

 [image: Cover image]

 Navigation

 	
 next

 	Deploying Django on a single Debian or Ubuntu server »

Deploying Django on a single Debian or Ubuntu server

	1. Getting started
	1.1. Introduction

	1.2. Getting a server

	1.3. Introduction to SSH keys

	1.4. How SSH keys work

	1.5. Using an SSH agent

	1.6. Essential GNU/Linux commands

	1.7. Shell files, editing files, remote copying

	1.8. Installing software on a Debian/Ubuntu server

	1.9. Reading the documentation

	1.10. Setting up the system locale

	1.11. Quickly starting Django on a server

	1.12. Things we need to fix

	2. DNS
	2.1. Introduction to the DNS

	2.2. Registering a domain name

	2.3. Adding records to your domain

	2.4. Changing the domain’s name servers

	2.5. Editing the hosts file

	2.6. Visiting your Django project through the domain

	2.7. Chapter summary

	3. Users and directories
	3.1. Creating a user and group

	3.2. The program files

	3.3. The data directory

	3.4. The log directory

	3.5. The production settings

	3.6. Managing production vs. development settings

	3.7. Running the Django server

	3.8. Chapter summary

	4. The web server
	4.1. Installing nginx

	4.2. Configuring nginx to serve the domain

	4.3. Configuring nginx for django

	4.4. Installing Apache

	4.5. Configuring Apache to serve the domain

	4.6. Configuring Apache for django

	4.7. Chapter summary

	5. Static and media files
	5.1. Setting up Django

	5.2. Setting up nginx

	5.3. Setting up Apache

	5.4. Media files

	5.5. File locations

	5.6. Chapter summary

	6. Gunicorn
	6.1. Why Gunicorn?

	6.2. Installing and running Gunicorn

	6.3. Configuring systemd

	6.4. More about systemd

	6.5. The top command: memory management

	6.6. The top command: CPU usage

	6.7. Chapter summary

	7. Production settings
	7.1. Email

	7.2. Debug

	7.3. Using a local mail server

	7.4. Secret key

	7.5. Logging

	7.6. Caching

	7.7. Recompile your settings

	7.8. Clearing sessions

	7.9. Chapter summary

	8. PostgreSQL
	8.1. Why PostgreSQL?

	8.2. Getting started with PostgreSQL

	8.3. PostgreSQL connections

	8.4. PostgreSQL roles and authentication

	8.5. PostgreSQL databases and clusters

	8.6. Further reading

	9. Recovery part 1
	9.1. Why “recovery”?

	9.2. Where to backup

	9.3. Estimating storage cost

	9.4. Setting up backup storage

	9.5. Setting up duplicity and duply

	9.6. Duply configuration

	9.7. Excluding files

	9.8. Additional directories for excluding or including

	9.9. Backing up databases

	9.10. Running scheduled backups

	9.11. Chapter summary

	10. Recovery part 2
	10.1. Restoring a file or directory

	10.2. Restoring SQLite

	10.3. Restoring PostgreSQL

	10.4. Restoring an entire system

	10.5. Recovery testing

	10.6. Copying offline

	10.7. Storing and rotating external disks

	10.8. Recovering from offline backups

	10.9. Scheduling manual operations

	10.10. Chapter summary

	11. About/Copyright

 Last updated on Apr 15, 2019.

 Navigation

 	
 next

 	
 previous |

 	Deploying Django on a single Debian or Ubuntu server »

1. Getting started

1.1. Introduction

I want you to understand how Django deployment works, and in order for
you to understand it we’ll need to experiment. So you will need an
experimental Debian or Ubuntu server. You could create a virtual machine
on your personal system, but it will be easier and more instructive if
you have a virtual machine on the network. So go to Hetzner, Digital
Ocean, or whatever is your favourite provider, and get a virtual server.
In the rest of this book I will be using $SERVER_IPv4_ADDRESS to denote
the ip address of the server on which your Django project is running; so
you must mentally replace $SERVER_IPv4_ADDRESS with “1.2.3.4” or
whatever the address of your server is. Likewise with
$SERVER_IPv6_ADDRESS, if your server has one.

If you find the above confusing, maybe it’s because you don’t know what
this book is about. “Deployment” means installing your Django
application on production. This book doesn’t teach you how to develop
with Django; you need to already know that. If you don’t, you need to
read another book.

If you are really looking to deploy your Django application, and you can
already create a Debian or Ubuntu server, login to it with ssh, use
scp to copy files, use basic commands like ls, and understand
some basic encryption principles, that is, what is a public and private
key, you can probably skip most of this chapter. Otherwise, I’ll take
you step by step, right from getting a virtual server, logging in to it,
and using essential GNU/Linux commands.

1.2. Getting a server

Until recently, I used to create test servers on my laptop using
virtualbox and/or vagrant. However, virtual servers on the cloud have
become so cheap that it is usually better to hire one there. It’s faster
to set up, and you don’t need to worry about NAT. The other time I
needed a Ubuntu server for a brief test. I created one on DigitalOcean
within a couple of minutes; I made my test; and then I destroyed the
server, after about half an hour. DigitalOcean’s charge for that was
$0.01. The cool thing about DigitalOcean is that you can get a test
server for only as long as you need it, and get charged only for the
number of hours for which the server exists. In other providers you
usually pay for the whole month.

(Note: I am not affiliated with DigitalOcean, and I am not using their
referrals program.)

So, if you don’t already have a cloud VM provider, sign up on
https://digitalocean.com and create a droplet. DigitalOcean calls its
servers droplets, but they are just virtual machines. In order to create
a droplet, you need to choose the operating system and some other
things.

If you don’t want to know much about your options for the operating
system, just choose Ubuntu 16.04 64 bit.

Tip

Debian or Ubuntu?

These two operating systems are practically the same system. You have
probably already chosen one of the two to work with, and there is no
reason to reconsider.

If you haven’t chosen yet, and you want to know nothing about this,
go ahead and pick up the latest LTS version of Ubuntu, which
currently is 16.04 (and will continue to be so until April 2018).

The reason I recommend Ubuntu is mostly that it is more popular and
therefore has better support by virtual server providers. Ubuntu’s
Long Term Support versions also have five years of support instead of
only three for Debian (though recently Debian has started to offer
LTS support but it’s kind of unofficial). On the other hand I feel
that Ubuntu sometimes rushes a bit too much to get the latest
software versions in the operating system release, whereas Debian can
be more stable; but this is just a feeling, I have no hard data. I
use Debian, but this is a personal preference because sometimes I’m
too much of a perfectionist (with deadlines) and I want things my own
way.

In Ubuntu’s version numbering, the first number is the year and the
second is the month; so 16.04 was released in April 2016. The LTS
versions are the ones released in April of even years, so the next LTS
version will be 18.04. I don’t see why someone would use the 32-bit
version, which can support only up to 4 GB of RAM, so choose the 64-bit
version. Don’t choose a non-LTS version; support for these lasts
less than a year, and it is too little.

Besides operating system, you also need to choose size, data center,
IPv6, SSH keys, and host name.

The size of the server depends on how heavy the application is. For
our purpose, which is testing Django deployment, the smallest one is
usually more than enough. In fact, 512 MB of RAM and 20 GB of disk space
are sometimes enough for small applications in production.

Choose the data center that is nearest to you.

I like my servers to have IPv6, so I always turn that on.

Don’t specify SSH keys yet, unless you are comfortable with them
already. I devote the whole next section to SSH keys.

Finally, choose a host name. Usually, when it is for testing, I look
at the time and if it’s 17:02 I name the server test1702. For
production, if I don’t have anything better, I choose names of Greek
rivers at random.

Hit the big green Create button and your server will be ready after one
or two minutes. DigitalOcean will create a password for your server and
email it to you.

In order to login from Unix (such as Linux or Mac OS X), open a
terminal and type this:

ssh root@[server ip address]

The first time you attempt this, it will warn you that the authenticity
of the host cannot be established; tell it “yes”, you are sure you want
to continue connecting. It will then ask for the password. The first
time you connect, it may force you to change the password. Note that
when you type a password, nothing at all is shown, no bullets or other
placeholders, it’s as if you are typing nothing, but it is actually
registering your keystrokes.

You can logout of the server by entering exit at its command prompt.
Ctrl+D also works.

From Windows you first need to install an SSH client. The most
popular one is PuTTY, which you can download from http://putty.org/.
It’s a single file, putty.exe. Each time you execute it, it will
launch its configuration window. Type the server ip address in the “Host
Name (or IP address)” field and click Open.

The first time you attempt this, it will warn you that the authenticity
of the host cannot be established; tell it Yes, you trust the host. It
will then ask for the user name (“login as:”), which is root, and
the password. The first time you connect, the server may force you to
change the password. Note that when you type a password, nothing at all
is shown, no bullets or other placeholders, it’s as if you are typing
nothing, but it is actually registering your keystrokes.

Eventually you will want to copy and paste text from and to PuTTY. Just
selecting text automatically copies it to the clipboard, and pasting is
just right-clicking.

You can logout of the server by entering exit at its command prompt.
Ctrl+D also works.

1.3. Introduction to SSH keys

You have deadlines. Learning about SSH keys doesn’t seem to be urgent.
You can live without them, can’t you? Is it worth to spend an hour to
learn about them? The answer is yes. If you log on to a server 12 times
per day (a conservative estimate), and it takes on the average 5 seconds
to type your password (and retype it if it’s wrong), that’s one minute.
You will have paid off your investment in three months. But there are
more savings; when creating a droplet on DigitalOcean you will just be
ticking a box and you will be ready to login. Otherwise you will be
needing to wait for the email to come, copy and paste your password, and
go through the process of changing the password. SSH keys can also be
used on GitHub and other services. Finally, a little understanding of
public key cryptography will later help you setup HTTPS, which is based
on the same principles. So let’s start.

You will first create a pair of keys, which we call the public key and
the private key. Let’s just do it first. You won’t be understanding what
we are doing, but I will explain it afterwards.

On Unix, such as Ubuntu or Mac OS X, just enter the command
ssh-keygen, which stands for ssh key generator. It will ask you a
couple of questions:

	It will ask where to store the keys. Since we are just testing, I
suggest to store them in /tmp/id_rsa.

	It will ask for a passphrase. For the time being, do not use a
passphrase. We will come to the passphrase later on.

This will create two files; the private key will be in /tmp/id_rsa,
and the public key in /tmp/id_rsa.pub.

On Windows, download PuTTYgen from the PuTTY download page [https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html].
Like PuTTY, PuTTYgen is a single .exe file which you
double-click on and it runs. Click on “Generate”. It will ask you to
move the mouse over the blank area; do so. After it finishes, click
“Save private key”. Ignore the warning about having an empty
passphrase, we will deal with that later. Save the private key to a
file named id_rsa.ppk. Leave the PuTTYgen window open, as we will
need to copy the public key shown at the top, in the field “Public key
for pasting into OpenSSH authorized_keys file”.

In order to login to a server, create a droplet in DigitalOcean. In the
droplet creation form, at the “Add your SSH keys” section, click “New
SSH Key”. In the “SSH key content” field, paste the public key. In
Unix, the public key is the contents of the file id_rsa.pub; in
Windows, it is displayed at the top of the PuTTYgen window. When you
create the droplet, it won’t send you any email, as you won’t need a
password. The server will be ready for login with your SSH key.

Here is how to logon to the droplet from Unix:

ssh -i /tmp/id_rsa root@[server_ip_address]

In Windows, start PuTTY, and enter the server’s IP address at the
“Host Name” field (also look at Fig. 1.1). In addition, in
the “Category” tree on the left, go to “Connection”, “Data”, and in
“Auto-login username” enter “root”; then go to “SSH”, “Auth”, and in
“Private key file for authentication” specify the id_rsa.ppk file;
finally, go to “Session”, specify a name in “Saved Sessions”, and click
“Save”. Finally, click “Open”. You should now login on the server
without password.

[image: _images/putty-config.png]
Fig. 1.1 How to configure PuTTY

What’s more, in the future, if you just open PuTTY and double-click on
the saved session name, you will immediately logon to the server.

1.4. How SSH keys work

As you noticed, the key generator created a public key and a private
key. These “keys” are just numbers, integers, but large ones; if printed
in decimal, they would be several hundreds of digits long. In order to
save some space, they are stored in the files in a format that is more
condensed than decimal, but the file format does not concern us (in
fact, the private key file contains both keys, so if you lose the public
key file you can generate it from the private key file using ssh-keygen
-y in Unix or clicking “Load” on PuTTYgen).

