries on multiple indices,
and to insert documents into these indices. Let’s start by the ES_SERVERS
configuration:

ES_SERVERS = {
 'default': {
 'HOSTS': ['localhost:9200'],
 'INDICES': ['categories', 'brands']
 },
 'categories': {
 'HOSTS': ['localhost:9200'],
 'INDICES': ['categories']
 },
 'brands': {
 'HOSTS': ['localhost:9200'],
 'INDICES': ['brands']
 }
}

Now, we need to configure these indices:

ES_INDICES = {
 'categories': {
 'SETTINGS': {
 // Category-specific index settings
 }
 },
 'brands': {
 'SETTINGS': {
 // Brand-specific index settings
 }
 }
}

And then the magic happens:

>>> from djangoes import connection
>>> results = connection.search(query)
>>> results.get('hits', {}).get('hits', [])
[some_category, some_brand, some_other_category, ...]

This is possible because the djangoes client uses the
connection.indices property, which is the list of aliases, or index names
if no alias is configured (which is our case here):

>>> connection.indices
['categories', 'brands']

Now, we still need to insert documents. For this, we’ll use the other
connections:

>>> from djangoes import connections
>>> categories = connections['categories']
>>> brands = connections['brands']
>>> categories.create(doc_id, doc_category)
{ ... result of the create action ... }
>>> brands.create(doc_id, doc_brand)
{ ... result of the create action ... }

As you can see, each connection has a different value for its indices
attribute:

>>> categories.indices
['categories']
>>> brands.indices
['brands']

Therefore, you can handle this specific case - and it’s only one of the many
possible solutions.

Note

It’s not simple to handle this case, as there are many ways to do it. At the
moment, djangoes does not provide a really simple solution. This may
change in a near future.

 Copyright 2014, Florian Strzelecki.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	djangoes 0.3.0 documentation

Configure your django project

After installing djangoes, you need to configure your django project
settings with two variables:

	ES_SERVERS: configure connections to ElasticSearch servers,

	ES_INDICES: configure ElasticSearch indices used by connections.

The main idea behind this separation is to configure the connections, the way
to access the ElasticSearch API, and the indices separatly, where the documents
are stored and how to access to them, then to decide what indices each
connection will use.

For example, you can have two connections, one for each host, and both use the
same index configuration.

Settings

	
ES_SERVERS

	The setting ES_SERVERS is a dict, where each key is a connection
configuration alias (its name), and each value is a dict that describes one
connection. By default, there is one connection named default - the same
way there is a default database connection alias in Django.

The keys expected in a connection dict are:

	HOSTS: a hosts configuration, as expected by elasticsearch-py [https://pypi.python.org/pypi/elasticsearch],

	ENGINE: a string giving the class path to the engine backend class,

	INDICES: a list of index alias as found in ES_INDICES,

	PARAMS: a dict used as keyword arguments to instanciate the
backend class.

Example:

ES_SERVERS = {
 'default': {
 'HOSTS': ['es_host_1', 'es_host_2'],
 'ENGINE': 'djangoes.backends.elasticsearch.SimpleHttpClient',
 'INDICES': ['index_1']
 }
}

See also

Backends

The Backends chapter gives more information about the available
backends, how they work and how to build yours.

	
ES_INDICES

	The setting ES_INDICES is a dict, where each key is an index
configuration alias (its name as used by connections in ES_SERVERS
in their INDICES option), and each value is a dict that describes one
index. By default, no index are defined.

The expected keys are:

	NAME: a string, its index name, by default it will be its
configuration alias if not explicitly given,

	ALIASES: a list of alias names, by default an empty list,

	SETTINGS: an optionnal dict used to describe the index’s settings
when creating this index.

	TESTS: a dict used to configure index when testing.

Example:

ES_INDICES = {
 'index_1': {
 'NAME': 'real_index_name',
 'ALIASES': ['index_catalog', 'index_public'],
 }
}

The SETTINGS parameter

Each index can have its own configuration: analyzers, tokenizers, and other
index-specific settings. djangoes uses these settings in its test-case
methods to create the test indices.

You might also use it in your own code thanks to the
get_indices_with_settings() method:

>>> indices_with_settings = connection.get_server_indices()
>>> for index_name, settings_body in indices_with_settings.items():
... connection.client.indices.create(index_name, settings_body)

Timeout and retry on error

Timeout configuration and management can be very important for your
application, and it can become complicated to understand which parameters are
available, and what they exactly mean - thus how to configure them.

