
The Unix administration guide for Django developers

Deploying Django
on a single Debian or Ubuntu server

Antonis Christofides

CHAPTER 1

Getting started

1.1 Introduction

I want you to understand how Django deployment works, and in order for
you to understand it we’ll need to experiment. So you will need an experi-
mental Debian or Ubuntu server. You could create a virtual machine on your
personal system, but it will be easier and more instructive if you have a vir-
tual machine on the network. So go to Hetzner, Digital Ocean, or whatever
is your favourite provider, and get a virtual server. In the rest of this book
I will be using $SERVER_IPv4_ADDRESS to denote the ip address of the
server on which your Django project is running; so you must mentally replace
$SERVER_IPv4_ADDRESS with “1.2.3.4” or whatever the address of your
server is. Likewise with $SERVER_IPv6_ADDRESS, if your server has one.

If you find the above confusing, maybe it’s because you don’t know what this
book is about. “Deployment” means installing your Django application on
production. This book doesn’t teach you how to develop with Django; you
need to already know that. If you don’t, you need to read another book.

If you are really looking to deploy your Django application, and you can
already create a Debian or Ubuntu server, login to it with ssh, use scp to

c

copy files, use basic commands like ls, and understand some basic encryption
principles, that is, what is a public and private key, you can probably skip
most of this chapter. Otherwise, I’ll take you step by step, right from getting
a virtual server, logging in to it, and using essential GNU/Linux commands.

1.2 Getting a server

Until recently, I used to create test servers on my laptop using virtualbox
and/or vagrant. However, virtual servers on the cloud have become so cheap
that it is usually better to hire one there. It’s faster to set up, and you don’t
need to worry about NAT. The other time I needed a Ubuntu server for a brief
test. I created one on DigitalOcean within a couple of minutes; I made my
test; and then I destroyed the server, after about half an hour. DigitalOcean’s
charge for that was $0.01. The cool thing about DigitalOcean is that you can
get a test server for only as long as you need it, and get charged only for the
number of hours for which the server exists. In other providers you usually
pay for the whole month.

(Note: I am not affiliated with DigitalOcean, and I am not using their referrals
program.)

So, if you don’t already have a cloud VM provider, sign up on https://
digitalocean.com and create a droplet. DigitalOcean calls its servers droplets,
but they are just virtual machines. In order to create a droplet, you need to
choose the operating system and some other things.

If you don’t want to know much about your options for the operating system,
just choose Ubuntu 16.04 64 bit.

Tip: Debian or Ubuntu?

These two operating systems are practically the same system. You have prob-
ably already chosen one of the two to work with, and there is no reason to
reconsider.

https://digitalocean.com
https://digitalocean.com

If you haven’t chosen yet, and you want to know nothing about this, go ahead
and pick up the latest LTS version of Ubuntu, which currently is 16.04 (and
will continue to be so until April 2018).

The reason I recommend Ubuntu is mostly that it is more popular and there-
fore has better support by virtual server providers. Ubuntu’s Long Term Sup-
port versions also have five years of support instead of only three for Debian
(though recently Debian has started to offer LTS support but it’s kind of unof-
ficial). On the other hand I feel that Ubuntu sometimes rushes a bit too much
to get the latest software versions in the operating system release, whereas
Debian can be more stable; but this is just a feeling, I have no hard data. I use
Debian, but this is a personal preference because sometimes I’m too much of
a perfectionist (with deadlines) and I want things my own way.

In Ubuntu’s version numbering, the first number is the year and the second
is the month; so 16.04 was released in April 2016. The LTS versions are the
ones released in April of even years, so the next LTS version will be 18.04. I
don’t see why someone would use the 32-bit version, which can support only
up to 4 GB of RAM, so choose the 64-bit version. Don’t choose a non-LTS
version; support for these lasts less than a year, and it is too little.

Besides operating system, you also need to choose size, data center, IPv6,
SSH keys, and host name.

The size of the server depends on how heavy the application is. For our pur-
pose, which is testing Django deployment, the smallest one is usually more
than enough. In fact, 512 MB of RAM and 20 GB of disk space are some-
times enough for small applications in production.

Choose the data center that is nearest to you.

I like my servers to have IPv6, so I always turn that on.

Don’t specify SSH keys yet, unless you are comfortable with them already. I
devote the whole next section to SSH keys.

Finally, choose a host name. Usually, when it is for testing, I look at the time

and if it’s 17:02 I name the server test1702. For production, if I don’t have
anything better, I choose names of Greek rivers at random.

Hit the big green Create button and your server will be ready after one or two
minutes. DigitalOcean will create a password for your server and email it to
you.

In order to login from Unix (such as Linux or Mac OS X), open a terminal
and type this:

ssh root@[server ip address]

The first time you attempt this, it will warn you that the authenticity of the
host cannot be established; tell it “yes”, you are sure you want to continue
connecting. It will then ask for the password. The first time you connect, it
may force you to change the password. Note that when you type a password,
nothing at all is shown, no bullets or other placeholders, it’s as if you are
typing nothing, but it is actually registering your keystrokes.

You can logout of the server by entering exit at its command prompt. Ctrl+D
also works.

From Windows you first need to install an SSH client. The most popular one
is PuTTY, which you can download from http://putty.org/. It’s a single file,
putty.exe. Each time you execute it, it will launch its configuration window.
Type the server ip address in the “Host Name (or IP address)” field and click
Open.

The first time you attempt this, it will warn you that the authenticity of the
host cannot be established; tell it Yes, you trust the host. It will then ask
for the user name (“login as:”), which is root, and the password. The first
time you connect, the server may force you to change the password. Note
that when you type a password, nothing at all is shown, no bullets or other
placeholders, it’s as if you are typing nothing, but it is actually registering
your keystrokes.

Eventually you will want to copy and paste text from and to PuTTY. Just

http://putty.org/

selecting text automatically copies it to the clipboard, and pasting is just right-
clicking.

You can logout of the server by entering exit at its command prompt. Ctrl+D
also works.

1.3 Introduction to SSH keys

You have deadlines. Learning about SSH keys doesn’t seem to be urgent.
You can live without them, can’t you? Is it worth to spend an hour to learn
about them? The answer is yes. If you log on to a server 12 times per day
(a conservative estimate), and it takes on the average 5 seconds to type your
password (and retype it if it’s wrong), that’s one minute. You will have paid
off your investment in three months. But there are more savings; when creat-
ing a droplet on DigitalOcean you will just be ticking a box and you will be
ready to login. Otherwise you will be needing to wait for the email to come,
copy and paste your password, and go through the process of changing the
password. SSH keys can also be used on GitHub and other services. Finally,
a little understanding of public key cryptography will later help you setup
HTTPS, which is based on the same principles. So let’s start.

You will first create a pair of keys, which we call the public key and the private
key. Let’s just do it first. You won’t be understanding what we are doing, but
I will explain it afterwards.

On Unix, such as Ubuntu or Mac OS X, just enter the command ssh-keygen,
which stands for ssh key generator. It will ask you a couple of questions:

1. It will ask where to store the keys. Since we are just testing, I suggest
to store them in /tmp/id_rsa.

2. It will ask for a passphrase. For the time being, do not use a passphrase.
We will come to the passphrase later on.

This will create two files; the private key will be in /tmp/id_rsa, and the
public key in /tmp/id_rsa.pub.

On Windows, download PuTTYgen from the PuTTY download page. Like
PuTTY, PuTTYgen is a single .exe file which you double-click on and it runs.
Click on “Generate”. It will ask you to move the mouse over the blank area;
do so. After it finishes, click “Save private key”. Ignore the warning about
having an empty passphrase, we will deal with that later. Save the private
key to a file named id_rsa.ppk. Leave the PuTTYgen window open, as we
will need to copy the public key shown at the top, in the field “Public key for
pasting into OpenSSH authorized_keys file”.

In order to login to a server, create a droplet in DigitalOcean. In the droplet
creation form, at the “Add your SSH keys” section, click “New SSH Key”. In
the “SSH key content” field, paste the public key. In Unix, the public key is
the contents of the file id_rsa.pub; in Windows, it is displayed at the top of
the PuTTYgen window. When you create the droplet, it won’t send you any
email, as you won’t need a password. The server will be ready for login with
your SSH key.

Here is how to logon to the droplet from Unix:

ssh -i /tmp/id_rsa root@[server_ip_address]

In Windows, start PuTTY, and enter the server’s IP address at the “Host
Name” field (also look at Fig. 1.1). In addition, in the “Category” tree on the
left, go to “Connection”, “Data”, and in “Auto-login username” enter “root”;
then go to “SSH”, “Auth”, and in “Private key file for authentication” specify
the id_rsa.ppk file; finally, go to “Session”, specify a name in “Saved Ses-
sions”, and click “Save”. Finally, click “Open”. You should now login on the
server without password.

What’s more, in the future, if you just open PuTTY and double-click on the
saved session name, you will immediately logon to the server.

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

Fig. 1.1: How to configure PuTTY

1.4 How SSH keys work

As you noticed, the key generator created a public key and a private key.
These “keys” are just numbers, integers, but large ones; if printed in decimal,
they would be several hundreds of digits long. In order to save some space,
they are stored in the files in a format that is more condensed than decimal, but
the file format does not concern us (in fact, the private key file contains both
keys, so if you lose the public key file you can generate it from the private
key file using ssh-keygen -y in Unix or clicking “Load” on PuTTYgen).

These numbers are called keys because they are used in encryption and de-
cryption. Encryption systems use keys. For example, a silly encryption sys-
tem could be to replace a with b, b with c, and so on, so that the word “chair”

becomes “dibjs” and the word “zoo” becomes “app”. Or, instead of moving
one letter forward you could move two letters forward, so “chair” becomes
“ejckt” and “zoo” becomes “bqq”. In both cases, the algorithm is the same,
but the key changes—in the first example the key is 1 (we moved one letter
forward) and in the second it is 2 (two letters forward). In that algorithm, the
key is a number from 1 to 25. If you send me an encrypted message with this
algorithm and someone intercepts it, if they know the key with which it was
encrypted they can decrypt it. Of course in this dummy system it’s trivial to
find the key, and there are only 25 possible keys anyway, but what I want to il-
lustrate here is that you need the key in order to decrypt the message. Serious
encryption algorithms like AES are similar to our silly algorithm with respect
to the fact that you decrypt with the same key that you used to encrypt, which
gives them the name “symmetric”.

Now, asymmetric, or public key cryptography algorithms, such as RSA, have
the property that keys go in pairs, and if you encrypt a message with one
key, you can only decrypt it with the other key of the pair. What’s more,
although there exists a method with which you can generate pairs of keys,
if you know one of the two keys of a pair, you can’t derive the other. At
least that’s what the mathematicians think. So our generator, ssh-keygen or
PuTTYgen, generated a pair of two such numbers. It christened one of them
“public key” and the other “private key”. So now if you want to send me an
encrypted message I can just give you my public key, and it doesn’t matter
if someone intercepts it. You can encrypt the secret message with my public
key and send it to me, and it doesn’t matter if someone intercepts it. Only I
have the corresponding private key, and only I can decrypt the message.

But how can this be used for authentication? Well, I can take any message,
such as “hello world”, and encrypt it with my private key. I can then send it to
you. You have my public key. You can decrypt the message. Since you were
able to decrypt it with my public key, you know that it was encrypted with
my private key. But only I have my private key, so it was I who encrypted the
message. So you know I did it and no-one else. This is how digital signatures
work, and how ssh authentication works.

So, the server is configured to accept login from you. It knows your public

key. The server asks the ssh client to encrypt some information with your
private key. The ssh client (i.e. ssh on Unix or PuTTY on Windows) does so,
and sends the encrypted information back to the server. The server verifies it
can be decrypted with your public key, and then it gives you access.

You configure a server to accept SSH keys simply by adding them to
/root/.ssh/authorized_keys, one public key per line. Logon to the server
and examine the contents of the file (nano is the simplest text editor in
GNU/Linux systems):

nano /root/.ssh/authorized_keys

You will see that it contains a line with the SSH key you pasted from PuTTYgen

or from the id_rsa.pub file. That is all the Digital Ocean UI did, it just added
the key to that file. You can specify many allowed keys in that file, one key
per line. /root is the home directory of the root user, so the keys specified
in /root/.ssh/authorized_keys may logon as root. If the system has a user
named joe, the home directory of joe is usually /home/joe, and the keys al-
lowed to logon as joe will be stored in /home/joe/.ssh/authorized_keys.

It’s not only people who have SSH keys; SSH servers also have their own
keys. Your server has key pairs in /etc/ssh. It’s not only you who needs
to authenticate with the server, but the server also needs to authenticate
with you. You really need to know that you are logging in to your own
server; an attacker could have compromised your local DNS cache and be
directing you towards another server. They could steal valuable informa-
tion if they did that, or obtain access to the real server. This is why, the
first time you connect to a server, your SSH client gives you a warning.
The server has provided its public key and has proven that it has the cor-
responding private key, but the SSH client has never connected to this server
before, so it has no way of verifying that that server is really that server.
The next times you connect to that server there will be no warning, be-
cause the SSH client can now verify that it is the same server as the server
it connected to the previous time. On Unix, the ssh client stores server
keys in $HOME/.ssh/known_hosts; PuTTY stores them in the registry, in
HKEY_CURRENT_USER\Software\SimonTatham\PuTTY\SshHostKeys.

You may have noticed that the warning mentions the “fingerprint” of the key
of the server. It could have just given us the public key, but this would have
been inconvenient because keys are so large. Therefore to identify keys we
use hashes of the keys which we call fingerprints and are much smaller; they
are usually numbers with 32 hexadecimal digits. While it cannot be ruled out
that two different keys might have the same fingerprint, the probability of this
happening is lower than the sky falling on your head in the next minute, so
it’s not something you should worry about.

1.5 Using an SSH agent

Usually you only need a single pair of keys. On Unix, we usually store them
at $HOME/.ssh/id_rsa and $HOME/.ssh/id_rsa.pub. ssh-keygen by default
places them there, and the ssh client, “ssh”, uses them without needing to
specify any parameter. On Windows there is no prescribed location, so you
should put your .ppk file wherever it is convenient.

Now, whoever has your private key can probably format all your servers, and
possibly delete all your software on GitHub. If your laptop is stolen, they get
your key (unless your disk is encrypted). It doesn’t matter if they don’t know
your boot password or your login password. Anyone with a screwdriver can
reset your BIOS password, and there are several ways to access a disk when
you don’t know the login password; one of the most obvious is to plug the disk
on another system. For this reason, you should encrypt your private key file
with a passphrase. You can either create a new key and not give it an empty
passphrase, or you can change the passphrase of an existing key. You do
this with ssh-keygen -p -f /tmp/id_rsa (you can omit the -f /tmp/id_rsa

part if you want to use the default file, $HOME/.ssh/id_rsa), or by loading the
key in PuTTYgen, specifying a passphrase, and saving it again.

But it doesn’t make any sense to key in the passphrase each time you want to
login to the server. There would be little advantage over typing the password
each time. So what we do is run an “agent”, software that runs continuously
in the background, and keeps our unencrypted private key cached in memory.

The ssh client communicates with the agent whenever needed and gets the
key from there. The agent only asks for the passphrase once after you login
to your local machine, and then keeps it cached until logout or shutdown.
This, combined with a screen saver that locks your screen after a few minutes
of inactivity (I use 5 minutes), is reasonably secure.

On GNU/Linux, you don’t need to do anything. ssh-agent, as the agent is
called, is installed by default. The first time you attempt to ssh into the remote
server, it will ask you for your passphrase.

On Windows, you need to download pageant.exe from the PuTTY down-
load page and set it up to start at login. On Windows 7, you go to Start,
All programs, Startup folder, right-click on the folder and select “Open”,
and in there create a new shortcut which should execute C:\...\pageant.exe

C:\...\your_key.ppk. After you do that, try to logout and login (or restart
the system altogether), and as soon as you login pageant will start and ask
you for your passphrase.

Finally, on Mac OS X, I don’t know how it works, but if you search the web
for “Mac OS X ssh-agent” you should find enough information.

1.6 Essential GNU/Linux commands

Right after you login, enter this command:

pwd

This prints the working directory (also called the current directory),
which right after login is /root, which is equivalent, very roughly, to
C:\Users\administrator in Windows (which in older Windows versions was
C:\Documents¬and¬Settings\administrator). /root is called the “home di-
rectory” of the root user. Most other users will have home directories under
/home; for example, if there is user named joe, the home directory will usually
be /home/joe; the root user is an exception.

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

In Unix-like operating systems, there is nothing like the drive letters of Win-
dows. I just plugged a USB storage device on my Debian laptop, and I can
see its files under /media/anthony/ANTONIS. Different storage devices are
thus “mounted” in different locations of the single directory tree.

Now let’s try to view the contents of the directory:

ls

“ls” stands for “list” and is the equivalent of the Windows dir command. If
it didn’t show anything, it’s because the directory is empty. If you type ls

on its own, it shows the contents of the current directory. Try listing the root
directory instead:

ls /

You can make it list details by adding the -l parameter:

ls -l /

In that case, the output is like Fig. 1.2.

Fig. 1.2: Output of ls

Usually when we use -l we also use -h, which shows prettier numbers; for

example, instead of 4096 it shows 4.0K. You can type either ls -l -h, or, as
is more common, ls -lh.

Just as in Windows, you can change directory using the cd command:

cd /
pwd

In contrast to Windows, cd on its own takes you to the home directory, so for
the root user, a mere cd is equivalent to cd /root. The Unix-like equivalent
of a mere cd in Windows is the pwd command.

Just a while ago, we tried ls on the /root directory. We are interested in
some files that happen to be hidden. In Unix, when a file begins with a dot,
it’s “hidden”. This means that ls doesn’t normally show it, and that when
you use wildcards such as * to denote all files, the shell will not include it.
Otherwise it’s not different from non-hidden files. To list the contents of a
directory including hidden files, use the -a option:

ls -a

This will include . and .., which denote the directory itself and the parent
directory (/root/. is the same as /root; /root/.. is the same as /). You can
use -A instead of -a to list all hidden files except . and ...

The last command we will examine in this section is shutdown. To restart
a machine, enter shutdown -r now. You can also shut down a system with
shutdown -h now, but this much is less often used on servers.

1.7 Shell files, editing files, remote copying

After the ssh server authenticates you and decides to give you access, it runs
your shell. The shell is the program that accepts input from you, parses it,
and executes the commands you type. There is a number of shells you can
choose from, but most probably you are using the most popular, which is

called “bash”. Bash stores the commands you type in .bash_history; when
at the shell prompt you use the arrow up/down keys to move through your
history of commands, bash gets this history from the file.

When you login, bash executes the commands in .profile; and when you
logout, it executes the commands in .bash_logout. Finally, each time an
interactive shell starts, it executes the commands in .bashrc. The difference
between .bashrc and .profile is that the latter is executed only by a “login
shell”; that is, by the shell started by the ssh server as soon as you login; but if
you start another shell, e.g. by entering bash, only .bashrc is executed. Type
this:

bash
exit

The first command starts another bash that runs inside the bash you were
running before. The second command exits from the nested bash and returns
you to the previous bash. Of course you would normally not do something
like this, but it demonstrates that the “outside” shell is probably your login
shell, whereas the “inside” shell is another interactive shell. When the nested
one starts, it executes .bashrc.

Now, let’s edit .bashrc.

nano .bashrc

We have already seen nano before—it’s the simplest editor in GNU/Linux
systems like Debian and Ubuntu. Many people prefer to use vim or emacs,
which are very powerful but need some learning. nano is as simple as Win-
dows Notepad, but it does not need a GUI. At the bottom it shows you what
the special keys do; for example, ^X (Ctrl+X) exits the editor.

I like the bash prompt to be colored. To use the same colors I use, add this
snippet at the end of the .bashrc file:

red=$(tput setaf 1)
green=$(tput setaf 2)

blue=$(tput setaf 4)
reset=$(tput sgr0)
PS1='\[$red\]\u\[$reset\]@\[$green\]\h\[$reset\]:\[$blue\]\W\[

→˓$reset\]\$ '

Now exit nano by saving the file, logout and login again, and the prompt
should be colored. I’m not going to explain how these commands work, as
they are quite complicated; my main purpose here was for you to get a grip
with editing a file and see the results.

If you have custom stuff in your .bashrc, you won’t want to login to the
server, edit .bashrc, make the changes, save, logout, and login again, and
all that each time you create a new virtual server. Instead, you will want to
keep your custom .bashrc somewhere in your local machine and copy it to
the new virtual server. If your local machine runs GNU/Linux, you can use
the scp command:

scp .bashrc root@1.2.3.4:/root/

If you have Windows, download pscp.exe from the PuTTY download page,
make sure it’s in the system path, and run it from a command prompt or
PowerShell like this:

pscp .bashrc root@1.2.3.4:/root/

The command means “open an ssh connection to machine 1.2.3.4, login as
root, and using the ssh connection transfer the file .bashrc from the local
machine to the remote, and put it in /root/”. It uses the ssh keys stored in
.ssh or in PuTTY, so it can login without a password. Instead of .bashrc you
could have used a full or relative path such as /home/anthony/.bashrc or
C:\Users\user\.bashrc. Instead of root@1.2.3.4:/root/ you could have
simply used root@1.2.3.4: (don’t forget the colon at the end); if you don’t
specify a destination, the remote user’s home directory is the default. Copying
also works the other way round; scp root@1.2.3.4:.bashrc . would fetch
the remote file /root/.bashrc locally and put it in the current directory.

1.8 Installing software on a Debian/Ubuntu
server

If you want to install nginx or any other software on Windows, you need to go
to the software’s web site, download it, and execute the downloaded installer.
In Debian and Ubuntu we rarely do something like this. To install nginx, just
enter this command:

apt install nginx

apt is the Advanced Package Tool. Except for “install” it also has “remove”,
with which you can uninstall, and some other options. You will find out that
people mostly use apt-get instead of apt, which is also correct. apt actually
uses apt-get behind the scenes.

What actually happens is that the Debian/Ubuntu developers have packaged
nginx so that it can be installed with apt. They have done this with thousands
of software items, so whenever you want to install something on your server,
chances are it’s packaged. This is true for other GNU/Linux systems as well,
though they usually use different package managers. CentOS uses rpm, for
example.

apt keeps a list of available packages. This needs to be updated regularly,
because it changes whenever there are security updates. Try this to update the
list:

apt update

After you update the list, you also need to upgrade any installed packages:

apt upgrade

After creating a new server, pretty much the first thing you should do is to
update the list and upgrade the software. The two commands can be joined
into a single one like this:

apt update && apt -y upgrade

This idiom means “run apt update, and if it succeeds, run apt -y upgrade”.
The -y option tells apt to not ask you “Do you want to continue?”, but instead
assume yes.

In contrast to Windows, which installs updates automatically, Debian/Ubuntu
servers don’t, unless you install package unattended-upgrades. However,
I don’t recommend it. I think it’s a bad idea to run unattended upgrades,
and I’ve once seen a server stop working when it was performing unattended
upgrades and the upgrade procedure needed to ask a question. We found out
the next morning. What I do is that I am subscribed to the Debian Security
Announce mailing list, so whenever there’s a problem I get notified and I
run apt update && apt -y upgrade. I’m using Debian on all my servers; if
you use Ubuntu, you should subscribe to the Ubuntu Security Announce list
instead.

This applies only to software installed with apt. If you install software in any
other way, apt will not upgrade it, and the Debian/Ubuntu security announce
mailing lists will not mention it. The most common other way that you will
use to install software is pip. You will probably install Django with pip, and
you should be monitoring the Django blog for security announcements (you
can subscribe to its feed, for example).

Sometimes you will not know how a package is named. Suppose you want to
install Apache. You immediately suspect that Apache may be packaged, but
you don’t know the name of the package. Here is how to search for Apache:

apt-cache search apache

(apt search apache also works, but apt-cache search is faster and I like
better the formatting of the results.) On a Ubuntu 16.04 system, this returns
about 735 results. If you only want to search for packages that have “apache”
in their name (and not just in their description or elsewhere), you can do this:

https://lists.debian.org/debian-security-announce/
https://lists.debian.org/debian-security-announce/
https://lists.ubuntu.com/mailman/listinfo/ubuntu-security-announce
https://www.djangoproject.com/weblog/
https://www.djangoproject.com/rss/weblog/

apt-cache search --names-only apache

This returns 161. Still many. You can narrow it down by searching only for
packages whose name begins with “apache”:

apt-cache search --names-only ^apache

This returns only 12 packages. The first one, apache2, is probably what you
want. You can examine the contents of the package thus:

apt show apache2

There are more ways to narrow down the search, as there are tens of thousands
of packages, but I think that’s enough for now.

1.9 Reading the documentation

In the preceding sections, we saw that ls can accept several options, such
as -l, -h, -a, -A, and others, and that apt-cache search accepts the
--names-only option. Where can you find a reference of the options used?

The answer depends on the tool. Traditionally we use the man command for
this; for example,

man apt-cache

will show you the full documentation of apt-cache.

In 1990 we were still reading the documentation from printed manuals, and
man ls would show you the contents of the printed manual’s ls entry. “man”
stands for manual. At that time, that system was quite cool. If you wanted
to take a quick glance at a detail in the manual you’d use the man command
which was quicker, but if you wanted to study the manual more carefully
you’d prefer to use the printed version which was easier to read. Remember,

there was no web at that time, and terminals weren’t as smart as they are today
(there was no bold or italics when you used the man command).

When the GNU system was developed at around that time, its developers
thought that the man system was outdated, and they developed info. Although
this is a better system that uses hyperlinks, it didn’t get much traction, so
today it’s not much used. You can access the full documentation for ls with
info ls, but this works much better from within the emacs editor than with
the standalone info program, and it takes some learning. I never use info; I
usually just use man ls, which is a summary that has most of the information
I need, and if I need more I usually search the web.

Finally, it has lately become fashionable for commands to show help when
given the --help option. Usually the help provided with --help is more
condensed than that provided by man or info. ls has all three; info, man, and
--help.

The quality of the documentation varies. While sometimes the help provided
by man is excellent and can be used as tutorial as well as reference, very
often it is better to familiarize yourself with a program by reading a book or a
tutorial on the web. For example, you can’t possibly learn git from its official
documentation (and you can barely use it as reference).

1.10 Setting up the system locale

The “locale” is the regional settings, among which the character encoding
used. If the character encoding isn’t correctly set to UTF-8, sooner or later
you will run into problems. So checking the system locale is pretty much the
first thing you should do on a new server.

The procedure is this:

1. Open the file /etc/locale.gen in an editor and make sure the line that
begins with “en_US.UTF-8” is uncommented.

2. Enter the command locale-gen; this will (re)generate the locales.

3. Open the file /etc/default/locale in an editor, and make sure it con-
tains the line LANG=en_US.UTF-8. Changes in this file require logout
and login to take effect.

Let me now explain what all this is about. The locale consists of a language,
a country, and a character encoding; “en_US.UTF-8” means English, United
States, UTF-8. This tells programs to show messages in American English;
to format items such as dates in the way it’s done in the United States; and to
use encoding UTF-8.

Different users can be using different locales. If you have a desktop com-
puter used by you and your spouse, one could be using English and the other
French. Each user does this by setting the LANG environment variable to the
desired locale; if not, the default system locale is used for that user. For
servers this feature is less important. While your Django application may dis-
play the user interface in different languages (and format dates and numbers
in different ways), this is done by Django itself using Django’s internation-
alization and localization machinery and has nothing to do with what we are
discussing here, which affects mostly the programs you type in the command
line, such as ls. Because for servers the feature of users specifying their pre-
ferred locale isn’t so important, we usually merely use the default system lo-
cale, which is specified in the file /etc/default/locale. You can understand
English, otherwise you wouldn’t be reading this book, so “en_US.UTF-8” is
fine. If you prefer to use another country, such as “en_UK.UTF-8”, it’s also
fine, but it’s no big deal, as I will explain later on.

Although the system can support a large number of locales, many of these are
turned off in order to save a little disk space. You turn them on by adding
or uncommenting them in file /etc/locale.gen. When you execute the pro-
gram locale-gen, it reads /etc/locale.gen and determines which locales
are activated, and it compiles these locales from their source files, which are
relatively small, to some binary files that are those actually used by the var-
ious programs. We say that the locales are “generated”. If you activate all
locales the binary files will be a little bit over 100 M, so the saving is not that
big (it was important 15 years ago); however they will take quite some time
to generate. Usually we only activate a few.

To check that everything is right, do this:

1. Enter the command locale; everything (except, possibly, LANGUAGE and
LC_ALL) should have the value “en_US.UTF-8”.

2. Enter the command perl -e ’’; it should do nothing and give no mes-
sage.

The locale command merely lists the active locale parameters. LC_CTYPE,
LC_NUMERIC etc. are called “locale categories”, and usually they are all set
to the same value. In some edge cases they might be set to different values;
for example, on my laptop I use “en_US.UTF-8”, but especially for LC_TIME
I use “en_DK.UTF-8”, which causes Thunderbird to display dates in ISO
8601. This is not our concern here and it rarely is on a server. So we don’t set
any of these variables, and they all get their value from LANG, which is set by
/etc/default/locale.