These numbers are called keys because they are used in encryption and
decryption. Encryption systems use keys. For example, a silly encryption
system could be to replace a with b, b with c, and so on, so that the
word “chair” becomes “dibjs” and the word “zoo” becomes “app”. Or,
instead of moving one letter forward you could move two letters forward,
so “chair” becomes “ejckt” and “zoo” becomes “bqq”. In both cases, the
algorithm is the same, but the key changes—in the first example the key
is 1 (we moved one letter forward) and in the second it is 2 (two
letters forward). In that algorithm, the key is a number from 1 to 25.
If you send me an encrypted message with this algorithm and someone
intercepts it, if they know the key with which it was encrypted they can
decrypt it. Of course in this dummy system it’s trivial to find the key,
and there are only 25 possible keys anyway, but what I want to
illustrate here is that you need the key in order to decrypt the
message. Serious encryption algorithms like AES are similar to our silly
algorithm with respect to the fact that you decrypt with the same key
that you used to encrypt, which gives them the name “symmetric”.

Now, asymmetric, or public key cryptography algorithms, such as RSA,
have the property that keys go in pairs, and if you encrypt a message
with one key, you can only decrypt it with the other key of the pair.
What’s more, although there exists a method with which you can generate
pairs of keys, if you know one of the two keys of a pair, you can’t
derive the other. At least that’s what the mathematicians think. So our
generator, ssh-keygen or PuTTYgen, generated a pair of two such
numbers. It christened one of them “public key” and the other “private
key”. So now if you want to send me an encrypted message I can just give
you my public key, and it doesn’t matter if someone intercepts it. You
can encrypt the secret message with my public key and send it to me, and
it doesn’t matter if someone intercepts it. Only I have the
corresponding private key, and only I can decrypt the message.

But how can this be used for authentication? Well, I can take any
message, such as “hello world”, and encrypt it with my private key. I
can then send it to you. You have my public key. You can decrypt the
message. Since you were able to decrypt it with my public key, you know
that it was encrypted with my private key. But only I have my private
key, so it was I who encrypted the message. So you know I did it and
no-one else. This is how digital signatures work, and how ssh
authentication works.

So, the server is configured to accept login from you. It knows your
public key. The server asks the ssh client to encrypt some information
with your private key. The ssh client (i.e. ssh on Unix or PuTTY on
Windows) does so, and sends the encrypted information back to the
server. The server verifies it can be decrypted with your public key,
and then it gives you access.

You configure a server to accept SSH keys simply by adding them to
/root/.ssh/authorized_keys, one public key per line. Logon to the
server and examine the contents of the file (nano is the simplest
text editor in GNU/Linux systems):

nano /root/.ssh/authorized_keys

You will see that it contains a line with the SSH key you pasted from
PuTTYgen or from the id_rsa.pub file. That is all the Digital
Ocean UI did, it just added the key to that file. You can specify many
allowed keys in that file, one key per line. /root is the home
directory of the root user, so the keys specified in
/root/.ssh/authorized_keys may logon as root. If the system has a
user named joe, the home directory of joe is usually /home/joe, and
the keys allowed to logon as joe will be stored in
/home/joe/.ssh/authorized_keys.

It’s not only people who have SSH keys; SSH servers also have their own
keys. Your server has key pairs in /etc/ssh. It’s not only you who
needs to authenticate with the server, but the server also needs to
authenticate with you. You really need to know that you are logging in
to your own server; an attacker could have compromised your local DNS
cache and be directing you towards another server. They could steal
valuable information if they did that, or obtain access to the real
server. This is why, the first time you connect to a server, your SSH
client gives you a warning. The server has provided its public key and
has proven that it has the corresponding private key, but the SSH client
has never connected to this server before, so it has no way of verifying
that that server is really that server. The next times you connect to
that server there will be no warning, because the SSH client can now
verify that it is the same server as the server it connected to the
previous time. On Unix, the ssh client stores server keys in
$HOME/.ssh/known_hosts; PuTTY stores them in the registry, in
HKEY_CURRENT_USER\Software\SimonTatham\PuTTY\SshHostKeys.

You may have noticed that the warning mentions the “fingerprint” of the
key of the server. It could have just given us the public key, but this
would have been inconvenient because keys are so large. Therefore to
identify keys we use hashes of the keys which we call fingerprints and
are much smaller; they are usually numbers with 32 hexadecimal digits.
While it cannot be ruled out that two different keys might have the same
fingerprint, the probability of this happening is lower than the sky
falling on your head in the next minute, so it’s not something you
should worry about.

1.5. Using an SSH agent

Usually you only need a single pair of keys. On Unix, we usually
store them at $HOME/.ssh/id_rsa and $HOME/.ssh/id_rsa.pub.
ssh-keygen by default places them there, and the ssh client, “ssh”,
uses them without needing to specify any parameter. On Windows there
is no prescribed location, so you should put your .ppk file wherever
it is convenient.

Now, whoever has your private key can probably format all your servers,
and possibly delete all your software on GitHub. If your laptop is
stolen, they get your key (unless your disk is encrypted). It doesn’t
matter if they don’t know your boot password or your login password.
Anyone with a screwdriver can reset your BIOS password, and there are
several ways to access a disk when you don’t know the login password;
one of the most obvious is to plug the disk on another system. For this
reason, you should encrypt your private key file with a passphrase. You
can either create a new key and not give it an empty passphrase, or you
can change the passphrase of an existing key. You do this with
ssh-keygen -p -f /tmp/id_rsa (you can omit the -f /tmp/id_rsa
part if you want to use the default file, $HOME/.ssh/id_rsa), or by
loading the key in PuTTYgen, specifying a passphrase, and saving it
again.

But it doesn’t make any sense to key in the passphrase each time you
want to login to the server. There would be little advantage over typing
the password each time. So what we do is run an “agent”, software that
runs continuously in the background, and keeps our unencrypted private
key cached in memory. The ssh client communicates with the agent
whenever needed and gets the key from there. The agent only asks for the
passphrase once after you login to your local machine, and then keeps it
cached until logout or shutdown. This, combined with a screen saver that
locks your screen after a few minutes of inactivity (I use 5 minutes),
is reasonably secure.

On GNU/Linux, you don’t need to do anything. ssh-agent, as the
agent is called, is installed by default. The first time you attempt to
ssh into the remote server, it will ask you for your passphrase.

On Windows, you need to download pageant.exe from the PuTTY
download page [https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html] and set it up to start at login. On Windows 7, you go to
Start, All programs, Startup folder, right-click on the folder and
select “Open”, and in there create a new shortcut which should execute
C:\...\pageant.exe C:\...\your_key.ppk. After you do that, try to
logout and login (or restart the system altogether), and as soon as you
login pageant will start and ask you for your passphrase.

Finally, on Mac OS X, I don’t know how it works, but if you search
the web for “Mac OS X ssh-agent” you should find enough information.

1.6. Essential GNU/Linux commands

Right after you login, enter this command:

pwd

This prints the working directory (also called the current directory),
which right after login is /root, which is equivalent, very roughly,
to C:\Users\administrator in Windows (which in older Windows
versions was C:\Documents¬and¬Settings\administrator). /root is
called the “home directory” of the root user. Most other users will have
home directories under /home; for example, if there is user named
joe, the home directory will usually be /home/joe; the root user is
an exception.

In Unix-like operating systems, there is nothing like the drive letters
of Windows. I just plugged a USB storage device on my Debian laptop, and
I can see its files under /media/anthony/ANTONIS. Different storage
devices are thus “mounted” in different locations of the single
directory tree.

Now let’s try to view the contents of the directory:

ls

“ls” stands for “list” and is the equivalent of the Windows dir
command. If it didn’t show anything, it’s because the directory is
empty. If you type ls on its own, it shows the contents of the current
directory. Try listing the root directory instead:

ls /

You can make it list details by adding the -l parameter:

ls -l /

In that case, the output is like Fig. 1.2.

[image: _images/output_of_ls.png]
Fig. 1.2 Output of ls

Usually when we use -l we also use -h, which shows prettier
numbers; for example, instead of 4096 it shows 4.0K. You can type either
ls -l -h, or, as is more common, ls -lh.

Just as in Windows, you can change directory using the cd command:

cd /
pwd

In contrast to Windows, cd on its own takes you to the home
directory, so for the root user, a mere cd is equivalent to cd
/root. The Unix-like equivalent of a mere cd in Windows is the
pwd command.

Just a while ago, we tried ls on the /root directory. We are
interested in some files that happen to be hidden. In Unix, when a file
begins with a dot, it’s “hidden”. This means that ls doesn’t
normally show it, and that when you use wildcards such as * to denote
all files, the shell will not include it. Otherwise it’s not different
from non-hidden files. To list the contents of a directory including
hidden files, use the -a option:

ls -a

This will include . and .., which denote the directory itself
and the parent directory (/root/. is the same as /root;
/root/.. is the same as /). You can use -A instead of -a
to list all hidden files except . and ...

The last command we will examine in this section is shutdown. To
restart a machine, enter shutdown -r now. You can also shut down a
system with shutdown -h now, but this much is less often used on
servers.

1.7. Shell files, editing files, remote copying

After the ssh server authenticates you and decides to give you access,
it runs your shell. The shell is the program that accepts input from
you, parses it, and executes the commands you type. There is a number of
shells you can choose from, but most probably you are using the most
popular, which is called “bash”. Bash stores the commands you type in
.bash_history; when at the shell prompt you use the arrow up/down
keys to move through your history of commands, bash gets this history
from the file.

When you login, bash executes the commands in .profile; and when you
logout, it executes the commands in .bash_logout. Finally, each time
an interactive shell starts, it executes the commands in .bashrc.
The difference between .bashrc and .profile is that the latter
is executed only by a “login shell”; that is, by the shell started by
the ssh server as soon as you login; but if you start another shell,
e.g. by entering bash, only .bashrc is executed. Type this:

bash
exit

The first command starts another bash that runs inside the bash you were
running before. The second command exits from the nested bash and
returns you to the previous bash. Of course you would normally not do
something like this, but it demonstrates that the “outside” shell is
probably your login shell, whereas the “inside” shell is another
interactive shell. When the nested one starts, it executes .bashrc.

Now, let’s edit .bashrc.

nano .bashrc

We have already seen nano before—it’s the simplest editor in
GNU/Linux systems like Debian and Ubuntu. Many people prefer to use
vim or emacs, which are very powerful but need some learning.
nano is as simple as Windows Notepad, but it does not need a GUI. At
the bottom it shows you what the special keys do; for example, ^X
(Ctrl+X) exits the editor.

I like the bash prompt to be colored. To use the same colors I use, add
this snippet at the end of the .bashrc file:

red=$(tput setaf 1)
green=$(tput setaf 2)
blue=$(tput setaf 4)
reset=$(tput sgr0)
PS1='\[$red\]\u\[$reset\]@\[$green\]\h\[$reset\]:\[$blue\]\W\[$reset\]\$ '

Now exit nano by saving the file, logout and login again, and the
prompt should be colored. I’m not going to explain how these commands
work, as they are quite complicated; my main purpose here was for you to
get a grip with editing a file and see the results.

If you have custom stuff in your .bashrc, you won’t want to login to
the server, edit .bashrc, make the changes, save, logout, and login
again, and all that each time you create a new virtual server. Instead,
you will want to keep your custom .bashrc somewhere in your local
machine and copy it to the new virtual server. If your local machine
runs GNU/Linux, you can use the scp command:

scp .bashrc root@1.2.3.4:/root/

If you have Windows, download pscp.exe from the PuTTY download page,
make sure it’s in the system path, and run it from a command prompt or
PowerShell like this:

pscp .bashrc root@1.2.3.4:/root/

The command means “open an ssh connection to machine 1.2.3.4, login as
root, and using the ssh connection transfer the file .bashrc from
the local machine to the remote, and put it in /root/”. It uses the
ssh keys stored in .ssh or in PuTTY, so it can login without a
password. Instead of .bashrc you could have used a full or relative
path such as /home/anthony/.bashrc or C:\Users\user\.bashrc.
Instead of root@1.2.3.4:/root/ you could have simply used
root@1.2.3.4: (don’t forget the colon at the end); if you don’t
specify a destination, the remote user’s home directory is the default.
Copying also works the other way round; scp root@1.2.3.4:.bashrc .
would fetch the remote file /root/.bashrc locally and put it in the
current directory.

1.8. Installing software on a Debian/Ubuntu server

If you want to install nginx or any other software on Windows, you need
to go to the software’s web site, download it, and execute the
downloaded installer. In Debian and Ubuntu we rarely do something like
this. To install nginx, just enter this command:

apt install nginx

apt is the Advanced Package Tool. Except for “install” it also has
“remove”, with which you can uninstall, and some other options. You will
find out that people mostly use apt-get instead of apt, which is
also correct. apt actually uses apt-get behind the scenes.