As djangoes uses the official ElasticSearch python library to implement its
client engines, it allows to configure the behavior on error caused by timeout:
should the client retry on another server on timeout or not? How long a server
should be marked as dead after a timeout? How many time should the client
retry after an error?

In ES_SERVERS, each connection has a PARAMS key that contains the
keyword arguments that will be given to the ENGINE backend class. Some of
these arguments, described below, allow to control the behavior after a timeout
or a connection error.

	
max_retries

	Maximum number of retry after an error before a request raise an error.

It means that, when performing a request, the client will try as many time
as max_retries before it raises an error.

It won’t retry on client error, such as invalid request, but it will retry
on another host if one is not reachable.

By default, it does not retry after a timeout error.

	
timeout

	The time (in seconds) until a request to a server raises a timeout error.

	
retry_on_timeout

	Indicates if the client must retry after a timeout or not. By default the
client won’t retry after a timeout, and will raise directly.

	
dead_timeout

	Number of seconds a connection should be retired for after a failure,
increases on consecutive failures

	
timeout_cutoff

	Number of consecutive failures after which the timeout doesn’t increase.

Example:

ES_SERVERS = {
 'default': {
 'HOSTS': ['host_1', 'host_2']
 'PARAMS': {
 'timeout': 1,
 'retry_on_timeout': True,
 'max_retries': 3
 }
 }
}

In this example, a request will raise a timeout error after 1 second, but the
client will retry at most 3 times before raising a connection error itself.

See also

ElasticSearch Transport documentation [http://elasticsearch-py.readthedocs.org/en/master/connection.html#elasticsearch.Transport] gives information about the
behavior after an error (retry or not), and the
ConnectionPool documentation [http://elasticsearch-py.readthedocs.org/en/master/connection.html#elasticsearch.ConnectionPool] gives information about timeout
configuration.

 Copyright 2014, Florian Strzelecki.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	djangoes 0.3.0 documentation

Backends

Available backends

Djangoes provides only simple and basic backends: they use transport and
connection classes provided by default by elastichsearch-py. They aim to
provide a set of methods easy to use, as they will automatically use the
configured indices.

ElasticSearch backends

Each backend uses one of the connection class provided by
elastichsearch-py:

	elasticsearch.connection.http_urllib3.Urllib3HttpConnection

	elasticsearch.connection.http_requests.RequestsHttpConnection

	elasticsearch.connection.thrift.ThriftConnection

	elasticsearch.connection.memcached.MemcachedConnection

To configure a backend, simply add the expected keyword arguments in the
PARAMS key of the connection configuration dict.

See also

All connection classes used by these backends are describe in the
official documentation [http://elasticsearch-py.readthedocs.org/en/master/transports.html] of elasticsearch-py.

SimpleHttpBackend

The backend djangoes.backends.elasticsearch.SimpleHttpBackend uses
the connection class used by default by the Transport class:
elasticsearch.connection.http_urllib3.Urllib3HttpConnection.

Each query will be performed with an HTTP request, using the urllib3
library.

SimpleRequestsHttpBackend

The backend djangoes.backends.elasticsearch.SimpleRequestsHttpBackend
uses the connection class
elasticsearch.connection.http_requests.RequestsHttpConnection.

Each query will be performed with an HTTP request, using the requests
library (also known as “HTTP for human” [http://docs.python-requests.org/en/latest/]).

SimpleThriftBackend

The backend djangoes.backends.elasticsearch.SimpleThriftBackend
uses the connection class elasticsearch.connection.thrift.ThriftConnection.

Each query will be performed using the Thrift [http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/modules-thrift.html] protocol.

SimpleMemcachedBackend

The backend djangoes.backends.elasticsearch.SimpleMemcachedBackend
uses the connection class
elasticsearch.connection.memcached.MemcachedConnection.

Each query will be performed using memcached [http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/modules-memcached.html].

Custom backends

Create a custom backend for your application is as easy as subclassing the
abstract class, and implement your own methods.

Warning

The backend interface is not yet stable. It should be, as soon as possible,
but not yet. So don’t rush in the code without a look at the current
available backend classes.

A backend is expected to subclass the djangoes.backends.abstracts.Base
class. Then, its __init__ method is expected to accept these three
parameters:

	alias: the connection’s alias. It is the key used in ES_SERVERS
to configure the connection using this backend.

	server: the configuration dict of the connection, as found in
ES_SERVERS, where all undefined values are replaced by the defaults.

	indices: the list of configuration dict of the connection’s indices,
as found in ES_INDICES, where all undefined values are replaced by
the defaults.