However, sometimes you might make an error; you might specify a locale
in /etc/default/locale, but you might forget to generate it. In that case,
the locale command will indicate that the locale is active, but it will not
show that anything is wrong. This is the reason I run perl -e ’’. Perl is a
programming language, like Python. The command perl -e ’’, does noth-
ing; it tells Perl to execute an empty program; same thing as python -c ’’.
However, if there is anything wrong with the locale, Perl throws a big warn-
ing message; so perl -e ’’ is my favourite way of verifying that my locale
works. Try, for example, LANG=el_GR.UTF-8 perl -e ’’ to see the warning
message. So locale shows you which is the active locale, and perl -e ’’, if
silent, indicates that the active locale has been generated and is valid.

I told you a short while ago that the country doesn’t matter much for servers.
Neither does the language. What matters is the encoding. You want to be
able to manipulate all characters of all languages. Even if all your customers
are English speaking, there may eventually be some remark about a Chinese
character in a description field. Even if you are certain there won’t, it doesn’t
make any sense to constrain yourself to an encoding that can represent only
a subset of characters when it’s equally easy to use UTF-8. So you need to
make sure you use UTF-8. In the chapter about PostgreSQL we will see that

installing PostgreSQL is a process particularly sensitive to the system locale
settings.

The programs you run at the command line will be producing output in your
chosen encoding. Your terminal reads the bytes produced by these programs
and must be able to decode them properly, so it must know how they are
encoded. In other words, you must set your terminal to UTF-8 as well. Most
terminals, including PuTTY and gnome-terminal, are by default set to UTF-8,
but you can change that in their preferences.

1.11 Quickly starting Django on a server

As I said in the beginning, we will be experimenting. Experimenting means
we will be trying things. We will be installing your Django project and do
things with it, and then we will be deleting it and reinstalling it to try things
differently as we move on. You must have mastered setting up a development
server from scratch. You should be able to setup your Django project on a
newly installed machine within a couple of minutes at most, with a sequence
of commands similar to the following:

apt install git python3 virtualenvwrapper
git clone $DJANGO_PROJECT_REPOSITORY
cd $DJANGO_PROJECT
mkvirtualenv --system-site-packages $DJANGO_PROJECT
pip install -r requirements.txt
python3 manage.py migrate
python3 manage.py runserver

It doesn’t matter if you use Python 2 instead of 3, or mercurial (or even, hor-
rors, FTP) instead of git, or plain virtualenv instead of virtualenvwrapper,
or if you don’t use --system-site-packages. What is important is that you
have a grip on a sequence of commands similar to the above and get your
development server running in one minute. We will be using virtualenv

heavily; if you aren’t comfortable with virtualenv, read my blog post on

http://djangodeployment.com/2016/11/01/virtualenv-demystified/
http://djangodeployment.com/2016/11/01/virtualenv-demystified/

virtualenv.

So, you have your virtual server, and you have a sequence of commands that
can install a Django development server for your project. Go ahead and do so
on the virtual server. Do it as the root user, in the /root directory.

Now, make sure you have this in your settings:

DEBUG = True
ALLOWED_HOSTS = ['$SERVER_IPv4_ADDRESS']

Then, instead of running the development server with ./manage.py

runserver run it as follows:

./manage.py runserver 0.0.0.0:8000

After it starts, go to your web browser and tell it to go to http://\protect\
T1\textdollarSERVER_IPv4_ADDRESS:8000/. You should see your Django
project in action.

Usually you run the Django development server with ./manage.py

runserver, which is short for ./manage.py runserver 8000. This tells the
Django development server to listen for connections on port 8000. How-
ever, if you just specify “8000”, it only listens for local connections; a web
browser running on the server machine itself will be able to access the Django
development server at “http://localhost:8000/”, but remote connections, from
another machine, won’t work. We use “0.0.0.0:8000” instead, which asks the
Django development server to listen for remote network connections. Even
better, if your virtual server has IPv6 enabled, you can use this:

./manage.py runserver [::]:8000

This will cause Django to listen for remote connections on port 8000, both
for IPv4 and IPv6.

Next problem is that you can’t possibly ask your users to use http://\protect\
T1\textdollarSERVER_IPv4_ADDRESS:8000/. You have to use a domain

http://djangodeployment.com/2016/11/01/virtualenv-demystified/
http://djangodeployment.com/2016/11/01/virtualenv-demystified/
http://djangodeployment.com/2016/11/01/virtualenv-demystified/
http://\protect \T1\textdollar SERVER_IPv4_ADDRESS:8000/
http://\protect \T1\textdollar SERVER_IPv4_ADDRESS:8000/
http://localhost:8000/
http://\protect \T1\textdollar SERVER_IPv4_ADDRESS:8000/
http://\protect \T1\textdollar SERVER_IPv4_ADDRESS:8000/

name, and, you have to get rid of the ”:8000” part. Let’s deal with the ”:8000”
first. “http://\protect\T1\textdollarSERVER_IPv4_ADDRESS/” is actually
a synonym for “http://\protect\T1\textdollarSERVER_IPv4_ADDRESS:80/”,
so we need to tell Django to listen on port 80 instead of 8000. This may or
may not work:

./manage.py runserver 0.0.0.0:80

Port 80 is privileged. This means that normal users aren’t allowed to listen
for connections on port 80; only the root user is. So if you run the above
command as as a normal user, Django will probably tell you that you don’t
have permission to access that port. If you run the above command as root, it
should work. If it tells you that the port is already in use, it probably means
that a web server such as Apache or nginx is already running on the machine.
Shut it down:

service apache2 stop
service nginx stop

When you finally get ./manage.py runserver 0.0.0.0:80 running, you
should, at last, be able to go to your web browser and reach your Django
project via http://\protect\T1\textdollarSERVER_IPv4_ADDRESS/. Con-
gratulations!

1.12 Things we need to fix

Now, of course, this is the wrong way to do it. It’s wrong for the following
reasons:

• The URL http://\protect\T1\textdollarSERVER_IPv4_ADDRESS/ is
ugly; you need to use a domain name.

• You have put your project in /root.

• You are running Django as root.

http://\protect \T1\textdollar SERVER_IPv4_ADDRESS/
http://\protect \T1\textdollar SERVER_IPv4_ADDRESS:80/
http://\protect \T1\textdollar SERVER_IPv4_ADDRESS/
http://\protect \T1\textdollar SERVER_IPv4_ADDRESS/

• You have Django serve your static files, and you have DEBUG=True.

• You are using runserver, which is seriously suboptimal and only
meant for development.

• You are using SQLite.

Let’s go fix them.

CHAPTER 2

DNS

2.1 Introduction to the DNS

In this book, you will find that I like to show you the code first, even if you
don’t understand it clearly, and then explain to you how things work. Unfor-
tunately, I cannot do that with DNS. You need to understand it first and then
write the code. The big problem with DNS is that if you screw things up,
even if you fix or revert things, it may be days before the system works
again. So you need to read carefully.

When you open your browser and type http://djangodeployment.com/, the
first thing your browser does is find the IP address of the machine djangode-
ployment.com. For this, it asks a component of the operating system called
the “resolver”: “What is the IP address of djangodeployment.com?” After
some time (usually from a few ms to a few seconds), the resolver replies:
“It’s 71.19.145.109”. The browser then proceeds to open a TCP connection
on port 80 of that address and use HTTP to request the required information
(in our case the home page of djangodeployment.com).

Note: What about IPv6?

http://djangodeployment.com/

If your computer has an IPv6 connection to the Internet, your browser
will actually first ask the resolver for the IPv6 address of server.
For djangodeployment.com, the resolver will eventually reply “It’s
2605:2700:0:3::4713:916d”. The browser will then attempt to connect to that
IPv6 address. If there is any kind of error, such as the resolver being unable to
find an IPv6 address (many web servers aren’t yet configured to use one), or
the IPv6 address not responding (network errors are still more frequent with
IPv6 than IPv4), the browser will fall back to using the IPv4 address, as I
explained above.

The only thing the resolver does is ask another machine to do the actual re-
solving; that other machine is called a name server. Most likely you are using
a name server provided by your Internet Service Provider. I will be calling
that name server “your name server”, although it’s not exactly yours; but it’s
the one you are using.

Tip: Which is my name server?

On Unix-like machines (including Mac OS X), the name server used is stored
in file /etc/resolv.conf; the file is usually setup during DHCP, but on sys-
tems with a static IP address it is often edited manually. On Windows, you
can determine the name server by typing the command ‘ipconfig /all’, where
it shows as “DNS Servers”; it is setup during DHCP, but on systems with a
static IP address it is often edited manually in the network properties. Your
system may be configured to use more than one name server, in which case it
chooses one and uses another if the first one does not respond.

You might find out that the name server is your aDSL router. Actually your
aDSL router is merely a so-called “forwarding” name server, which only
transfers the query to another name server, which is the one that does the
real magic. You can find which one it is by logging in your router’s web in-
terface and browsing through its settings. It is setup during the establishment
of the aDSL connection.

When I say “your name server” I don’t mean the forwarding name server, but

the one that does the real job.

In order to find out the address that corresponds to a name, your name server
makes a series of questions to other name servers on the Internet:

1. First, your name server picks up one of thirteen so-called “root name
servers”. The IP addresses of these thirteen name servers are well-
known (the official list is at http://www.internic.net/domain/named.
root) and generally do not change, and your name server is prepro-
grammed to use them. Your name server tells the chosen root name
server something like this: “Hello, I’d like to know the IP address of
djangodeployment.com please.”

2. The root name server replies: “Hi. I don’t know the address of djan-
godeployment.com; you should ask one of these name servers, which
are responsible for all domain names ending in ‘.com”’ (and it supplies
a number of IP addresses (actually thirteen).

3. Your name server picks up one of the .com name servers and asks
it: “Hello, I’d like to know the IP address of djangodeployment.com
please.”

4. The .com name server replies: “Hi. I don’t know the address of djan-
godeployment.com; you should ask one of these name servers, which
are responsible for djangodeployment.com” (and it supplies a number
of IP addresses, which at the time of this writing are three).

5. Your name server picks up one of the three name servers and asks
it: “Hello, I’d like to know the IP address of djangodeployment.com
please.”

6. The djangodeployment.com name server replies: “Sure, djangodeploy-
ment.com is 71.19.145.109”.

After your name server gets this information, it replies to the resolver, which
in turn replies to your browser.

In this example, there were only six steps, but they could be more; for ex-

http://www.internic.net/domain/named.root
http://www.internic.net/domain/named.root

ample, if you try to resolve cs.man.ac.uk, first the root servers will be asked,
these will direct to the .uk name servers, which will direct to the .ac.uk name
servers, and so on, for a total of 10 steps (this is not always the case; when
resolving itia.civil.ntua.gr, the .gr servers refer you to the .ntua.gr servers, and
these in turn refer you directly to the itia.civil.ntua.gr servers, for a total of 8
steps).

All this discussion between servers takes time and network traffic, so it only
happens the first time you ask to connect to the web page. The results of the
DNS query are heavily cached in order to make it faster for the next times.
Typically web browsers cache such results for about half an hour, or until
browser restart. Most important, however, your name server caches results
for much longer. In fact, the response (6) above is not exactly what I wrote;
instead, it is “Sure, djangodeployment is 71.19.145.109, and you can cache
this information for up to 8 hours”. Equally important, the response (4) is
“I don’t know the address of djangodeployment.com; you should ask one of
these three name servers, which are responsible for djangodeployment.com,
and you can cache this information (i.e. the list of name servers that are re-
sponsible for djangodeployment.com) for up to two days”. Caching times are
configurable to various degrees and are usually from 5 minutes to 48 hours,
but caching for a whole week is not uncommon. Rarely does your name
server need to go through the complete list of steps; most often it will have
cached the name servers for the top level domain, and sometimes it will also
have cached some lower stuff.

So here is the big problem with DNS: it’s not hard to get it right (it’s easier
than writing a Django program), but if you make the slightest error you might
be stuck with the wrong information for up to two days (or even a week).
If you make an error when configuring your domain name, and a customer
attempts to access your site, the error may be cached by the customer’s name
server for up to two days, and you can do nothing about it except fix the error
and wait. There is no way to send a signal to all the name servers of the world
and tell them “hey, please invalidate the cache for djangodeployment.com”.
Different customers or visitors of your site will experience different amounts
of downtime, depending on when exactly their local name server will decide

to expire its cache.

2.2 Registering a domain name

You register a domain name with a registrar. Registrars are companies that
provide the service of registering a domain name for you. These companies
are authorized by ICANN, the organization ultimately responsible for domain
names. So, before registering a domain name, you first need to select a reg-
istrar, and there are many. I’m using BookMyName.com, a French registrar
which I selected more or less at random. Its web site is unpolished but it
works. Another French registrar, particularly popular in the free software
community, is Gandi, but it’s a bit more expensive than others. The most
popular registrar worldwide is GoDaddy, but it supported SOPA, and for me
that’s a deal breaker. Another interesting option is Namecheap; I think its
software is nice and its prices are reasonable. If you don’t know what to do,
choose that one. There are also dozens of other options, and it’s fine to choose
another one. Note that I’m not affiliated with any registrar (and certainly none
of the four I’ve mentioned).

For practice, you can go and register a cheap test domain; Namecheap, for
example, sells some domains for $0.88 per year. Go get one now so that you
can start messing around with it. Below I use ”.com” as an example, but
if your domain is different ($0.88 domains certainly aren’t .com) it doesn’t
matter, exactly the same rules apply.

When you register a .com domain name at the registrar’s web site, two things
happen:

1. The registrar configures some name servers to be the name servers for
the domain. For example, when I registered djangodeployment.com at
the web site of bookmyname.com, bookmyname.com configured three
name servers (nsa.bookmyname.com, nsb.bookmyname.com, and
nsc.bookmyname.com) as the djangodeployment.com name servers.
These are the three servers that are involved in steps 5 and 6 of the

resolving procedure that I presented in the previous section. I am going
to call them the domain’s name servers.

2. The registrar notifies the .com name servers that domain djangodeploy-
ment.com is registered, and that the site name servers are the three men-
tioned above. I am going to call the .com name servers the upstream
name servers. If your domain is mydomain.co.uk, the upstream name
servers are those responsible for .co.uk.

2.3 Adding records to your domain

The DNS database consists of records. Each record maps a name to a value.
For example, a record says that the name djangodeployment.com corresponds
to the value 71.19.145.109. Your registrar provides a web interface with
which you can add, remove and edit records (in Namecheap you need to
go to the Dashboard, Domain list, Manage (the domain), Advanced DNS).
Go to your registrar’s interface and, for the test domain you created, cre-
ate the following records (remember that $SERVER_IPv4_ADDRESS and
$SERVER_IPv6_ADDRESS are placeholders and you need to replace them
with something else; also omit the “AAAA” records if your server doesn’t
have an IPv6 address):

Name Type TTL Value
@ A 300 $SERVER_IPv4_ADDRESS
@ AAAA 300 $SERVER_IPv6_ADDRESS
www A 300 $SERVER_IPv4_ADDRESS
www AAAA 300 $SERVER_IPv6_ADDRESS

Each record has a type. There are many different types of records, but the
ones you need to be aware of here are A, AAAA, and CNAME. “A” defines
an IPv4 address, whereas “AAAA” defines an IPv6 address. We will deal with
CNAME a bit later.

When you see “@” as a name, I mean a literal “@” symbol. This is shorthand
for writing the domain itself. If your domain is mydomain.com, then whether

you enter “mydomain.com.” (with a trailing dot) or “@” in the field for the
name is exactly the same thing. Some registrars might be allowing only the
shorthand “@”, but often it is allowed to write “mydomain.com.”. Use the
“@”, which is more common. The first of these four records means that
the domain itself resolves to $SERVER_IPv4_ADDRESS. Likewise for the
second record.

If your domain is mydomain.com, the next two records define the IP ad-
dresses for www.mydomain.com. In the field for the name, you can either
write “www.mydomain.com.” (with a trailing dot), or “www”, without a
trailing dot. Use the latter, which is more common. In the rest of the text,
I will be using $DOMAIN and www.$DOMAIN instead of mydomain.com
and www.mydomain.com, and you should understand that you need to re-
place “$DOMAIN” with your actual domain.

These four records are normally all you need to set. In theory you can set
www.$DOMAIN to point to a different server than $DOMAIN, but this is un-
common. You can also define ftp.$DOMAIN and whateverelse.$DOMAIN,
but this is often not needed.

The TTL, meaning “time to live”, is the maximum allowed caching time.
When a name server asks the domain’s name server for the IPv4 ad-
dress of $DOMAIN, the domain’s name server will reply “$DOMAIN is
71.19.145.109, and you can cache this information for 300 seconds”. Don’t
make it less than 300; it will increase the number of queries your visitors will
make, thus making responses a bit slower; and some name servers will ignore
the TTL if it’s less than 300 and use 300 anyway. A common tactic is to use
a large value (say 28800), and when for some reason you need to switch to
another server, you reduce that to 300, wait at least 8 hours (28800 seconds),
then bring the server down, change the DNS to point to the new server, then
start the new server. If planned correctly and executed without problems, the
switch will result in a downtime of no more than 300 seconds. After this is
finished, you change the TTL to 28800 again.

You can usually leave the TTL field empty. In that case, a default TTL applies.
The default TTL for the zone (“zone” is more or less the same as a domain)

is normally configurable, but this may depend on the web interface of the
registrar.

CNAME records are a kind of alias. For example, one of the domains I’m
managing is openmeteo.org, and its database is like this:

Name Type TTL Value
@ A 300 83.212.168.232
@ AAAA 300 2001:648:2ffc:1014:a800:ff:feb1:6047
www CNAME 300 ilissos.openmeteo.org.
ilissos A 300 83.212.168.232
ilissos AAAA 300 2001:648:2ffc:1014:a800:ff:feb1:6047

The machine that hosts the web service for openmeteo.org is
called ilissos.openmeteo.org. When the name server is queried for
www.openmeteo.org, it replies: “Hi, www.openmeteo.org is an alias; the
canonical name is ilissos.openmeteo.org.” So then it has to be queried
again for ilissos.openmeteo.org. (However, you cannot use CNAME for the
domain itself, only for other hosts within the domain.) On the right hand side
of CNAMEs, you should always specify the fully qualified domain name and
end it with a dot, such as “ilissos.openmeteo.org.”, as in the example above.

I used to use CNAMEs a lot, but now I avoid them, because they make first-
time visits a little slower. Assume you want to visit “http://www.openmeteo.
org/synoptic/irma”. Then these things happen:

1. www.openmeteo.org is resolved, and it turns out to be an alias of ilis-
sos.openmeteo.org.

2. ilissos.openmeteo.org is resolved to an IP address.

3. The request http://www.openmeteo.org/synoptic/irma is sent to the IP
address. The web server redirects it to http://openmeteo.org/synoptic/
irma, without the www.

4. The request http://openmeteo.org/synoptic/irma is sent to the IP ad-
dress, and it is redirected to http://openmeteo.org/synoptic/irma/, be-
cause I’m using APPEND_SLASH = True in Django’s settings.

http://www.openmeteo.org/synoptic/irma
http://www.openmeteo.org/synoptic/irma
http://www.openmeteo.org/synoptic/irma
http://openmeteo.org/synoptic/irma
http://openmeteo.org/synoptic/irma
http://openmeteo.org/synoptic/irma
http://openmeteo.org/synoptic/irma/

5. The request http://openmeteo.org/synoptic/irma/ is sent to the IP ad-
dress, and this time a proper response is returned.

All these steps take a small amount of time which may add up to one second
or more. This is only for the first request of first time visitors, but today
people have little patience, and it’s a good idea for the visitor’s browser to
start drawing something on the screen within at most one second, otherwise
you will be losing a non-negligible number of visitors. Besides, a high quality
web site should not have unnecessary delays. So lately I’ve stopped using
CNAMEs, and I’ve stopped redirecting between URLs with and without the
leading www.

2.4 Changing the domain’s name servers

As I said, when you register the domain, the registrar configures its own name
servers to act as the domain’s name servers, and also tells the upstream name
servers the ip addresses and/or names of the domain’s name servers. While
this is normally sufficient, there are cases when you will want to use other
name servers instead of the registrar’s name servers. For example, DigitalO-
cean offers name servers and a web interface to configure them, and if Digi-
talOcean’s web interface is easier, or if it integrates well with droplets making
configuration faster, you might want to use that. In such a case, you can go to
the registrar’s web interface and specify different name servers. The registrar
will tell the upstream name servers which are your new name servers. It can’t
setup the new name servers themselves, you have to do that yourself (e.g.
via the DigitalOcean’s web interface if you are using DigitalOcean’s name
servers).

In this case, you must be aware that while, as we saw in the previous section,
you can configure the TTL for the DNS records of your domain, you cannot
configure the TTL of the upstream name servers. The upstream name
servers, when queried about your domain, respond with something like “the
name servers for the requested domain are such and such, and you can cache
this information for 2 days”. This TTL, typically 2 days, is not configurable

http://openmeteo.org/synoptic/irma/

by you, so you have to live with it. So changing name servers is a bit risky,
because if you do anything wrong, different users will experience different
downtimes that can last for up to 2 days.

Finally, some information about the NS record, which means “name server”.
I haven’t told you, but the DNS database (the zone file, as it is called) for
djangodeployment.com also contains these records:

Name Type TTL Value
@ NS 28800 nsa.bookmyname.com.
@ NS 28800 nsb.bookmyname.com.
@ NS 28800 nsc.bookmyname.com.

(As you can see, there can be many records with the same type and name, and
this is true of A and AAAA records as well—one name may map to many IP
addresses, but we will not delve into that here.)

I have never really understood the reason for the existence of these records in
the domain’s zone file. The upstream name servers obviously need to know
that, but what’s the use of querying a domain’s name server about which are
the domain’s name servers? Obviously I already know them. However, there
is a reason, and these records need to be present both in the domain’s name
servers and upstream.

In any case, these NS records are virtually always configured automatically
by the registrar or by the web interface of the name server provider, so usually
you don’t need to know more about it. What you need to know, however, is
that DNS is a complicated system that easily fills in several books by itself.
It will work well if you are gentle with it. If you want to do something more
advanced and you don’t really know what you are doing, ask for help from an
expert if you can’t afford the downtime.

http://serverfault.com/questions/588244/what-is-the-role-of-ns-records-at-the-apex-of-a-dns-domain
http://serverfault.com/questions/588244/what-is-the-role-of-ns-records-at-the-apex-of-a-dns-domain

2.5 Editing the hosts file

As I told you earlier, when your browser needs to know the IP address that
corresponds to a name, it asks your operating system’s resolver, and the re-
solver asks the name server. It is possible to bypass the asking of the name
server and tell the resolver what answers to give. This is done by modi-
fying the hosts file, which in Unixes is /etc/hosts, and in Windows is
C:\Windows\System32\drivers\etc\hosts. Edit the file and add these lines
at the end:

1.2.3.4 mysite.com
1.2.3.4 www.mysite.com

Save the file, restart your browser (because, remember, it may be caching
names), and then visit mysite.com. It will probably fail to connect (because
1.2.3.4 does not exist), but the thing is that mysite.com has resolved to 1.2.3.4.
The resolver found it in the hosts file, so it did not ask the DNS server.

I often edit the hosts file, for experimenting with a temporary server without
needing to change the DNS. Sometimes I want to redirect a domain to another
machine, for development or testing, and I want to do this only for myself,
without affecting the users of the domain. In such cases the hosts file comes
in handy, and the changes made work immediately, without needing to wait
for DNS caches to expire.

The only thing that you must take care of is to remember to revert the hosts

file to its original contents; if you forget to do so, it might cause you great
headaches later (imagine wondering why the web site you are deploying is
different than what it should be, and discovering, after hours of searching,
that it was because of a forgotten entry in hosts). What I usually do is leave
the editor open and not close it until after I have reverted the file. When I
don’t do that thing, at least I make certain that the domain I’m playing with is
example.com or anyway something very unlikely to ever be actually used by
me.

2.6 Visiting your Django project through the
domain

In the previous chapter you ran Django on a server and it was reach-
able through http://\protect\T1\textdollarSERVER_IPv4_ADDRESS/.
Now you should have setup your DNS and have $DOMAIN point
to $SERVER_IPv4_ADDRESS. In your Django settings, change
ALLOWED_HOSTS to this:

ALLOWED_HOSTS = ['$DOMAIN', 'www.$DOMAIN']

Then run the Django development server as in the previous chapter:

./manage.py runserver 0.0.0.0:80

Now you should be able to reach your Django project via http://\protect\T1\
textdollarDOMAIN/. So we fixed the first step; we managed to reach Django
through a domain instead of an IP address. Next, we will run Django as an
unprivileged user, and put its files in appropriate directories.

2.7 Chapter summary

• Register your domain at a registrar.

• Use the registrar’s web interface to specify A and AAAA records for
the domain and for www.

• Be careful when you play with TTLs and when changing the domain’s
name servers.

• If you do anything advanced with the DNS and you don’t really know
what you’re doing and you can’t afford the downtime, ask for expert
help.

http://\protect \T1\textdollar SERVER_IPv4_ADDRESS/
http://\protect \T1\textdollar DOMAIN/
http://\protect \T1\textdollar DOMAIN/

• Set ALLOWED_HOSTS = [’$DOMAIN’, ’www.$DOMAIN’].

• Optionally use your local hosts file for experimentation.

CHAPTER 3

Users and directories

Right now your Django project is at /root, or maybe at /home/joe. The first
thing we are going to fix is put your Django project in a proper place.

I will be using $DJANGO_PROJECT as the name of your Django project.

3.1 Creating a user and group

It’s a good idea to not run Django as root. We will create a user specifically
for that, and we will give the user the same name as the Django project,
i.e. $DJANGO_PROJECT. However, in principle it can be different, and I will
be using $DJANGO_USER to denote the user name, so that you can distinguish
when I’m talking about the user and when about the project.

Execute this command:

adduser --system --home=/var/opt/$DJANGO_PROJECT \
--no-create-home --disabled-password --group \
--shell=/bin/bash $DJANGO_USER

Here is why we use these parameters:

--system This tells adduser to create a system user, as opposed to creating
a normal user. System users are intended to run programs, whereas
normal users are people. Because of this parameter, adduser will assign
a user id less than 1000, which is only a convention for knowing that
this is a system user. Otherwise there isn’t much difference.

--home=/var/opt/$DJANGO_PROJECT This specifies the home directory for
the user. For system users, it doesn’t really matter which directory
we will choose, but by convention we choose the one which holds the
program’s data. We will talk about the /var/opt/$DJANGO_PROJECT di-
rectory later.

--no-create-home We tell adduser to not create the home directory. We
could allow it to create it, but we will create it ourselves later on, for
instructive purposes.

--disabled-password The password will be, well, disabled. This means that
you won’t be able to become this user by using a password. However,
the root user can always become another user (e.g. with su) without
using a password, so we don’t need one.

--group This tells adduser to not only add a new user, but to also add a
new group, having the same name as the user, and make the new user
a member of the new group. We will see further below why this is
useful. I will be using $DJANGO_GROUP to denote the new group. In
principle it could be different than $DJANGO_USER (but then the proce-
dure of creating the user and the group would be slightly different), but
the most important thing is that I want it to be perfectly clear when we
are talking about the user and when we are talking about the group.

--shell=/bin/bash By default, adduser uses /bin/false as the shell for
system users, which practically means they are disabled; /bin/false
can’t run any commands. We want the user to have the most common
shell used in GNU/Linux systems, /bin/bash.

3.2 The program files

Your Django project should be structured either like this:

$DJANGO_PROJECT/
|-- manage.py
|-- requirements.txt
|-- your_django_app/
`-- $DJANGO_PROJECT/

or like this:

$REPOSITORY_ROOT/
|-- requirements.txt
`-- $DJANGO_PROJECT/

|-- manage.py
|-- your_django_app/
`-- $DJANGO_PROJECT/

I prefer the former, but some people prefer the extra repository root directory.

We are going to place your project inside /opt. This is a standard directory for
program files that are not part of the operating system. (The ones that are in-
stalled by the operating system go to /usr.) So, clone or otherwise copy your
Django project in /opt/$DJANGO_PROJECT or in /opt/$REPOSITORY_ROOT. Do
this as the root user. Create the virtualenv for your project as the root user
as well:

virtualenv --system-site-packages --python=/usr/bin/python3 \
/opt/$DJANGO_PROJECT/venv

/opt/$DJANGO_PROJECT/venv/bin/pip install \
-r /opt/$DJANGO_PROJECT/requirements.txt

While it might seem strange that we are creating these as the root user instead
of as $DJANGO_USER, it is standard practice for program files to belong to the
root user. If you check, you will see that /bin/ls belongs to the root user,

though you may be running it as joe. In fact, it would be an error for it to
belong to joe, because then joe would be able to modify it. So for security
purposes it’s better for program files to belong to root.