What actually happens is that the Debian/Ubuntu developers have packaged
nginx so that it can be installed with apt. They have done this with
thousands of software items, so whenever you want to install something
on your server, chances are it’s packaged. This is true for other
GNU/Linux systems as well, though they usually use different package
managers. CentOS uses rpm, for example.

apt keeps a list of available packages. This needs to be updated
regularly, because it changes whenever there are security updates. Try
this to update the list:

apt update

After you update the list, you also need to upgrade any installed packages:

apt upgrade

After creating a new server, pretty much the first thing you should do
is to update the list and upgrade the software. The two commands can be
joined into a single one like this:

apt update && apt -y upgrade

This idiom means “run apt update, and if it succeeds, run apt -y
upgrade”. The -y option tells apt to not ask you “Do you want to
continue?”, but instead assume yes.

In contrast to Windows, which installs updates automatically,
Debian/Ubuntu servers don’t, unless you install package
unattended-upgrades. However, I don’t recommend it. I think it’s a
bad idea to run unattended upgrades, and I’ve once seen a server stop
working when it was performing unattended upgrades and the upgrade
procedure needed to ask a question. We found out the next morning. What
I do is that I am subscribed to the Debian Security Announce [https://lists.debian.org/debian-security-announce/] mailing
list, so whenever there’s a problem I get notified and I run apt
update && apt -y upgrade. I’m using Debian on all my servers; if you
use Ubuntu, you should subscribe to the Ubuntu Security Announce [https://lists.ubuntu.com/mailman/listinfo/ubuntu-security-announce] list
instead.

This applies only to software installed with apt. If you install
software in any other way, apt will not upgrade it, and the
Debian/Ubuntu security announce mailing lists will not mention it. The
most common other way that you will use to install software is pip.
You will probably install Django with pip, and you should be
monitoring the Django blog [https://www.djangoproject.com/weblog/] for security announcements (you can
subscribe to its feed [https://www.djangoproject.com/rss/weblog/], for example).

Sometimes you will not know how a package is named. Suppose you want to
install Apache. You immediately suspect that Apache may be packaged, but
you don’t know the name of the package. Here is how to search for
Apache:

apt-cache search apache

(apt search apache also works, but apt-cache search is faster
and I like better the formatting of the results.) On a Ubuntu 16.04
system, this returns about 735 results. If you only want to search for
packages that have “apache” in their name (and not just in their
description or elsewhere), you can do this:

apt-cache search --names-only apache

This returns 161. Still many. You can narrow it down by searching only
for packages whose name begins with “apache”:

apt-cache search --names-only ^apache

This returns only 12 packages. The first one, apache2, is probably
what you want. You can examine the contents of the package thus:

apt show apache2

There are more ways to narrow down the search, as there are tens of
thousands of packages, but I think that’s enough for now.

1.9. Reading the documentation

In the preceding sections, we saw that ls can accept several
options, such as -l, -h, -a, -A, and others, and that
apt-cache search accepts the --names-only option. Where can you
find a reference of the options used?

The answer depends on the tool. Traditionally we use the man command
for this; for example,

man apt-cache

will show you the full documentation of apt-cache.

In 1990 we were still reading the documentation from printed manuals,
and man ls would show you the contents of the printed manual’s
ls entry. “man” stands for manual. At that time, that system was
quite cool. If you wanted to take a quick glance at a detail in the
manual you’d use the man command which was quicker, but if you
wanted to study the manual more carefully you’d prefer to use the
printed version which was easier to read. Remember, there was no web at
that time, and terminals weren’t as smart as they are today (there was
no bold or italics when you used the man command).

When the GNU system was developed at around that time, its developers
thought that the man system was outdated, and they developed
info. Although this is a better system that uses hyperlinks, it
didn’t get much traction, so today it’s not much used. You can access
the full documentation for ls with info ls, but this works much
better from within the emacs editor than with the standalone info
program, and it takes some learning. I never use info; I usually
just use man ls, which is a summary that has most of the information
I need, and if I need more I usually search the web.

Finally, it has lately become fashionable for commands to show help when
given the --help option. Usually the help provided with --help
is more condensed than that provided by man or info. ls has
all three; info, man, and --help.

The quality of the documentation varies. While sometimes the help
provided by man is excellent and can be used as tutorial as well as
reference, very often it is better to familiarize yourself with a
program by reading a book or a tutorial on the web. For example, you
can’t possibly learn git from its official documentation (and you
can barely use it as reference).

1.10. Setting up the system locale

The “locale” is the regional settings, among which the character
encoding used. If the character encoding isn’t correctly set to UTF-8,
sooner or later you will run into problems. So checking the system
locale is pretty much the first thing you should do on a new server.

The procedure is this:

	Open the file /etc/locale.gen in an editor and make sure the
line that begins with “en_US.UTF-8” is uncommented.

	Enter the command locale-gen; this will (re)generate the
locales.

	Open the file /etc/default/locale in an editor, and make sure it
contains the line LANG=en_US.UTF-8. Changes in this file require
logout and login to take effect.

Let me now explain what all this is about. The locale consists of a
language, a country, and a character encoding; “en_US.UTF-8” means
English, United States, UTF-8. This tells programs to show messages in
American English; to format items such as dates in the way it’s done in
the United States; and to use encoding UTF-8.

Different users can be using different locales. If you have a desktop
computer used by you and your spouse, one could be using English and the
other French. Each user does this by setting the LANG environment
variable to the desired locale; if not, the default system locale is
used for that user. For servers this feature is less important. While
your Django application may display the user interface in different
languages (and format dates and numbers in different ways), this is done
by Django itself using Django’s internationalization and localization
machinery and has nothing to do with what we are discussing here, which
affects mostly the programs you type in the command line, such as
ls. Because for servers the feature of users specifying their
preferred locale isn’t so important, we usually merely use the default
system locale, which is specified in the file /etc/default/locale.
You can understand English, otherwise you wouldn’t be reading this book,
so “en_US.UTF-8” is fine. If you prefer to use another country, such as
“en_UK.UTF-8”, it’s also fine, but it’s no big deal, as I will explain
later on.

Although the system can support a large number of locales, many of these
are turned off in order to save a little disk space. You turn them on by
adding or uncommenting them in file /etc/locale.gen. When you
execute the program locale-gen, it reads /etc/locale.gen and
determines which locales are activated, and it compiles these locales
from their source files, which are relatively small, to some binary
files that are those actually used by the various programs. We say that
the locales are “generated”. If you activate all locales the binary
files will be a little bit over 100M, so the saving is not that big (it
was important 15 years ago); however they will take quite some time to
generate. Usually we only activate a few.

To check that everything is right, do this:

	Enter the command locale; everything (except, possibly,
LANGUAGE and LC_ALL) should have the value “en_US.UTF-8”.

	Enter the command perl -e ''; it should do nothing and give no
message.

The locale command merely lists the active locale parameters.
LC_CTYPE, LC_NUMERIC etc. are called “locale categories”, and
usually they are all set to the same value. In some edge cases they
might be set to different values; for example, on my laptop I use
“en_US.UTF-8”, but especially for LC_TIME I use “en_DK.UTF-8”, which
causes Thunderbird to display dates in ISO 8601. This is not our concern
here and it rarely is on a server. So we don’t set any of these
variables, and they all get their value from LANG, which is set by
/etc/default/locale.

However, sometimes you might make an error; you might specify a locale
in /etc/default/locale, but you might forget to generate it. In that
case, the locale command will indicate that the locale is active,
but it will not show that anything is wrong. This is the reason I run
perl -e ''. Perl is a programming language, like Python. The
command perl -e '', does nothing; it tells Perl to execute an empty
program; same thing as python -c ''. However, if there is anything
wrong with the locale, Perl throws a big warning message; so perl -e
'' is my favourite way of verifying that my locale works. Try, for
example, LANG=el_GR.UTF-8 perl -e '' to see the warning message. So
locale shows you which is the active locale, and perl -e '', if
silent, indicates that the active locale has been generated and is
valid.

I told you a short while ago that the country doesn’t matter much for
servers. Neither does the language. What matters is the encoding. You
want to be able to manipulate all characters of all languages. Even if
all your customers are English speaking, there may eventually be some
remark about a Chinese character in a description field. Even if you are
certain there won’t, it doesn’t make any sense to constrain yourself to
an encoding that can represent only a subset of characters when it’s
equally easy to use UTF-8. So you need to make sure you use UTF-8. In
the chapter about PostgreSQL we will see that installing PostgreSQL is a
process particularly sensitive to the system locale settings.

The programs you run at the command line will be producing output in
your chosen encoding. Your terminal reads the bytes produced by these
programs and must be able to decode them properly, so it must know how
they are encoded. In other words, you must set your terminal to UTF-8 as
well. Most terminals, including PuTTY and gnome-terminal, are by
default set to UTF-8, but you can change that in their preferences.

1.11. Quickly starting Django on a server

As I said in the beginning, we will be experimenting. Experimenting
means we will be trying things. We will be installing your Django
project and do things with it, and then we will be deleting it and
reinstalling it to try things differently as we move on. You must have
mastered setting up a development server from scratch. You should be
able to setup your Django project on a newly installed machine within a
couple of minutes at most, with a sequence of commands similar to the
following:

apt install git python3 virtualenvwrapper
git clone $DJANGO_PROJECT_REPOSITORY
cd $DJANGO_PROJECT
mkvirtualenv --system-site-packages $DJANGO_PROJECT
pip install -r requirements.txt
python3 manage.py migrate
python3 manage.py runserver

It doesn’t matter if you use Python 2 instead of 3, or mercurial (or
even, horrors, FTP) instead of git, or plain virtualenv instead
of virtualenvwrapper, or if you don’t use --system-site-packages.
What is important is that you have a grip on a sequence of commands
similar to the above and get your development server running in one
minute. We will be using virtualenv heavily; if you aren’t
comfortable with virtualenv, read my blog post on virtualenv [http://djangodeployment.com/2016/11/01/virtualenv-demystified/].

So, you have your virtual server, and you have a sequence of commands
that can install a Django development server for your project. Go ahead
and do so on the virtual server. Do it as the root user, in the
/root directory.

Now, make sure you have this in your settings:

DEBUG = True
ALLOWED_HOSTS = ['$SERVER_IPv4_ADDRESS']

Then, instead of running the development server with
./manage.py runserver run it as follows:

./manage.py runserver 0.0.0.0:8000

After it starts, go to your web browser and tell it to go to
http://$SERVER_IPv4_ADDRESS:8000/. You should see your Django project in
action.

Usually you run the Django development server with ./manage.py
runserver, which is short for ./manage.py runserver 8000. This
tells the Django development server to listen for connections on port
8000. However, if you just specify “8000”, it only listens for local
connections; a web browser running on the server machine itself will be
able to access the Django development server at
“http://localhost:8000/”, but remote connections, from another machine,
won’t work. We use “0.0.0.0:8000” instead, which asks the Django
development server to listen for remote network connections. Even
better, if your virtual server has IPv6 enabled, you can use this:

./manage.py runserver [::]:8000

This will cause Django to listen for remote connections on port 8000,
both for IPv4 and IPv6.

Next problem is that you can’t possibly ask your users to use
http://$SERVER_IPv4_ADDRESS:8000/. You have to use a domain name, and,
you have to get rid of the ”:8000” part. Let’s deal with the ”:8000”
first. “http://$SERVER_IPv4_ADDRESS/” is actually a synonym for
“http://$SERVER_IPv4_ADDRESS:80/”, so we need to tell Django to listen
on port 80 instead of 8000. This may or may not work:

./manage.py runserver 0.0.0.0:80

Port 80 is privileged. This means that normal users aren’t allowed to
listen for connections on port 80; only the root user is. So if you run
the above command as as a normal user, Django will probably tell you
that you don’t have permission to access that port. If you run the
above command as root, it should work. If it tells you that the port is
already in use, it probably means that a web server such as Apache or
nginx is already running on the machine. Shut it down:

service apache2 stop
service nginx stop

When you finally get ./manage.py runserver 0.0.0.0:80 running, you
should, at last, be able to go to your web browser and reach your Django
project via http://$SERVER_IPv4_ADDRESS/. Congratulations!

1.12. Things we need to fix

Now, of course, this is the wrong way to do it. It’s wrong for the
following reasons:

	The URL http://$SERVER_IPv4_ADDRESS/ is ugly; you need to use a
domain name.

	You have put your project in /root.

	You are running Django as root.

	You have Django serve your static files, and you have DEBUG=True.

	You are using runserver, which is seriously suboptimal and only
meant for development.