Extend ElasticSearch backends

The built-in djangoes backends are all based on an abstract class:
djangoes.backends.elasticsearch.BaseElasticsearchBackend. This class
conveniently subclass the abstract base class, and gives two entry point to
override its behavior:

	transport_class:
the transport class used to configure the elasticsearch-py client.

	connection_class:
the connection class used by the transport class.

If you are already familiar with the transport class and the connection classes
described in the elasticsearch-py library documentation [http://elasticsearch-py.readthedocs.org/en/master/transports.html], you should not
have any issue with finding your way.

 Copyright 2014, Florian Strzelecki.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	djangoes 0.3.0 documentation

Package documentation

Djangoes package aims to provide a simple way to integrate ElasticSearch.

This package mimics the behavior of the Django database configuration layer,
using project settings and a global connections handler.

The simplest way to use djangoes is to import djangoes.connection and
to perform queries with it:

>>> from djangoes import connections
>>> conn = connections['conn_name']
>>> result = conn.search(...)

The ConnectionHandler.load_backend() is called whenever a connection is
requested in the application, which will then call multiple methods to ensure
default values and test values.

There is a shortcut to get the default connection:

>>> from djangoes import connection, connections
>>> connection == connections['default']
True
>>> result = connection.search(...)

It works exactly like getting the default connection from connections.

Note

This module is based on the django.db module, which is quite simple in
its way to deal with connections. The djangoes package hope to stay as
simple as possible for everyone, and to take benefit from the hard works
that make Django a great framework.

	backends
	backends.abstracts

	backends.elasticsearch

	test
	test.runner

	test.testcases

	test.utils

	
connections

	Module-level attribute, instance of ConnectionHandler.

It can be considered as a singleton: it is the default connections handler
to use with djangoes. It is instantiated at import with the default
arguments.

Therefore, this object will automatically use the settings of your
django project: ES_SERVERS and ES_INDICES.

	
class ConnectionHandler(servers=None, indices=None)

	Handle connections to ElasticSearch.

Based on django.db.utils.ConnectionHandler, it aims to be an interface to
integrate ElasticSearch connections in the same way database connections
are integrated in Django.

However, instead of relaying on one setting variable, it needs two:

	servers: ElasticSearch clusters connections settings (host, port, etc.)

	indices: indices (or indexes) settings (name, aliases, analyzers, etc.)

These two will be defined in the django project settings with ES_SERVERS
and ES_INDICES.

	
all()

	Return all configured connection object.

It is a shortcut method to get all connections instead of manually
doing a list-comprehension each time all connections are needed.

	
check_for_multiprocess()

	Reset connections if PID has changed.

When using multi-processing (or fork), one may want to use a connection
already used by the main process. Therefore, we need to make sure we
are not sharing connections between multiple process.

This could happen because a fork on Linux won’t copy an object after a
fork until it is modified. The read-only mode will “share” connections
and that’s not what we want.

	
ensure_index_defaults(alias)

	Put the defaults into the settings dictionary for alias.

	
ensure_server_defaults(alias)

	Put the defaults into the settings dictionary for alias.

	
get_server_indices(server)

	Prepare and return a given server’s indices settings.

Do not validate if the given server is available in self.servers:
it is expected to find an INDICES key into server and that’s all.

It is expected to find indices configured with the same name in
self.indices.

	
load_backend(alias)

	Prepare and load a backend for the given alias.

	
prepare_index_test_settings(alias)

	Make sure the test settings are available in TEST.

	
prepare_server_test_settings(alias)

	Make sure the test settings are available in TEST.

 Copyright 2014, Florian Strzelecki.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	djangoes 0.3.0 documentation

 	Package documentation

backends

Module djangoes.backends provides backend implementation.

backends.abstracts

Module djangoes.backends.abstracts provides abstract classes for backends.

All backends are expecting to subclass these abstract classes and to implement
their behaviors.

	
class Base(alias, server, indices)

	ElasticSearch backend wrapper base.

	
indices

	List of names to use to perform ElasticSearch queries.

For each configured index, a connection will use either its index name,
or its list of aliases if at least one is defined.

For example, if a connection uses 2 indices, one with only the index
index, and the second one with the index_2 index and an alias
alias, the result indices will be ['index', 'alias'].

	
index_names

	List of names of all configured indices, without their aliases.

It is the same list of indices but where indices are not replaced
by their aliases.

It is particulary useful when indices need to be created for example.

	
alias_names

	List of names of all configured indices’s aliases, without their indices.

It is the same list of indices but where only aliases are
presents.