This poses a problem: when $DJANGO_USER attempts to execute your Django
application, it will not have permission to write the compiled Python files in
the /opt/$DJANGO_PROJECT directory, because this is owned by root. So we
need to pre-compile these files as root:

/opt/$DJANGO_PROJECT/venv/bin/python -m compileall \
-x /opt/$DJANGO_PROJECT/venv/ /opt/$DJANGO_PROJECT

The option -x /opt/$DJANGO_PROJECT/venv/ tells compileall to exclude di-
rectory /opt/$DJANGO_PROJECT/venv from compilation. This is because the
virtualenv takes care of its own compilation and we should not interfere.

3.3 The data directory

As I already hinted, our data directory is going to be
/var/opt/$DJANGO_PROJECT. It is standard policy for programs installed in
/opt to put their data in /var/opt. Most notably, we will store media files in
there (in a later chapter). We will also store the SQLite file there. Usually in
production we use a different RDBMS, but we will deal with this in a later
chapter as well. So, let’s now prepare the data directory:

mkdir -p /var/opt/$DJANGO_PROJECT
chown $DJANGO_USER /var/opt/$DJANGO_PROJECT

Besides creating the directory, we also changed its owner to $DJANGO_USER.
This is necessary because Django will be needing to write data in that direc-
tory, and it will be running as that user, so it needs permission to do so.

3.4 The log directory

Later we will setup our Django project to write to log files in
/var/log/$DJANGO_PROJECT. Let’s prepare the directory.

mkdir -p /var/log/$DJANGO_PROJECT
chown $DJANGO_USER /var/log/$DJANGO_PROJECT

3.5 The production settings

Debian puts configuration files in /etc. More specifically, the configuration
for programs that are installed in /opt is supposed to go to /etc/opt, which
is what we will do:

mkdir /etc/opt/$DJANGO_PROJECT

For the time being this directory is going to have only settings.py; later
it will have a bit more. Your /etc/opt/$DJANGO_PROJECT/settings.py file
should be like this:

from DJANGO_PROJECT.settings import *

DEBUG = True
ALLOWED_HOSTS = ['$DOMAIN', 'www.$DOMAIN']
DATABASES = {

'default': {
'ENGINE': 'django.db.backends.sqlite3',
'NAME': '/var/opt/$DJANGO_PROJECT/$DJANGO_PROJECT.db',

}
}

Note: The above is not valid Python until you replace $DJANGO_PROJECT

with the name of your django project and $DOMAIN with your domain. In all

examples until now you might have been able to copy and paste the code
from the book and use shell variables for $DJANGO_PROJECT, $DJANGO_USER,
$DJANGO_GROUP, and so on. This is, indeed, the reason I chose this notation.
However, in some places, like in this Python, you have to actually replace it
yourself. (Occasionally I use DJANGO_PROJECT without the leading dollar
sign, in order to get the syntax highlighter to work.)

Note: These settings might give you the error “The SECRET_KEY setting
must not be empty”, or “Unknown command: ‘collectstatic”’, or some other
error that indicates a problem with the settings. If this happens, a likely ex-
planation is that this line at the top of your production settings isn’t working
correctly:

from DJANGO_PROJECT.settings import *

It may be that, in your Django project, settings is a directory that has no
__init__.py file or an empty __init__.py file. Maybe you have to change
the line to this:

from DJANGO_PROJECT.settings.base import *

Check what your project’s settings file actually is, and import from that one.

Let’s now secure the production settings. We don’t want other users of the
system to be able to read the file, because it contains sensitive information.
Maybe not yet, but after a few chapters it is going to have the secret key, the
password to the database, the password for the email server, etc. At this point,
you are wondering: what other users? I am the only person using this server,
and I have created no users. Indeed, now that it’s so easy and cheap to get
small servers and assign a single job to them, this detail is not as important
as it used to be. However, it is still a good idea to harden things a little bit.
Maybe a year later you will create a normal user account on that server as an
unrelated convenience for a colleague.

If your Django project has a vulnerability, an attacker might be able to
give commands to the system as the user as which the project runs (i.e. as
$DJANGO_USER). Likewise, in the future you might install some other web ap-
plication, and that other web application might have a vulnerability and could
be attacked, and the attacker might be able to give commands as the user run-
ning that application. In that case, if we have secured our settings.py, the
attacker won’t be able to read it. Eventually servers get compromised, and we
try to set up the system in such a way as to minimize the damage, and we can
minimize it if we contain it, and we can contain it if the compromising of an
application does not result in the compromising of other applications. This is
why we want to run each application in its own user and its own group.

Here is how to make the contents of /etc/opt/$DJANGO_PROJECT unreadable
by other users:

chgrp $DJANGO_GROUP /etc/opt/$DJANGO_PROJECT
chmod u=rwx,g=rx,o= /etc/opt/$DJANGO_PROJECT

What this does is make the directory unreadable by users other than root and
$DJANGO_USER. The directory is owned by root, and the first command above
changes the group of the directory to $DJANGO_GROUP. The second command
changes the permissions of the directory so that:

u=rwx The owner has permission to read (rx) and write (w) the directory (the
u in u=rwx stands for “user”, but actually it means the “user who owns
the directory”). The owner is root. Reading a directory is denoted with
rx rather than simply r, where the x stands for “search”; but giving a
directory only one of the r and x permissions is an edge case that I’ve
seen only once in my life. For practical purposes, when you want a
directory to be readable, you must specify both r and x. (This applies
only to directories; for files, the x is the permission to execute the file
as a program.)

g=rx The group has permission to read the directory. More precisely, users
who belong in that group have permission to read the directory. The
directory’s group is $DJANGO_GROUP. The only user in that group is

$DJANGO_USER, so this adjustment applies only to that user.

o= Other users have no permission, they can’t read or write to the directory.

You might have expected that it would have been easier to tell the system
“I want root to be able to read and write, and $DJANGO_USER to be able to
only read”. Instead, we did something much more complicated: we made
$DJANGO_USER belong to a $DJANGO_GROUP, and we made the directory read-
able by that group, thus indirectly readable by the user. The reason we did
it this way is an accident of history. In Unix there has traditionally been no
way to say “I want root to be able to read and write, and $DJANGO_USER to be
able to only read”. In many modern Unixes, including Linux, it is possible
using Access Control Lists, but this is a feature added later, it does not work
the same in all Unixes, and its syntax is harder to use. The way we use here
works the same in FreeBSD, HP-UX, and all other Unixes, and it is common
practice everywhere.

Finally, we need to compile the settings file. Your settings file and the
/etc/opt/$DJANGO_PROJECT directory is owned by root, and, as with the files
in /opt, Django won’t be able to write the compiled version, so we pre-
compile it as root:

/opt/$DJANGO_PROJECT/venv/bin/python -m compileall \
/etc/opt/$DJANGO_PROJECT

Compiled files are the reason we changed the permissions of the directory and
not the permissions of settings.py. When Python writes the compiled files
(which also contain the sensitive information), it does not give them the per-
missions we want, which means we’d need to be chgrping and chmoding each
time we compile. By removing read permissions from the directory, we make
sure that none of the files in the directory is readable; in Unix, in order to read
file /etc/opt/$DJANGO_PROJECT/settings.py, you must have permission to
read / (the root directory), /etc, /etc/opt, /etc/opt/$DJANGO_PROJECT, and
/etc/opt/$DJANGO_PROJECT/settings.py.

You can check the permissions of a directory with the -d option of ls, like
this:

ls -lhd /
ls -lhd /etc
ls -lhd /etc/opt
ls -lhd /etc/opt/$DJANGO_PROJECT

(In the above commands, if you don’t use the -d option it will show the con-
tents of the directory instead of the directory itself.)

Hint: Unix permissions

When you list a file or directory with the -l option of ls, it will show you
something like -rwxr-xr-x at the beginning of the line. The first character is
the file type: - for a file and d for a directory (there are also some more types,
but we won’t bother with them). The next nine characters are the permissions:
three for the user, three for the group, three for others. rwxr-xr-x means
“the user has permission to read, write and search/execute, the group has
permission to read and search/execute but not write, and so do others”.

rwxr-xr-x can also be denoted as 755. If you substitute 0 in place of a hyphen
and 1 in place of r, w and x, you get 111 101 101. In octal, this is 755. Instead
of

chmod u=rwx,g=rx,o= /etc/opt/$DJANGO_PROJECT

you can type

chmod 750 /etc/opt/$DJANGO_PROJECT

which means exactly the same thing. People use this latter version much
more than the other one, because it is so much easier to type, and because
converting permissions into octal becomes second nature with a little practice.

3.6 Managing production vs. development
settings

How to manage production vs. development settings seems to be an eternal
question. Many people recommend, instead of a single settings.py file, a
settings directory containing __init__.py and base.py. base.py is the base
settings, those that are the same whether in production or development or
testing. The directory often contains local.py (alternatively named dev.py),
with common development settings, which might or might not be in the repos-
itory. There’s often also test.py, settings that are used when testing. Both
local.py and test.py start with this line:

from .base import *

Then they go on to override the base settings or add more settings. When
the project is set up like this, manage.py is usually modified so that,
by default, it uses $DJANGO_PROJECT.settings.local instead of simply
$DJANGO_PROJECT.settings. For more information on this technique, see
Section 5.2, “Using Multiple Settings Files”, in the book Two Scoops of
Django; there’s also a stackoverflow answer about it.

Now, people who use this scheme sometimes also have production.py in the
settings directory of the repository. Call me a perfectionist (with deadlines),
but the production settings are the administrator’s job, not the developer’s,
and your django project’s repository is made by the developers. You might
claim that you are both the developer and the administrator, since it’s you who
are developing the project and maintaining the deployment, but in this case
you are assuming two roles, wearing a different hat each time. Production
settings don’t belong in the project repository any more than the nginx or
PostgreSQL configuration does.

The proper place to store such settings is another repository—the deployment
repository. It can be as simple as holding only the production settings.py

(along with README and .gitignore), or as complicated as containing all your
nginx, PostgreSQL, etc., configuration for several servers, along with the

http://stackoverflow.com/questions/1626326/how-to-manage-local-vs-production-settings-in-django/15325966#15325966

“recipe” for how to set them up, written with a configuration management
system such as Ansible.

If you choose, however, to keep your production settings in your Django
project repository, then your /etc/opt/$DJANGO_PROJECT/settings.py file
shall eventually be a single line:

from $DJANGO_PROJECT.settings.production import *

However, I don’t want you to do this now. We aren’t yet going to use our real
production settings, because we are going step by step. Instead, create the
/etc/opt/$DJANGO_PROJECT/settings.py file as I explained in the previous
section.

3.7 Running the Django server

Warning: We are running Django with runserver here, which is inap-
propriate for production. We are doing it only temporarily, so that you
understand several concepts. We will run Django correctly in the chapter
about Gunicorn.

su $DJANGO_USER
source /opt/$DJANGO_PROJECT/venv/bin/activate
export PYTHONPATH=/etc/opt/$DJANGO_PROJECT:/opt/$DJANGO_PROJECT
export DJANGO_SETTINGS_MODULE=settings
python /opt/$DJANGO_PROJECT/manage.py migrate
python /opt/$DJANGO_PROJECT/manage.py runserver 0.0.0.0:8000

You could also do that in an exceptionally long command (provided you have
already done the migrate part), like this:

PYTHONPATH=/etc/opt/$DJANGO_PROJECT:/opt/$DJANGO_PROJECT \
DJANGO_SETTINGS_MODULE=settings \
su $DJANGO_USER -c \
"/opt/$DJANGO_PROJECT/venv/bin/python \
/opt/$DJANGO_PROJECT/manage.py runserver 0.0.0.0:8000"

Hint: su

You have probably heard of sudo, which is a very useful program on Unix
client machines (desktops and laptops). On the server, sudo is less common
and we use su instead.

su, like sudo, changes the user that executes a program. If you are user joe
and you execute su -c ls, then ls is run as root. su will ask for the root
password in order to proceed.

su alice -c ls means “execute ls as user alice”. su alice means “start a
shell as user alice”; you can then type commands as user alice, and you can
enter exit to “get out” of su, that is, to exit the shell than runs as alice. If
you are a normal user su will ask you for alice’s password. If you are root,
it will become alice without questions. This should make clear how the su

command works when you run the Django server as explained above.

sudo works very differently from su. Instead of asking the password of the
user you want to become, it asks for your password, and has a configuration
file that describes which user is allowed to become what user and with what
constraints. It is much more versatile. su does only what I described and
nothing more. su is guaranteed to exist in all Unix systems, whereas sudo is
an add-on that must be installed. By default it is usually installed on client
machines, but not on servers. su is much more commonly used on servers
and shell scripts than sudo.

Do you understand that very clearly? If not, here are some tips:

• Make sure you have a grip on virtualenv and environment variables.

http://djangodeployment.com/2016/11/01/virtualenv-demystified/
http://djangodeployment.com/2016/11/07/what-is-the-difference-between-a-shell-variable-and-an-environment-variable/

• Python reads the PYTHONPATH environment variable and adds the speci-
fied directories to the Python path.

• Django reads the DJANGO_SETTINGS_MODULE environment
variable. Because we have set it to “settings”, Django
will attempt to import settings instead of the default
(the default is $DJANGO_PROJECT.settings, or maybe
$DJANGO_PROJECT.settings.local).

• When Django attempts to import settings, Python looks in its path.
Because /etc/opt/$DJANGO_PROJECT is listed first in PYTHONPATH,
Python will first look there for settings.py, and it will find it there.

• Likewise, when at some point Django attempts to import
your_django_app, Python will look in /etc/opt/$DJANGO_PROJECT;
it won’t find it there, so then it will look in /opt/$DJANGO_PROJECT,
since this is next in PYTHONPATH, and it will find it there.

• If, before running manage.py [whatever], we had changed directory
to /opt/$DJANGO_PROJECT, we wouldn’t need to specify that directory
in PYTHONPATH, because Python always adds the current directory to its
path. This is why, in development, you just tell it python manage.py

[whatever] and it finds your project. We prefer, however, to set the
PYTHONPATH and not change directory; this way our setup will be clearer
and more robust.

Instead of using DJANGO_SETTINGS_MODULE, you can also use the --settings

parameter of manage.py:

PYTHONPATH=/etc/opt/$DJANGO_PROJECT:/opt/$DJANGO_PROJECT \
su $DJANGO_USER -c \
"/opt/$DJANGO_PROJECT/venv/bin/python \
/opt/$DJANGO_PROJECT/manage.py
runserver --settings=settings 0.0.0.0:8000"

(manage.py also supports a --pythonpath parameter which could be used
instead of PYTHONPATH, however it seems that --settings doesn’t work cor-
rectly together with --pythonpath, at least not in Django 1.8.)

If you fire up your browser and visit http://\protect\T1\textdollarDOMAIN:
8000/, you should see your Django project in action.

3.8 Chapter summary

• Create a system user and group with the same name as your Django
project.

• Put your Django project in /opt, with all files owned by root.

• Put your virtualenv in /opt/$DJANGO_PROJECT/venv, with all files
owned by root.

• Put your data files in a subdirectory of /var/opt with the same name
as your Django project, owned by the system user you created. If you
are using SQLite, the database file will go in there.

• Put your settings file in a subdirectory of /etc/opt with the same name
as your Django project, whose user is root, whose group is the system
group you created, that is readable by the group and writeable by root,
and whose contents belong to root.

• Precompile the files in /opt/$DJANGO_PROJECT and
/etc/opt/$DJANGO_PROJECT.

• Run manage.py as the system user you cre-
ated, after setting the environment variables
PYTHONPATH=/etc/opt/$DJANGO_PROJECT:/opt/$DJANGO_PROJECT

and DJANGO_SETTINGS_MODULE=settings.

http://\protect \T1\textdollar DOMAIN:8000/
http://\protect \T1\textdollar DOMAIN:8000/

CHAPTER 4

The web server

This chapter is divided in two parts: nginx and Apache. Depending on which
of the two you choose, you only need to read that part.

Both nginx and Apache are excellent choices for a web server. Most people
deploying Django nowadays seem to be using nginx, so, if you aren’t inter-
ested in learning more about what you should choose, pick up nginx. Apache
is also widely used, and it is preferable in some cases. If you have any reason
to prefer it, go ahead and use it.

If you don’t know what to do, choose nginx. If you want to know more about
the pros and cons of each one, I have written a blog post about it.

4.1 Installing nginx

Install nginx like this:

apt install nginx-light

http://djangodeployment.com/2016/11/15/why-nginx-is-faster-than-apache-and-why-you-neednt-necessarily-care/

Note: Instead of nginx-light, you can use packages nginx-full or
nginx-extras, which have more modules available. However, nginx-light
is enough in most cases.

After you install, go to your web browser and visit http://\protect\T1\
textdollarDOMAIN/. You should see nginx’s welcome page.

4.2 Configuring nginx to serve the domain

Create file /etc/nginx/sites-available/$DOMAIN with the following con-
tents:

server {
listen 80;
listen [::]:80;
server_name $DOMAIN www.$DOMAIN;
root /var/www/$DOMAIN;

}

Note: Again, this is not a valid nginx configuration file until you replace
$DOMAIN with your actual domain name.

Create a symbolic link in sites-enabled:

cd /etc/nginx/sites-enabled
ln -s ../sites-available/$DOMAIN .

Hint: Symbolic links

http://\protect \T1\textdollar DOMAIN/
http://\protect \T1\textdollar DOMAIN/

A symbolic link looks like a file, but in fact it is a pointer to another file. The
command

ln -s ../sites-available/$DOMAIN .

means “create a symbolic link that points to file
../sites-available/$DOMAIN and put the link in the current directory
(.). Two dots denote the parent directory, so when the current directory is
/etc/nginx/sites-enabled, .. means the parent, /etc/nginx, whereas
../sites-available means “one up, then down into sites-available. A
single dot designates the current directory.

The command above is exactly equivalent as this:

ln -s ../sites-available/$DOMAIN $DOMAIN

which means “create a symbolic link that points to file
../sites-available/$DOMAIN and give it the name $DOMAIN. If the
last argument of ln -s is a directory (for example, .), then it creates the
symbolic link in there and gives it the same name as the actual file.

You can treat the symbolic link as if it was a file; you can edit it with an editor,
you can open it with a Python program using open(), and in these cases the
actual file (the one being pointed to by the symbolic link) is opened instead.

While the order of arguments in the ln command may seem strange at
first, it is consistent with the order of arguments in the cp command which
merely copies files. Just as cp source destination copies file source to file
destination, similarly ln -s is like making a copy of the file, but instead of
an actual copy, it creates a symbolic link.

If you list files with ls -l, it is clearly indicated which file the symbolic link
points to. The permissions of the link, rwxrwxrwx, may seem insecure, but
they are actually irrelevant; it is the permissions of the actual file that count.

Except for symbolic links there are also hard links, which are created without
the -s option, but are different and rarely used. It is unlikely that you will

ever create a hard link, so get used to always type ln -s, that is, with the -s

option.

Tell nginx to re-read its configuration:

service nginx reload

Finally, create directory /var/www/$DOMAIN, and inside that directory create a
file index.html with the following contents:

<p>This is the web site for $DOMAIN.</p>

Fire up your browser and visit http://\protect\T1\textdollarDOMAIN/, and
you should see the page you created.

The fact that we named the nginx configuration file (in
/etc/nginx/sites-available) $DOMAIN is irrelevant; any name would
have worked the same, but it’s a convention to name it with the domain name.
In fact, strictly speaking, we needn’t even have created a separate file. The
only configuration file nginx needs is /etc/nginx/nginx.conf. If you open
that file, you will see that it contains, among others, the following line:

include /etc/nginx/sites-enabled/*;

So what it does is read all files in that directory and process them as if their
contents had been inserted in that point of /etc/nginx/nginx.conf.

As we noticed, if you visit http://\protect\T1\textdollarDOMAIN/, you
see the page you created. If, however, you visit http://\protect\T1\
textdollarSERVER_IPv4_ADDRESS/, you should see nginx’s welcome
page. If the host name (the part between “http://” and the next slash) is
$DOMAIN or www.$DOMAIN then nginx uses the configuration we spec-
ified above, because of the server_name configuration directive which con-
tains these two names. If we use another domain name, or the server’s ip
address, there is no matching server { ... } block in the nginx config-
uration, so nginx uses its default configuration. That default configuration

http://\protect \T1\textdollar DOMAIN/
http://\protect \T1\textdollar DOMAIN/
http://\protect \T1\textdollar SERVER_IPv4_ADDRESS/
http://\protect \T1\textdollar SERVER_IPv4_ADDRESS/
http://

is in /etc/nginx/sites-enabled/default. What makes it the default is the
default_server parameter in these two lines:

listen 80 default_server;
listen [::]:80 default_server;

If someone arrives at my server through the wrong domain name, I don’t want
them to see a page that says “Welcome to nginx”, so I change the default
configuration to the following, which merely responds with “Not found”:

server {
listen 80 default_server;
listen [::]:80 default_server;
return 404;

}

4.3 Configuring nginx for django

Change /etc/nginx/sites-available/$DOMAIN to the following (which only
differs from the one we just created in that it has the location block):

server {
listen 80;
listen [::]:80;
server_name $DOMAIN www.$DOMAIN;
root /var/www/$DOMAIN;
location / {

proxy_pass http://localhost:8000;
}

}

Tell nginx to reload its configuration:

service nginx reload

Finally, start your Django server as we saw in the previous chapter; however,
it doesn’t need to listen on 0.0.0.0:8000, a mere 8000 is enough:

PYTHONPATH=/etc/opt/$DJANGO_PROJECT:/opt/$DJANGO_PROJECT \
su $DJANGO_USER -c \
"/opt/$DJANGO_PROJECT/venv/bin/python \
/opt/$DJANGO_PROJECT/manage.py \
runserver --settings=settings 8000"

Now go to http://\protect\T1\textdollarDOMAIN/ and you should see your
Django project in action.

Warning: We are running Django with runserver here, which is inap-
propriate for production. We are doing it only temporarily, so that you
understand the concepts. We will run Django correctly in the chapter
about Gunicorn.

Nginx receives your HTTP request. Because of the proxy_pass directive, it
decides to just pass on this request to another server, which in our case is
localhost:8000.

Now this may work for now, but we will add some more configuration which
we will be necessary later. The location block actually becomes:

location / {
proxy_pass http://localhost:8000;
proxy_set_header Host $http_host;
proxy_redirect off;
proxy_set_header X-Forwarded-For $remote_addr;
proxy_set_header X-Forwarded-Proto $scheme;
client_max_body_size 20m;

}

http://\protect \T1\textdollar DOMAIN/

Here is what these configuration directives do:

proxy_set_header Host $http_host By default, the header of the request
nginx makes to the backend includes Host: localhost. We need to
pass the real Host to Django (i.e. the one received by nginx), otherwise
Django cannot check if it’s in ALLOWED_HOSTS.

proxy_redirect off This tells nginx that, if the backend returns an HTTP
redirect, it should leave it as is. (By default, nginx assumes the backend
is stupid and tries to be smart; if the backend returns an HTTP redirect
that says “redirect to http://localhost:8000/somewhere”, nginx replaces
it with something similar to http://yourowndomain.com/somewhere”.
We prefer to configure Django properly instead.)

proxy_set_header X-Forwarded-For $remote_addr To Django, the re-
quest is coming from nginx, and therefore the network connection ap-
pears to be from localhost, i.e. from address 127.0.0.1 (or ::1 in IPv6).
Some Django apps need to know the actual IP address of the machine
that runs the web browser; they might need that for access control, or
to use the GeoIP database to deliver different content to different ge-
ographical areas. So we have nginx pass the actual IP address of the
visitor in the X-Forwarded-For header. Your Django project might not
make use of this information, but it might do so in the future, and it’s
better to set the correct nginx configuration from now. When the time
comes to use this information, you will need to configure your Django
app properly; one way is to use django-ipware.

proxy_set_header X-Forwarded-Proto $scheme Another thing that
Django does not know is whether the request has been made through
HTTPS or plain HTTP; nginx knows that, but the request it subse-
quently makes to the Django backend is always plain HTTP. We tell ng-
inx to pass this information with the X-Forwarded-Proto HTTP header,
so that related Django functionality such as request.is_secure()

works properly. You will also need to set SECURE_PROXY_SSL_HEADER
= (’HTTP_X_FORWARDED_PROTO’, ’https’) in your settings.py.

client_max_body_size 20m This tells nginx to accept HTTP POST requests

http://localhost:8000/somewhere
http://yourowndomain.com/somewhere
https://github.com/un33k/django-ipware

of up to 20 MB in length; if a request is larger nginx ignores it and re-
turns a 413. Whether you really need that setting or not depends on
whether you accept file uploads. If not, nginx’s default, 1 MB, is prob-
ably enough, and it is better for protection against a denial-of-service
attack that could attempt to make several large POST requests simulta-
neously.

This concludes the part of the chapter about nginx. If you chose nginx as your
web server, you probably want to skip the next sections and go to the Chapter
summary.

4.4 Installing Apache

Install Apache like this:

apt install apache2

After you install, go to your web browser and visit http://\protect\T1\
textdollarDOMAIN/. You should see Apache’s welcome page.

4.5 Configuring Apache to serve the domain

Create file /etc/apache2/sites-available/$DOMAIN.conf with the follow-
ing contents:

<VirtualHost *:80>
ServerName $DOMAIN
ServerAlias www.$DOMAIN
DocumentRoot /var/www/$DOMAIN

</VirtualHost>

http://\protect \T1\textdollar DOMAIN/
http://\protect \T1\textdollar DOMAIN/

Note: Again, this is not a valid Apache configuration file until you replace
$DOMAIN with your actual domain name, such as “example.com”.

Create a symbolic link in sites-enabled:

cd /etc/apache2/sites-enabled
ln -s ../sites-available/$DOMAIN.conf .

Hint: Symbolic links

If you don’t know what symbolic links are, I have described them in the
equivalent section for nginx.

Hint: Use a2ensite

Debian-based systems have two convenient scripts, a2ensite, meaning
“Apache 2 enable site”, and its counterpart, a2dissite, for disabling a site.
The first one merely creates the symbolic link as above, the second one re-
moves it. So the manual creation of the symbolic link above is purely educa-
tional, and it’s usually better to save some typing by just entering this instead:

a2ensite $DOMAIN

Tell Apache to re-read its configuration:

service apache2 reload

Finally, create directory /var/www/$DOMAIN, and inside that directory create a
file index.html with the following contents:

<p>This is the web site for $DOMAIN.</p>

Fire up your browser and visit http://\protect\T1\textdollarDOMAIN/, and
you should see the page you created.

The fact that we named the Apache configuration file (in
/etc/apache2/sites-available) yourowndomain.com is irrelevant; any
name would have worked the same, but it’s a convention to name it
with the domain name. In fact, strictly speaking, we needn’t even have
created a separate file. The only configuration file Apache needs is
/etc/apache2/apache2.conf. If you open that file, you will see that it
contains, among others, the following line:

IncludeOptional sites-enabled/*.conf

So what it does is read all .conf files in that directory and process them as if
their contents had been inserted in that point of /etc/apache2/apache2.conf.

As we noticed, if you visit http://\protect\T1\textdollarDOMAIN/, you
see the page you created. If, however, you visit http://\protect\T1\
textdollarSERVER_IP_ADDRESS/, you should see Apache’s welcome page.
If the host name (the part between “http://” and the next slash) is $DO-
MAIN or www.$DOMAIN, then Apache uses the configuration we speci-
fied above, because of the ServerName and ServerAlias configuration di-
rectives which contain these two names. If we use another domain name,
or the server’s ip address, there is no matching VirtualHost block in the
Apache configuration, so apache uses its default configuration. That de-
fault configuration is in /etc/apache2/sites-enabled/000-default.conf.
What makes it the default is that it is listed first; the IncludeOptional

in /etc/apache2/apache2.conf reads files in alphabetical order, and
000-default.conf has the 000 prefix to ensure it is first.

If someone arrives at my server through the wrong domain name, I don’t want
them to see a page that says “It works!”, so I change the default configuration
to the following, which merely responds with “Not found”:

<VirtualHost *:80>
DocumentRoot /var/www/html

http://\protect \T1\textdollar DOMAIN/
http://\protect \T1\textdollar DOMAIN/
http://\protect \T1\textdollar SERVER_IP_ADDRESS/
http://\protect \T1\textdollar SERVER_IP_ADDRESS/
http://

Redirect 404 /
</VirtualHost>

4.6 Configuring Apache for django

Change /etc/apache2/sites-available/$DOMAIN.conf to the following
(which only differs from the one we just created in that it has the ProxyPass

directive):

<VirtualHost *:80>
ServerName $DOMAIN
ServerAlias www.$DOMAIN
DocumentRoot /var/www/$DOMAIN
ProxyPass / http://localhost:8000/

</VirtualHost>

In order for this to work, we actually first need to enable Apache mod-
ules proxy and proxy_http, and we will take the opportunity to also enable
headers, because we will need it soon after:

a2enmod proxy proxy_http headers

(Similarly to a2ensite and a2dissite, a2enmod and a2dismod are merely
convenient ways to create and delete symbolic links that point from
/etc/apache2/mods-enabled to /etc/apache2/mods-available.)