	You are using SQLite.

Let’s go fix them.

 Last updated on Apr 15, 2019.

 Navigation

 	
 next

 	
 previous |

 	Deploying Django on a single Debian or Ubuntu server »

2. DNS

2.1. Introduction to the DNS

In this book, you will find that I like to show you the code first, even
if you don’t understand it clearly, and then explain to you how things
work. Unfortunately, I cannot do that with DNS. You need to understand
it first and then write the code. The big problem with DNS is that if
you screw things up, even if you fix or revert things, it may be days
before the system works again. So you need to read carefully.

When you open your browser and type http://djangodeployment.com/, the
first thing your browser does is find the IP address of the machine
djangodeployment.com. For this, it asks a component of the operating
system called the “resolver”: “What is the IP address of
djangodeployment.com?” After some time (usually from a few ms to a few
seconds), the resolver replies: “It’s 71.19.145.109”. The browser then
proceeds to open a TCP connection on port 80 of that address and use
HTTP to request the required information (in our case the home page of
djangodeployment.com).

Note

What about IPv6?

If your computer has an IPv6 connection to the Internet, your browser
will actually first ask the resolver for the IPv6 address of server. For
djangodeployment.com, the resolver will eventually reply “It’s
2605:2700:0:3::4713:916d”. The browser will then attempt to connect to
that IPv6 address. If there is any kind of error, such as the resolver
being unable to find an IPv6 address (many web servers aren’t yet
configured to use one), or the IPv6 address not responding (network
errors are still more frequent with IPv6 than IPv4), the browser will
fall back to using the IPv4 address, as I explained above.

The only thing the resolver does is ask another machine to do the actual
resolving; that other machine is called a name server. Most likely you
are using a name server provided by your Internet Service Provider. I
will be calling that name server “your name server”, although it’s not
exactly yours; but it’s the one you are using.

Tip

Which is my name server?

On Unix-like machines (including Mac OS X), the name server used is
stored in file /etc/resolv.conf; the file is usually setup
during DHCP, but on systems with a static IP address it is often
edited manually. On Windows, you can determine the name server by
typing the command ‘ipconfig /all’, where it shows as “DNS Servers”;
it is setup during DHCP, but on systems with a static IP address it
is often edited manually in the network properties. Your system may
be configured to use more than one name server, in which case it
chooses one and uses another if the first one does not respond.

You might find out that the name server is your aDSL router. Actually
your aDSL router is merely a so-called “forwarding” name server,
which only transfers the query to another name server, which is the
one that does the real magic. You can find which one it is by logging
in your router’s web interface and browsing through its settings. It
is setup during the establishment of the aDSL connection.

When I say “your name server” I don’t mean the forwarding name
server, but the one that does the real job.

In order to find out the address that corresponds to a name, your name
server makes a series of questions to other name servers on the
Internet:

	First, your name server picks up one of thirteen so-called “root name
servers”. The IP addresses of these thirteen name servers are
well-known (the official list is at
http://www.internic.net/domain/named.root) and generally do not
change, and your name server is preprogrammed to use them. Your name
server tells the chosen root name server something like this: “Hello,
I’d like to know the IP address of djangodeployment.com please.”

	The root name server replies: “Hi. I don’t know the address of
djangodeployment.com; you should ask one of these name servers,
which are responsible for all domain names ending in ‘.com’” (and it
supplies a number of IP addresses (actually thirteen).

	Your name server picks up one of the .com name servers and asks it:
“Hello, I’d like to know the IP address of djangodeployment.com
please.”

	The .com name server replies: “Hi. I don’t know the address of
djangodeployment.com; you should ask one of these name servers,
which are responsible for djangodeployment.com” (and it supplies a
number of IP addresses, which at the time of this writing are
three).

	Your name server picks up one of the three name servers and asks it:
“Hello, I’d like to know the IP address of djangodeployment.com
please.”

	The djangodeployment.com name server replies: “Sure,
djangodeployment.com is 71.19.145.109”.

After your name server gets this information, it replies to the
resolver, which in turn replies to your browser.

In this example, there were only six steps, but they could be more; for
example, if you try to resolve cs.man.ac.uk, first the root servers will
be asked, these will direct to the .uk name servers, which will direct
to the .ac.uk name servers, and so on, for a total of 10 steps (this is
not always the case; when resolving itia.civil.ntua.gr, the .gr servers
refer you to the .ntua.gr servers, and these in turn refer you directly
to the itia.civil.ntua.gr servers, for a total of 8 steps).

All this discussion between servers takes time and network traffic, so
it only happens the first time you ask to connect to the web page. The
results of the DNS query are heavily cached in order to make it faster
for the next times. Typically web browsers cache such results for about
half an hour, or until browser restart. Most important, however, your
name server caches results for much longer. In fact, the response (6)
above is not exactly what I wrote; instead, it is “Sure,
djangodeployment is 71.19.145.109, and you can cache this information
for up to 8 hours”. Equally important, the response (4) is “I don’t know
the address of djangodeployment.com; you should ask one of these three
name servers, which are responsible for djangodeployment.com, and you
can cache this information (i.e. the list of name servers that are
responsible for djangodeployment.com) for up to two days”. Caching times
are configurable to various degrees and are usually from 5 minutes to 48
hours, but caching for a whole week is not uncommon. Rarely does your
name server need to go through the complete list of steps; most often it
will have cached the name servers for the top level domain, and
sometimes it will also have cached some lower stuff.

So here is the big problem with DNS: it’s not hard to get it right (it’s
easier than writing a Django program), but if you make the slightest
error you might be stuck with the wrong information for up to two days
(or even a week). If you make an error when configuring your domain
name, and a customer attempts to access your site, the error may be
cached by the customer’s name server for up to two days, and you can do
nothing about it except fix the error and wait. There is no way to send
a signal to all the name servers of the world and tell them “hey, please
invalidate the cache for djangodeployment.com”. Different customers or
visitors of your site will experience different amounts of downtime,
depending on when exactly their local name server will decide to expire
its cache.

2.2. Registering a domain name

You register a domain name with a registrar. Registrars are companies
that provide the service of registering a domain name for you. These
companies are authorized by ICANN, the organization ultimately
responsible for domain names. So, before registering a domain name, you
first need to select a registrar, and there are many. I’m using
BookMyName.com, a French registrar which I selected more or less at
random. Its web site is unpolished but it works. Another French
registrar, particularly popular in the free software community, is
Gandi, but it’s a bit more expensive than others. The most popular
registrar worldwide is GoDaddy, but it supported SOPA, and for me that’s
a deal breaker. Another interesting option is Namecheap; I think its
software is nice and its prices are reasonable. If you don’t know what
to do, choose that one. There are also dozens of other options, and it’s
fine to choose another one. Note that I’m not affiliated with any
registrar (and certainly none of the four I’ve mentioned).

For practice, you can go and register a cheap test domain; Namecheap,
for example, sells some domains for $0.88 per year. Go get one now so
that you can start messing around with it. Below I use ”.com” as an
example, but if your domain is different ($0.88 domains certainly aren’t
.com) it doesn’t matter, exactly the same rules apply.

When you register a .com domain name at the registrar’s web site, two
things happen:

	The registrar configures some name servers to be the name servers
for the domain. For example, when I registered djangodeployment.com
at the web site of bookmyname.com, bookmyname.com configured three
name servers (nsa.bookmyname.com, nsb.bookmyname.com, and
nsc.bookmyname.com) as the djangodeployment.com name servers. These
are the three servers that are involved in steps 5 and 6 of the
resolving procedure that I presented in the previous section. I am
going to call them the domain’s name servers.

	The registrar notifies the .com name servers that domain
djangodeployment.com is registered, and that the site name servers
are the three mentioned above. I am going to call the .com name
servers the upstream name servers. If your domain is
mydomain.co.uk, the upstream name servers are those responsible for
.co.uk.

2.3. Adding records to your domain

The DNS database consists of records. Each record maps a name to a
value. For example, a record says that the name djangodeployment.com
corresponds to the value 71.19.145.109. Your registrar provides a web
interface with which you can add, remove and edit records (in Namecheap
you need to go to the Dashboard, Domain list, Manage (the domain),
Advanced DNS). Go to your registrar’s interface and, for the test domain
you created, create the following records (remember that
$SERVER_IPv4_ADDRESS and $SERVER_IPv6_ADDRESS are placeholders and you
need to replace them with something else; also omit the “AAAA” records
if your server doesn’t have an IPv6 address):

	Name
	Type
	TTL
	Value

	@
	A
	300
	$SERVER_IPv4_ADDRESS

	@
	AAAA
	300
	$SERVER_IPv6_ADDRESS

	www
	A
	300
	$SERVER_IPv4_ADDRESS

	www
	AAAA
	300
	$SERVER_IPv6_ADDRESS

Each record has a type. There are many different types of records, but
the ones you need to be aware of here are A, AAAA, and CNAME. “A” defines
an IPv4 address, whereas “AAAA” defines an IPv6 address. We will deal
with CNAME a bit later.

When you see “@” as a name, I mean a literal “@” symbol. This is
shorthand for writing the domain itself. If your domain is mydomain.com,
then whether you enter “mydomain.com.” (with a trailing dot) or “@” in
the field for the name is exactly the same thing. Some registrars might
be allowing only the shorthand “@”, but often it is allowed to write
“mydomain.com.”. Use the “@”, which is more common. The first of these
four records means that the domain itself resolves to
$SERVER_IPv4_ADDRESS. Likewise for the second record.

If your domain is mydomain.com, the next two records define the IP
addresses for www.mydomain.com. In the field for the name, you can
either write “www.mydomain.com.” (with a trailing dot), or “www”,
without a trailing dot. Use the latter, which is more common. In the
rest of the text, I will be using $DOMAIN and www.$DOMAIN instead of
mydomain.com and www.mydomain.com, and you should understand that you
need to replace “$DOMAIN” with your actual domain.

These four records are normally all you need to set. In theory you can
set www.$DOMAIN to point to a different server than $DOMAIN, but this is
uncommon. You can also define ftp.$DOMAIN and whateverelse.$DOMAIN, but
this is often not needed.

The TTL, meaning “time to live”, is the maximum allowed caching time.
When a name server asks the domain’s name server for the IPv4 address of
$DOMAIN, the domain’s name server will reply “$DOMAIN is 71.19.145.109,
and you can cache this information for 300 seconds”. Don’t make it less
than 300; it will increase the number of queries your visitors will
make, thus making responses a bit slower; and some name servers will
ignore the TTL if it’s less than 300 and use 300 anyway. A common
tactic is to use a large value (say 28800), and when for some reason you
need to switch to another server, you reduce that to 300, wait at least
8 hours (28800 seconds), then bring the server down, change the DNS to
point to the new server, then start the new server. If planned correctly
and executed without problems, the switch will result in a downtime of
no more than 300 seconds. After this is finished, you change the TTL to
28800 again.

You can usually leave the TTL field empty. In that case, a default
TTL applies. The default TTL for the zone (“zone” is more or less the
same as a domain) is normally configurable, but this may depend on the
web interface of the registrar.

CNAME records are a kind of alias. For example, one of the domains I’m
managing is openmeteo.org, and its database is like this:

	Name
	Type
	TTL
	Value

	@
	A
	300
	83.212.168.232

	@
	AAAA
	300
	2001:648:2ffc:1014:a800:ff:feb1:6047

	www
	CNAME
	300
	ilissos.openmeteo.org.

	ilissos
	A
	300
	83.212.168.232

	ilissos
	AAAA
	300
	2001:648:2ffc:1014:a800:ff:feb1:6047

The machine that hosts the web service for openmeteo.org is called
ilissos.openmeteo.org. When the name server is queried for
www.openmeteo.org, it replies: “Hi, www.openmeteo.org is an alias; the
canonical name is ilissos.openmeteo.org.” So then it has to be queried
again for ilissos.openmeteo.org. (However, you cannot use CNAME for the
domain itself, only for other hosts within the domain.) On the right
hand side of CNAMEs, you should always specify the fully qualified
domain name and end it with a dot, such as “ilissos.openmeteo.org.”,
as in the example above.

I used to use CNAMEs a lot, but now I avoid them, because they make
first-time visits a little slower. Assume you want to visit
“http://www.openmeteo.org/synoptic/irma”. Then these things happen:

	www.openmeteo.org is resolved, and it turns out to be an alias of
ilissos.openmeteo.org.

	ilissos.openmeteo.org is resolved to an IP address.

	The request http://www.openmeteo.org/synoptic/irma is sent to the IP
address. The web server redirects it to
http://openmeteo.org/synoptic/irma, without the www.