It is particulary useful when aliases need to be created for example.

	
configure_client()

	Configure the ElasticSearch client.

	
get_alias_names()

	Build and return the list of alias names.

This create a list of unique alias names, without using their indices.
It can be useful to get alias names instead of their usage names, as
given by indices as it would gives index names when no alias is
configured - which is not always what is needed.

	
get_index_names()

	Build and return the list of index names.

This create a list of unique index names, without using their aliases.
It can be useful to get index names instead of their usage names, as
given by indices, for example when one wants to create them.

	
get_indices()

	Build the list of indices or aliases used to query ElasticSearch.

This creates a list composed of index names or alias names. If an index
defined aliases, these aliases will be used instead of its own name.

	
get_indices_with_settings()

	Build and return a dict of indices with their settings.

This create a dict where each key is a index name, and each value is
the index key’s settings (as used to created the index). It is useful
when one wants to create an index with its settings for the given
connection.

backends.elasticsearch

Connection backends based on the elasticsearch official python library.

This module aims to contain only basic backend classes using the ElasticSearch
official python library and its basics transport classes with few changes.

Each backend implements the expected behavior defined in the base class - that
is to say: they provide methods that don’t need to get an index or an alias
as argument to perform requests (when applicable).

	
class BaseElasticsearchBackend(alias, server, indices)

	Base connection wrapper based on the ElasticSearch official library.

It uses two entry points to configure the underlying connection:

	transport_class: the transport class from elasticsearch. By
default elasticsearch.transport.Transport.

	connection_class: the connection class used by the transport class.
It’s undefined by default, as it is on the subclasses to provide one.

If any of these elements is not defined, an ImproperlyConfigured error
will be raised when the backend will try to configure the client.

	
configure_client()

	Instantiate and configure the ElasticSearch client.

It simply takes the given HOSTS list and uses PARAMS as the keyword
arguments of the ElasticSearch class.

The client’s transport_class is given by the class attribute
transport_class, and the connection class used by the transport
class is given by the class attribute connection_class.

An ImproperlyConfigured exception is raised if any of these
elements is undefined.

	
transport_class

	alias of Transport

	
class SimpleHttpBackend(alias, server, indices)

	Connection backend using the urllib3 connection class.

	
connection_class

	alias of Urllib3HttpConnection

	
class SimpleMemcachedBackend(alias, server, indices)

	Connection backend using the Memcache connection class.

As describe in the MemcachedConnection, a plugin must be installed in
the ElasticSearch cluster in order to work.

	
connection_class

	alias of MemcachedConnection

	
class SimpleRequestsHttpBackend(alias, server, indices)

	Connection backend using the HTTP for Human request connection class.

	
connection_class

	alias of RequestsHttpConnection

	
class SimpleThriftBackend(alias, server, indices)

	Connection backend using the Thrift experimental connection class.

	
connection_class

	alias of ThriftConnection

	
class SimpleHttpBackend(alias, server, indices)

	Connection backend using the urllib3 connection class.

	
connection_class

	alias of Urllib3HttpConnection

 Copyright 2014, Florian Strzelecki.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	djangoes 0.3.0 documentation

 	Package documentation

test

test.runner

Tests runners for Django projects with djangoes.

When using the built-in Django admin test command, the simplest way to
integrate djangoes is to configure the TEST_RUNNER settings, using the
runner provided by djangoes:

TEST_RUNNER = 'djangoes.test.runner.DiscoverRunner'

	
class DiscoverRunner(pattern=None, top_level=None, verbosity=1, interactive=True, failfast=False, **kwargs)

	Unittest Runner with Django and ElasticSearch.

Setup ElasticSearch connections in order to run tests with the test
settings and not the developement/production settings.

When using djangoes in a Django project, it requires to define the settings
option TEST_RUNNER to djangoes.test.runner.DiscoverRunner to
allow the tests with djangoes and ElasticSearch to work properly.

test.testcases

TestCase classes for ElasticSearch in Django.

These classes combine Django test case classes with djangoes mixin in order to
replace them in a Django project with ElasticSearch.

Instead of doing:

from django.test.testcases import SimpleTestCase

One can do:

from djangoes.test.testcases import SimpleTestCase

It works the same way for TransactionTestCase and TestCase.

	
class SimpleTestCase(methodName='runTest')

	Simple test case with Django and ElasticSearch.

Automatically create the indices for all configured ElasticSearch
connections, combined with the setup & tear down of the Django
SimpleTestCase test case class.

	
class TestCase(methodName='runTest')

	Test case with Django and ElasticSearch.