Tell Apache to reload its configuration:

service apache2 reload

Finally, start your Django server as we saw in the previous chapter; however,
it doesn’t need to listen on 0.0.0.0:8000, a mere 8000 is enough:

PYTHONPATH=/etc/opt/$DJANGO_PROJECT:/opt/$DJANGO_PROJECT \
su $DJANGO_USER -c \
"/opt/$DJANGO_PROJECT/venv/bin/python \
/opt/$DJANGO_PROJECT/manage.py \
runserver --settings=settings 8000"

Now go to http://\protect\T1\textdollarDOMAIN/ and you should see your
Django project in action.

Warning: We are running Django with runserver here, which is inap-
propriate for production. We are doing it only temporarily, so that you
understand the concepts. We will run Django correctly in the chapter
about Gunicorn.

Apache receives your HTTP request. Because of the ProxyPass directive, it
decides to just pass on this request to another server, which in our case is
localhost:8000.

Now this may work for now, but we will add some more configuration which
we will be necessary later:

<VirtualHost *:80>
ServerName $DOMAIN
ServerAlias www.$DOMAIN
DocumentRoot /var/www/$DOMAIN
ProxyPass / http://localhost:8000/
ProxyPreserveHost On
RequestHeader set X-Forwarded-Proto "http"

</VirtualHost>

Here is what these configuration directives do:

ProxyPreserveHost On By default, the header of the request Apache makes
to the backend includes Host: localhost We need to pass the real
Host to Django (i.e. the one received by Apache), otherwise Django

http://\protect \T1\textdollar DOMAIN/

cannot check if it’s in ALLOWED_HOSTS.

RequestHeader set X-Forwarded-Proto “http” Another thing that Django
does not know is whether the request has been made through HTTPS
or plain HTTP; Apache knows that, but the request it subsequently
makes to the Django backend is always plain HTTP. We tell Apache
to pass this information with the X-Forwarded-Proto HTTP header,
so that related Django functionality such as request.is_secure()

works properly. You will also need to set SECURE_PROXY_SSL_HEADER =

(’HTTP_X_FORWARDED_PROTO’, ’https’) in your settings.py.

This does not yet play a role because we have configured Apache to
only serve plain HTTP. If we wanted it to also serve HTTPS, we would
add a <VirtualHost *:443> block, which would contain mostly the
same stuff as the <VirtualHost *:80> we have already defined. One
of the differences is that X-Forwarded-Proto will be set to “https”.

4.7 Chapter summary

• Install your web server.

• Name the web server’s configuration file with the domain name of your
site.

• Put the configuration file in sites-available and symlink it from
sites-enabled (don’t forget to reload the web server).

• Use the proxy_pass (nginx) or ProxyPass (Apache) directive to pass
the HTTP request to Django.

• Configure the web server to pass HTTP request headers Host,
X-Forwarded-For, and X-Forwarded-Proto (Apache by default passes
X-Forwarded-For, so there is no configuration needed for that one).

• For nginx, also configure proxy_redirect and client_max_body_size.

CHAPTER 5

Static and media files

Let’s quickly make static files work. You might not understand perfectly what
we’re doing, but it will become very clear afterwards.

5.1 Setting up Django

First, add these statements to /etc/opt/$DJANGO_PROJECT/settings.py:

STATIC_ROOT = '/var/cache/$DJANGO_PROJECT/static/'
STATIC_URL = '/static/'

Remember that after each change to your settings you should, in theory, re-
compile:

/opt/$DJANGO_PROJECT/venv/bin/python -m compileall \
/etc/opt/$DJANGO_PROJECT

It’s not really a big deal if you forget to recompile, but we will deal with that
later.

Second, create directory /var/cache/$DJANGO_PROJECT/static/:

mkdir -p /var/cache/$DJANGO_PROJECT/static

The -p parameter tells mkdir to create not only the directory, but, if needed,
its parents as well.

Third, run collectstatic:

PYTHONPATH=/etc/opt/$DJANGO_PROJECT:/opt/$DJANGO_PROJECT \
/opt/$DJANGO_PROJECT/venv/bin/python \
/opt/$DJANGO_PROJECT/manage.py collectstatic \
--settings=settings

This will copy all static files to the directory we specified in STATIC_ROOT.
Don’t worry if you don’t understand it clearly, we will explain it in a minute.

5.2 Setting up nginx

Change /etc/nginx/sites-available/$DOMAIN to the following, which only
differs from the previous version in that the new location /static {} block
has been added at the end:

server {
listen 80;
listen [::]:80;
server_name $DOMAIN www.$DOMAIN;
root /var/www/$DOMAIN;
location / {

proxy_pass http://localhost:8000;
proxy_set_header Host $http_host;
proxy_redirect off;
proxy_set_header X-Forwarded-For $remote_addr;
proxy_set_header X-Forwarded-Proto $scheme;
client_max_body_size 20m;

}
location /static/ {

alias /var/cache/$DJANGO_PROJECT/static/;
}

}

Don’t forget to execute service nginx reload after that.

Now let’s try to see if it works. Stop the Django development server if
it is running on the server. Open your browser and visit http://\protect\T1\
textdollarDOMAIN/. nginx should give you a 502. This is expected, since
the backend is not working.

But now try to visit http://\protect\T1\textdollarDOMAIN/static/admin/img/
icon_searchbox.png. If you have django.contrib.admin in INSTALLED_APPS,
it should get a search icon (if you don’t use django.contrib.admin, pick
up another static file that you expect to see, or browse the directory
/var/cache/$DJANGO_PROJECT/static).

Fig. 5.1 explains how this works.

The only thing that remains to clear up is what exactly these location blocks
mean. location /static/ means that the configuration inside the block shall
apply only if the path of the URL begins with /static/. Likewise, location
/ applies if the path of the URL begins with a slash. However, all paths begin
with a slash, so if the path begins with /static/ both location blocks match
the URL. Nginx only uses one location block. The rules with which nginx
chooses the location block that shall apply are complicated and are described
in the documentation for location, but in this particular case, nginx chooses
the longest matching prefix; so if the path begins with /static/, nginx will
choose location /static/.

5.3 Setting up Apache

Change /etc/apache2/sites-available/$DOMAIN.conf to the following:

http://\protect \T1\textdollar DOMAIN/
http://\protect \T1\textdollar DOMAIN/
http://\protect \T1\textdollar DOMAIN/static/admin/img/icon_searchbox.png
http://\protect \T1\textdollar DOMAIN/static/admin/img/icon_searchbox.png
http://nginx.org/en/docs/http/ngx_http_core_module.html#location

Fig. 5.1: How Django static files work in production (nginx version)

<VirtualHost *:80>
ServerName $DOMAIN
ServerAlias www.$DOMAIN
DocumentRoot /var/www/$DOMAIN
ProxyPass /static/ !
ProxyPass / http://localhost:8000/
ProxyPreserveHost On
RequestHeader set X-Forwarded-Proto "http"
Alias /static/ /var/cache/$DJANGO_PROJECT/static/
<Directory /var/cache/$DJANGO_PROJECT/static/>

Require all granted
</Directory>

</VirtualHost>

Don’t forget to execute service apache2 reload after that.

Now let’s try to see if it works. Stop the Django development server if
it is running on the server. Open your browser and visit http://\protect\T1\
textdollarDOMAIN/. Apache should give you a 503. This is expected, since
the backend is not working.

But now try to visit http://\protect\T1\textdollarDOMAIN/static/admin/img/
icon_searchbox.png. If you have django.contrib.admin in INSTALLED_APPS,
it should get a search icon (if you don’t use django.contrib.admin, pick
up another static file that you expect to see, or browse the directory
/var/cache/$DJANGO_PROJECT/static).

Fig. 5.2 explains how this works.

Now let’s examine how the configuration above produces these results. The
directive ProxyPass / http://localhost:8000/ tells Apache that, if the
URL path begins with /, then it should pass the request to the backend. All
URL paths begin with /, so the directive always matches. But there is also
the directive ProxyPass /static/ !, which will match paths starting with
/static/. When there are many matching ProxyPass directives, the first
one wins; so for path /static/admin/img/icon_searchbox.png, ProxyPass
/static/ ! wins. The exclamation mark means “no proxy passing”, so the

http://\protect \T1\textdollar DOMAIN/
http://\protect \T1\textdollar DOMAIN/
http://\protect \T1\textdollar DOMAIN/static/admin/img/icon_searchbox.png
http://\protect \T1\textdollar DOMAIN/static/admin/img/icon_searchbox.png

Fig. 5.2: How Django static files work in production (Apache version)

directive means “when a URL path begins with /static/, do not pass it to the
backend”. Since it is not going to be passed to the backend, Apache would
normally combine it with the DocumentRoot and would thus try to return
the file /var/www/$DOMAIN/static/admin/img/icon_searchbox.png,
but the Alias directive tells it to get
/var/cache/$DJANGO_PROJECT/static/admin/img/icon_searchbox.png

instead. By default, Apache will refuse to access files in directories other
than DocumentRoot, and will return 403, “Forbidden”, in requests to access
them; so we add the directive Require all granted for the static files
directory, which means “everyone has permission to read the files”.

5.4 Media files

Media files are similar to static files, so let’s go through them quickly. We
will store them in /var/opt/$DJANGO_PROJECT/media.

mkdir /var/opt/$DJANGO_PROJECT/media
chown $DJANGO_USER /var/opt/$DJANGO_PROJECT/media

One of the differences with static files is that we changed the ownership of
/var/opt/$DJANGO_PROJECT/media to $DJANGO_USER. The reason is that
Django needs to be writing there each time the user uploads a file or requests
to delete a file.

Add the following to /etc/opt/$DJANGO_PROJECT/settings.py:

MEDIA_ROOT = '/var/opt/$DJANGO_PROJECT/media/'
MEDIA_URL = '/media/'

For nginx, add the following to /etc/nginx/sites-available/$DOMAIN:

location /media/ {
alias /var/opt/$DJANGO_PROJECT/media/;

}

For Apache, add the following before ProxyPass /:

ProxyPass /media/ !

and the following at the end of the VirtualHost block:

Alias /media/ /var/opt/$DJANGO_PROJECT/media/
<Directory /var/opt/$DJANGO_PROJECT/media/>

Require all granted
</Directory>

Recompile your settings, reload the web server, and it’s ready.

5.5 File locations

Your static and media files are now served properly by the web server instead
of the Django development server, and I hope you understand clearly what
we’ve done. Let’s take a break and discuss the file locations that I’ve chosen:

Program files /opt/$DJANGO_PROJECT
Virtualenv /opt/$DJANGO_PROJECT/venv
Media files /var/opt/$DJANGO_PROJECT/media
Static files /var/cache/$DJANGO_PROJECT/static
Configuration /etc/opt/$DJANGO_PROJECT

There are a couple more that we haven’t seen yet, but the above more or less
tell the whole story.

Many people prefer a much simpler setup instead. They put everything related
to their project in a single directory, which is that of their repository root, like
this:

Program files /srv/$DJANGO_PROJECT
Virtualenv /srv/$DJANGO_PROJECT/venv
Media files /srv/$DJANGO_PROJECT/media
Static files /srv/$DJANGO_PROJECT/static
Configuration /srv/$DJANGO_PROJECT/$DJANGO_PROJECT

Although this setup seems simpler, I have preferred the other one for several
reasons. The first one is purely educational. When you get too used to the
simple setup, you might configure always the same STATIC_ROOT, without
really understanding what it does. The clean separation of directories should
also have helped you get a grip on PYTHONPATH and DJANGO_SETTINGS_MODULE.

Separating in many directories is also cleaner and applies to many different
situations. If a Django application is packaged as a .deb package, or as a
pip-installable package, the tweak required with the split directories scheme
is minimal.

Finally, separating the directories makes it easier to backup only what is
needed. My backup solution (which we will see in the chapters about re-
covery) may exclude /opt and /var/cache from the backup. Since the static
files can be regenerated, there is no need to back them up.

5.6 Chapter summary

• Set STATIC_ROOT to /var/cache/$DJANGO_PROJECT/static/.

• Set STATIC_URL to /static/.

• Set MEDIA_ROOT to /var/opt/$DJANGO_PROJECT/media/.

• Set MEDIA_URL to /media/.

• Run collectstatic.

• In nginx, set location /static/ { alias

/var/cache/$DJANGO_PROJECT/static/; }; likewise for media
files.

• In Apache, add ProxyPass /static/ ! before ProxyPass /, and add

Alias /static/ /var/cache/$DJANGO_PROJECT/static/
<Directory /var/cache/$DJANGO_PROJECT/static/>

Require all granted
</Directory>

Likewise for media files.

CHAPTER 6

Gunicorn

6.1 Why Gunicorn?

We now need to replace the Django development server with a Python ap-
plication server. I will explain later why we need this. For now we need to
select which Python application server to use. There are three popular servers:
mod_wsgi, uWSGI, and Gunicorn.

mod_wsgi is for Apache only, and I prefer to use a method that can be used
with either Apache or nginx. This will make it easier to change the web
server, should such a need arise. I also find Gunicorn easier to setup and
maintain.

I used uWSGI for a couple of years and was overwhelmed by its features.
Many of them duplicate features that already exist in Apache or nginx or other
parts of the stack, and thus they are rarely, if ever, needed. Its documentation
is a bit chaotic. The developers themselves admit it: “We try to make our
best to have good documentation but it is a hard work. Sorry for that.” I
recall hitting problems week after week and spending hours to solve them
each time.

Gunicorn, on the other hand, does exactly what you want and no more. It is
simple and works fine. So I recommend it unless in your particular case there
is a compelling reason to use one of the others, and so far I haven’t met any
such compelling reason.

6.2 Installing and running Gunicorn

We will install Gunicorn with pip rather than with apt, because the packaged
Gunicorn (both in Debian 8 and Ubuntu 16.04) supports only Python 2.

/opt/$DJANGO_PROJECT/venv/bin/pip install gunicorn

Now run Django with Gunicorn:

su $DJANGO_USER
source /opt/$DJANGO_PROJECT/venv/bin/activate
export PYTHONPATH=/etc/opt/$DJANGO_PROJECT:/opt/$DJANGO_PROJECT
export DJANGO_SETTINGS_MODULE=settings
gunicorn $DJANGO_PROJECT.wsgi:application

You can also write it as one long command, like this:

PYTHONPATH=/etc/opt/$DJANGO_PROJECT:/opt/$DJANGO_PROJECT \
DJANGO_SETTINGS_MODULE=settings \
su $DJANGO_USER -c "/opt/$DJANGO_PROJECT/venv/bin/gunicorn \
$DJANGO_PROJECT.wsgi:application"

Either of the two versions above will start Gunicorn, which will be listening
at port 8000, like the Django development server did. Visit http://\protect\T1\
textdollarDOMAIN/, and you should see your Django project in action.

What actually happens here is that gunicorn, a Python program, does
something like from $DJANGO_PROJECT.wsgi import application. It uses
$DJANGO_PROJECT.wsgi and application because we told it so in the com-
mand line. Open the file /opt/$DJANGO_PROJECT/$DJANGO_PROJECT/wsgi.py

http://\protect \T1\textdollar DOMAIN/
http://\protect \T1\textdollar DOMAIN/

to see that application is defined there. In fact, application is a Python
callable. Now each time Gunicorn receives an HTTP request, it calls
application() in a standardized way that is specified by the WSGI specifica-
tion. The fact that the interface of this function is standardized is what permits
you to choose between many different Python application servers such as Gu-
nicorn, uWSGI, or mod_wsgi, and why each of these can interact with many
Python application frameworks like Django or Flask.

The reason we aren’t using the Django development server is that it is meant
for, well, development. It has some neat features for development, such as
that it serves static files, and that it automatically restarts itself whenever the
project files change. It is, however, totally inadequate for production; for
example, it might leave files or connections open, and it does not support
processing many requests at the same time, which you really want. Gunicorn,
on the other hand, does the multi-processing part correctly, leaving to Django
only the things that Django can do well.

Gunicorn is actually a web server, like Apache and nginx. However, it does
only one thing and does it well: it runs Python WSGI-compliant applications.
It cannot serve static files and there’s many other features Apache and nginx
have that Gunicorn does not. This is why we put Apache or nginx in front
of Gunicorn and proxy-pass requests to it. The accurate name for Gunicorn,
uWSGI, and mod_wsgi would be “specialized web servers that run Python
WSGI-compliant applications”, but this is too long, which is why I’ve been
using the vaguer “Python application servers” instead.

Gunicorn has many parameters that can configure its behaviour. Most of them
work fine with their default values. Still, we need to modify a few. Let’s run
it again, but this time with a few parameters:

su $DJANGO_USER
source /opt/$DJANGO_PROJECT/venv/bin/activate
export PYTHONPATH=/etc/opt/$DJANGO_PROJECT:/opt/$DJANGO_PROJECT
export DJANGO_SETTINGS_MODULE=settings
gunicorn --workers=4 \

--log-file=/var/log/$DJANGO_PROJECT/gunicorn.log \

--bind=127.0.0.1:8000 --bind=[::1]:8000 \
$DJANGO_PROJECT.wsgi:application

Here is what these parameters mean:

--workers=4 Gunicorn starts a number of processes called “workers”, and
each process, each worker that is, serves one request at a time. To serve
five concurrent requests, five workers are needed; if there are more con-
current requests than workers, they will be queued. You probably need
two to five workers per processor core. Four workers are a good starting
point for a single-core machine. The reason you don’t want to increase
this too much is that your Django project’s RAM consumption is ap-
proximately proportional to the number of workers, as each worker is
effectively a distinct instance of the Django project. If you are short on
RAM, you might want to consider decreasing the number of workers.
If you get many concurrent requests and your CPU is underused (usu-
ally meaning your Django projects do a lot of disk/database access) and
you can spare the RAM, you can increase the number of workers.

Tip: Check your CPU and RAM usage

If your server gets busy, the Linux top command will show you useful
information about the amount of free RAM, the RAM consumed by
your Django project (and other system processes), and the CPU usage
for various processes. You can read more about it in The top command:
memory management and The top command: CPU usage.

--log-file=/var/log/$DJANGO_PROJECT/gunicorn.log I believe this is
self-explanatory.

--bind=127.0.0.1:8000 This tells Gunicorn to listen on port 8000 of the
local network interface. This is the default, but we specify it here for
two reasons:

1. It’s such an important setting that you need to see it to know what

you’ve done. Besides, you could be running many applications
on the same server, and one could be listening on 8000, another
on 8001, and so on. So, for uniformity, always specify this.

2. We specify --bind twice (see below), to also listen on IPv6. The
second time would override the default anyway.

--bind=[::1]:8000 This tells Gunicorn to also listen on port 8000 of the
local IPv6 network interface. This must be specified if IPv6 is enabled
on the virtual server. It is not specified, things may or may not work,
and the system may be a bit slower even if things work.

The reason is that the front-end web server, Apache or nginx, has been
told to forward the requests to http://localhost:8000/. It will ask the
the resolver what “localhost” means. If the system is IPv6-enabled, the
resolver will reply with two results, ::1, which is the IPv6 address for
the localhost, and 127.0.0.1. The web server might then decide to try
the IPv6 version first. If Gunicorn has not been configured to listen to
that address, then nothing will be listening at port 8000 of ::1, so the
connection will be refused. The web server will then probably try the
IPv4 version, which will work, but it will have made a useless attempt
first.

I could make some experiments to determine exactly what happens in
such cases, and not speak with “maybe” and “probably”, but it doesn’t
matter. If your server has IPv6, you must set it up correctly and use this
option. If not, you should not use this option.

6.3 Configuring systemd

The only thing that remains is to make Gunicorn start automatically. For this,
we will configure it as a service in systemd.

Note: Older systems don’t have systemd

http://localhost:8000/

systemd is relatively a novelty. It exists only in Debian 8 and later, and Ubuntu
15.04 and later. In older systems you need to start Gunicorn in another way. I
recommend supervisor, which you can install with apt install supervisor.

The first program the kernel starts after it boots is systemd. For this reason,
the process id of systemd is 1. Enter the command ps 1 and you will probably
see that the process with id 1 is /sbin/init, but if you look at it with ls -lh

/sbin/init, you will see it’s a symbolic link to systemd.

After systemd starts, it has many tasks, one of which is to start and manage
the system services. We will tell it that Gunicorn is one of these services
by creating file /etc/systemd/system/$DJANGO_PROJECT.service, with the
following contents:

[Unit]
Description=$DJANGO_PROJECT

[Service]
User=$DJANGO_USER
Group=$DJANGO_GROUP
Environment="PYTHONPATH=/etc/opt/$DJANGO_PROJECT:/opt/$DJANGO_

→˓PROJECT"
Environment="DJANGO_SETTINGS_MODULE=settings"
ExecStart=/opt/$DJANGO_PROJECT/venv/bin/gunicorn \

--workers=4 \
--log-file=/var/log/$DJANGO_PROJECT/gunicorn.log \
--bind=127.0.0.1:8000 --bind=[::1]:8000 \
$DJANGO_PROJECT.wsgi:application

[Install]
WantedBy=multi-user.target

After creating that file, if you enter service $DJANGO_PROJECT start, it will
start Gunicorn. However, it will not start it automatically at boot until we tell
it systemctl enable $DJANGO_PROJECT.

The [Service] section of the configuration file should be self-explanatory, so

http://supervisord.org/

I will only explain the other two sections. Systemd doesn’t only manage ser-
vices; it also manages devices, sockets, swap space, and other stuff. All these
are called units; “unit” is, so to speak, the superclass. The [Unit] section con-
tains configuration that is common to all unit types. The only option we need
to specify there is Description, which is free text. Its purpose is only to show
in the UI of management tools. Although $DJANGO_PROJECT will work
as a description, it’s better to use something more verbose. As the systemd
documentation says,

“Apache2 Web Server” is a good example. Bad examples are
“high-performance light-weight HTTP server” (too generic) or
“Apache2” (too specific and meaningless for people who do not
know Apache).

The [Install] section tells systemd what to do when the service is
enabled. The WantedBy option specifies dependencies. If, for ex-
ample, we wanted to start Gunicorn before nginx, we would specify
WantedBy=nginx.service. This is too strict a dependency, so we just specify
WantedBy=multi-user.target. A target is a unit type that represents a state
of the system. The multi-user target is a state all GNU/Linux systems reach in
normal operations. Desktop systems go beyond that to the “graphical” target,
which “wants” a multi-user system and adds a graphical login screen to it;
but we want Gunicorn to start regardless whether we have a graphical login
screen (we probably don’t, as it is a waste of resources on a server).

As I already said, you tell systemd to automatically start the service at boot
(and automatically stop it at system shutdown) in this way:

systemctl enable $DJANGO_PROJECT

Do you remember that in nginx and Apache you enable a site just by cre-
ating a symbolic link to sites-available from sites-enabled? Likewise,
systemctl enable does nothing but create a symbolic link. The dependen-
cies we have specified in the [Install] section of the configuration file de-
termine where the symbolic link will be created (sometimes more than one
symbolic links are created). After you enable the service, try to restart the

server, and check that your Django project has started automatically.

As you may have guessed, you can disable the service like this:

systemctl disable $DJANGO_PROJECT

This does not make use of the information in the [Install] section; it just
removes all symbolic links.

6.4 More about systemd

While I don’t want to bother you with history, if you don’t read this section
you will eventually get confused by the many ways you can manage a service.
For example, if you want to tell nginx to reload its configuration, you can do
it with either of these commands:

systemctl reload nginx
service nginx reload
/etc/init.d/nginx reload

Before systemd, the first program that was started by the kernel was init.
This was much less smart than systemd and did not know what a “service”
is. All init could do was execute programs or scripts. So if we wanted
to start a service we would write a script that started the service and put it
in /etc/init.d, and enable it by linking it from /etc/rc2.d. When init

brought the system to “runlevel 2”, the equivalent of systemd’s multi-user
target, it would execute the scripts in /etc/rc2.d. Actually it wasn’t init
itself that did that, but other programs that init was configured to run, but
this doesn’t matter. What matters is that the way you would start, stop, or
restart nginx, or tell it to reload its configuration, or check its running status,
was this:

/etc/init.d/nginx start
/etc/init.d/nginx stop

/etc/init.d/nginx restart
/etc/init.d/nginx reload
/etc/init.d/nginx status

The problem with these commands was that they might not always work cor-
rectly, mostly because of environment variables that might have been set, so
the service script was introduced around 2005, which, as its documentation
says, runs an init script “in as predictable an environment as possible, remov-
ing most environment variables and with the current working directory set to
/.” So a better alternative for the above commands was

service nginx start
service nginx stop
service nginx restart
service nginx reload
service nginx status

The new way of doing these with systemd is the following:

systemctl start nginx
systemctl stop nginx
systemctl restart nginx
systemctl reload nginx
systemctl status nginx

Both systemctl and service will work the same with your Gunicorn service,
because service is a backwards compatible way to run systemctl. You can’t
manage your service with an /etc/init.d script, because we haven’t created
any such script (and it would have been very tedious to do so, which is why we
preferred to use supervisor before we had systemd). For nginx and Apache,
all three ways are available, because most services packaged with the operat-
ing system are still managed with init scripts, and systemd has a backwards
compatible way of dealing with such scripts. In future versions of Debian and
Ubuntu, it is likely that the init scripts will be replaced with systemd configu-
ration files like the one we wrote for Gunicorn, so the /etc/init.d way will

cease to exist.

Of the remaining two newer ways, I don’t know which is better. service

has the benefit that it exists in non-Linux Unix systems, such as FreeBSD,
so if you use both GNU/Linux and FreeBSD you can use the same command
in both. The systemctl version may be more consistent with other systemd
commands, like the ones for enabling and disabling services. Use whichever
you like.

6.5 The top command: memory management

If your server gets busy and you wonder whether its RAM and CPU are
enough, the Linux top command is a useful tool. Execute it simply by enter-
ing top. You can exit top by pressing q on the keyboard.

When you execute top you will see an image similar to Fig. 6.1.

Let’s examine available RAM first, which in Fig. 6.1 is indicated in the red
box. The output of top is designed so that it fits in an 80-character wide
terminal. For the RAM, the five values (total, used, free, buffers, and cached)
can’t fit on the line that is labeled “KiB Mem”, so the last one has been moved
to the line below, that is, the “cached Mem” indication belongs in “KiB Mem”
and not in “KiB Swap”.

The “total” amount of RAM is simply the total amount of RAM; it is as much
as you asked your virtual server to have. The “used” plus the “free” equals
the total. Linux does heavy caching, which I explain below, so the “used”
should be close to the total, and the “free” should be close to zero.

Since RAM is much faster than the disk, Linux caches information from the
disk in RAM. It does so in a variety of ways:

• If you open a file, read it, close it, then you open it again and read it
again, the second time it will be much faster; this is because Linux has
cached the contents of the file in RAM.

Fig. 6.1: The top command

• Whenever you write a file, you are likely to read it again, so Linux
caches it.

• In order to speed up disk writing, Linux doesn’t actually write to the
disk when your program says f.write(data), not even when you close
the file, not even when your program ends. It keeps the data in the
cache and writes it later, attempting to optimize disk head movement.
This is why some data may be lost when the system is powered off
instead of properly shut down.

The part of RAM that is used for Linux’s disk cache is what top shows as
“buffers” and “cached”. Buffers is also a kind of cache, so it is the sum
of “buffers” and “cache” that matters (the difference between “buffers” and
“cached” doesn’t really matter unless you are a kernel developer). “Buffers”
is usually negligible, so it’s enough to only look at “cache”.

Linux doesn’t want your RAM sitting down doing nothing, so if there is RAM
available, it will use it for caching. Give it more RAM and it will cache more.
If your server has a substantial amount of RAM labeled “free”, it may mean
that you have so much RAM that Linux can’t fill it in even with its disk cache.
This probably means the machine is larger than it needs to be, so it’s a waste
of resources. If, on the other hand, the cache is very small, this may mean
that the system is short on RAM. On a healthy system, the cache should be
20–50% of RAM.

Since we are talking about RAM, let’s also examine the amount of RAM
used by processes. By default top sorts processes by CPU usage, but you
can type M (Shift + m) to sort by memory usage (you can go back to sort by
CPU usage by typing P). The RAM used by each process is indicated by the
“RES” column in KiB and the “%MEM” column in percentage.

There are two related columns; “VIRT”, for virtual memory, and “SHR”, for
shared memory. First of all, you need to forget the Microsoft terminology.
Windows calls “virtual memory” what everyone else calls “swap space”; and
what everyone else calls “virtual memory” is a very different thing from swap
space. In order to better understand what virtual memory is, let’s see it with
this C program (it doesn’t matter if you don’t speak C):

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>

int main() {
char c;
void *p;

/* Allocate 2 GB of memory */
p = malloc(2L * 1024 * 1024 * 1024);
if (!p) {

fprintf(stderr, "Can't allocate memory: %s\n",
strerror(errno));

exit(1);

}

/* Do nothing until the user presses Enter */
fputs("Press Enter to continue...", stderr);
while((c = fgetc(stdin)) != EOF && c != '\n')

;

/* Free memory and exit */
free(p);
exit(0);

}

When I run this program on my laptop, and while it is waiting for me to press
Enter, this is what top shows about it:

. PID ... VIRT RES SHR S %CPU %MEM ... COMMAND
13687 ... 2101236 688 612 S 0.0 0.0 ... virtdemo

It indicates 2 GB VIRT, but actually uses less than 1 MB of RAM, while
swap usage is still at zero. Overall, running the program has had a negligible
effect on the system. The reason is that the malloc function has only allocated
virtual memory; “virtual” as in “not real”. The operating system has provided
2 GB of virtual address space to the program, but the program has not used
any of that. If the program had used some of this virtual memory (i.e. if it
had written to it), the operating system would have automatically allocated
some RAM and would have mapped the used virtual address space to the real
address space in the RAM.