	The request http://openmeteo.org/synoptic/irma is sent to the IP
address, and it is redirected to
http://openmeteo.org/synoptic/irma/, because I’m using
APPEND_SLASH = True in Django’s settings.

	The request http://openmeteo.org/synoptic/irma/ is sent to the IP
address, and this time a proper response is returned.

All these steps take a small amount of time which may add up to one
second or more. This is only for the first request of first time
visitors, but today people have little patience, and it’s a good idea
for the visitor’s browser to start drawing something on the screen
within at most one second, otherwise you will be losing a non-negligible
number of visitors. Besides, a high quality web site should not have
unnecessary delays. So lately I’ve stopped using CNAMEs, and I’ve
stopped redirecting between URLs with and without the leading www.

2.4. Changing the domain’s name servers

As I said, when you register the domain, the registrar configures its
own name servers to act as the domain’s name servers, and also tells
the upstream name servers the ip addresses and/or names of the domain’s
name servers. While this is normally sufficient, there are cases when
you will want to use other name servers instead of the registrar’s name
servers. For example, DigitalOcean offers name servers and a web
interface to configure them, and if DigitalOcean’s web interface is
easier, or if it integrates well with droplets making configuration
faster, you might want to use that. In such a case, you can go to the
registrar’s web interface and specify different name servers. The
registrar will tell the upstream name servers which are your new name
servers. It can’t setup the new name servers themselves, you have to do
that yourself (e.g. via the DigitalOcean’s web interface if you are
using DigitalOcean’s name servers).

In this case, you must be aware that while, as we saw in the previous
section, you can configure the TTL for the DNS records of your domain,
you cannot configure the TTL of the upstream name servers. The
upstream name servers, when queried about your domain, respond with
something like “the name servers for the requested domain are such and
such, and you can cache this information for 2 days”. This TTL,
typically 2 days, is not configurable by you, so you have to live with
it. So changing name servers is a bit risky, because if you do anything
wrong, different users will experience different downtimes that can last
for up to 2 days.

Finally, some information about the NS record, which means “name
server”. I haven’t told you, but the DNS database (the zone file, as it
is called) for djangodeployment.com also contains these records:

	Name
	Type
	TTL
	Value

	@
	NS
	28800
	nsa.bookmyname.com.

	@
	NS
	28800
	nsb.bookmyname.com.

	@
	NS
	28800
	nsc.bookmyname.com.

(As you can see, there can be many records with the same type and name,
and this is true of A and AAAA records as well—one name may map to many
IP addresses, but we will not delve into that here.)

I have never really understood the reason for the existence of these
records in the domain’s zone file. The upstream name servers
obviously need to know that, but what’s the use of querying a domain’s
name server about which are the domain’s name servers? Obviously I
already know them. However, there is a reason [http://serverfault.com/questions/588244/what-is-the-role-of-ns-records-at-the-apex-of-a-dns-domain], and these records
need to be present both in the domain’s name servers and upstream.

In any case, these NS records are virtually always configured
automatically by the registrar or by the web interface of the name
server provider, so usually you don’t need to know more about it. What
you need to know, however, is that DNS is a complicated system that
easily fills in several books by itself. It will work well if you are
gentle with it. If you want to do something more advanced and you don’t
really know what you are doing, ask for help from an expert if you can’t
afford the downtime.

2.5. Editing the hosts file

As I told you earlier, when your browser needs to know the IP address
that corresponds to a name, it asks your operating system’s resolver,
and the resolver asks the name server. It is possible to bypass the
asking of the name server and tell the resolver what answers to give.
This is done by modifying the hosts file, which in Unixes is
/etc/hosts, and in Windows is
C:\Windows\System32\drivers\etc\hosts. Edit the file and add these
lines at the end:

1.2.3.4 mysite.com
1.2.3.4 www.mysite.com

Save the file, restart your browser (because, remember, it may be
caching names), and then visit mysite.com. It will probably fail to
connect (because 1.2.3.4 does not exist), but the thing is that
mysite.com has resolved to 1.2.3.4. The resolver found it in the
hosts file, so it did not ask the DNS server.

I often edit the hosts file, for experimenting with a temporary
server without needing to change the DNS. Sometimes I want to redirect a
domain to another machine, for development or testing, and I want to do
this only for myself, without affecting the users of the domain. In such
cases the hosts file comes in handy, and the changes made work
immediately, without needing to wait for DNS caches to expire.

The only thing that you must take care of is to remember to revert the
hosts file to its original contents; if you forget to do so, it
might cause you great headaches later (imagine wondering why the web
site you are deploying is different than what it should be, and
discovering, after hours of searching, that it was because of a
forgotten entry in hosts). What I usually do is leave the editor
open and not close it until after I have reverted the file. When I don’t
do that thing, at least I make certain that the domain I’m playing with
is example.com or anyway something very unlikely to ever be actually
used by me.

2.6. Visiting your Django project through the domain

In the previous chapter you ran Django on a server and it was reachable
through http://$SERVER_IPv4_ADDRESS/. Now you should have setup your
DNS and have $DOMAIN point to $SERVER_IPv4_ADDRESS. In your Django
settings, change ALLOWED_HOSTS to this:

ALLOWED_HOSTS = ['$DOMAIN', 'www.$DOMAIN']

Then run the Django development server as in the previous chapter:

./manage.py runserver 0.0.0.0:80

Now you should be able to reach your Django project via http://$DOMAIN/.
So we fixed the first step; we managed to reach Django through a domain
instead of an IP address. Next, we will run Django as an unprivileged
user, and put its files in appropriate directories.

2.7. Chapter summary

	Register your domain at a registrar.

	Use the registrar’s web interface to specify A and AAAA records for
the domain and for www.

	Be careful when you play with TTLs and when changing the domain’s name
servers.

	If you do anything advanced with the DNS and you don’t really know
what you’re doing and you can’t afford the downtime, ask for expert
help.

	Set ALLOWED_HOSTS = ['$DOMAIN', 'www.$DOMAIN'].

	Optionally use your local hosts file for experimentation.

 Last updated on Apr 15, 2019.

 Navigation

 	
 next

 	
 previous |

 	Deploying Django on a single Debian or Ubuntu server »

3. Users and directories

Right now your Django project is at /root, or maybe at
/home/joe. The first thing we are going to fix is put your Django
project in a proper place.

I will be using $DJANGO_PROJECT as the name of your Django
project.

3.1. Creating a user and group

It’s a good idea to not run Django as root. We will create a user
specifically for that, and we will give the user the same name as the
Django project, i.e. $DJANGO_PROJECT. However, in principle it can
be different, and I will be using $DJANGO_USER to denote the user
name, so that you can distinguish when I’m talking about the user and
when about the project.

Execute this command:

adduser --system --home=/var/opt/$DJANGO_PROJECT \
 --no-create-home --disabled-password --group \
 --shell=/bin/bash $DJANGO_USER

Here is why we use these parameters:

	--system

	This tells adduser to create a system user, as opposed to
creating a normal user. System users are intended to run programs,
whereas normal users are people. Because of this parameter,
adduser will assign a user id less than 1000, which is only a
convention for knowing that this is a system user. Otherwise there
isn’t much difference.

	--home=/var/opt/$DJANGO_PROJECT

	This specifies the home directory for the user. For system users, it
doesn’t really matter which directory we will choose, but by
convention we choose the one which holds the program’s data. We will
talk about the /var/opt/$DJANGO_PROJECT directory later.

	--no-create-home

	We tell adduser to not create the home directory. We could allow
it to create it, but we will create it ourselves later on, for
instructive purposes.

	--disabled-password

	The password will be, well, disabled. This means that you won’t be
able to become this user by using a password. However, the root user
can always become another user (e.g. with su) without using a
password, so we don’t need one.

	--group

	This tells adduser to not only add a new user, but to also add a
new group, having the same name as the user, and make the new user a
member of the new group. We will see further below why this is
useful. I will be using $DJANGO_GROUP to denote the new group.
In principle it could be different than $DJANGO_USER (but then
the procedure of creating the user and the group would be slightly
different), but the most important thing is that I want it to be
perfectly clear when we are talking about the user and when we are
talking about the group.

	--shell=/bin/bash

	By default, adduser uses /bin/false as the shell for system
users, which practically means they are disabled; /bin/false
can’t run any commands. We want the user to have the most common
shell used in GNU/Linux systems, /bin/bash.

3.2. The program files

Your Django project should be structured either like this:

$DJANGO_PROJECT/
|-- manage.py
|-- requirements.txt
|-- your_django_app/
`-- $DJANGO_PROJECT/

or like this:

$REPOSITORY_ROOT/
|-- requirements.txt
`-- $DJANGO_PROJECT/
 |-- manage.py
 |-- your_django_app/
 `-- $DJANGO_PROJECT/

I prefer the former, but some people prefer the extra repository root
directory.

We are going to place your project inside /opt. This is a standard
directory for program files that are not part of the operating system.
(The ones that are installed by the operating system go to /usr.)
So, clone or otherwise copy your Django project in
/opt/$DJANGO_PROJECT or in /opt/$REPOSITORY_ROOT. Do
this as the root user. Create the virtualenv for your project as
the root user as well:

virtualenv --system-site-packages --python=/usr/bin/python3 \
 /opt/$DJANGO_PROJECT/venv
/opt/$DJANGO_PROJECT/venv/bin/pip install \
 -r /opt/$DJANGO_PROJECT/requirements.txt

While it might seem strange that we are creating these as the root user
instead of as $DJANGO_USER, it is standard practice
for program files to belong to the root user. If you check, you will see
that /bin/ls belongs to the root user, though you may be running it
as joe. In fact, it would be an error for it to belong to joe, because
then joe would be able to modify it. So for security purposes it’s
better for program files to belong to root.

This poses a problem: when $DJANGO_USER attempts to execute your
Django application, it will not have permission to write
the compiled Python files in the /opt/$DJANGO_PROJECT directory,
because this is owned by root. So we need to pre-compile
these files as root:

/opt/$DJANGO_PROJECT/venv/bin/python -m compileall \
 -x /opt/$DJANGO_PROJECT/venv/ /opt/$DJANGO_PROJECT

The option -x /opt/$DJANGO_PROJECT/venv/ tells compileall to exclude
directory /opt/$DJANGO_PROJECT/venv from compilation. This is
because the virtualenv takes care of its own compilation and we should
not interfere.

3.3. The data directory

As I already hinted, our data directory is going to be
/var/opt/$DJANGO_PROJECT. It is standard policy for programs
installed in /opt to put their data in /var/opt. Most notably,
we will store media files in there (in a later chapter). We will also
store the SQLite file there. Usually in production we use a
different RDBMS, but we will deal with this in a later chapter as well.
So, let’s now prepare the data directory:

mkdir -p /var/opt/$DJANGO_PROJECT
chown $DJANGO_USER /var/opt/$DJANGO_PROJECT

Besides creating the directory, we also changed its owner to
$DJANGO_USER. This is necessary because Django will be needing to
write data in that directory, and it will be running as that user, so it
needs permission to do so.

3.4. The log directory

Later we will setup our Django project to write to log files in
/var/log/$DJANGO_PROJECT. Let’s prepare the directory.

mkdir -p /var/log/$DJANGO_PROJECT
chown $DJANGO_USER /var/log/$DJANGO_PROJECT

3.5. The production settings

Debian puts configuration files in /etc. More specifically, the
configuration for programs that are installed in /opt is supposed to
go to /etc/opt, which is what we will do:

mkdir /etc/opt/$DJANGO_PROJECT

For the time being this directory is going to have only settings.py;
later it will have a bit more. Your
/etc/opt/$DJANGO_PROJECT/settings.py file should be like this:

from DJANGO_PROJECT.settings import *

DEBUG = True
ALLOWED_HOSTS = ['$DOMAIN', 'www.$DOMAIN']
DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': '/var/opt/$DJANGO_PROJECT/$DJANGO_PROJECT.db',
 }
}

Note

The above is not valid Python until you replace $DJANGO_PROJECT
with the name of your django project and $DOMAIN with your
domain. In all examples until now you might have been able to copy
and paste the code from the book and use shell variables for
$DJANGO_PROJECT, $DJANGO_USER, $DJANGO_GROUP, and so on.
This is, indeed, the reason I chose this notation. However, in some
places, like in this Python, you have to actually replace it
yourself. (Occasionally I use DJANGO_PROJECT without the leading
dollar sign, in order to get the syntax highlighter to work.)