Automatically create the indices for all configured ElasticSearch
connections, combined with the setup & tear down of the Django TestCase
test case class.

	
class TransactionTestCase(methodName='runTest')

	Transaction test case with Django and ElasticSearch.

Automatically create the indices for all configured ElasticSearch
connections, combined with the setup & tear down of the Django
TransactionTestCase test case class.

test.utils

Utility functions for testing purpose with djangoes.

	
setup_djangoes()

	Setup ElasticSearch connections with djangoes for testing purpose.

When testing with ElasticSearch, used indices must not be the same as
the one used for live settings, ie. tests must use the TEST settings.

This function takes care of replacing each used index name by its
appropriate test name.

 Copyright 2014, Florian Strzelecki.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 modules |

 	djangoes 0.3.0 documentation

 Python Module Index

 b |
 d |
 t

 			

 		
 b	

 	[image: -]
 	
 djangoes.backends	

 	
 	
 djangoes.backends.abstracts	

 	
 	
 djangoes.backends.elasticsearch	

 			

 		
 d	

 	
 	
 djangoes	

 			

 		
 t	

 	[image: -]
 	
 djangoes.test	

 	
 	
 djangoes.test.runner	

 	
 	
 djangoes.test.testcases	

 	
 	
 djangoes.test.utils	

 Copyright 2014, Florian Strzelecki.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 modules |

 	djangoes 0.3.0 documentation

Index

 A
 | B
 | C
 | D
 | E
 | G
 | I
 | L
 | P
 | S
 | T

A

 	

 	alias_names (Base attribute)

 	

 	all() (ConnectionHandler method)

B

 	

 	Base (class in djangoes.backends.abstracts)

 	

 	BaseElasticsearchBackend (class in djangoes.backends.elasticsearch)

C

 	

 	check_for_multiprocess() (ConnectionHandler method)

 	configure_client() (Base method)

 	

 	(BaseElasticsearchBackend method)

 	connection_class (SimpleHttpBackend attribute), [1]

 	

 	(SimpleMemcachedBackend attribute)

 	(SimpleRequestsHttpBackend attribute)

 	(SimpleThriftBackend attribute)

 	

 	ConnectionHandler (class in djangoes)

 	connections (in module djangoes)

D

 	

 	DiscoverRunner (class in djangoes.test.runner)

 	djangoes (module)

 	djangoes.backends (module)

 	djangoes.backends.abstracts (module)

 	djangoes.backends.elasticsearch (module)

 	

 	djangoes.test (module)

 	djangoes.test.runner (module)

 	djangoes.test.testcases (module)

 	djangoes.test.utils (module)

E

 	

 	ensure_index_defaults() (ConnectionHandler method)

 	ensure_server_defaults() (ConnectionHandler method)

 	

 	ES_INDICES (built-in variable)

 	ES_SERVERS (built-in variable)

G

 	

 	get_alias_names() (Base method)

 	get_index_names() (Base method)

 	get_indices() (Base method)

 	

 	get_indices_with_settings() (Base method)

 	get_server_indices() (ConnectionHandler method)

I

 	

 	index_names (Base attribute)

 	

 	indices (Base attribute)

L

 	

 	load_backend() (ConnectionHandler method)

P

 	

 	prepare_index_test_settings() (ConnectionHandler method)

 	

 	prepare_server_test_settings() (ConnectionHandler method)

S

 	

 	setup_djangoes() (in module djangoes.test.utils)

 	SimpleHttpBackend (class in djangoes.backends.elasticsearch), [1]

 	SimpleMemcachedBackend (class in djangoes.backends.elasticsearch)

 	

 	SimpleRequestsHttpBackend (class in djangoes.backends.elasticsearch)

 	SimpleTestCase (class in djangoes.test.testcases)

 	SimpleThriftBackend (class in djangoes.backends.elasticsearch)

T

 	

 	TestCase (class in djangoes.test.testcases)

 	TransactionTestCase (class in djangoes.test.testcases)

 	

 	transport_class (BaseElasticsearchBackend attribute)

 Copyright 2014, Florian Strzelecki.
 Created using Sphinx 1.2.3.

 _static/comment.png

_static/up.png

_static/up-pressed.png

_static/comment-close.png

_static/minus.png

_static/comment-bright.png

_static/file.png

_static/down.png

_static/plus.png

search.html

 Navigation

 		
 index

 		
 modules |

 		djangoes 0.3.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Florian Strzelecki.
 Created using Sphinx 1.2.3.

_static/down-pressed.png

_static/ajax-loader.gif