So virtual memory is neither swap nor swap plus RAM; it’s virtual. The
operating system maps only the used part of the process’s virtual memory
space to something real; usually RAM, sometimes swap. Many programs
allocate much more virtual memory than they actually use. For this reason,
the VIRT column of top is not really useful. The RES column, that stands for
“resident”, indicates the part of RAM actually used.

The SHR column indicates how much memory the program potentially shares

with other processes. Usually all of that memory is included in the RES
column. For example, in Fig. 6.1, there are four apache2 processes which I
show again here:

. PID ... VIRT RES SHR S %CPU %MEM ... COMMAND
23268 ... 458772 37752 26820 S 0.2 3.7 ... apache2
16481 ... 461176 55132 41840 S 0.1 5.4 ... apache2
23237 ... 455604 14884 9032 S 0.1 1.5 ... apache2
23374 ... 459716 38876 27296 S 0.1 3.8 ... apache2

It is unlikely that the total amount of RAM used by these four processes is the
sum of the RES column (about 140 MB); it is more likely that something like
9 MB is shared among all of them, which would bring the total to about 110
MB. Maybe even less. They might also be sharing something (such as system
libraries) with non-apache processes. It is not really possible to know how
much of the memory marked as shared is actually being shared, and by how
many processes, but it is something you need to take into account in order to
explain why the total memory usage on your system is less than the sum of
the resident memory for all processes.

Let’s now talk about swap. Swap is disk space used for temporarily writing
(swapping) RAM. Linux uses it in two cases. The first one is if a program has
actually used some RAM but has left it unused for a long time. If a process
has written something to RAM but has not read it back for several hours, it
means the RAM is being wasted. Linux doesn’t like that, so it may save that
part of RAM to the disk (to the swap space), which will free up the RAM
for something more useful (such as caching). This is the case in Fig. 6.1.
The system is far from low on memory, and yet it has used a considerable
amount of swap space. The only explanation is that some processes have had
unused data in RAM for too long. When one of these processes eventually
attempts to use swapped memory, the operating system will move it from the
swap space back to the RAM (if there’s not enough free RAM, it will swap
something else or discard some of its cache).

The second case in which Linux will use swap is if it’s low on memory. This
is a bad thing to happen and will greatly slow down the system, sometimes

to a grinding halt. You can understand that this is the case from the fact that
swap usage will be considerable while at the same time the free and cached
RAM will be very low. Sometimes you will be unable to even run top when
this happens.

Whereas in Windows the swap space (confusingly called “virtual memory”)
is a file, on Linux it is usually a disk partition. You can find out where swap
is stored on your system by examining the contents of file /proc/swaps, for
example by executing cat /proc/swaps. (The “files” inside the /proc direc-
tory aren’t real; they are created by the kernel and they do not exist on the
disk. cat prints the contents of files, similar to less, but does not paginate.)

6.6 The top command: CPU usage

The third line of top has eight numbers which add up to 100%. They are user,
system, nice, idle, waiting, hardware interrupts, software interrupts, and steal,
and indicate where the CPU spent its time in the last three seconds:

• us (user) and sy (system) indicate how much of its time the processor
was running programs in user mode and in kernel mode. Most code
runs in user mode; but when a process asks the Linux kernel to do
something (allocate memory, access the disk, network, or other device,
start another process, etc.), the kernel switches to kernel mode, which
means it has some priviliges that user mode doesn’t have. (For exam-
ple, kernel mode has access to all RAM and can modify the mapping
between the processes’ virtual memory and RAM/swap; whereas user
mode simply has access to the virtual address space and doesn’t know
what happens behind the scenes.)

• ni (nice) indicates how much of its time the processor was running
with a positive “niceness” value. If many processes need the CPU at
the same time, a “nice” process has lower priority. The “niceness”
is a number up to 19. A process with a “niceness” of 19 will practi-
cally only run when the CPU would otherwise be idle. For example,

the GNOME desktop environment’s Desktop Search finds stuff in your
files, and it does so very fast because it uses indexes. These indexes are
updated in the background by the “tracker” process, which runs with a
“niceness” of 19 in order to not make the rest of the system slower. Pro-
cesses may also run with a negative niceness (up to -20), which means
they have higher priority. In the list of processes, the NI column in-
dicates the “niceness”. Most processes have the default zero niceness,
and it is unlikely you will ever need to know more about all that.

• id (idle) and wa (waiting) indicate how much time the CPU was sitting
down doing nothing. “Waiting” is a special case of idle; it means that
while the CPU was idle there was at least one process waiting for disk
I/O. A high value of “waiting” indicates heavy disk usage.

• The meaning of time spent in hi (hardware interrupts) and si (software
interrupts) is very technical. If this is non-negligible, it indicates heavy
I/O (such as disk or network).

• st (steal) is for virtual machines. When nonzero, it indicates that for
that amount of time the virtual machine needed to run something on
the (virtual) CPU, but it had to wait because the real CPU was unavail-
able, either because it was doing something else (e.g. servicing another
virtual machine on the same host) or because of reaching the CPU us-
age quota.

If the machine has more than one CPUs or cores, the “%Cpu(s)” line of top
shows data collectively for all CPUs; but you can press 1 to toggle between
that and showing information for each individual CPU.

In the processes list, the %CPU column indicates the amount of time the CPU
was working for that process, either in user mode or in kernel mode (when
kernel code is running, most of the time it is in order to service a process, so
this time is accounted for in the process). The %CPU column can add up to
more than 100% if you have more than one cores; for four cores it can add up
to 400% and so on.

Finally, let’s discuss about the CPU load. When your system is doing nothing,

the CPU load is zero. If there is one process using the CPU, the load is one.
If there is one process using the CPU and another process that wants to run
and is queued for the CPU to become available, the load is two. The three
numbers in the orange box in Fig. 6.1 are the load average in the last one, five,
and 15 minutes. The load average should generally be less than the number
of CPU cores, and preferably under 0.7 times the number of cores. It’s OK if
it spikes sometimes, so the load average for the last minute can occasionally
go over the number of cores, but the 5- or 15-minute average should stay
low. For more information about the load average, there’s an excellent blog
post by Andre Lewis, Understanding Linux CPU Load - when should you be
worried?

6.7 Chapter summary

• Install gunicorn in your virtualenv.

• Create file /etc/systemd/system/$DJANGO_PROJECT.service with
these contents:

[Unit]
Description=$DJANGO_PROJECT

[Service]
User=$DJANGO_USER
Group=$DJANGO_GROUP
Environment="PYTHONPATH=/etc/opt/$DJANGO_PROJECT:/opt/

→˓$DJANGO_PROJECT"
Environment="DJANGO_SETTINGS_MODULE=settings"
ExecStart=/opt/$DJANGO_PROJECT/venv/bin/gunicorn \

--workers=4 \
--log-file=/var/log/$DJANGO_PROJECT/gunicorn.log \
--bind=127.0.0.1:8000 --bind=[::1]:8000 \
$DJANGO_PROJECT.wsgi:application

http://blog.scoutapp.com/articles/2009/07/31/understanding-load-averages
http://blog.scoutapp.com/articles/2009/07/31/understanding-load-averages

[Install]
WantedBy=multi-user.target

• Enable the service with systemctl enable $DJANGO_PROJECT, and
start/stop/restart it or get its status with systemctl $COMMAND

$DJANGO_PROJECT, where $COMMAND is start, stop, restart or status.

CHAPTER 7

Production settings

So far the only thing we’ve done in our production settings was to setup
ALLOWED_HOSTS. We still have some work to do. It is absolutely essential to
setup email and the secret key, it is a good idea to setup logging, and we may
also need to setup caching. Most installations will not need anything beyond
these.

7.1 Email

Even if your Django application does not use email at all, you must still set it
up. The reason is that your code has bugs. Even if it does not have bugs, your
server will eventually run into an error condition, such as no disk space, out
of memory, or something else going wrong. In many of these cases, Django
will throw a “500 error” to the user and will try to email you. You really need
to receive that email.

First, you need a mail server to which you can connect and ask to send an
email. Such a mail server is called a “smarthost”. The mechanism with
which Django connects to the smarthost is pretty much the same as the one
with which your desktop or mobile mail client connects to an outgoing mail

server. However, the term “outgoing mail server” is mostly used for mailing
software, and “smarthost” is used when some unattended software like your
Django app sends email. You can often, but not always, use your outgoing
mail server as smarthost.

I’m using Runbox for my email, and I also use it as a smarthost. There are
many other providers, one of the most popular being Gmail (I believe, how-
ever, that it’s not possible to use Gmail as a smarthost if all you have is a free
account, and even if it is possible, it is hard to setup).

Let’s set it up and then we will discuss more. Add the following to
/etc/opt/$DJANGO_PROJECT/settings.py:

SERVER_EMAIL = 'noreply@$DOMAIN'
DEFAULT_FROM_EMAIL = 'noreply@$DOMAIN'
ADMINS = [

('$ADMIN_NAME', '$ADMIN_EMAIL_ADDRESS'),
]
MANAGERS = ADMINS

EMAIL_HOST = '$EMAIL_HOST'
EMAIL_HOST_USER = '$EMAIL_HOST_USER'
EMAIL_HOST_PASSWORD = '$EMAIL_HOST_PASSWORD'
EMAIL_PORT = 587
EMAIL_USE_TLS = True

SERVER_EMAIL is the email address from which emails with error mes-
sages appear to come from. It is set in the “From:” field of the email.
The default is “root@localhost”, and while “root” is OK, “localhost” is not,
and some mail servers may refuse the email. The domain name where your
Django application runs is usually OK, but if this doesn’t work you can use
any other valid domain. The domain of your email address should work prop-
erly.

If your Django project does not send any emails (other than the er-
ror messages Django will send anyway), DEFAULT_FROM_EMAIL does
not need to be specified. If it does send emails, it may be using

https://docs.djangoproject.com/en/1.10/ref/settings/#server-email
mailto:root@localhost
https://docs.djangoproject.com/en/1.10/ref/settings/#default-from-email

django.core.mail.EmailMessage. In order to specify what will be in the
“From:” field of the email, EmailMessage accepts a from_email argument
at initialization; if this is unspecified, it will use DEFAULT_FROM_EMAIL. So
DEFAULT_FROM_EMAIL is exactly what it says: the default from_email of
EmailMessage. It’s a good idea to specify this, because even if your Django
project does not send emails today, it may well do so tomorrow, and the de-
fault, “webmaster@localhost”, is not a good option. Remember that with
EmailMessage you are likely to send email to your users, and it should be
something nice. “noreply@$DOMAIN” is usually fine.

ADMINS is a list of people to whom error messages will be sent. Make sure
your name and email address are listed there, and also add any fellow admin-
istrators. MANAGERS is similar to ADMINS, but for broken link notifications,
and usually you just need to set it to the same values as ADMINS.

The settings starting with EMAIL_ describe how Django will connect and au-
thenticate to the mail server. Django will connect to EMAIL_HOST and au-
thenticate using EMAIL_HOST_USER and EMAIL_HOST_PASSWORD.
Needless to say, I have used placeholders that start with a dollar sign, and you
need to replace these with actual values. Mine are usually these:

EMAIL_HOST = 'mail.runbox.com'
EMAIL_HOST_USER = 'smarthostclient%antonischristofides.com'
EMAIL_HOST_PASSWORD = 'topsecret'

However, the details depend on the provider and the account type you have.
I don’t use my personal email, which is antonis@antonischristofides.com
(Runbox requires you to change @ to % when you use it as a user name for
login), because my personal password would then be in many settings.py

files in many deployed Django projects, and I’m not the only administrator
of these servers (and even if I were, I wouldn’t know when I would invite
another one). So I created another user (subaccount in Runbox parlance),
“smarthostclient”, which I use for that purpose.

There are three ports used for sending email: 25, 465, and 587. The sender
(Django in our case, or your mail client when you send email) connects to a

https://docs.djangoproject.com/en/1.10/topics/email/#django.core.mail.EmailMessage
mailto:webmaster@localhost
mailto:noreply@\protect \T1\textdollar DOMAIN
https://docs.djangoproject.com/en/1.10/ref/settings/#admins
https://docs.djangoproject.com/en/1.10/ref/settings/#managers
https://docs.djangoproject.com/en/1.10/ref/settings/#email-host
https://docs.djangoproject.com/en/1.10/ref/settings/#email-host-user
https://docs.djangoproject.com/en/1.10/ref/settings/#email-host-password
mailto:antonis@antonischristofides.com

mail server and gives the email to it; the mail server then delivers the email
to another mail server, and so on, until the destination is reached. In the
old times both the initial submission and the communication between mail
servers was through port 25. Nowadays 25 is mostly used for communication
between mail servers only. If you try to use port 25 (which is the default
setting for EMAIL_PORT), it’s possible that the request will get stuck in
firewalls, and even if does reach the mail server, the mail server is likely to
refuse to send the email. This is because spam depends much on port 25, so
policies about this port are very tight.

The other two ports for email submission are 465 and 587. 465 uses encryp-
tion; just as 80 is for unencrypted HTTP and 443 is for encrypted HTTP, 25 is
for unencrypted SMTP and 465 is for encrypted SMTP. However, 465 is dep-
recated in favour of 587, which can handle both unencrypted and encrypted
connections. The client (Django in our case) connects to the server at port
587, they start talking unencrypted, and the client may tell the server “I want
to continue with encryption”, and then they continue with encryption. Obvi-
ously this is done before authentication, which requires the password to be
transmitted.

There are thus two methods to start encryption; one is implicit and the other
one is explicit. When you connect to port 465, which always works en-
crypted, the encryption starts implicitly. When you connect to port 587, the
two peers (the client and the server) start talking unencrypted, and at some
point the client explicitly tells the server “I want to continue with encryp-
tion”. Computer people often use “SSL” for implicit encryption and “TLS”
for explicit, however this is inaccurate; SSL and TLS are encryption proto-
cols, and do not refer to the method used to initiate them; you could have
implicit TLS or explicit SSL. Django uses this inaccurate parlance in its set-
tings, where EMAIL_USE_TLS and EMAIL_USE_SSL are used to spec-
ify whether, respectively, the connection will use explicit or implicit encryp-
tion. EMAIL_USE_TLS = True should be used with EMAIL_PORT = 587, and
EMAIL_USE_SSL = True with EMAIL_PORT = 465.

To test your settings, start a shell from your Django project:

https://docs.djangoproject.com/en/1.10/ref/settings/#email-port
https://docs.djangoproject.com/en/1.10/ref/settings/#email-use-tls
https://docs.djangoproject.com/en/1.10/ref/settings/#email-use-ssl

PYTHONPATH=/etc/opt/$DJANGO_PROJECT:/opt/$DJANGO_PROJECT \
DJANGO_SETTINGS_MODULE=settings \
su $DJANGO_USER -c \
"/opt/$DJANGO_PROJECT/venv/bin/python \
/opt/$DJANGO_PROJECT/manage.py shell"

and enter these commands:

from django.conf import settings
from django.core.mail import send_mail

admin_emails = [x[1] for x in settings.ADMINS]
send_mail("Test1557", "Hello", settings.SERVER_EMAIL,

admin_emails)

If something goes wrong, send_mail will raise an exception; otherwise you
should receive the email.

Because of spam, mail servers are often very picky about which emails
they will accept. It’s possible that even if your smarthost accepts
the email, the next mail server may refuse it. For example, I made
some experiments using from_email=’noreply@example.com’, EMAIL_HOST
= ’mail.runbox.com’, and recipient anthony@itia.ntua.gr (an old email ad-
dress of mine). In that case, Runbox accepted the email and subsequently
attempted to deliver it to the mail server of ntua.gr, which rejected it be-
cause it didn’t like the sender (noreply@example.com; I literally used “ex-
ample.com”, and ntua.gr didn’t like that domain). When something like this
happens, the test we made above with send_mail will appear to work, because
send_mail manages to deliver the email to the smarthost, and the error occurs
after that; not only will we never receive the email, but it is also likely that we
will not receive the failure notification (the returned email), so it’s often hard
to know what went wrong and we need to guess.

One thing you can do to lessen the probability of error is to make sure that
the recipient (or at least one of the recipients) has an email address served
by the provider who provides the smarthost. In my case, the smarthost

mailto:anthony@itia.ntua.gr
mailto:noreply@example.com

is mail.runbox.com, and the recipient is antonis@antonischristofides.com,
and the email for domain antonischristofides.com is served by Runbox. It
is unlikely that mail.runbox.com would accept an email addressed to anto-
nis@antonischristofides.com if another Runbox server were to subsequently
refuse it. If something like this happened, I believe it would be a configura-
tion error on behalf of Runbox. But it’s very normal that mail.runbox.com
will accept an email which will subsequently be refused by ntua.gr or Gmail
or another provider downstream.

7.2 Debug

After you have configured email and verified it works, you can now turn off
DEBUG:

DEBUG = False

Now it’s good time to verify that error emails do indeed get sent properly. You
can do so by deliberately causing an internal server error. A favourite way of
mine is to temporarily rename a template file and make a related request,
which will raise a TemplateDoesNotExist exception. Your browser should
show the “server error” page. Don’t forget to rename the template file back to
what it was. By the time you finish doing that, you should have received the
email with the full trace.

7.3 Using a local mail server

Usually I don’t configure Django to deliver to the smarthost; instead, I install
a mail server locally, have Django deliver to the local mail server, and config-
ure the local mail server to send the emails to the smarthost. There are several
reasons why installing a local mail server is better:

mailto:antonis@antonischristofides.com
mailto:antonis@antonischristofides.com
mailto:antonis@antonischristofides.com

1. Your server, like all Unix systems, has a scheduler, cron, which is con-
figured to run certain programs at certain times. For example, direc-
tory /etc/cron.daily contains scripts that are executed once per day.
Whenever a program run by cron throws an error message, cron emails
that error message to the administrator. cron always works with a local
mail server. If you don’t install a local mail server, you will miss these
error messages. We will later use cron to clear sessions and to backup
the server, and we don’t want to miss any error messages.

2. While Django attempts to send an error email, if something goes
wrong, it fails silently. This behaviour is appropriate (the system is
in error, it attempts to email its administrator with the exception, but
sending the email also results in an error; can’t do much more). Sup-
pose, however, that when you try to verify, as we did in the previous
section, that error emails work, you find out they don’t work. What has
gone wrong? Nothing is written in any log. Intercepting the communi-
cation with ngrep won’t work either, because it’s usually encrypted. If
you use a locally installed mail server, you will at least be able to look
at the local mail server’s logs.

3. Sending an error email might take long. The communication line might
be slow, or a firewall or the DNS could be misbehaving, and it might
take several seconds, or even a minute, before Django manages to es-
tablish a connection to the remote mail server. During this time, the
browser will be in a waiting state, and a Gunicorn process will be
occupied. Some people will recommend to send emails from celery
workers, but this is not possible for error emails. In addition, there is
no reason to install and program celery just for this reason. If we use a
local mail server, Django will deliver the email to it very fast and finish
its job, and the local mail server will queue it and send it when possible.

While the most popular mail servers for Debian and Ubuntu are exim and
postfix, I don’t recommend them. Mail servers are strange beasts. They have
large and tricky configuration files, because they can do a hell of things. You
will have a hard time understanding the necessary configuration (which is
buried under a hell of other configuration), and if something goes wrong you

http://djangodeployment.com/2016/10/24/how-to-use-ngrep-to-debug-http-headers/
http://djangodeployment.com/2016/10/24/how-to-use-ngrep-to-debug-http-headers/

will have a hard time debugging it. I also see no great educational value in
learning it. I used to run mail servers for years but I’ve got ridden of all of
them; it’s not worth the effort when I can do the same thing at Runbox for
C 30 per year.

Instead, we are going to use dma (nothing to do with direct memory access;
this is the DragonFly Mail Agent). It’s a small mail server that only does what
we want; it collects messages in a queue, and sends them to a smarthost. It is
much easier to configure than the real thing. Install it like this:

apt install dma

It will ask you a couple of questions:

System mail name You should probably use $DOMAIN here. If that
doesn’t work, you can try to use the domain of your email address.

Smarthost This is the remote mail server, the smarthost, that is; the one we
had specified in Django’s EMAIL_HOST.

Next, open /etc/dma/dma.conf in an editor, and uncomment or edit these
directives:

PORT 587
AUTHPATH /etc/dma/auth.conf
SECURETRANSFER
STARTTLS

(If your smarthost uses implicit encryption, you need to specify PORT 465

instead, and omit the STARTTLS.)

Next, open /etc/dma/auth.conf and add this line:

$EMAIL_USER|$EMAIL_HOST:$EMAIL_PASSWORD

(These are placeholders of course, which you need to replace.)

Next, open /etc/aliases and add this line:

root: $ADMIN_EMAIL_ADDRESS

Finally, open /etc/mailname in an editor and make sure it contains a single
line which contains your domain ($DOMAIN).

Let’s test it to see if it works:

sendmail $ADMIN_EMAIL_ADDRESS

This will pause for input. Type a short email message, and end it with a line
that contains a single fullstop. Check /var/log/mail.log to verify it has
been delivered to the smarthost (if it says “delivery successful” it’s OK, even
if it’s preceded by a warning message about the authentication mechanism),
and verify that you have received it.

The next step is to configure Django. You might think that we would set
EMAIL_HOST = ’localhost’ and EMAIL_PORT = 25, but this is not what we
will do. dma does not listen on port 25 or on any other port. The only way to
send emails with it is by using the sendmail command. Traditionally this has
been the easiest and most widely available way to send emails in Unix, and it
is also what cron uses. (In the old times, when sendmail was the only existing
mail server, the practice of using the sendmail command was standardized,
so today all mail servers create a sendmail command when they are installed,
which is usually a symbolic link to something else). We will install a Django
email backend that sends emails in the same way.

/opt/$DJANGO_PROJECT/venv/bin/pip install django-sendmail-backend

The only Django configuration we need is this:

EMAIL_BACKEND = 'django_sendmail_backend.backends.EmailBackend'

The dma configuration should have been obvious, except for /etc/aliases

and /etc/mailname. These are not dma-specific, they are also used by exim,
postfix, and most other mail servers, and /etc/mailname may also be used by
other programs.

/etc/aliases specifies aliases for email addresses. If cron decides it needs
to send an email, the recipient will most likely be a mere root. The line we
added specifies that root should be translated to your actual email address.
For Django, /etc/aliases doesn’t matter, since Django will get the recipient
email address from the ADMINS and MANAGERS settings.

If a program somehow needs to know the domain used for the email of the
system, it usually takes it from /etc/mailname. Setting that to $DOMAIN should
be fine, but if this doesn’t work, you can try setting it to the domain of your
email address.

7.4 Secret key

Django uses the SECRET_KEY in several cases, for example, when digitally
signing sessions in cookies. If it leaks, attackers might be able to compromise
your system. You should not use the SECRET_KEY you use in development, be-
cause that one is easy to leak, and because many developers often have access
to it, whereas they should not have access to the production SECRET_KEY.

You can create a secret key in this way:

import sys

from django.utils.crypto import get_random_string

sys.stdout.write(get_random_string(50))

7.5 Logging

Even if your Django apps do no logging, they eventually will. At some
point one of your users is going to cause an error which you will be un-
able to reproduce in the development environment, so you will introduce

https://docs.djangoproject.com/en/1.10/ref/settings/#secret-key

some logging calls. It makes sense to configure logging so that it is ready
for that time. You need a configuration that will write log messages in
/var/log/$DJANGO_PROJECT/$DJANGO_PROJECT.log, and here it is:

LOGGING = {
'version': 1,
'disable_existing_loggers': False,
'formatters': {

'default': {
'format': '[%(asctime)s] %(levelname)s: '

'%(message)s',
}

},
'handlers': {

'file': {
'class': 'logging.handlers.'

'TimedRotatingFileHandler',
'filename': '/var/log/$DJANGO_PROJECT/'

'$DJANGO_PROJECT.log',
'when': 'midnight',
'backupCount': 60,
'formatter': 'default',

},
},
'root': {

'handlers': ['file'],
'level': 'INFO',

},
}

Here is the meaning of the various items:

version This is reserved for the future; for now, it should always be 1.

disable_existing_loggers Django already has a default logging configura-
tion. If disable_existing_loggers is True (the default), then this
configuration will override Django’s default, otherwise it will work in
addition to the default. We really want Django’s default configuration,

which is to email critical errors to the administrators.

root This defines the root logger. You can specify very complicated logging
schemes, where different loggers will be logging using different han-
dlers and different formatters. However, as long as our system is small,
we only need to specify a single logger, the root logger, which uses a
single handler (the “file” handler) with a single formatter (the “default”
formatter). In this example I have specified ’level’: ’INFO’, which
means the logger will ignore messages with a lower priority (the only
lower priority is DEBUG, and the higher priorities are WARNING, ERROR and
CRITICAL). You can change this as needed, however INFO is reasonable
to begin with.

handlers Here we define the “file” handler, whose class is
logging.TimedRotatingFileHandler. This essentially logs to a
file, but it has the added benefit that each midnight it starts a new log
file, renames the old one, and deletes log files older than 60 days. In
this way it is very unlikely that your disk will fill up because of the
growing log files escaping your attention.

formatters This defines a formatter named “default”. In a system where I’m
using this logging configuration, I have this code:

import logging

...

logging.info('Notifying user {} about the agrifields of '
'user {}'.format(user, owner))

and it produces this line in the log file:

[2016-11-29 04:40:02,880] INFO: Notifying user aptiko␣
→˓about the agrifields of user aptiko

7.6 Caching

The only other setting I expect you to set to a different value from develop-
ment is CACHES. How you will set it depends on your needs. I usually want
my caches to persist across reboots, so I specify this:

CACHES = {
'default': {

'BACKEND': 'django.core.cache.backends.filebased.'
'FileBasedCache',

'LOCATION': '/var/cache/$DJANGO_PROJECT/cache',
}

}

You also need to create the directory and give it the necessary permissions:

mkdir /var/cache/$DJANGO_PROJECT/cache
chown $DJANGO_USER /var/cache/$DJANGO_PROJECT/cache

7.7 Recompile your settings

Remember that Django runs as $DJANGO_USER and does not (and should
not) have permission to write in directory /etc/opt/$DJANGO_PROJECT, which
is owned by root. Therefore it can’t write the Python 2 compiled file
settings.pyc, or the Python 3 compiled files directory __pycache__. In the-
ory you should be compiling it each time you make a change to your settings:

/opt/$DJANGO_PROJECT/venv/bin/python -m compileall \
/etc/opt/$DJANGO_PROJECT

Of course it’s not possible to remember to do this every single time you
change something in the settings. There are two solutions to this. The first
solution, which is fine, is to ignore the problem. If the compiled file is absent

or outdated, Python will compile the source file on the spot. This will happen
whenever each gunicorn worker starts, which is only when you start or restart
gunicorn, and it costs less than 1 ms. It’s really negligible.

The second solution is to create a script
/usr/local/sbin/restart-$DJANGO_PROJECT, with the following con-
tents:

#!/bin/bash
set -e
/opt/$DJANGO_PROJECT/venv/bin/python -m compileall -q \

-x /opt/$DJANGO_PROJECT/venv/ /opt/$DJANGO_PROJECT \
/etc/opt/$DJANGO_PROJECT

service $DJANGO_PROJECT restart

You must make that script executable:

chmod 755 /usr/local/sbin/restart-$DJANGO_PROJECT

You might object that we don’t want users other than root to be able to re-
compile the Python files or to restart the gunicorn service. The answer is that
they won’t be able. They will be able to execute the script, but when the
script arrives at the point where it compiles the Python files, they will be de-
nied permission to write the compiled Python files to the directory; and if the
script ever arrives at the last line, again systemd will deny to restart the ser-
vice. Making a script non-executable doesn’t achieve anything security-wise;
a malicious user could simply copy it and make the copy executable.

From now on, whenever you want to restart gunicorn, instead of service

$DJANGO_PROJECT restart, you can be using restart-$DJANGO_PROJECT,
which will run the above script. The set -e command tells bash to stop ex-
ecuting the script when an error occurs, and the -q parameter to compileall

tells to not print the list of files compiled.

7.8 Clearing sessions

If you use django.contrib.sessions, Django stores session data in the
database (unless you use using a different SESSION_ENGINE). Django does
not automatically clean up the sessions table, so most of the sessions remain
in the database even after they expire. I’ve seen sessions tables in small de-
ployments of only a few requests per minute grow to several hundreds of GB
through the years. You can manually remove expired sessions by executing
python manage.py clearsessions.