Note

These settings might give you the error “The SECRET_KEY setting must
not be empty”, or “Unknown command: ‘collectstatic’”, or some other
error that indicates a problem with the settings. If this happens,
a likely explanation is that this line at the top of your production
settings isn’t working correctly:

from DJANGO_PROJECT.settings import *

It may be that, in your Django project, settings is a directory
that has no __init__.py file or an empty __init__.py file.
Maybe you have to change the line to this:

from DJANGO_PROJECT.settings.base import *

Check what your project’s settings file actually is, and import from
that one.

Let’s now secure the production settings. We don’t want other users
of the system to be able to read the file, because it contains sensitive
information. Maybe not yet, but after a few chapters it is going to have
the secret key, the password to the database, the password for the email
server, etc. At this point, you are wondering: what other users? I am
the only person using this server, and I have created no users. Indeed,
now that it’s so easy and cheap to get small servers and assign a single
job to them, this detail is not as important as it used to be. However,
it is still a good idea to harden things a little bit. Maybe a year
later you will create a normal user account on that server as an
unrelated convenience for a colleague.

If your Django project has a vulnerability, an attacker might be able to
give commands to the system as the user as which the project runs (i.e.
as $DJANGO_USER). Likewise, in the future you might install some
other web application, and that other web application might have a
vulnerability and could be attacked, and the attacker might be able to
give commands as the user running that application. In that case, if we
have secured our settings.py, the attacker won’t be able to read it.
Eventually servers get compromised, and we try to set up the system in
such a way as to minimize the damage, and we can minimize it if we
contain it, and we can contain it if the compromising of an application
does not result in the compromising of other applications. This is why
we want to run each application in its own user and its own group.

Here is how to make the contents of /etc/opt/$DJANGO_PROJECT
unreadable by other users:

chgrp $DJANGO_GROUP /etc/opt/$DJANGO_PROJECT
chmod u=rwx,g=rx,o= /etc/opt/$DJANGO_PROJECT

What this does is make the directory unreadable by users other than
root and $DJANGO_USER. The directory is owned by root, and
the first command above changes the group of the directory to
$DJANGO_GROUP. The second command changes the permissions of the
directory so that:

	u=rwx

	The owner has permission to read (rx) and write (w) the directory
(the u in u=rwx stands for “user”, but actually it means the
“user who owns the directory”). The owner is root. Reading a
directory is denoted with rx rather than simply r, where the
x stands for “search”; but giving a directory only one of the
r and x permissions is an edge case that I’ve seen only once
in my life. For practical purposes, when you want a directory to be
readable, you must specify both r and x. (This applies only
to directories; for files, the x is the permission to execute the
file as a program.)

	g=rx

	The group has permission to read the directory. More precisely, users
who belong in that group have permission to read the directory. The
directory’s group is $DJANGO_GROUP. The only user in that group
is $DJANGO_USER, so this adjustment applies only to that user.

	o=

	Other users have no permission, they can’t read or write to the
directory.

You might have expected that it would have been easier to tell the
system “I want root to be able to read and write, and
$DJANGO_USER to be able to only read”. Instead, we did something
much more complicated: we made $DJANGO_USER belong to a
$DJANGO_GROUP, and we made the directory readable by that group,
thus indirectly readable by the user. The reason we did it this way is
an accident of history. In Unix there has traditionally been no way to
say “I want root to be able to read and write, and $DJANGO_USER
to be able to only read”. In many modern Unixes, including Linux, it is
possible using Access Control Lists, but this is a feature added later,
it does not work the same in all Unixes, and its syntax is harder to
use. The way we use here works the same in FreeBSD, HP-UX, and all other
Unixes, and it is common practice everywhere.

Finally, we need to compile the settings file. Your settings file
and the /etc/opt/$DJANGO_PROJECT directory is owned by root, and, as
with the files in /opt, Django won’t be able to write the
compiled version, so we pre-compile it as root:

/opt/$DJANGO_PROJECT/venv/bin/python -m compileall \
 /etc/opt/$DJANGO_PROJECT

Compiled files are the reason we changed the permissions of the
directory and not the permissions of settings.py. When Python writes
the compiled files (which also contain the sensitive information), it
does not give them the permissions we want, which means we’d need to be
chgrping and chmoding each time we compile. By removing read permissions
from the directory, we make sure that none of the files in the directory
is readable; in Unix, in order to read file
/etc/opt/$DJANGO_PROJECT/settings.py, you must have permission to
read / (the root directory), /etc, /etc/opt,
/etc/opt/$DJANGO_PROJECT, and
/etc/opt/$DJANGO_PROJECT/settings.py.

You can check the permissions of a directory with the -d option of
ls, like this:

ls -lhd /
ls -lhd /etc
ls -lhd /etc/opt
ls -lhd /etc/opt/$DJANGO_PROJECT

(In the above commands, if you don’t use the -d option it will show
the contents of the directory instead of the directory itself.)

Hint

Unix permissions

When you list a file or directory with the -l option of ls,
it will show you something like -rwxr-xr-x at the beginning of
the line. The first character is the file type: - for a file and
d for a directory (there are also some more types, but we won’t
bother with them). The next nine characters are the permissions:
three for the user, three for the group, three for others.
rwxr-xr-x means “the user has permission to read, write and
search/execute, the group has permission to read and search/execute
but not write, and so do others”.

rwxr-xr-x can also be denoted as 755. If you substitute 0 in
place of a hyphen and 1 in place of r, w and x, you get 111101101.
In octal, this is 755. Instead of

chmod u=rwx,g=rx,o= /etc/opt/$DJANGO_PROJECT

you can type

chmod 750 /etc/opt/$DJANGO_PROJECT

which means exactly the same thing. People use this latter version
much more than the other one, because it is so much easier to type,
and because converting permissions into octal becomes second nature
with a little practice.

3.6. Managing production vs. development settings

How to manage production vs. development settings seems to be an eternal
question. Many people recommend, instead of a single settings.py
file, a settings directory containing __init__.py and
base.py. base.py is the base settings, those that are the same
whether in production or development or testing. The directory often
contains local.py (alternatively named dev.py), with common
development settings, which might or might not be in the repository.
There’s often also test.py, settings that are used when testing.
Both local.py and test.py start with this line:

from .base import *

Then they go on to override the base settings or add more settings.
When the project is set up like this, manage.py is usually modified
so that, by default, it uses $DJANGO_PROJECT.settings.local instead
of simply $DJANGO_PROJECT.settings. For more information on this
technique, see Section 5.2, “Using Multiple Settings Files”, in the book
Two Scoops of Django; there’s also a stackoverflow answer [http://stackoverflow.com/questions/1626326/how-to-manage-local-vs-production-settings-in-django/15325966#15325966] about it.

Now, people who use this scheme sometimes also have production.py in
the settings directory of the repository. Call me a perfectionist (with
deadlines), but the production settings are the administrator’s job, not
the developer’s, and your django project’s repository is made by the
developers. You might claim that you are both the developer and the
administrator, since it’s you who are developing the project and
maintaining the deployment, but in this case you are assuming two roles,
wearing a different hat each time. Production settings don’t belong in
the project repository any more than the nginx or PostgreSQL
configuration does.

The proper place to store such settings is another repository—the
deployment repository. It can be as simple as holding only the
production settings.py (along with README and .gitignore),
or as complicated as containing all your nginx, PostgreSQL, etc.,
configuration for several servers, along with the “recipe” for how to
set them up, written with a configuration management system such as
Ansible.

If you choose, however, to keep your production settings in your Django
project repository, then your /etc/opt/$DJANGO_PROJECT/settings.py
file shall eventually be a single line:

from $DJANGO_PROJECT.settings.production import *

However, I don’t want you to do this now. We aren’t yet going to use our
real production settings, because we are going step by step. Instead,
create the /etc/opt/$DJANGO_PROJECT/settings.py file as I explained
in the previous section.

3.7. Running the Django server

Warning

We are running Django with runserver here, which is inappropriate
for production. We are doing it only temporarily, so that you
understand several concepts. We will run Django correctly in the
chapter about Gunicorn.

su $DJANGO_USER
source /opt/$DJANGO_PROJECT/venv/bin/activate
export PYTHONPATH=/etc/opt/$DJANGO_PROJECT:/opt/$DJANGO_PROJECT
export DJANGO_SETTINGS_MODULE=settings
python /opt/$DJANGO_PROJECT/manage.py migrate
python /opt/$DJANGO_PROJECT/manage.py runserver 0.0.0.0:8000

You could also do that in an exceptionally long command (provided you
have already done the migrate part), like this:

PYTHONPATH=/etc/opt/$DJANGO_PROJECT:/opt/$DJANGO_PROJECT \
 DJANGO_SETTINGS_MODULE=settings \
 su $DJANGO_USER -c \
 "/opt/$DJANGO_PROJECT/venv/bin/python \
 /opt/$DJANGO_PROJECT/manage.py runserver 0.0.0.0:8000"

Hint

su

You have probably heard of sudo, which is a very useful program
on Unix client machines (desktops and laptops). On the server,
sudo is less common and we use su instead.

su, like sudo, changes the user that executes a program. If
you are user joe and you execute su -c ls, then ls is run as
root. su will ask for the root password in order to proceed.

su alice -c ls means “execute ls as user alice”. su alice
means “start a shell as user alice”; you can then type commands as
user alice, and you can enter exit to “get out” of su, that
is, to exit the shell than runs as alice. If you are a normal user
su will ask you for alice’s password. If you are root, it will
become alice without questions. This should make clear how the su
command works when you run the Django server as explained above.

sudo works very differently from su. Instead of asking the
password of the user you want to become, it asks for your password,
and has a configuration file that describes which user is allowed to
become what user and with what constraints. It is much more
versatile. su does only what I described and nothing more. su
is guaranteed to exist in all Unix systems, whereas sudo is an
add-on that must be installed. By default it is usually installed on
client machines, but not on servers. su is much more commonly
used on servers and shell scripts than sudo.

Do you understand that very clearly? If not, here are some tips:

	Make sure you have a grip on virtualenv [http://djangodeployment.com/2016/11/01/virtualenv-demystified/] and environment
variables [http://djangodeployment.com/2016/11/07/what-is-the-difference-between-a-shell-variable-and-an-environment-variable/].

	Python reads the PYTHONPATH environment variable and adds
the specified directories to the Python path.

	Django reads the DJANGO_SETTINGS_MODULE environment variable.
Because we have set it to “settings”, Django will attempt to import
settings instead of the default (the default is
$DJANGO_PROJECT.settings, or maybe
$DJANGO_PROJECT.settings.local).

	When Django attempts to import settings, Python looks in its
path. Because /etc/opt/$DJANGO_PROJECT is listed first in
PYTHONPATH, Python will first look there for settings.py, and
it will find it there.

	Likewise, when at some point Django attempts to import
your_django_app, Python will look in
/etc/opt/$DJANGO_PROJECT; it won’t find it there, so then it will
look in /opt/$DJANGO_PROJECT, since this is next in
PYTHONPATH, and it will find it there.

	If, before running manage.py [whatever], we had changed directory
to /opt/$DJANGO_PROJECT, we wouldn’t need to specify
that directory in PYTHONPATH, because Python always adds the
current directory to its path. This is why, in development, you just
tell it python manage.py [whatever] and it finds your project.
We prefer, however, to set the PYTHONPATH and not change
directory; this way our setup will be clearer and more robust.

Instead of using DJANGO_SETTINGS_MODULE, you can also use the
--settings parameter of manage.py:

PYTHONPATH=/etc/opt/$DJANGO_PROJECT:/opt/$DJANGO_PROJECT \
 su $DJANGO_USER -c \
 "/opt/$DJANGO_PROJECT/venv/bin/python \
 /opt/$DJANGO_PROJECT/manage.py
 runserver --settings=settings 0.0.0.0:8000"

(manage.py also supports a --pythonpath parameter which could be
used instead of PYTHONPATH, however it seems that --settings
doesn’t work correctly together with --pythonpath, at least not in
Django 1.8.)

If you fire up your browser and visit http://$DOMAIN:8000/, you should
see your Django project in action.

3.8. Chapter summary

	Create a system user and group with the same name as your Django
project.

	Put your Django project in /opt, with all files owned by root.

	Put your virtualenv in /opt/$DJANGO_PROJECT/venv, with all files
owned by root.

	Put your data files in a subdirectory of /var/opt with the same
name as your Django project, owned by the system user you created. If
you are using SQLite, the database file will go in there.

	Put your settings file in a subdirectory of /etc/opt with the
same name as your Django project, whose user is root, whose group is
the system group you created, that is readable by the group and
writeable by root, and whose contents belong to root.

	Precompile the files in /opt/$DJANGO_PROJECT and
/etc/opt/$DJANGO_PROJECT.

	Run manage.py as the system user you created, after setting the
environment variables
PYTHONPATH=/etc/opt/$DJANGO_PROJECT:/opt/$DJANGO_PROJECT and
DJANGO_SETTINGS_MODULE=settings.