To make sure your sessions are being cleared regularly, create file
/etc/cron.daily/$DJANGO_PROJECT-clearsessions with the following con-
tents:

#!/bin/bash
export PYTHONPATH=/etc/opt/$DJANGO_PROJECT:/opt/$DJANGO_PROJECT
export DJANGO_SETTINGS_MODULE=settings
su $DJANGO_USER -c "/opt/$DJANGO_PROJECT/venv/bin/python \

/opt/$DJANGO_PROJECT/manage.py clearsessions"

Make the file executable:

chmod 755 /etc/cron.daily/$DJANGO_PROJECT-clearsessions

In Unix-like systems, cron is the standard scheduler; it executes tasks at spec-
ified times. Scripts in /etc/cron.daily are executed once daily, starting at
06:25 (am) local time. The time to which this actually refers depends on the
system’s time zone, which you can find by examining the contents of the file
/etc/timezone. In most of my servers, I use UTC. The time during which
these scripts are run doesn’t really matter much, but it’s better to do it when
the system is not very busy—especially if some of the scripts are intensive,
such as backup (which we will see in a later chapter). For time zones with a
positive UTC offset, 06:25 UTC could be a busy time, so you might want to
change the system time zone with this command:

https://docs.djangoproject.com/en/1.10/ref/settings/#session-engine

dpkg-reconfigure tzdata

There is a way to tell cron exactly at what time you want a task to run, but I
won’t go into that as throwing stuff into /etc/cron.daily should be sufficient
for most use cases.

Cron expects all the programs it runs to be silent, i.e., to not display any
output. If they do display output, cron emails that output to the administrator.
This is very neat, because if your tasks only display output when there is an
error, you will be emailed only when there is an error. However, for this to
work, you must setup a local mail server as explained in Using a local mail
server.

7.9 Chapter summary

• Install dma and (in the virtualenv) django-sendmail-backend

• Make sure /etc/dma/dma.conf has these contents:

SMARTHOST $EMAIL_HOST
PORT 587
AUTHPATH /etc/dma/auth.conf
SECURETRANSFER
STARTTLS
MAILNAME /etc/mailname

Also make sure /etc/dma/auth.conf has these contents:

$EMAIL_HOST_USER|$EMAIL_HOST:$EMAIL_HOST_PASSWORD

Make sure /etc/mailname contains $DOMAIN.

• Create the cache directory:

mkdir /var/cache/$DJANGO_PROJECT/cache
chown $DJANGO_USER /var/cache/$DJANGO_PROJECT/cache

• Create file /etc/cron.daily/$DJANGO_PROJECT-clearsessions with
the following contents:

#!/bin/bash
export PYTHONPATH=/etc/opt/$DJANGO_PROJECT:/opt/$DJANGO_

→˓PROJECT
export DJANGO_SETTINGS_MODULE=settings
su $DJANGO_USER -c "/opt/$DJANGO_PROJECT/venv/bin/python \

/opt/$DJANGO_PROJECT/manage.py clearsessions"

Make the file executable:

chmod 755 /etc/cron.daily/$DJANGO_PROJECT-clearsessions

• Finally, this is the whole settings.py file:

from django_project.settings import *

debug = false
allowed_hosts = ['$domain', 'www.$domain']
databases = {

'default': {
'engine': 'django.db.backends.sqlite3',
'name': '/var/opt/$django_project/$django_project.

→˓db',
}

}

server_email = 'noreply@$domain'
default_from_email = 'noreply@$domain'
admins = [

('$admin_name', '$admin_email_address'),
]
managers = admins

email_backend = 'django_sendmail_backend.backends.' \
'emailbackend'

logging = {
'version': 1,
'disable_existing_loggers': false,
'formatters': {

'default': {
'format': '[%(asctime)s] %(levelname)s: '

'%(message)s',
}

},
'handlers': {

'file': {
'class': 'logging.timedrotatingfilehandler',
'filename': '/var/log/$django_project/'

'$django_project.log',
'when': 'midnight',
'backupcount': 60,
'formatter': 'default',

},
},
'root': {

'handlers': ['file'],
'level': 'info',

},
}

caches = {
'default': {

'backend': 'django.core.cache.backends.filebased.'
'filebasedcache',

'location': '/var/cache/$django_project/cache',
}

}

CHAPTER 8

PostgreSQL

8.1 Why PostgreSQL?

So far we have been using SQLite. Can we continue to do so? The answer,
as always, is “it depends”. Most probably you can’t.

I’m using SQLite in production in one application I’ve made for an eshop
hosted by BigCommerce. It gets the orders from the BigCommerce API and
formats them on a PDF for printing on labels. It has no models, and all the
data is stored in BigCommerce. The only significant data stored in SQLite
is the users’ names and passwords used for login, by django.contrib.auth.
It’s hardly three users. Recreating them would be easier than maintaining a
PostgreSQL installation. So SQLite it is.

What if your database is small and you don’t have many users, but you store
mission-critical data in the database? That’s a hard one. The thing is, no-
one really knows if SQLite is appropriate, because no-one is using it for
mission-critical data. Thunderbird doesn’t use it for storing emails, but for
storing indexes, which can be recreated. Likewise for Firefox. The SQLite
people claim it’s appropriate for mission-critical applications, but industry
experience on that is practically nonexistent. I’ve never seen corruption in

https://www.sqlite.org/testing.html
https://www.sqlite.org/testing.html

SQLite. I’ve seen corruption in PostgreSQL, but we are comparing apples to
oranges. I have a gut feeling (but no hard data) that I can trust SQLite more
than MySQL.

If I ever choose to use SQLite for mission-critical data, I will make sure I
not just backup the database file, but also backup a plain text dump of the
database. I trust plain text dumps more than database files in case there is
silent corruption that can go unnoticed for some time.

One problem with SQLite is that you may choose to go with it now that your
database is small and your users are few, but you can’t really be certain what
it will be like in three or five years. If for some reason the database has grown
or the users have increased, SQLite might be unable to handle it. Migrating
to PostgreSQL at that stage could be a nightmare. So the safe option is to use
PostgreSQL straight from the beginning.

As for MySQL, I never understood why it has become so popular when there’s
PostgreSQL around. My only explanation is it was marketed better. Post-
greSQL is more powerful, it is easier, and it has better documentation. If you
have a reason to use MySQL, it’s probably that you already know it, or that
people around you know it (e.g. it is company policy). In that case, hopefully
you don’t need any help from me. Otherwise, choose PostgreSQL and read
the rest of this chapter.

8.2 Getting started with PostgreSQL

You may have noticed that I prefer to tell you to do things first and then
explain them. Same thing again. We will quickly install PostgreSQL and
configure Django to use it. You won’t be understanding clearly what you are
doing. After we finish it, you have some long sections to read. You must
read them, however. The way to avoid doing the reading is to forget about
PostgreSQL and continue using SQLite. It is risky to put your customer’s
data on a system that you don’t understand and that you’ve set up just by
blindly following instructions.

apt install postgresql

This will install PostgreSQL and create a cluster; I will explain later what this
means.

Warning: Make sure the locale is right

When PostgreSQL installs, it uses the encoding specified by the default
system locale (found in /etc/default/locale). If this is not UTF-8, the
databases will be using an encoding other than UTF-8. You really don’t
want that. If you aren’t certain, you can check, using the procedure I
explained in Setting up the system locale, that the default system locale is
appropriate. You can also check that PostgreSQL was installed with the
correct locale with this command:
su postgres -c 'psql -l'

This will list your databases and some information about them, includ-
ing their locale. Immediately after installation, there should be three
databases (I explain them later on).

If you make an error and install PostgreSQL while the locale is wrong,
the easiest way to fix the problem is to drop and recreate the cluster. I
explain later what “cluster” means, but what you need to know is that
the following procedure will permanently and irrevocably delete all your
databases. Be careful not to type the commands in the wrong window
(you could delete the databases of the wrong server). Fix your locale
as described in Setting up the system locale, then execute the following
commands:

service postgresql stop
pg_dropcluster 9.5 main
pg_createcluster 9.5 main
service postgresql start

If you have a database with useful data, obviously you can’t do this. Fix-

ing the problem is more advanced and isn’t covered by this chapter; there
is a question at Stackoverflow that treats it, but better finish this chapter
first to get a grip on the basics.

Let’s now try to connect to PostgreSQL with a client program:

su postgres -c 'psql template1'

This connects you with the “template1” database and gives you a
prompt ending in #. You can give it some commands like \l to list
the databases (there are three just after installation). Let’s create a
user and a database. I will use placeholders $DJANGO_DB_USER,
$DJANGO_DB_PASSWORD, and $DJANGO_DATABASE. We normally
use the same as $DJANGO_PROJECT for both $DJANGO_DB_USER and
$DJANGO_DATABASE, and I have the habit of using the SECRET_KEY
as the database password, but in principle all these can be different; so I will
be using these different placeholders here to signal to you that they denote
something different.

CREATE USER $DJANGO_DB_USER PASSWORD '$DJANGO_DB_PASSWORD';
CREATE DATABASE $DJANGO_DATABASE OWNER $DJANGO_DB_USER;

The command to exit psql is \q.

Next, we need to install psycopg2:

apt install python-psycopg2 python3-psycopg2

This will work only if you have created your virtualenv with the
--system-site-packages option, which is what I told you to do many pages
ago. Otherwise, you need to pip install psycopg2 inside the virtualenv.
Most people do it in the second way. However, attempting to install psycopg2
with pip will require compilation, and compilation can be tricky, and different
psycopg2 versions might behave differently, and in my experience the easiest
and safest way is to install the version of psycopg2 that is packaged with the

http://stackoverflow.com/questions/5090858/how-do-you-change-the-character-encoding-of-a-postgres-database

operating system. If your site-wide Python installation is clean (meaning you
have used pip only in virtualenvs), --system-site-packages works great.

Finally, change your DATABASES setting to this:

DATABASES = {
'default': {

'ENGINE': 'django.contrib.gis.db.backends.postgis',
'NAME': '$DJANGO_DATABASE',
'USER': '$DJANGO_DB_USER',
'PASSWORD': '$DJANGO_DB_PASSWORD',
'HOST': 'localhost',
'PORT': 5432,

}
}

From now on, Django should be using PostgreSQL (you may need to restart
Gunicorn). You should be able to setup your database with this:

PYTHONPATH=/etc/opt/$DJANGO_PROJECT:/opt/$DJANGO_PROJECT \
DJANGO_SETTINGS_MODULE=settings \
su $DJANGO_USER -c \
"/opt/$DJANGO_PROJECT/venv/bin/python \
/opt/$DJANGO_PROJECT/manage.py migrate"

8.3 PostgreSQL connections

A short while ago we run this innocent looking command:

su postgres -c 'psql template1'

Now let’s explain what this does. Brace yourself, as it will take several sec-
tions. Better go make some tea, relax, and come back.

A web server listens on TCP port 80 and a client, usually a browser, connects

to that port and asks for some information. The server and the client commu-
nicate in a language, in this case the Hypertext Transfer Protocol or HTTP.
In very much the same way, the PostgreSQL server is listening on a com-
munication port and a client connects to that port. The client and the server
communicate in the PostgreSQL Frontend/Backend Protocol.

In the case of the psql template1 command, psql, the PostgreSQL interac-
tive terminal, is the client. It connects to the server, and gets commands from
you. If you tell it \l, it asks the server for the list of databases. If you give
it an SQL command, it sends it to the server and gets the response from the
server.

When you connect to a web server with your browser, you always provide the
server address in the form of a URL. But here we only provided a database
name. We could have told it the server as follows (but it’s not going to work
without a fight, because the user authentication kicks in, which I explain in
the next section):

psql --host=localhost --port=5432 template1

You might think localhost and 5432 is the default, but it isn’t. The default is
Unix domain socket /var/run/postgresql/.s.PGSQL.5432. Let’s see what
this means.

If you think about it, TCP is nothing more than a way for different processes
to communicate. One process, the browser, opens a communication channel
to another process, the web server. Unix domain sockets are an alternative
interprocess communication system that has some advantages but only works
on the same machine. Two processes on the same machine that want to com-
municate can do so via a socket; one process, the server, will create the socket,
and another, the client, will connect to the socket. One of the philosophies
of Unix is that everything looks like a file, so Unix domain sockets look like
files, but they don’t occupy any space on your disk. The client opens what
looks like a file, and sends and receives data from it.

When the PostgreSQL server starts, it creates socket
/var/run/postgresql/.s.PGSQL.5432. The “5432” is noth-

ing of meaning to the system; if the socket had been named
/var/run/postgresql/hello.world, it would have worked exactly the
same. The PostgreSQL developers chose to include the “5432” in the name
of the socket as a convenience, in order to signify that this socket leads to
the same PostgreSQL server as the one listening on TCP port 5432. This is
useful in the rare case where many PostgreSQL instances (called “clusters”,
which I explain later) are running on the same machine.

Hint: Hidden files

In Unix, when a file begins with a dot, it’s “hidden”. This means that ls
doesn’t normally show it, and that when you use wildcards such as * to denote
all files, the shell will not include it. Otherwise it’s not different from non-
hidden files.

To list the contents of a directory including hidden files, use the -a option:

ls -a /var/run/postgresql

This will include . and .., which denote the directory itself and the par-
ent directory (/var/run/postgresql/. is the same as /var/run/postgresql;
/var/run/postgresql/.. is the same as /var/run). You can use -A instead
of -a to include all hidden files except . and ...

8.4 PostgreSQL roles and authentication

After a client such as psql connects to the TCP port or to the Unix domain
socket of the PostgreSQL server, it must authenticate before doing anything
else. It must login, so to speak, as a user. Like many other relational database
management systems (RDBMS’s), PostgreSQL keeps its own list of users and
has a sophisticated permissions system with which different users have dif-
ferent permissions on different databases and tables. This is useful in desktop
applications. In the Greek tax office, for example, employees run a program

on their computer, and the program asks them for their username and pass-
word, with which they login to the tax office RDBMS, which is Oracle, and
Oracle decides what this user can or cannot access.

Web applications changed that. Instead of PostgreSQL managing
the users and their permissions, we have a single PostgreSQL user,
$DJANGO_DB_USER, as which Django connects to PostgreSQL, and this
user has full permissions on the $DJANGO_DB database. The actual users
and their permissions are managed by django.contrib.auth. What a user
can or cannot do is decided by Django, not by PostgreSQL. This is a pity
because django.contrib.auth (or the equivalent in other web frameworks)
largely duplicates functionality that already exists in the RDBMS, and be-
cause having the RDBMS check the permissions is more robust and more
secure. I believe that the reason web frameworks were developed this way is
independence from any specific RDBMS, but I don’t really know. Whatever
the reason, we will live with that, but I am telling you the story so that you can
understand why we need to create a PostgreSQL user for Django to connect
to PostgreSQL as.

Just as in Unix the user “root” is the superuser, meaning it has full permis-
sions, and likewise the “administrator” in Windows, in PostgreSQL the su-
peruser is “postgres”. I am talking about the database user, not the operating
system user. There is also an operating system “postgres” user, but here I
don’t mean the user that is stored in /etc/passwd and which you can give as
an argument to su; I mean a PostgreSQL user. The fact that there exists an
operating system user that happens to have the same username is irrelevant.

Let’s go back to our innocent looking command:

su postgres -c 'psql template1'

As I explained, since we don’t specify the database server, psql by default
connects to the Unix domain socket /var/run/postgresql/.s.PGSQL.5432.
The first thing it must do after connecting is authenticating. We could have
specified a user to authenticate as with the --username option. Since we
did not, psql uses the default. The default is what the PGUSER environment

variable says, and if this is absent, it is the username of the current operating
system user. In our case, the operating system user is postgres, because we
executed su postgres; so psql attempts to authenticate as the PostgreSQL
user postgres.

To make sure you understand this clearly, try to run psql template1 as root:

psql template1

What does it tell you? Can you understand why? If not, please re-read the
previous paragraph. Note that after you have just installed PostgreSQL, it has
only one user, postgres.

So, psql connected to /var/run/postgresql/.s.PGSQL.5432 and asked to
authenticate as postgres. At this point, you might have expected the server to
request a password, which it didn’t. The reason is that PostgreSQL supports
many different authentication methods, and password authentication is only
one of them. In that case, it used another method, “peer authentication”.
By default, PostgreSQL is configured to use peer authentication when the
connection is local (that is, through the Unix domain socket) and password
authentication when the connection is through TCP. So try this instead to see
that it will ask for a password:

su postgres -c 'psql --host=localhost template1'

You don’t know the postgres password, so just provide an empty password
and see that it refuses the connection. I don’t know the password either. I be-
lieve that Debian/Ubuntu sets no password (i.e. invalid password) at installa-
tion time. You can set a valid password with ALTER USER postgres PASSWORD

’topsecret’, but don’t do that. There is no reason for the postgres user to
connect to the database with password authentication, it could be a security
risk, and you certainly don’t want to add yet another password to your pass-
word manager.

Let’s go back to what we were saying. psql connected to the socket and asked
to authenticate as postgres. The server decided to use peer authentication,

because the connection is local. In peer authentication, the server asks the op-
erating system: “who is the user who connected to the socket?” The operating
system replied: “postgres”. The server checks that the operating system user
name is the same as the PostgreSQL user name which the client has requested
to authenticate as. If it is, the server allows. So the Unix postgres user can
always connect locally (through the socket) as the PostgreSQL postgres user,
and the Unix joe user can always connect locally as the PostgreSQL joe user.

So, in fact, if $DJANGO_USER and $DJANGO_DB_USER are the same
(and they are if so far you have followed everything I said), you could use
these Django settings:

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.postgresql_psycopg2',
'NAME': '$DJANGO_DATABASE',
'USER': '$DJANGO_DB_USER',

}
}

In this case, Django will connect to PostgreSQL using the Unix domain
socket, and PostgreSQL will authenticate it with peer authentication. This
is quite cool, because you don’t need to manage yet another password. How-
ever, I don’t recommend it. First, most of your colleagues will have trouble
understanding that setup, and you can’t expect everyone to sit down and read
everything and understand everything in detail. Second, next month you may
decide to put Django and PostgreSQL on different machines, and using pass-
word authentication you make your Django settings ready for that change.
It’s also better, both for automation and your sanity, to have similar Django
settings on all your deployments, and not to make some of them different just
because it happens that PostgreSQL and Django run on the same machine
there.

Remember that when we created the $DJANGO_DATABASE database, we
made $DJANGO_DB_USER its owner?

CREATE DATABASE $DJANGO_DATABASE OWNER $DJANGO_DB_USER;

The owner of a database has full permission to do anything in that database:
create and drop tables; update, insert and delete any rows from any ta-
bles; grant other users permission to do these things; and drop the en-
tire database. This is by far the easiest and recommended way to give
$DJANGO_DB_USER the required permissions.

Before I move to the next section, two more things you need to
know. PostgreSQL authentication is configurable. The configuration is at
/etc/postgresql/9.x/main/pg_hba.conf. Avoid touching it, as it is a bit
complicated. The default (peer authentication for Unix domain socket con-
nections, password authentication for TCP connections) works fine for most
cases. The only problem you are likely to face is that the default configuration
does not allow connection from other machines, only from localhost. So if
you ever put PostgreSQL on a different machine from Django, you will need
to modify the configuration.

Finally, PostgreSQL used to have users and groups, but the PostgreSQL de-
velopers found out that these two types of entity had so much in common that
they joined them into a single type that is called “role”. A role can be a mem-
ber of another role, just as a user could belong to a group. This is why you
will see “role joe does not exist” in error messages, and why CREATE USER

and CREATE ROLE are exactly the same thing.

8.5 PostgreSQL databases and clusters

Several pages ago, we gave this command:

su postgres -c 'psql template1'

I have explained where it connected and how it authenticated, and to finish
this up I only need to explain why we told it to connect to the “template1”
database.

The thing is, there was actually no theoretical need to connect to a database.
The only two commands we gave it were these:

CREATE USER $DJANGO_DB_USER PASSWORD '$DJANGO_DB_PASSWORD';
CREATE DATABASE $DJANGO_DATABASE OWNER $DJANGO_DB_USER;

I also told you, for experiment, to also provide the \l command, which lists
the databases.

All three commands are independent of database and would work exactly the
same regardless of which database we are connected to. However, whenever
a client connects to PostgreSQL, it must connect to a database. There is no
way to tell the server “hello, I’m user postgres, authenticate me, but I don’t
want to connect to any specific database because I only want to do work that is
independent of any specific database”. Since you must connect to a database,
you can choose any of the three that are always known to exist: postgres,
template0, and template1. It is a long held custom to connect to template1

in such cases (although postgres is a bit better, but more on that below).

The official PostgreSQL documentation explains template0 and template1

so perfectly that I will simply copy it here:

CREATE DATABASE actually works by copying an existing
database. By default, it copies the standard system database
named template1. Thus that database is the “template” from
which new databases are made. If you add objects to template1,
these objects will be copied into subsequently created user
databases. This behavior allows site-local modifications to the
standard set of objects in databases. For example, if you install
the procedural language PL/Perl in template1, it will automati-
cally be available in user databases without any extra action be-
ing taken when those databases are created.

There is a second standard system database named template0.
This database contains the same data as the initial contents of
template1, that is, only the standard objects predefined by your
version of PostgreSQL. template0 should never be changed af-

ter the database cluster has been initialized. By instructing CRE-
ATE DATABASE to copy template0 instead of template1, you
can create a “virgin” user database that contains none of the site-
local additions in template1. This is particularly handy when
restoring a pg_dump dump: the dump script should be restored
in a virgin database to ensure that one recreates the correct con-
tents of the dumped database, without conflicting with objects
that might have been added to template1 later on.

There’s more about that in Section 22.3 of the documentation. In practice, I
never touch template1 either. I like to have PostGIS in the template, but what
I do is create another template, template_postgis, for the purpose.

Before explaining what the postgres database is for, we need to look at an
alternative way of creating users and databases. Instead of using psql and
executing CREATE USER and CREATE DATABASE, you can run these commands:

su postgres -c "createuser --pwprompt $DJANGO_DB_USER"
su postgres -c "createdb --owner=$DJANGO_DB_USER $DJANGO_DATABASE

→˓"

Like psql, createuser and createdb are PostgreSQL clients; they do noth-
ing more than connect to the PostgreSQL server, construct CREATE USER

and CREATE DATABASE commands from the arguments you have given, and
send these commands to the server. As I’ve explained, whenever a client
connects to PostgreSQL, it must connect to a database. What createuser
and createdb (and other PostgreSQL utility programs) do is connect to the
postgres database. So postgres is actually an empty, dummy database used
when a client needs to connect to the PostgreSQL server without caring about
the database.

I hinted above that it is better to use psql postgres than psql template1

(though most people use the latter). The reason is that sometimes you may
accidentally create tables while being connected to the wrong database. It
has happened to me more than once to screw up my template1 database. You
don’t want to accidentally modify your template1 database, but it’s not a big

https://www.postgresql.org/docs/9.6/static/manage-ag-templatedbs.html

deal if you modify your postgres database. So use that one instead when
you want to connect with psql. The only reason I so far told you to use the
suboptimal psql template1 is that I thought you would be confused by the
many instances of “postgres” (there’s an operating system user, a PostgreSQL
user, and a database named thus).

Now let’s finally explain what a cluster is. Let’s see it with an example. Re-
member that nginx reads /etc/nginx/nginx.conf and listens on port 80?
Well, it’s entirely possible to start another instance of nginx on the same
server, that reads /home/antonis/nginx.conf and listens to another port.
That other instance will have different lock files, different log files, differ-
ent configuration files, and can have different directory roots, so it can be
totally independent. It’s very rarely needed, but it can be done (I’ve done it
once to debug a production server of a problem I couldn’t reproduce in devel-
opment). Likewise, you can start a second instance of PostgreSQL, that uses
different configuration files and a different data file directory, and listens on
a different port (and different Unix domain socket). Since it is totally inde-
pendent of the other instance, it also has its own users and its own databases,
and is served by different server processes. These server processes could
even be run by different operating system users (but in practice we use the
same user, postgres, for all of them). Each such instance of PostgreSQL is
called a cluster. By far most PostgreSQL installations have a single cluster
called “main”, so you needn’t worry further about it; just be aware that this is
why the configuration files are in /etc/postgresql/9.x/main, why the data
files are in /var/lib/postgresql/9.x/main, and why the log files are named
/var/log/postgresql/postgresql-9.x-main.log. If you ever create a sec-
ond cluster on the same machine, you will be doing something advanced, like
setting up certain kinds of replication. If you are doing such an advanced
thing now, you are probably reading the wrong book.

8.6 Further reading

You may have noticed that I close most chapters with a summary, which,
among other things, repeats most of the code and configuration snippets of the
chapter. In this chapter I have no summary to write, because I have already
written it; it’s Section Getting started with PostgreSQL. In the rest of the
chapter I merely explained it.

I explain in the next chapter, but it is so important that I must repeat it here,
that you should not backup your PostgreSQL database by copying its data
files from /var/lib/postgresql. If you do such a thing, you risk being unable
to restore it when you need it. Read the next chapter for more information.

I hope I wrote enough to get you started. You should be able to use it in
production now, and learn a little bit more and more as you go on. Its great
documentation is the natural place to continue. If you ever do anything ad-
vanced, Gregory Smith’s PostgreSQL High Performance is a nice book.

CHAPTER 9

Recovery part 1

9.1 Why “recovery”?

Usually book chapters and blog posts dealing with what I’m dealing in this
chapter call it “backup and recovery”. To me, backup is just a part of recov-
ery, it is only the first step towards recovery. This is why I prefer to just use
“recovery”. It’s not just a language issue, it’s a different way of thinking.
When you deal with “backup and recovery”, you view them as two separate
things. You might finish your backup and think “I’m through with this, I’ll
deal with recovery if and when the time comes”. When we name it just “re-
covery”, you understand that backup isn’t something isolated, and certainly
it isn’t the point. Backup on its own is useless and pointless. Your customer
doesn’t care about backup; they care about whether you are able to recover
the system when it breaks. In fact, they don’t even care about that; they just
care that the system works, and they prefer to not know what you are doing
behind the scenes for it to work. One of the things you are doing behind the
scenes is to recover the system.

The most important thing about recovery is that it should be tested. Once
a year, or once in two years, you should switch off the server, pretend it

exploded, and recover on a new server. Without doing this, you will not
know if you can recover. Recovery plans contain all sorts of silly errors.
Maybe your backups are encrypted, and the decryption key is only stored in
the server itself, and you won’t have it when you need to recover. Maybe
you don’t backup some files that you think can be recreated, and it turns that
among them there are some valuable data files. The thing is, you won’t be
able to know what you did wrong until you test your recovery.

Untested recovery always takes way longer than you think. When you have
written down the recovery procedure and you have tested it, you may be able
to recover within a couple of hours or even a few minutes, with minimal
stress. It can be part of your day-to-day work and not a huge event. Without
a written procedure, or with an untested procedure, you will be sweating over
your keyboard for a whole day or more, while your customer will be frus-
trated. It’s hard to imagine how much time you can waste because you are
getting a pg_restore option wrong until you try it.

So, think about recovery. Recovery starts with backup, continues with
the creation of a written restore procedure, and is mostly completed when
that procedure is tested. Anything less than that is dangerous.

9.2 Where to backup

The cloud is very attractive. Amazon, Google, Backblaze, Microsoft, they
sell cheap storage. All your server has to do is save its stuff there. You don’t
need to change tapes every day and move them off site, as we used to do
10 years ago. And your backup is on another continent. No chance it will
explode the same time as your server, right? Wrong!

The problem is that your system has a single point of failure: the security of
your server. For your server to backup itself to the remote storage, it must
have write access to the remote storage. So if the security of your server is
compromised, the attacker can delete your server’s data and the backup.

Do you think this is far-fetched? Code Spaces was a company that had its

code and data on Amazon Web Services. One day in 2014 an attacker man-
aged to get access to their account and demanded ransom. Negotiations didn’t
go well and the attacker deleted all data. All backups. Everything. The com-
pany was wiped out overnight. It ceased to exist. Undoubtedly its customers
were also damaged.

Forget about two-factor authentication or Amazon’s undeletable S3 files.
Your phone might be stolen. Or the employee who has access to the account
and has two factor-authentication on his phone might go crazy and want to
harm you. Or you might go crazy and want to hurt your customers. Or you
might be paying the server and the backup from the same credit card, with
the same obsolete email in both, and the credit card might be cancelled, and
you’d fail to receive the emails, and the providers might delete the server
and the backups at the same time. Or the whole system, regardless its safety
checks and everything, might have a bug somewhere. Our experience of the
last 20 years does not indicate that systems are getting safer; on the contrary.
Heartbleed and Shellshock showed how vulnerable the whole Internet is; and
the next such problem is just waiting to be discovered.

The only way to be reasonably certain that your data is safe is if the backup is
offline, on a medium you can actually touch, disconnected from the network.
But this is very expensive, so you need to compromise on something.

What I do is backup my systems online daily, but I also copy the backup to a
disk once a month, and I take the disk offline. The next month I use another
disk. I will tell you more about it later on.