 Last updated on Apr 15, 2019.

 Navigation

 	
 next

 	
 previous |

 	Deploying Django on a single Debian or Ubuntu server »

4. The web server

This chapter is divided in two parts: nginx and Apache. Depending on
which of the two you choose, you only need to read that part.

Both nginx and Apache are excellent choices for a web server. Most
people deploying Django nowadays seem to be using nginx, so, if you
aren’t interested in learning more about what you should choose, pick up
nginx. Apache is also widely used, and it is preferable in some cases.
If you have any reason to prefer it, go ahead and use it.

If you don’t know what to do, choose nginx. If you want to know
more about the pros and cons of each one, I have written a blog post
about it [http://djangodeployment.com/2016/11/15/why-nginx-is-faster-than-apache-and-why-you-neednt-necessarily-care/].

4.1. Installing nginx

Install nginx like this:

apt install nginx-light

Note

Instead of nginx-light, you can use packages nginx-full or
nginx-extras, which have more modules available. However,
nginx-light is enough in most cases.

After you install, go to your web browser and visit http://$DOMAIN/. You
should see nginx’s welcome page.

4.2. Configuring nginx to serve the domain

Create file /etc/nginx/sites-available/$DOMAIN with the
following contents:

server {
 listen 80;
 listen [::]:80;
 server_name $DOMAIN www.$DOMAIN;
 root /var/www/$DOMAIN;
}

Note

Again, this is not a valid nginx configuration file until you replace
$DOMAIN with your actual domain name.

Create a symbolic link in sites-enabled:

cd /etc/nginx/sites-enabled
ln -s ../sites-available/$DOMAIN .

Hint

Symbolic links

A symbolic link looks like a file, but in fact it is a pointer to
another file. The command

ln -s ../sites-available/$DOMAIN .

means “create a symbolic link that points to file
../sites-available/$DOMAIN and put the link in the current
directory (.). Two dots denote the parent directory, so when the
current directory is /etc/nginx/sites-enabled, .. means the
parent, /etc/nginx, whereas ../sites-available means “one up,
then down into sites-available. A single dot designates the
current directory.

The command above is exactly equivalent as this:

ln -s ../sites-available/$DOMAIN $DOMAIN

which means “create a symbolic link that points to file
../sites-available/$DOMAIN and give it the name $DOMAIN. If the
last argument of ln -s is a directory (for example, .), then
it creates the symbolic link in there and gives it the same name as
the actual file.

You can treat the symbolic link as if it was a file; you can edit it
with an editor, you can open it with a Python program using
open(), and in these cases the actual file (the one being pointed
to by the symbolic link) is opened instead.

While the order of arguments in the ln command may seem strange
at first, it is consistent with the order of arguments in the cp
command which merely copies files. Just as cp source destination
copies file source to file destination, similarly ln -s
is like making a copy of the file, but instead of an actual copy, it
creates a symbolic link.

If you list files with ls -l, it is clearly indicated
which file the symbolic link points to. The permissions of the link,
rwxrwxrwx, may seem insecure, but they are actually irrelevant;
it is the permissions of the actual file that count.

Except for symbolic links there are also hard links, which are
created without the -s option, but are different and rarely used.
It is unlikely that you will ever create a hard link, so get used to
always type ln -s, that is, with the -s option.

Tell nginx to re-read its configuration:

service nginx reload

Finally, create directory /var/www/$DOMAIN, and inside that
directory create a file index.html with the following contents:

<p>This is the web site for $DOMAIN.</p>

Fire up your browser and visit http://$DOMAIN/, and you should
see the page you created.

The fact that we named the nginx configuration file (in
/etc/nginx/sites-available) $DOMAIN is irrelevant; any name
would have worked the same, but it’s a convention to name it with the
domain name. In fact, strictly speaking, we needn’t even have created a
separate file. The only configuration file nginx needs is
/etc/nginx/nginx.conf. If you open that file, you will see that it
contains, among others, the following line:

include /etc/nginx/sites-enabled/*;

So what it does is read all files in that directory and process them as
if their contents had been inserted in that point of
/etc/nginx/nginx.conf.

As we noticed, if you visit http://$DOMAIN/, you see the page you
created. If, however, you visit http://$SERVER_IPv4_ADDRESS/, you should
see nginx’s welcome page. If the host name (the part between “http://”
and the next slash) is $DOMAIN or www.$DOMAIN then nginx uses the
configuration we specified above, because of the server_name
configuration directive which contains these two names. If we use
another domain name, or the server’s ip address, there is no matching
server { ... } block in the nginx configuration, so nginx uses its
default configuration. That default configuration is in
/etc/nginx/sites-enabled/default. What makes it the default is the
default_server parameter in these two lines:

listen 80 default_server;
listen [::]:80 default_server;

If someone arrives at my server through the wrong domain name, I don’t
want them to see a page that says “Welcome to nginx”, so I change the
default configuration to the following, which merely responds with “Not
found”:

server {
 listen 80 default_server;
 listen [::]:80 default_server;
 return 404;
}

4.3. Configuring nginx for django

Change /etc/nginx/sites-available/$DOMAIN to the following
(which only differs from the one we just created in that it has the
location block):

server {
 listen 80;
 listen [::]:80;
 server_name $DOMAIN www.$DOMAIN;
 root /var/www/$DOMAIN;
 location / {
 proxy_pass http://localhost:8000;
 }
}

Tell nginx to reload its configuration:

service nginx reload

Finally, start your Django server as we saw in the previous chapter;
however, it doesn’t need to listen on 0.0.0.0:8000, a mere 8000 is
enough:

PYTHONPATH=/etc/opt/$DJANGO_PROJECT:/opt/$DJANGO_PROJECT \
 su $DJANGO_USER -c \
 "/opt/$DJANGO_PROJECT/venv/bin/python \
 /opt/$DJANGO_PROJECT/manage.py \
 runserver --settings=settings 8000"

Now go to http://$DOMAIN/ and you should see your Django
project in action.

Warning

We are running Django with runserver here, which is inappropriate
for production. We are doing it only temporarily, so that you
understand the concepts. We will run Django correctly in the chapter
about Gunicorn.

Nginx receives your HTTP request. Because of the proxy_pass
directive, it decides to just pass on this request to another server,
which in our case is localhost:8000.

Now this may work for now, but we will add some more configuration which
we will be necessary later. The location block actually becomes:

location / {
 proxy_pass http://localhost:8000;
 proxy_set_header Host $http_host;
 proxy_redirect off;
 proxy_set_header X-Forwarded-For $remote_addr;
 proxy_set_header X-Forwarded-Proto $scheme;
 client_max_body_size 20m;
}

Here is what these configuration directives do:

	proxy_set_header Host $http_host

	By default, the header of the request nginx makes to the backend
includes Host: localhost. We need to pass the real Host to
Django (i.e. the one received by nginx), otherwise Django cannot
check if it’s in ALLOWED_HOSTS.

	proxy_redirect off

	This tells nginx that, if the backend returns an HTTP redirect, it
should leave it as is. (By default, nginx assumes the backend is
stupid and tries to be smart; if the backend returns an HTTP redirect
that says “redirect to http://localhost:8000/somewhere”, nginx
replaces it with something similar to
http://yourowndomain.com/somewhere”. We prefer to configure Django
properly instead.)

	proxy_set_header X-Forwarded-For $remote_addr

	To Django, the request is coming from nginx, and therefore the
network connection appears to be from localhost, i.e. from address
127.0.0.1 (or ::1 in IPv6). Some Django apps need to know the actual
IP address of the machine that runs the web browser; they might need
that for access control, or to use the GeoIP database to deliver
different content to different geographical areas. So we have nginx
pass the actual IP address of the visitor in the X-Forwarded-For
header. Your Django project might not make use of this information,
but it might do so in the future, and it’s better to set the correct
nginx configuration from now. When the time comes to use this
information, you will need to configure your Django app properly; one
way is to use django-ipware [https://github.com/un33k/django-ipware].

	proxy_set_header X-Forwarded-Proto $scheme

	Another thing that Django does not know is whether the request has
been made through HTTPS or plain HTTP; nginx knows that, but the
request it subsequently makes to the Django backend is always plain
HTTP. We tell nginx to pass this information with the
X-Forwarded-Proto HTTP header, so that related Django
functionality such as request.is_secure() works properly. You
will also need to set SECURE_PROXY_SSL_HEADER =
('HTTP_X_FORWARDED_PROTO', 'https') in your settings.py.

	client_max_body_size 20m

	This tells nginx to accept HTTP POST requests of up to 20 MB in
length; if a request is larger nginx ignores it and returns a 413.
Whether you really need that setting or not depends on whether you
accept file uploads. If not, nginx’s default, 1 MB, is probably
enough, and it is better for protection against a denial-of-service
attack that could attempt to make several large POST requests
simultaneously.

This concludes the part of the chapter about nginx. If you chose nginx
as your web server, you probably want to skip the next sections and go
to the Chapter summary.

4.4. Installing Apache

Install Apache like this:

apt install apache2

After you install, go to your web browser and visit
http://$DOMAIN/. You should see Apache’s welcome page.

4.5. Configuring Apache to serve the domain

Create file /etc/apache2/sites-available/$DOMAIN.conf with
the following contents:

<VirtualHost *:80>
 ServerName $DOMAIN
 ServerAlias www.$DOMAIN
 DocumentRoot /var/www/$DOMAIN
</VirtualHost>

Note

Again, this is not a valid Apache configuration file until you replace
$DOMAIN with your actual domain name, such as “example.com”.

Create a symbolic link in sites-enabled:

cd /etc/apache2/sites-enabled
ln -s ../sites-available/$DOMAIN.conf .

Hint

Symbolic links

If you don’t know what symbolic links are, I have described them in
the equivalent section for nginx.

Hint

Use a2ensite

Debian-based systems have two convenient scripts, a2ensite,
meaning “Apache 2 enable site”, and its counterpart, a2dissite,
for disabling a site. The first one merely creates the symbolic link
as above, the second one removes it. So the manual creation of the
symbolic link above is purely educational, and it’s usually better to
save some typing by just entering this instead:

a2ensite $DOMAIN

Tell Apache to re-read its configuration:

service apache2 reload

Finally, create directory /var/www/$DOMAIN, and inside
that directory create a file index.html with the following
contents:

<p>This is the web site for $DOMAIN.</p>

Fire up your browser and visit http://$DOMAIN/, and you should
see the page you created.

The fact that we named the Apache configuration file (in
/etc/apache2/sites-available) yourowndomain.com is irrelevant;
any name would have worked the same, but it’s a convention to name it
with the domain name. In fact, strictly speaking, we needn’t even have
created a separate file. The only configuration file Apache needs is
/etc/apache2/apache2.conf. If you open that file, you will see that
it contains, among others, the following line:

IncludeOptional sites-enabled/*.conf

So what it does is read all .conf files in that directory and
process them as if their contents had been inserted in that point of
/etc/apache2/apache2.conf.

As we noticed, if you visit http://$DOMAIN/, you see the page
you created. If, however, you visit http://$SERVER_IP_ADDRESS/, you
should see Apache’s welcome page. If the host name (the part between
“http://” and the next slash) is $DOMAIN or
www.$DOMAIN, then Apache uses the configuration we specified
above, because of the ServerName and ServerAlias configuration
directives which contain these two names. If we use another
domain name, or the server’s ip address, there is no matching
VirtualHost block in the Apache configuration, so apache uses its
default configuration. That default configuration is in
/etc/apache2/sites-enabled/000-default.conf. What makes it the
default is that it is listed first; the IncludeOptional in
/etc/apache2/apache2.conf reads files in alphabetical order, and
000-default.conf has the 000 prefix to ensure it is first.

If someone arrives at my server through the wrong domain name, I don’t
want them to see a page that says “It works!”, so I change the default
configuration to the following, which merely responds with “Not found”:

<VirtualHost *:80>
 DocumentRoot /var/www/html
 Redirect 404 /
</VirtualHost>

4.6. Configuring Apache for django

Change /etc/apache2/sites-available/$DOMAIN.conf to the
following (which only differs from the one we just created in that it
has the ProxyPass directive):

<VirtualHost *:80>
 ServerName $DOMAIN
 ServerAlias www.$DOMAIN
 DocumentRoot /var/www/$DOMAIN
 ProxyPass / http://localhost:8000/
</VirtualHost>

In order for this to work, we actually first need to enable Apache
modules proxy and proxy_http, and we will take the opportunity
to also enable headers, because we will need it soon after:

a2enmod proxy proxy_http headers

(Similarly to a2ensite and a2dissite, a2enmod and
a2dismod are merely convenient ways to create and delete symbolic
links that point from /etc/apache2/mods-enabled to
/etc/apache2/mods-available.)