9.3 Estimating storage cost

Cloud storage services advertise a cost per GB per month. For example, for
Backblaze the amount at the time of this writing is $0.005. We need to mul-
tiply this by 12 to arrive at a cost of $0.06 per year.

Depending on the backup scheme you use, you might save the data multiple
times. For example, the scheme I will propose involves a full backup every

https://en.wikipedia.org/wiki/Heartbleed
https://en.wikipedia.org/wiki/Shellshock_%28software_bug%29

three months, and backups kept for two years. This means that each GB will
be stored a total of eight times. So this means that each GB of data, or eight
GB of backup storage, will cost $0.48 per year.

There are also charges for downloading. Backblaze charges $0.05 per GB
for each download. If you download the backups twice a year for recovery
testing, that’s $0.10. So the total so far is $0.58 per GB per year. For a
Django installation with 10 GB of data, this will be $5.80 per year. For 30
GB of data, it will be $17.40 per year. While it is not much, if you maintain
many Django installations it can add up, so you must make sure you take the
cost into account when you offer a support contract to the customer.

If you download the backups once a month in order to save them to an offline
disk, this will cost an additional $0.05 per month, which amounts to $0.60
per year, so this doubles online storage costs. In the scheme I explain in the
next chapter, we take offline backups directly from the server, not from the
online backups, so you don’t have this cost. However, it’s perfectly valid to
backup the backups instead, and sometimes it’s preferable; if you do it this
way, don’t forget to take the download cost into account.

If you use external disks for offline backups, you need two disks, and each
disk must have a capacity of all the data of all your installations combined.
They must be rotating disks (i.e. not SSD), preferably portable USB ones.
You may also be able to use SATA disks with a SATA-to-USB adapter; how-
ever, one of the advantages of USB disks is that it’s much easier to label them
by attaching a sticker (SATA disks have very little space available for attach-
ing a sticker, unless you cover their original label, which you don’t want).
You might want to use small (2.5-inch) disks, which are much easier to carry.
In any case, in this book we deal with deployments on a single server, so these
are probably small and a 1 TB disk is likely enough for all your deployments.
Two such external disks cost around $100. They might live for five years, but
I prefer to be more conservative and assume they’ll last for a maximum of
two years; your backup schemes, your customers, and your business in gen-
eral will have changed enough by then. So the total cost of backup (assuming
it all fits in a 1 TB disk) is $50 per year plus $0.58 per GB per year.

9.4 Setting up backup storage

How exactly you will setup your backup storage depends on the type of stor-
age you use. You might use Backblaze B2, Google Cloud Storage, Amazon
S3, or various other services. If you have a static IP address, you could also
setup a physical machine, but this is typically harder and more expensive. In
the rest of this chapter, I will assume you are using Backblaze B2. If you are
familiar with another storage system, go ahead and use that. (Note: I am not
affiliated with Backblaze.)

To setup your backup storage on Backblaze, go to https://backblaze.com/,
select “B2 Cloud Storage”, and sign up or login. Then create a bucket.

A bucket is a virtual hard disk, so to speak. It has no fixed size; it grows as you
add files to it. Rather than having different buckets for different customers, in
this chapter I assume you have only one bucket, which is simpler. Remember,
always choose the simplest solution first, and don’t make assumptions about
how the future will be; very often you ain’t gonna need it. If and when the
future brings in needs that can’t be covered by the solution I’m proposing
here, you will need to revise your strategy.

In order to create the bucket, you will be asked for a name, and about whether
it’s going to be private or public. It will be private of course; as for the name,
I like $NICK-backup, where $NICK is my usual username (such as the one
you have on Twitter perhaps). After you create it, go to the Bucket Settings,
and tell it to keep only the last version of the file versions. This is because
whenever you change a file, or whenever you delete a file, Backblaze B2 has
the option of also keeping the previous version of the file. While this can be
neat in some use cases, we won’t be needing it here and it’s going to be a
waste of disk space (and therefore money). We just want the bucket to behave
like a normal hard disk.

Now, if you go to the “Buckets” section of the Backblaze B2 dashboard
(“Buckets” is actually the front page of the dashboard), near the top it says
“Show Accout ID and Application Key”. Click on that link and it will show
you your Account ID. If you don’t know your Application Key (for example,

https://backblaze.com/

if it’s your first time in Backblaze B2) create a new one. Take note of both
your Account ID and your Application Key; we will need them later. I will
be calling them $ACC_ID and $APP_KEY.

9.5 Setting up duplicity and duply

The recovery software we will use is duplicity. While it works quite well, it
is hard to use on its own because its user interface is inconvenient. It does
not have a configuration file, but you tell it everything it needs to know on
the command line, and a very long command line indeed. I believe that the
authors of duplicity intended it to be run by scripts and not by humans. Here
we are going to use duply, a front-end to duplicity that makes our job much
easier. Let’s start by installing it:

apt install duply

Hint: Installing duplicity in Debian

Although apt install duply will work on Debian 8, it will install duplicity
0.6.24, which does not support Backblaze B2. Therefore, you may want to
install a more recent version of duplicity.

Go to duplicity’s home page, http://duplicity.nongnu.org/, and copy the link
to the current release in the Download section. I will call it $DUPLIC-
ITY_TARBALL_SOURCE, and I will also use the placeholder $DUPLIC-
ITY_VERSION.

Install duplicity with the following commands:

apt install python-dev build-essential \
python-setuptools librsync-dev

cd
wget $DUPLICITY_TARBALL_SOURCE
tar xzf duplicity-$DUPLICITY_VERSION.tar.gz

http://duplicity.nongnu.org/

cd duplicity-$DUPLICITY_VERSION
python setup.py install

wget downloads stuff from the web. You give it a URL, it
fetches it and stores it in a file. In this case, it will fetch file
duplicity-$DUPLICITY_VERSION.tar.gz and store it in the current directory
(which should be /root if you run cd as I suggested).

tar is very roughly the equivalent of zip/unzip on Unix; it can create and
read files containing other files (but tar can’t read zip files, neither can zip

read tar files). These files are called “archive files”. The x in xzf means that
the desired operation is extraction of files from an archive (as opposed to c,
which is the creation of an archive, or t, which is for listing the contents of
an archive); the z means that the archive is compressed; and f means that
“the next argument in the command line is the archive name”. I have long
forgotten what it does if you don’t specify the f option, but the default was
something suitable for 1979, when the first version of tar was created and
had to do with tape drives (in fact “tar” is short for “tape archiver”). If more
arguments follow, they are names of files to extract from the archive. Since
we don’t specify any, it will extract all files. In this particular archive, all con-
tained files are in directory duplicity-$DUPLICITY_VERSION, so tar creates
the directory to put the files in there.

Next, let’s create a configuration directory:

mkdir -p /etc/duply/main
chmod 700 /etc/duply/main

With duply you can create many different configurations which it calls “pro-
files”. We only need one here, and we will call it “main”. This is why we
created directory /etc/duply/main. Inside it, create a file called conf, with
the following contents:

GPG_KEY=disabled

SOURCE=/
TARGET=b2://$ACC_ID:$APP_KEY@$NICK-backup/$SERVER_NAME/

MAX_AGE=2Y
MAX_FULLS_WITH_INCRS=2
MAX_FULLBKP_AGE=3M
DUPL_PARAMS="$DUPL_PARAMS --full-if-older-than $MAX_FULLBKP_AGE "

VERBOSITY=warning
ARCH_DIR=/var/cache/duplicity/duply_main/

Warning: Syntax is bash

The duply configuration file is neither Python (such as settings.py) nor
an ini-style file; it is a shell script. This notably means that, when defining
variables, there can be no space on either side of the equals sign (‘=’).
Strings need to be quoted only if they contain spaces, so, for example, the
following three definitions are exactly the same:

GREETING=hello
GREETING="hello"
GREETING='hello'

However, variables are replaced inside double quotes, but not inside single
quotes:

WHO=world
GREETING1="hello, $WHO"
GREETING2='hello, $WHO'

After this is run, GREETING1 will have the value “hello, world”, whereas
GREETING2 will be “hello, $WHO”. You can experiment by simply typing
these commands in the shell prompt, and examine the values of variables
with echo $GREETING1 and so on.

Also create a file /etc/duply/main/exclude, with the following contents:

- /dev
- /proc
- /sys
- /run
- /var/lock
- /var/run
- /lost+found
- /boot
- /tmp
- /var/tmp
- /media
- /mnt
- /var/cache
- /var/crash
- /var/swap
- /var/swapfile
- /var/swap.img
- /var/lib/mysql
- /var/lib/postgresql

You can now backup your system by executing this command:

duply main backup

If this is a small virtual server, it should finish in a few minutes. This, how-
ever, is just a temporary test. There are many things that won’t work cor-
rectly, and one of the most important is that we haven’t backed up PostgreSQL
(and MySQL, if you happen to use it), and any SQLite files we backed up may
be corrupted. We just made this test to get you up and running. Let me now
explain what these configuration files mean.

9.6 Duply configuration

Let’s check again the duply configuration file, /etc/duply/main/conf:

GPG_KEY=disabled

SOURCE=/
TARGET=b2://$ACC_ID:$APP_KEY@$NICK-backup/$SERVER_NAME/

MAX_AGE=2Y
MAX_FULLS_WITH_INCRS=2
MAX_FULLBKP_AGE=3M
DUPL_PARAMS="$DUPL_PARAMS --full-if-older-than $MAX_FULLBKP_AGE "

VERBOSITY=warning
ARCH_DIR=/var/cache/duplicity/duply_main/

GPG_KEY=disabled Duplicity, and therefore duply, can encrypt the back-
ups. The rationale is that the backup storage provider shouldn’t be able
to read your files. So if you have a company, and you have a server
at the company premises, and you backup the server at Backblaze or
at Google, you might not want Backblaze or Google to be able to read
the company’s files. In our case this would achieve much less. Our
virtual server provider can read our files anyway, since they are stored
in our virtual server, in a data centre owned by the provider. Making it
impossible for Backblaze to read our files doesn’t achieve much if Dig-
italOcean can read them. Encrypting the backups is often more trouble
than what it’s worth, so we just disable it.

SOURCE=/ This specifies the directory to backup. We specify the root di-
rectory in order to backup the entire file system. We will actually ex-
clude some files and directories as I explain in the next section.

TARGET=b2://... This is the place to backup to. The first part, b2:,
specifies the “storage backend”. Duplicity supports many storage
backends; they are listed in man duplicity, Section “URL For-

mat”. As you can see, the syntax for the Backblaze B2 backend
is “b2://account_id:application_key@bucket/directory”. Even if you
have only one server, it’s likely that soon you will have more, so store
your backups in the $SERVER_NAME directory.

MAX_AGE=2Y This means that backups older than 2 years will be deleted.
Note that, if your databases and files contain customer data, it may be
illegal to keep the backups for more than a specified amount of time.
If a user decides to unsubscribe or otherwise remove their data from
your database, you are often required to delete every trace of your cus-
tomer’s data from everywhere, including the backups, within a spec-
ified amount of time, such as six months or two years. You need to
check your local privacy laws.

MAX_FULLS_WITH_INCRS=2, MAX_FULLBKP_AGE=3M A full
backup backs up everything. In an incremental backup only the
things that have changed since the previous backup are backed up. So
if on 12 January you perform a full backup, an incremental backup
on 13 January will only save the things that have changed since 12
January, and another incremental on 14 January will only save what
has changed since 13 January. MAX_FULLBKP_AGE=3M means that every
three months a new full backup will occur. MAX_FULLS_WITH_INCRS=2

means that incremental backups will be kept only for the last two full
backups; for older full backups, incrementals will be removed.

Collectively these parameters (together with MAX_AGE=2Y) mean that a
total of about eight full backups will be kept; for the most recent three
to six months, the daily history of the files will be kept, whereas for
older backups the quarterly history will be kept. You will thus be able
to restore your system to the state it was two days ago, or three days
ago, or 58 days ago, but not necessarily exactly 407 days ago—you will
need to round this up to about 45 days earlier or later.

Keeping the history of your system is very important. It is common
to lose some data and realize it some time later. If each backup sim-
ply overwrote the previous one, and you realized today that you had

accidentally deleted a file four days ago, you’d be in trouble.

DUPL_PARAMS=”$DUPL_PARAMS ...” If you want to add any param-
eters to duplicity that have not been foreseen in duply, you can specify
them in DUPL_PARAMS. Duply just takes the value of DUPL_PARAMS and
adds it to the duplicity command line. Duply does not directly support
MAX_FULLBKP_AGE, so we need to manually add it to DUPL_PARAMS.

The $DUPL_PARAMS and $MAX_FULLBKP_AGE should be included literally
in the file, the aren’t placeholders such as $NICK, $ACC_ID and $APP_KEY

VERBOSITY=warning Options are error, warning, notice, info, and debug.
“warning” will show warnings and errors; “notice” will show notices
and warnings and errors; and so on. “warning” is usually fine.

ARCH_DIR=/var/cache/duplicity/duply_main/ Duplicity keeps a cache
on the local machine that helps it know what things it has backed up,
without actually needing to fetch that information from the backup stor-
age—this speeds things up and lessens network traffic. If this local
cache is deleted, it recreates it by reading stuff from remotely. Duply’s
default cache path is suboptimal so we change it.

In order to see duply’s documentation for these settings you need to ask it
to create a configuration file. We created the configuration files above our-
selves, but we could have given the command duply main create, and this
would have created /etc/duply/main/conf and /etc/duply/main/exclude;
actually it creates these files under /etc/duply only if that directory exists;
otherwise it creates them under ~/.duply. After it creates the files, you are
supposed to go and edit them. The automatically created conf is heavily com-
mented and the comments explain what each setting does. So if you want to
read the docs, duply tmp create, then go to /etc/duply/tmp/conf and read.

When you run duply what it actually does is read your configuration files,
convert them into command line arguments for duplicity, and execute du-
plicity with a huge command line. For this reason, the documentation
of duply’s settings often refers you to duplicity. For example, for details
on MAX_FULLS_WITH_INCRS, the comments in conf tell you to execute man

duplicity and read about remove-all-inc-of-but-n-full.

9.7 Excluding files

The file /etc/duply/main/exclude contains files and directories that shall be
excluded from the backup. Actually it uses a slightly complicated language
that allows you to say things like “exclude directory X but include X/Y but
do not include X/Y/Z”. However, we will use it in a simple way, just in order
to exclude files and directories, which means we just precede each path with
“-”. The exclude file we specified two sections ago is this:

- /dev
- /proc
- /sys
- /run
- /var/lock
- /var/run
- /lost+found
- /boot
- /tmp
- /var/tmp
- /media
- /mnt
- /var/cache
- /var/crash
- /var/swap
- /var/swapfile
- /var/swap.img
- /var/lib/mysql
- /var/lib/postgresql

/dev, /proc, /sys In these directories you will not find real files. /dev contains
device files. In Unix most devices look like files. In fact, one of the
Unix principles is that everything is a file. So the first hard disk is usu-
ally /dev/sda (but in virtual machines it is often /dev/vda). /dev/sda1

(or /dev/vda1) is the first partition of that disk. You can actually open
/dev/sda (or /dev/vda) and write to it (the root user has permission to
do so), which will of course corrupt your system. Reading it is not a
problem though (but it’s rarely useful).

/sys and /proc contain information about the system. For example,
/proc/meminfo contains information about RAM, and /proc/cpuinfo

about the CPU. You can examine the contents of these “files” by typing,
for example, cat /proc/meminfo (cat prints the contents of files).

The /dev, /sys and /proc directories exist on your disk only as empty
directories. The “files” inside them are created by the kernel, and they
do not exist on the disk. Not only does it not make sense to backup,
you would also be in trouble if you attempted to.

/run, /var/lock, /var/run /run stores information about running services, in
order to keep track of them. This information is mostly process ids and
locks. For example, /run/sshd.pid contains the process id of the SSH
server. The system will use this information if, for example, you ask
to restart the SSH server. Whenever the system boots, it empties that
directory, otherwise the system would be confused. In older versions
such information was stored in /var/lock and /var/run, which are
now usually just symbolic links to /run or to a subdirectory of /run.

/lost+found In certain types of filesystem corruption, fsck (the equivalent of
Windows checkdsk) puts in there orphan files that existed on the disk
but did not have a directory entry. I’ve been using Unix systems for
25 years now, and I’ve had plenty of power failures while the system
was on, and many of them were in the old times without journaling,
and yet I believe I’ve only once seen files in that directory, and they
were not useful to me. It’s more a legacy directory, and many modern
filesystems, such as XFS, don’t have it at all. You will not use it, let
alone back it up.

/boot This directory contains the stuff essential to boot the system, namely
the boot loader and the Linux kernel. The installer creates it and you
normally don’t need it in backup.

/tmp, /var/tmp /tmp is for temporary files; any file you create there will be
deleted in the next reboot. If you want to create a temporary file that
will survive reboots, use /var/tmp.

/media, /mnt Unlike Windows, where disks and disk-like devices get a letter
(C:, D:, E: and so on), in Unix there is a single directory tree. There
is only one /bin. So, assume you have two disks. How do you access
the second disk? The answer is that you “mount” it on a point of the
directory tree. For example, a relatively common setup for multiuser
systems is for the second disk to contain the /home directory with the
user data, and for the first disk to contain all the rest. In that case,
after the system boots, it will mount the second disk at /home, so if you
ls /home you will see the contents of the second disk (if the first disk
also has files inside the /home directory, these will become hidden and
inaccessible after the second disk is mounted).

The /media directory is used mostly in desktop systems. If you plugin
a USB memory stick or a CDROM, it is usually mounted in a subdi-
rectory of /media. The /mnt directory exists only as a facility for the
administrator, whenever there is a need to temporarily mount another
disk. These two directories are rarely used in small virtual servers.

/var/cache As its name implies, this directory is for cached data. Anything
in it can be recreated. Its purpose is to speed things up, for example by
keeping local copies of things whose canonical position is somewhere
in the network. It can be quite large and it would be a waste of storage
to back it up.

/var/swap, /var/swapfile, /var/swap.img These are nonstandard files that
some administrators use for swap space (swap space is what Windows
incorrectly calls “virtual memory”). Swap space is normally placed on
dedicated disk partitions. If your system doesn’t have such files, so
much the better, but keep these files excluded because in the future you
or another administrator might create them.

/var/crash If the system crashes the kernel may dump some debugging in-
formation in there.

/var/lib/mysql, /var/lib/postgresql We won’t directly backup your
databases. Section “Backing up databases” explains why and
how.

One more directory that is giving me headaches is /var/lib/lxcfs. Like
/proc, it creates error messages when you try to walk through. It is related to
LXC, a virtual machine technology, which seems to be installed on Ubuntu
by default (at least in DigitalOcean). I think it could be a bad idea to exclude
it, in case you start using LXC in the future and forget it’s not being backed
up. I just remove LXC with apt purge lxc-common lxcfs and I’m done, as
this also removes the directory.

9.8 Additional directories for excluding or in-
cluding

Your backup system will work well if you exclude only the directories I al-
ready mentioned. In this section I explain what the other directories are and I
discuss whether and under what circumstances they should be excluded.

/bin, /lib, /sbin /bin and /sbin contain executable programs. For example,
if you list the contents of /bin, you will find that ls itself is among
the files listed. The files in /bin and /sbin are roughly the equivalent
of the .EXE files in C:\Windows\System32. The difference between
/bin and /sbin is that programs in /bin are intended to be run by
all users, whereas the ones in /sbin are for administrators only. For
example, all users are expected to want to list their files with ls, but
only administrators are expected to partition disks with fdisk, which is
why fdisk is /sbin/fdisk.

/lib contains shared libraries (the equivalent of Windows Dynamic
Link Libraries). The files in /lib are roughly the equivalent of
the .DLL files in C:\Windows\System32. One difference is that in
C:\Windows\System32 you may also find DLLs installed by third-party

software; in /lib, however, there are only shared libraries essential for
the operation of the system.

There may also be other /lib directories, such as /lib32 or /lib64.
These also contain essential shared libraries. On my 64-bit systems the
libraries are actually in /lib, but there also exists /lib64, which only
contains a symbolic link to a library in /lib. On other systems /lib

may be a symbolic to either /lib32 or /lib64. In any case, the system
manages all these directories itself and we usually don’t need to care.

/etc As we have already said in Users and directories, /etc contains config-
uration files.

/home, /root /home is where user files are stored. It’s the equivalent of Win-
dows’ C:\Users (formerly C:\Documents and Settings). However,
the root user doesn’t have a directory under /home; instead, the home
directory for the root user is /root. Since the root user is only meant
to do administrative work on a system and not to use it and create files
like a normal user, the /root directory is often essentially empty and
unused. However, if you want to create some files it’s an appropriate
place.

Very often in servers /home is also empty, since there are no real users
(people), but this actually depends on how the administrator decides to
setup the system. For example, some people may create a django user
with a /home/django directory and install their django project in there.
In this book we have created a user, but we have been using different
directories for the Django project, as explained in previous chapters.

/usr, /opt, /srv /usr has nothing to do with users, and its name is a historical
accident. It’s the closest thing there is to Windows’ C:\Program Files.
Everything in /usr is in subdirectories.

/usr/bin, /usr/lib, and /usr/sbin are much like /bin, /lib and
/sbin. The difference is that the latter contain the most essential utili-
ties and libraries of the operating system, whereas the ones under /usr
contain stuff from add-on packages and the less important utilities.

Nowadays the distinction is not important, and I think that lately some
systems are starting to make /bin a link to /usr/bin and so on. It used
to be important when the disks were small and the whole of /usr was
on another disk that was being mounted later in the boot process.

I’m not going to bother you with more details about the /usr sub-
directories, except /usr/local. Everything installed in /usr, ex-
cept /usr/local, is managed by the Debian/Ubuntu package man-
ager. For example, apt will install programs in /usr, but will not
touch /usr/local. Likewise, while you can modify stuff inside
/usr/local, you should not touch any other place under /usr, be-
cause this is supposed to be managed only by the system’s package
manager. The tools you use respect that; for example, if you install a
Python module system-wide with pip, it will install it somewhere un-
der /usr/local/lib and/or /usr/local/share. /usr/local has more
or less the same subdirectories as /usr, and the difference is that only
you (or your tools) write to /usr/local, and only the system package
manager writes to the rest of /usr.

Programs not installed by the system package manager should go either
to /usr/local, or to /opt, or to /srv. Here is the theory:

• If the program replaces a system program, use /usr/local. For
example, a few pages ago I explained how we can install duplicity
on Debian 8. The installation procedure I specified will by default
put it in /usr/local.

• If the program, its configuration and its data are to be installed in
a single directory, it should be a subdirectory of /srv.

• If the program directories are going to be cleanly separated
into executables, configuration, and data, the program should
go to /opt (and the configuration to /etc/opt, and the data to
/var/opt). This is what we have been doing with our Django
project throughout this book.

This subtle distinction is not always followed in practice by all people,

so you should be careful with your assumptions.

On carefully setup systems, you don’t need to backup /bin, /lib, /sbin,
/usr and /opt, because you can recreate them by re-installing the programs.
This is true particularly if you are setting up your servers using some kind of
automation system. I use Ansible. If a server explodes, I create another one, I
press a button, and Ansible sets up the server in a few minutes, installing and
configuring all necessary software. I only need to restore the data. In theory
(and in practice) I don’t need /etc either, but I never exclude it from backup,
it’s only about 10 MB anyway. So, in theory, the only directories you need to
backup are /var, /srv, /root and /home.

Warning: Specify what you want to exclude, not what you want to
backup

If you decide that only a few directories are worth backing up, it may be
tempting to tell the system “backup directories X, Y and Z” instead of
telling it “backup the root directory and exclude A, B, C, D, E, F, G, H, I
and J”. Don’t do it. In the future, you or another administrator will create
a directory such as /data and put critical stuff in there, and everyone will
forget that it is not being backed up. Always backup the root file system
and specify what you want to exclude, not what you want to include.

If you aren’t using automation (and this could fill another book on its own),
it would be better to not exclude /opt from backup, because it will make it
harder to recover. It’s very unlikely /bin, /lib and /sbin will be useful when
restoring, but they’re not much disk space anyway. The only real question is
whether to backup /usr, which can be perhaps 1 GB. At $0.58 per year it’s
not much, but it might also make backup and restore slower.

Is your head spinning? Here’s the bottom line: use the exclude list provided
in the previous section, and if you feel confident also exclude /bin, /lib,
/sbin and /usr. If your Django project’s files in /opt consume much space,
and you believe you can re-clone them fast and setup the virtualenv fast (as
described in Users and directories), you can also exclude /opt.

Whatever you decide, you might make an error. You might accidentally
exclude something crucial. This is true even if you don’t exclude anything
at all. For example, if you keep encrypted backups, you might think you
are saving everything but you might be forgetting to store the decryption
password somewhere.

The only way to be reasonably certain you are not screwing up is to test
your recovery as I explain later.

Tip: Check the disk space

Two commands you will find useful are df and du.

df -h

This shows the disk space usage for all the file systems. You are normally
only interested for the file system that is mounted on “/”, which is something
like /dev/sda1 or /dev/vda1. This is your main disk.

cd /
du -sh *

This will calculate and display the disk space that is occupied by each direc-
tory. It will throw some error messages, which can be ignored.

A useful variation is this:

du -sh * | sort -h

This means “take the standard output of du -sh * and use it as standard input
to sort -h”. The standard output does not include the error messages (these
go to the standard error). sort is a program that sorts its input; with the -h

option, it sorts human readable byte counts such as “15M” and “1.1G”.

If the output of du is longer than your terminal, another useful idiom is this:

du -sh * | sort -h | less

This will take the standard output of sort and give it as input to less. less

is a program that only shows only one screenful of information at a time. If
you get accustomed to it you’ll find it’s much more convenient than using the
scrollbar of your terminal. You can use j and k (or the arrow keys) to go down
and up, space and b (or Page Down/Up) for the next and previous screenful,
G and g to go to the end and beginning, and q to exit. You can also search
with a slash, and repeat a search forwards and backwards with n and N.

9.9 Backing up databases

Databases cannot usually be backed up just by copying their data files. For
small databases, copying can take a few seconds or a few minutes. During
this time, the files could be changing. As a result, when you restore the files,
the database might not be internally consistent. Even if you ensure that no-
one is writing to the database, or even that there are no connections, you can
still not copy the files, because the RDBMS may be caching information and
flushing it whenever it likes. To backup by copying data files you need to
shutdown the RDBMS, which means downtime.

The problem of internal consistency is also present with SQLite. Copying the
database file can take some time, and if the database is being written to during
that time, the file will be internally inconsistent, that is, corrupt.

Backing up large databases involves complicated strategies, such as those
described in Chapter 25 of the PostgreSQL 9.6 manual. Here we are going to
follow the simplest strategy which is to dump all the database to a plain text
file. Database dumps are guaranteed to be internally consistent. SQLite may
lock the database during the dump, meaning writing to it will have to wait,
but the time you need to wait for small databases is very little.

For PostgreSQL, create file /etc/duply/main/pre, with the following con-
tents:

#!/bin/bash
su postgres -c 'pg_dumpall --file=/var/backups/postgresql.dump'

For SQLite, the contents of /etc/duply/main/pre should be:

#!/bin/bash
echo '.dump' | \

sqlite3 /var/opt/$DJANGO_PROJECT/$DJANGO_PROJECT.db \
>/var/backups/sqlite-$DJANGO_PROJECT.dump

Better let’s make /etc/duply/main/pre executable:

chmod 755 /etc/duply/main/pre

The file is actually a shell script. In their simplest form, shell scripts are
just commands one after the other (much like Windows .bat files). However,
Unix shells like bash are complete programming languages (in fact duply
itself is written in bash). We won’t do any complicated shell programming
here, but if, for some reason, you have both PostgreSQL and SQLite on a
server, you can join the two above scripts like this:

#!/bin/bash
su postgres -c 'pg_dumpall --file=/var/backups/postgresql.dump'
echo '.dump' | \

sqlite3 /var/opt/$DJANGO_PROJECT/$DJANGO_PROJECT.db \
>/var/backups/sqlite-$DJANGO_PROJECT.dump

Likewise, if you have many SQLite databases, you need to add a dump
command for each one in the file (this is not necessary for PostgreSQL, as
pg_dumpall will dump all databases of the cluster).

Duply will execute /etc/duply/main/pre before proceeding to copy the files.
(It will also execute /etc/duply/main/post, if it exists, after copying, but we

don’t need to do anything like that; with different backup schemes pre could,
for example, shutdown the database and post could start it again.)

If you don’t understand the pre file for SQLite, here is the explanation: to
dump a SQLite database, you connect to it with sqlite3 dbname and then
execute the SQLite .dump command. The sqlite3 program reads commands
from the standard input and writes dumps to the standard output. The standard
input is normally your keyboard; but by telling it echo ’.dump’ | sqlite3

... we give it the string ”.dump”, followed by newline, as standard input
(the echo command just displays stuff and follows it with a newline; for ex-
ample, try echo ’hello, world’). The vertical line, as I explained in the
previous section (see Check the disk space) sends the output of one command
as input to another command. Finally, the “>” is the redirection symbol, it
redirects the standard output of the sqlite3 program, which would otherwise
be displayed on the terminal, to a file.

Tip: Compressing database dumps

Database dumps are plain text files. If compressed, they can easily become
five times smaller. However, compressing them might make incremental
backups larger and slower. The reason is that in incremental backups duplic-
ity saves only what has changed since the previous backup. It might be easier
for duplicity to detect changes in a plain text file than in a compressed file,
and the result could be to backup the entire compressed file each time. Since
duplicity compresses backups anyway, storing the dump file uncompressed
will never result in larger backups.

The only downside of storing the dump file uncompressed is that it takes up
more disk space in the server. This is rarely a problem.

Tip: Excluding SQLite

Technically, since you are dumping the database, you should be excluding
/var/opt/$DJANGO_PROJECT/$DJANGO_PROJECT.db, from the backup; how-

ever if the database file is only a few hundreds of kilobytes the savings aren’t
worth the trouble of adding it to your exclude file.

9.10 Running scheduled backups

Create file /etc/cron.daily/duply with the following contents:

#!/bin/bash
duply main purge --force >/tmp/duply.out
duply main purgeIncr --force >>/tmp/duply.out
duply main backup >>/tmp/duply.out

Make the file executable:

chmod 755 /etc/cron.daily/duply

We saw about cron in Clearing sessions. In the /etc/cron.daily/duply

script, the first command, purge, will delete full backups that are older than
MAX_AGE. The second command, purgeIncr, will delete incremental backups
that build on full backups that are older than MAX_FULLS_WITH_INCRS. Finally,
the third command, backup, will perform an incremental backup, unless a full
backup is due. A full backup is due if you have never backed up in the past,
or if the latest full backup was done more than MAX_FULLBKP_AGE ago.

Duply displays a lot of information even when everything’s working fine,
which would result in cron to email the administrator. We only want
to be emailed in case of error, so we redirect duply’s output to a file,
/tmp/duply.out. We only redirect its standard output, not its standard er-
ror, which means that error (and warning) messages will still be caught by
cron and emailed. Note, however, that /tmp/duply.out is not a complete log
file, because it only contains the standard output, not the standard error. It
might have been better to include both output and error in /tmp/duply.out,
and in addtion display the standard error, so that cron can catch it; however,

this requires more advanced shell scripting techniques and it’s more trouble
than it’s worth.

The redirection for the first command, >/tmp/duply.out, overwrites
/tmp/duply.out if it already exists. The redirection for the next two com-
mands, >>/tmp/duply.out, appends to the file.

Warning: You must use a local mail server

The emails of cron cannot be sent unless a mail server is installed locally
on the server. See Using a local mail server to setup one. Don’t omit it,
otherwise you won’t know when your system has a problem and cannot
backup itself.

9.11 Chapter summary

• Keep some offline backups and regularly test recovery (the next chapter
deals with these).

• Calculate storage costs.

• Create a bucket in your backup storage. A single bucket for all your
deployments is probably enough. You can name it $NICK-backup.

• Install duply, create directory /etc/duply/main, and chmod it to 700.

• Create configuration file /etc/duply/main/conf with these contents:

GPG_KEY=disabled

SOURCE=/
TARGET=b2://$ACC_ID:$APP_KEY@$NICK-backup/$SERVER_NAME/

MAX_AGE=2Y
MAX_FULLS_WITH_INCRS=2

MAX_FULLBKP_AGE=3M
DUPL_PARAMS="$DUPL_PARAMS --full-if-older-than $MAX_

→˓FULLBKP_AGE "

VERBOSITY=warning
ARCH_DIR=/var/cache/duplicity/duply_main/

• Create file /etc/duply/main/exclude with the following contents:

- /dev
- /proc
- /sys
- /run
- /var/lock
- /var/run
- /lost+found
- /boot
- /tmp
- /var/tmp
- /media
- /mnt
- /var/cache
- /var/crash
- /var/swap
- /var/swapfile
- /var/swap.img
- /var/lib/mysql
- /var/lib/postgresql

If you feel like it, also exclude /bin, /lib, /sbin and /usr, maybe also
/opt.

• Create file /etc/duplicity/main/pre with contents similar to the fol-
lowing (delete the PostgreSQL or SQLite part as needed, or add more
SQLite commands if you have many SQLite databases):

#!/bin/bash
su postgres -c 'pg_dumpall --file=/var/backups/postgresql.

→˓dump'
echo '.dump' | \

sqlite3 /var/opt/$DJANGO_PROJECT/$DJANGO_PROJECT.db \
>/var/backups/sqlite-$DJANGO_PROJECT.dump

Chmod the file to 755.

• Create file /etc/cron.daily/duply with the following contents:

#!/bin/bash
duply main purge --force >/tmp/duply.out
duply main purgeIncr --force >>/tmp/duply.out
duply main backup >>/tmp/duply.out

Chmod the file to 755.

• Make sure you have a local mail server installed.

CHAPTER 10

Recovery part 2

10.1 Restoring a file or directory

You made some changes to /etc/opt/$DJANGO_PROJECT/settings.py,
changed your mind, and you want it back? No problem:

duply main fetch etc/opt/$DJANGO_PROJECT/settings.py \
/tmp/restored_settings.py

This will fetch the most recent version of the file from backup and will put it
in /tmp/restored_settings.py. Note that when you specify the source file
there is no leading slash.

You can also fetch previous versions of the file:

Fetch it as it was 4 days ago
duply main fetch etc/opt/$DJANGO_PROJECT/settings.py \

/tmp/restored_settings.py 4D

Fetch it as it was on 4 January 2017

duply main fetch etc/opt/$DJANGO_PROJECT/settings.py \
/tmp/restored_settings.py 2017-01-04

Here is how to restore all the backup into /tmp/restored_files:

duply main restore /tmp/restored_files

As before, you can append age specifiers such as 4D or 2017-01-04 to the
command. Note that restoring a large backup can incur charges by your
backup storage provider.

You should probably never restore files directly to their original location. In-
stead, restore into /tmp or /var/tmp and move or copy them.

10.2 Restoring SQLite

Restoring SQLite is very simple. Assuming the dump file is in
/tmp/restored_files/var/backups/sqlite-$DJANGO_PROJECT.dump,
you should be able to recreate your database file thus:

sqlite3 /tmp/$DJANGO_PROJECT.db \
</tmp/restored_files/var/backups/sqlite-$DJANGO_PROJECT.dump

This will create /tmp/$DJANGO_PROJECT.db and it will execute the commands
in the dump file. You can then move the file to its normal position, such
as /var/opt/$DJANGO_PROJECT/$DJANGO_PROJECT.db. You probably need to
chown it to $DJANGO_USER.

10.3 Restoring PostgreSQL

How you will restore PostgreSQL depends on what exactly you want to re-
store and what the current state of your cluster is. For a moment, let’s assume

this:

1. You have just installed PostgreSQL with apt install postgresql and
it has created a brand new cluster that only contains the databases
postgres, template0 and template1.

2. You want to restore all your databases.

Assuming /tmp/restored_files/var/backups/postgresql.dump is the
dump file, you can do it this way:

cd /tmp/restored_files/var/backups
su postgres -c 'psql -f postgresql.dump postgres' >/dev/null

psql shows a lot of output, which we don’t need. We redirect the output to
/dev/null, which in Unix-like systems is a black hole; it is a device file that
merely discards everything written to it. We discard only the standard output,
not the standard error, because we want to see error messages. If everything
goes well, it should show only one error message:

ERROR: role “postgres” already exists

The file written to by pg_dumpall contains SQL commands that can be used
to recreate all databases. In the beginning of the file there are commands that
first create the users. One of these users is postgres, but this already exists
in your new cluster, therefore the error message. (The dump file also includes
commands to create the databases, but pg_dumpall is smart enough to not
include database creation commands for template0, template1, and postgres.)

Hint: Playing with redirections

You might want to redirect the standard error as well as the standard output.
You can do it like this:

su postgres -c 'psql -f postgresql.dump postgres' \
>/tmp/psql.out 2>/tmp/psql.err

This actually means “redirect file descriptor 1 to /tmp/psql.out and file de-
scriptor 2 to /tmp/psql.err”. Instead of >file you can write 1>file, but 1 is
the default and custom has it to omit it almost always. File descriptor 1 is
always standard output, and 2 is always standard error. There are several use
cases for redirecting the standard error, and one of them is if you want to keep
a record of the error messages so that you can examine them later.

One problem is that psql actually throws error messages interspersed with
standard output messages, and if you separate output from error you might
not know at which stage the error occurred. If you want to log the error
messages in the same file and in the correct position in relation to the output
messages, you can do this:

su postgres -c 'psql -f postgresql.dump postgres' \
>/tmp/psql.out 2>&1

The 2 > &1 means “redirect the standard error to the same place where you’re
putting the standard output”.

However, this will not always work as you expect because the standard out-
put is buffered whereas the standard error is unbuffered; so sometimes error
messages can appear in the file before output that was supposed to be printed
before the error.

If something goes wrong and you want to start over, here is how, but be care-
ful not to type these in the wrong window (you could delete a production
cluster in another server):

service postgresql stop
pg_dropcluster 9.5 main
pg_createcluster 9.5 main
service postgresql start

The second command will remove the “main” cluster of PostgreSQL version
9.5 (replace that with your actual PostgreSQL version). The third command
will initialize a brand new cluster.

10.4 Restoring an entire system

A few sections ago we saw how to restore all backed up files in a tempo-
rary directory such as /tmp/restored_files. If your server (the “backed
up server”) has exploded, you might be tempted to setup a new server (the
“restored server”) and then just restore all the backup directly in the root di-
rectory instead of a temporary directory. This won’t work correctly, however.
For example, if you restore all of /var/lib, you will overwrite /var/lib/apt

and /var/lib/dpkg, where the system keeps track of what packages it has
installed, so it will think it has installed all the packages that had been in-
stalled in the backed up server, and the system will essentially be broken. Or
if you restore /etc/network you might overwrite the restored system’s net-
work configuration with the network configuration of the backed up server.
So you can’t do this; you need restore the backup in /tmp/restored_files

and then selectively move or copy stuff from there to its normal place.

Below I present a complete recovery plan that you can use whenever your
system needs recovery. It should be applicable in its entirety only when you
need a complete recovery; however, if you need a partial recovery you can
still follow it and omit some parts as you go. I assume the backed up system
only had Django apps deployed in the way I have described in the rest of
this book. If you have something else installed, or if you have deployed in
a different way (e.g. in different directories), you must modify the plan with
one of your own.

You must also make sure that you have access to the recovery plan even if
the server goes down; that is, don’t store the recovery plan on a server that is
among those that may need to be recovered.

Hint: The rm command

In various places in the following recovery plan, I tell you to use the rm com-
mand, which is the Unix command that removes files. With the -r option
it recursively removes directories, and -f means “ask no questions”. The
following will delete the nginx configuration, asking no questions:

rm -rf /etc/nginx

rm accepts many arguments, so rm -rf /etc/nginx /etc/apache2 will
delete both directories. Accidentally inserting a space, as in rm -rf /

etc/nginx, will delete mostly all your system.

AAA.

1. Notify management, or the customer, or whoever is affected and needs
to be informed.

2. Take notes. In particular, mark on this recovery plan anything that
needs improvement.

3. Create a new server and add your ssh key.

4. Change the DNS so that $DOMAIN, www.$DOMAIN, and any other
needed name points to the IP address of the new server (see Adding
records to your domain).

5. Create a user and group for your Django project (see Creating a user
and group).

6. Install packages:

apt install python python3 \
python-virtualenv python3-virtualenv \
postgresql python-psycopg2 python3-psycopg2 \
sqlite3 dma nginx-light duply

(Ignore questions on how to setup dma, we will restore its configuration
from the backup later.)

If you use Apache, install apache2 instead of nginx-light. The actual
list of packages you need might be different (but you can also find this
out while restoring).

7. Check duplicity version with duplicity --version; if earlier than
0.7.6 and your backups are in Backblaze B2, install a more recent ver-
sion of duplicity as explained in Installing duplicity in Debian.

8. Create the duply configuration directory and file as explained in Setting
up duplicity and duply (you don’t need to create any files beside conf,
you don’t need exclude or pre).

9. Restore the backup in /var/tmp/restored_files:

duply main restore /var/tmp/restored_files

10. Restore the /opt, /var/opt and /etc/opt directories:

cd /var/tmp/restored_files
cp -a var/opt/* /var/opt/
cp -a etc/opt/* /etc/opt/
cp -a opt/* /opt/

(If you have excluded /opt from backup, clone/copy your Django
project in /opt and create the virtualenv as described in The program
files.)

11. Create the log directory as explained in The log directory.

12. Restore your nginx configuration:

service nginx stop
rm -r /etc/nginx
cp -a /var/tmp/restored_files/etc/nginx /etc
service nginx start

If you use Apache, restore your Apache configuration instead:

service apache2 stop
rm -r /etc/apache2
cp -a /var/tmp/restored_files/etc/apache2 /etc/
service apache2 start

13. Create your static files directory and run collectstatic as explained
in Static and media files.

14. Restore the systemd service file for your Django project and enable the
service:

cd /var/tmp/restored_files
cp etc/systemd/system/$DJANGO_PROJECT.service \

/etc/systemd/system/
systemctl enable $DJANGO_PROJECT

15. Restore the configuration for the DragonFly Mail Agent:

rm -r /etc/dma
cp -a /var/tmp/restored_files/etc/dma /etc/

16. Create the cache directory as described in Caching.

17. Restore the databases as explained in Restoring SQLite and Restoring
PostgreSQL.

18. Restore the duply configuration:

rm -r /etc/duply
cp -a /var/tmp/restored/files/etc/duply /etc/

19. Restore the duply cron job:

cp /var/tmp/restored/etc/cron.daily/duply /etc/cron.daily/

(You may want to list /var/tmp/restored/etc/cron.daily and
/etc/cron.daily to see if there is any other cronjob that needs restor-
ing.)

20. Start the Django project and verify it works:

service $DJANGO_PROJECT start

21. Restart the system and verify it works:

shutdown -r now

The system might work perfectly without restart; the reason we restart it is to
verify that if the server restarts, all services will startup properly.

After you’ve finished, update your recovery plan with the notes you took.

10.5 Recovery testing

In the previous chapter I said several times that you must test your recovery.
Your recovery testing plan depends on the extent to which downtime is an
issue.

If downtime is not an issue, that is, you can find a date and time in which the
system is not being used, the simplest way to test the recovery is to shutdown
the server, pretend it has been entirely deleted, and follow the recovery plan
in the previous section to bring the system up on a new server. Keep the old
server off for a week or a month or until you feel confident it really has no
useful information, then delete it.

If you can’t have much downtime, maybe there are times when the system is
not being written to. Many web apps are like this; you want them to always
be readable by the visitors, but maybe they are not being updated off hours.
In that case, notify management or the customer about what you are going
to do, pick up an appropriate time, and test the recovery with the following
procedure:

1. In the DNS, verify that the TTL of $DOMAIN, www.$DOMAIN, and
any other necessary record is no more than 300 seconds or 5 minutes
(see Adding records to your domain).

2. Follow the recovery plan of the previous section to bring up the sys-
tem on a new server, but omit the step about changing the DNS.

(Hint: you can edit your own hosts file while checking if the new sys-
tem works.)

3. After the system works and you’ve fixed all problems, change the
DNS so that $DOMAIN, www.$DOMAIN, and any other needed name
points to the IP address of the new server (see Adding records to your
domain).

4. Wait for five minutes, then shut down the old server.

You could have zero downtime by only following the first two steps instead
of all four, and after you are satisfied discard the new server instead of the
old one. However, you can’t really be certain you haven’t left something out
if you don’t use the new server operationally. So while following half the
testing plan can be a good idea as a preliminary test in order to get an idea of
how much time will be needed by the actual test, staying there and not doing
the actual test is a bad idea.

If you think you can’t afford any downtime at all, you are doing something
wrong. You will have downtime when you accidentally delete a database,
when there is a hardware or network error, and in many other cases. Pretend-
ing you won’t is a bad idea. If you really can’t afford downtime, you should
setup high availability (which is a lot of work and can fill in several books by
itself). If you don’t, it means that the business can afford a little downtime
once in a while, so having a little scheduled downtime once a year shouldn’t
be a big deal.

In fact, I think that, in theory at least, recovery should be tested during busi-
ness hours, possibly without notifying the business in advance (except to get
permission to do it, but not to arrange a specific time). Recovery isn’t merely
a system administrator’s issue, and an additional recovery plan for manage-
ment might need to be created, that describes how the business will handle the
situation (what to tell the customers, what the employees should do, and so
on). Recovery with downtime during business hours can be a good exercise
for the whole business, not just for the administrator.

10.6 Copying offline

Briefly, here is how to copy the server’s data to your local machine:

awk '{ print $2 }' /etc/duply/main/exclude >/tmp/exclude
tar czf - --exclude-from=/tmp/exclude / | \

split --bytes=200M - \
/tmp/`hostname`-`date --iso-8601`.tar.gz.

This will need some explanation, of course, but it will create one or more files
with filenames similar to the following:

/tmp/myserver-2017-01-22.tar.gz.aa

/tmp/myserver-2017-01-22.tar.gz.ab

/tmp/myserver-2017-01-22.tar.gz.ac

We will talk about downloading them later on. Now let’s examine what we
did. We will check the last command (i.e. the tar and split) first.

We’ve seen the tar command earlier, in Installing duplicity in Debian. The
“c” in “czf” means we will create an archive; the “z” means the archive will be
compressed; the “f” followed by a file name specifies the name of the archive;
“f” followed by a hyphen means the archive will be created in the standard
output. The last argument to the tar command specifies which directory
should be put in the archive; in our case it’s a mere slash, which means the
root directory. The --exclude-from=/tmp/exclude option means that files
and directories specified in the /tmp/exclude file should not be included in
the archive.

This would create an archive with all the files we need, but it might be too
large. If your external disk is formatted in FAT32, it might not be able to hold
files larger than 2 GB. So we take the data thrown at the standard output and
we split it in manageable chunks of 200 MB each. This is what the split

command does. The hyphen in split means “split the standard input”. The
last argument to split is the file prefix; the files split creates are named
PREFIXaa, PREFIXab, and so on.

The backticks in the specified prefix are a neat shell trick: the shell executes
the command within the backticks, takes the command’s standard output, and
inserts it in the command line. So the shell will first execute hostname and
date --iso-8601, it will then create the command line for split that contains
among other things the output of these commands, and then it will execute
split giving it the calculated command line. We have chosen a prefix that
ends in .tar.gz, because that is what compressed tar files end in. If you
concatenate these files into a single file ending in .tar.gz, that will be the
compressed tar file. We will see how to concatenate them two sections ahead.

Finally, let’s explain the first command, which creates /tmp/exclude.
We want to exclude the same directories as those specified in
/etc/duply/main/exclude. However, the syntax used by duplicity is dif-
ferent from the syntax used by tar. Duplicity needs the pathnames to be
preceded by a minus sign and a space, whereas tar just wants them listed.
So the first command merely strips the minus sign. awk is actually a whole
programming language, but you don’t need to learn it (I don’t know it either).
The { print $2 } means “print the second item of each line”. While awk is
the canonical way of doing this in Unix-like systems, you could do it with
Python if you prefer, but it’s much harder:

python -c "import sys;\
print('\n'.join([x.split()[1] for x in sys.stdin]))" \
</etc/duply/main/exclude >/tmp/exclude

Now let’s download the archive. That’s easy using scp (on Unix-like sys-
tems) or pscp (on Windows). Assuming the external disk is plugged in and
available as $EXTERNAL_DISK (i.e. something like /media/user/DISK on
GNU/Linux, and something like E:\ on Windows), you can put it directly in
there like this:

scp root@$SERVER_IP_ADDRESS:/tmp/*.tar.gz.* $EXTERNAL_DISK

In Windows, use pscp instead of scp. You can also use graphical tools, how-
ever command-line tools can often be more convenient.

In Unix-like systems, a better command is rsync:

rsync root@$SERVER_IP_ADDRESS:/tmp/*.tar.gz.* $EXTERNAL_DISK

If for some reason the transfer is interrupted and you restart it, rsync will
only transfer the parts of the files that have not yet been transferred. rsync

must be installed both on the server and locally for this to work. You may
have success with Windows rsync programs such as DeltaCopy.

One problem with the above scheme is that we temporarily store the split tar
file on the server, and the server might not have enough disk space for that.
In that case, if you run a Unix-like system locally, this might work:

ssh root@$SERVER_IP_ADDRESS \
"awk '{ print \$2 }' /etc/duply/main/exclude

>/tmp/exclude; \
tar czf - --exclude-from=/tmp/exclude /" | \

split --bytes=200M - \
$EXTERNAL_DISK/$SERVER_NAME-`date --iso-8601`.tar.gz.

The ssh command will login to the remote server and execute the commands
awk and tar, and it will capture their standard output (i.e. tar‘s standard
output, because awk‘s is redirected) and it will throw it in its own standard
output.

The trickiest part of this ssh command is that, in the awk, we have escaped the
dollar sign with a backslash. awk is a programming language, and { print

$2 } is an awk program. awk must literally receive the string { print $2

} as its program. When we give a local shell the command awk ’{ print

$2 }’, the shell leaves the { print $2 } as it is, because it is enclosed in
single quotes. If, instead, we used double quotes, we would use awk "{ print

\$2 }", otherwise, if we simply used $2, the shell would try to expand it to
whatever $2 means (see Bash syntax). Now the string given to ssh is a double-
quoted string. The local shell gets that string and performs expansions and
runs ssh after it has done these expansions; and ssh gets the resulting string,
executes a shell remotely, and gives it that string. You can understand the rest
of the story with a bit of thinking.

If you aren’t running a Unix-like system locally, something else you can do
is use another Debian/Ubuntu server that you have on the network and does
have the disk space. You can also temporarily create one at Digital Ocean
just for the job. After running the above command to create the backup and
store it in the temporary server, you can then copy it to your local machine
and external disk.

You may have noticed we did not backup the databases. I assume that your
normal backup script does this every day, and it stores the saved databases in
/var/backups. You need to be careful, however, to not run the tar command
at the same time cron and duply run /etc/duply/main/pre, otherwise you
might be copying them at exactly the time they are being overwritten.

10.7 Storing and rotating external disks

In the previous chapter I told you you need two external disks. Store one of
them at your office and the other elsewhere—at your home, at your boss’s
home, at a bank vault, at a backup storage company, or at your customer’s of-
fice or home (however don’t give your customer a disk that also contains data
of other customers of yours). Whatever place you chose, I will be calling it
“off site”. So you will be keeping one disk off site and one on site. Whenever
you want to perform an offline backup (say once per month), connect the disk
you have on site, delete all the files it contains, and perform the procedure
described in the previous section to backup your servers on it. After that,
physically label it with the date (overwriting or removing the previous label),
and move it off site. Bring the other disk on site and let it sit there until the
next offline backup.

Why do we use two disks instead of just one? Well, it’s quite conceivable
that your online data (and online backup) will be severely damaged, and you
can perform an offline backup, wiping out the previous one, before realizing
the server’s severely damanged. In that case, your offline disk will contain
damaged data. Or the attacker might wait for you to plug in the backup disk,
and then wipe it out and proceed to wipe out the online backup and your
servers.

You might object that there is a weakness to this plan because the two disks
are at the same location, off site, when you take there the recently used disk
and exchange it with the older one. I wouldn’t worry too much about this.
Offline backups are extra backups anyway, and you hope to never need to use
them. While it’s possible that someone can get access to all your passwords
and delete all your online servers and backups, the probability of this hap-
pening at the same time as the physical destruction of your two offline disks
at the limited time they are both off site is so low that you should probably
worry more about your plane crashing.

With this scheme, you might lose up to one month of data. Normally this is
too much, but maybe for the extreme case we are talking about it’s OK. Only
you can judge that. If you think it’s unacceptable, you might perform offline
backups more often. If you do them more often than once every two weeks,
it would be better to use more external disks.

10.8 Recovering from offline backups

You will probably never need to recover from offline backups, so we won’t go
into much detail. If a disaster happens and you need to restore from offline,
the most important thing you need to care about is the safety of your external
disk. Make absolutely certain you will only plug it on a safe computer, one
that is certainly not compromised by any attacker. Do this very slowly and
think about every step. After plugging the external disk in, copy its files to
the computer’s disk, then unplug the external disk immediately and keep it
safe.

Recovery is the same as what’s described in Restoring an entire system,
except for the steps that use duply and duplicity to restore the backup in
/var/tmp/restored_files. Instead, copy the .tar.gz.XX files to the server’s
/var/tmp directory; use scp or pscp or rsync for that (rsync is the best if you
have it). When you have them all, join them in one piece with the concatena-
tion command, cat, then untar them:

cd /tmp
cat *.tar.gz.* >backup.tar.gz
mkdir restored_files
cd restored_files
tar xf ../backup.tar.gz

If you are low on disk space, you might join the concatenation command with
the tar command, like this:

cd /tmp
mkdir restored_files
cd restored_files
cat ../*.tar.gz.* | tar xf -

10.9 Scheduling manual operations

In the previous chapter, I described stuff that you will eventually set up in such
a way that it runs alone. Your servers will be backing up themselves without
your knowing anything about it. In contrast, all the procedures I described in
this chapter are to be manually executed by a human:

• Restoring part of a system or the whole system

• Recovery testing

• Copying offline

• Recovering from offline backups

Some of these procedures will be triggered by an event, such as losing data.
Recovery testing, however, and copying offline, will not be triggered; you
must take care that they occur. This can be as simple as adding a few recurring
entries to your calendar, or as hard as inventing foolproof procedures to be
added to the company’s operations manual. Whatever you do, you must make
sure it works. If you don’t test recovery, it is almost certain it will take too
long when you need it, and it is quite likely you will be unable to recover
at all.

10.10 Chapter summary

• Use the provided recovery plan or devise your own.

• Make sure you will have access to the recovery plan (and all required
information such as logins and passwords) even if your server stops
existing.

• Test your recovery plan once a year or so.

• Backup online as well as to offline disks and store them safely.

• Don’t backup to offline disks at the same time as the system is perform-
ing its online backup.

• Create an offline backup schedule and a recovery testing schedule and
make sure they are being followed.

CHAPTER 11

About/Copyright

Deploying Django on a single Debian or Ubuntu server
Edition DEV (DATE)

© 2016–2018 Antonis Christofides

This book is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License, except for the
code and configuration snippets; to the extent possible under law, Antonis
Christofides has waived all copyright and related or neighboring rights to
said snippets.

The book (and the source code) can be reached through https://
djangodeployment.com.

I am grateful to Aisha Bello for a review of the Static and Media Files chap-
ter; to Curtis Maloney for a review of the Gunicorn chapter; and to Markus
Holtermann and Chris Pantazis for useful comments.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://djangodeployment.com
https://djangodeployment.com

	Getting started
	Introduction
	Getting a server
	Introduction to SSH keys
	How SSH keys work
	Using an SSH agent
	Essential GNU/Linux commands
	Shell files, editing files, remote copying
	Installing software on a Debian/Ubuntu server
	Reading the documentation
	Setting up the system locale
	Quickly starting Django on a server
	Things we need to fix

	DNS
	Introduction to the DNS
	Registering a domain name
	Adding records to your domain
	Changing the domain's name servers
	Editing the hosts file
	Visiting your Django project through the domain
	Chapter summary

	Users and directories
	Creating a user and group
	The program files
	The data directory
	The log directory
	The production settings
	Managing production vs. development settings
	Running the Django server
	Chapter summary

	The web server
	Installing nginx
	Configuring nginx to serve the domain
	Configuring nginx for django
	Installing Apache
	Configuring Apache to serve the domain
	Configuring Apache for django
	Chapter summary

	Static and media files
	Setting up Django
	Setting up nginx
	Setting up Apache
	Media files
	File locations
	Chapter summary

	Gunicorn
	Why Gunicorn?
	Installing and running Gunicorn
	Configuring systemd
	More about systemd
	The top command: memory management
	The top command: CPU usage
	Chapter summary

	Production settings
	Email
	Debug
	Using a local mail server
	Secret key
	Logging
	Caching
	Recompile your settings
	Clearing sessions
	Chapter summary

	PostgreSQL
	Why PostgreSQL?
	Getting started with PostgreSQL
	PostgreSQL connections
	PostgreSQL roles and authentication
	PostgreSQL databases and clusters
	Further reading

	Recovery part 1
	Why ``recovery''?
	Where to backup
	Estimating storage cost
	Setting up backup storage
	Setting up duplicity and duply
	Duply configuration
	Excluding files
	Additional directories for excluding or including
	Backing up databases
	Running scheduled backups
	Chapter summary

	Recovery part 2
	Restoring a file or directory
	Restoring SQLite
	Restoring PostgreSQL
	Restoring an entire system
	Recovery testing
	Copying offline
	Storing and rotating external disks
	Recovering from offline backups
	Scheduling manual operations
	Chapter summary

	About/Copyright