Tell Apache to reload its configuration:

service apache2 reload

Finally, start your Django server as we saw in the previous chapter;
however, it doesn’t need to listen on 0.0.0.0:8000, a mere 8000 is
enough:

PYTHONPATH=/etc/opt/$DJANGO_PROJECT:/opt/$DJANGO_PROJECT \
 su $DJANGO_USER -c \
 "/opt/$DJANGO_PROJECT/venv/bin/python \
 /opt/$DJANGO_PROJECT/manage.py \
 runserver --settings=settings 8000"

Now go to http://$DOMAIN/ and you should see your Django project in
action.

Warning

We are running Django with runserver here, which is inappropriate
for production. We are doing it only temporarily, so that you
understand the concepts. We will run Django correctly in the chapter
about Gunicorn.

Apache receives your HTTP request. Because of the ProxyPass
directive, it decides to just pass on this request to another server,
which in our case is localhost:8000.

Now this may work for now, but we will add some more configuration which
we will be necessary later:

<VirtualHost *:80>
 ServerName $DOMAIN
 ServerAlias www.$DOMAIN
 DocumentRoot /var/www/$DOMAIN
 ProxyPass / http://localhost:8000/
 ProxyPreserveHost On
 RequestHeader set X-Forwarded-Proto "http"
</VirtualHost>

Here is what these configuration directives do:

	ProxyPreserveHost On

	By default, the header of the request Apache makes to the backend
includes Host: localhost We need to pass the real Host to
Django (i.e. the one received by Apache), otherwise Django cannot
check if it’s in ALLOWED_HOSTS.

	RequestHeader set X-Forwarded-Proto “http”

	Another thing that Django does not know is whether the request has
been made through HTTPS or plain HTTP; Apache knows that, but the
request it subsequently makes to the Django backend is always plain
HTTP. We tell Apache to pass this information with the
X-Forwarded-Proto HTTP header, so that related Django
functionality such as request.is_secure() works properly. You
will also need to set SECURE_PROXY_SSL_HEADER =
('HTTP_X_FORWARDED_PROTO', 'https') in your settings.py.

This does not yet play a role because we have configured Apache
to only serve plain HTTP. If we wanted it to also serve HTTPS, we
would add a <VirtualHost *:443> block, which would contain mostly
the same stuff as the <VirtualHost *:80> we have already defined.
One of the differences is that X-Forwarded-Proto will be set to
“https”.

4.7. Chapter summary

	Install your web server.

	Name the web server’s configuration file with the domain name of your
site.

	Put the configuration file in sites-available and symlink it from
sites-enabled (don’t forget to reload the web server).

	Use the proxy_pass (nginx) or ProxyPass (Apache) directive to
pass the HTTP request to Django.

	Configure the web server to pass HTTP request headers Host,
X-Forwarded-For, and X-Forwarded-Proto (Apache by default
passes X-Forwarded-For, so there is no configuration needed for
that one).

	For nginx, also configure proxy_redirect and
client_max_body_size.

 Last updated on Apr 15, 2019.

 Navigation

 	
 next

 	
 previous |

 	Deploying Django on a single Debian or Ubuntu server »

5. Static and media files

Let’s quickly make static files work. You might not understand perfectly
what we’re doing, but it will become very clear afterwards.

5.1. Setting up Django

First, add these statements to
/etc/opt/$DJANGO_PROJECT/settings.py:

STATIC_ROOT = '/var/cache/$DJANGO_PROJECT/static/'
STATIC_URL = '/static/'

Remember that after each change to your settings you should, in theory,
recompile:

/opt/$DJANGO_PROJECT/venv/bin/python -m compileall \
 /etc/opt/$DJANGO_PROJECT

It’s not really a big deal if you forget to recompile, but we will deal
with that later.

Second, create directory /var/cache/$DJANGO_PROJECT/static/:

mkdir -p /var/cache/$DJANGO_PROJECT/static

The -p parameter tells mkdir to create not only the directory,
but, if needed, its parents as well.

Third, run collectstatic:

PYTHONPATH=/etc/opt/$DJANGO_PROJECT:/opt/$DJANGO_PROJECT \
 /opt/$DJANGO_PROJECT/venv/bin/python \
 /opt/$DJANGO_PROJECT/manage.py collectstatic \
 --settings=settings

This will copy all static files to the directory we specified in
STATIC_ROOT. Don’t worry if you don’t understand it clearly, we will
explain it in a minute.

5.2. Setting up nginx

Change /etc/nginx/sites-available/$DOMAIN to the following,
which only differs from the previous version in that the new location
/static {} block has been added at the end:

server {
 listen 80;
 listen [::]:80;
 server_name $DOMAIN www.$DOMAIN;
 root /var/www/$DOMAIN;
 location / {
 proxy_pass http://localhost:8000;
 proxy_set_header Host $http_host;
 proxy_redirect off;
 proxy_set_header X-Forwarded-For $remote_addr;
 proxy_set_header X-Forwarded-Proto $scheme;
 client_max_body_size 20m;
 }
 location /static/ {
 alias /var/cache/$DJANGO_PROJECT/static/;
 }
}

Don’t forget to execute service nginx reload after that.

Now let’s try to see if it works. Stop the Django development server
if it is running on the server. Open your browser and visit
http://$DOMAIN/. nginx should give you a 502. This is expected, since
the backend is not working.

But now try to visit http://$DOMAIN/static/admin/img/icon_searchbox.png.
If you have django.contrib.admin in INSTALLED_APPS, it should
get a search icon (if you don’t use django.contrib.admin, pick up
another static file that you expect to see, or browse the directory
/var/cache/$DJANGO_PROJECT/static).

Fig. 5.1 explains how this works.

[image: _images/how-static-files-work-nginx.png]
Fig. 5.1 How Django static files work in production (nginx version)

The only thing that remains to clear up is what exactly these
location blocks mean. location /static/ means that the
configuration inside the block shall apply only if the path of the URL
begins with /static/. Likewise, location / applies if the path
of the URL begins with a slash. However, all paths begin with a slash,
so if the path begins with /static/ both location blocks match
the URL. Nginx only uses one location block. The rules with which
nginx chooses the location block that shall apply are complicated
and are described in the documentation for location [http://nginx.org/en/docs/http/ngx_http_core_module.html#location], but in this
particular case, nginx chooses the longest matching prefix; so if the
path begins with /static/, nginx will choose location /static/.

5.3. Setting up Apache

Change /etc/apache2/sites-available/$DOMAIN.conf to the following:

<VirtualHost *:80>
 ServerName $DOMAIN
 ServerAlias www.$DOMAIN
 DocumentRoot /var/www/$DOMAIN
 ProxyPass /static/ !
 ProxyPass / http://localhost:8000/
 ProxyPreserveHost On
 RequestHeader set X-Forwarded-Proto "http"
 Alias /static/ /var/cache/$DJANGO_PROJECT/static/
 <Directory /var/cache/$DJANGO_PROJECT/static/>
 Require all granted
 </Directory>
</VirtualHost>

Don’t forget to execute service apache2 reload after that.

Now let’s try to see if it works. Stop the Django development server
if it is running on the server. Open your browser and visit
http://$DOMAIN/. Apache should give you a 503. This is expected, since
the backend is not working.

But now try to visit http://$DOMAIN/static/admin/img/icon_searchbox.png.
If you have django.contrib.admin in INSTALLED_APPS, it should
get a search icon (if you don’t use django.contrib.admin, pick up
another static file that you expect to see, or browse the directory
/var/cache/$DJANGO_PROJECT/static).

Fig. 5.2 explains how this works.

[image: _images/how-static-files-work-apache.png]
Fig. 5.2 How Django static files work in production (Apache version)

Now let’s examine how the configuration above produces these results.
The directive ProxyPass / http://localhost:8000/ tells Apache that,
if the URL path begins with /, then it should pass the request to
the backend. All URL paths begin with /, so the directive always
matches. But there is also the directive ProxyPass /static/ !, which
will match paths starting with /static/. When there are many
matching ProxyPass directives, the first one wins; so for path
/static/admin/img/icon_searchbox.png, ProxyPass /static/ ! wins.
The exclamation mark means “no proxy passing”, so the directive means
“when a URL path begins with /static/, do not pass it to the
backend”. Since it is not going to be passed to the backend, Apache
would normally combine it with the DocumentRoot and would thus try
to return the file
/var/www/$DOMAIN/static/admin/img/icon_searchbox.png, but the
Alias directive tells it to get
/var/cache/$DJANGO_PROJECT/static/admin/img/icon_searchbox.png
instead. By default, Apache will refuse to access files in directories
other than DocumentRoot, and will return 403, “Forbidden”, in
requests to access them; so we add the directive Require all granted
for the static files directory, which means “everyone has permission to
read the files”.

5.4. Media files

Media files are similar to static files, so let’s go through them
quickly. We will store them in /var/opt/$DJANGO_PROJECT/media.

mkdir /var/opt/$DJANGO_PROJECT/media
chown $DJANGO_USER /var/opt/$DJANGO_PROJECT/media

One of the differences with static files is that we changed the
ownership of /var/opt/$DJANGO_PROJECT/media to $DJANGO_USER. The
reason is that Django needs to be writing there each time the user
uploads a file or requests to delete a file.

Add the following to /etc/opt/$DJANGO_PROJECT/settings.py:

MEDIA_ROOT = '/var/opt/$DJANGO_PROJECT/media/'
MEDIA_URL = '/media/'

For nginx, add the following to /etc/nginx/sites-available/$DOMAIN:

location /media/ {
 alias /var/opt/$DJANGO_PROJECT/media/;
}

For Apache, add the following before ProxyPass /:

ProxyPass /media/ !

and the following at the end of the VirtualHost block:

Alias /media/ /var/opt/$DJANGO_PROJECT/media/
<Directory /var/opt/$DJANGO_PROJECT/media/>
 Require all granted
</Directory>

Recompile your settings, reload the web server, and it’s ready.

5.5. File locations

Your static and media files are now served properly by the web server
instead of the Django development server, and I hope you understand
clearly what we’ve done. Let’s take a break and discuss the file
locations that I’ve chosen:

	Program files
	/opt/$DJANGO_PROJECT

	Virtualenv
	/opt/$DJANGO_PROJECT/venv

	Media files
	/var/opt/$DJANGO_PROJECT/media

	Static files
	/var/cache/$DJANGO_PROJECT/static

	Configuration
	/etc/opt/$DJANGO_PROJECT

There are a couple more that we haven’t seen yet, but the above more or
less tell the whole story.

Many people prefer a much simpler setup instead. They put everything
related to their project in a single directory, which is that of their
repository root, like this:

	Program files
	/srv/$DJANGO_PROJECT

	Virtualenv
	/srv/$DJANGO_PROJECT/venv

	Media files
	/srv/$DJANGO_PROJECT/media

	Static files
	/srv/$DJANGO_PROJECT/static

	Configuration
	/srv/$DJANGO_PROJECT/$DJANGO_PROJECT

Although this setup seems simpler, I have preferred the other one for
several reasons. The first one is purely educational. When you get too
used to the simple setup, you might configure always the same
STATIC_ROOT, without really understanding what it does. The clean
separation of directories should also have helped you get a grip on
PYTHONPATH and DJANGO_SETTINGS_MODULE.

Separating in many directories is also cleaner and applies to many
different situations. If a Django application is packaged as a .deb
package, or as a pip-installable package, the tweak required with the
split directories scheme is minimal.

Finally, separating the directories makes it easier to backup only what
is needed. My backup solution (which we will see in the chapters about
recovery) may exclude /opt and /var/cache from the backup.
Since the static files can be regenerated, there is no need to back them
up.

5.6. Chapter summary

	Set STATIC_ROOT to /var/cache/$DJANGO_PROJECT/static/.

	Set STATIC_URL to /static/.

	Set MEDIA_ROOT to /var/opt/$DJANGO_PROJECT/media/.

	Set MEDIA_URL to /media/.

	Run collectstatic.

	In nginx, set location /static/ { alias
/var/cache/$DJANGO_PROJECT/static/; }; likewise for media files.

	In Apache, add ProxyPass /static/ ! before ProxyPass /, and
add

Alias /static/ /var/cache/$DJANGO_PROJECT/static/
<Directory /var/cache/$DJANGO_PROJECT/static/>
 Require all granted
</Directory>

Likewise for media files.

 Last updated on Apr 15, 2019.

 Navigation

 	
 next

 	
 previous |

 	Deploying Django on a single Debian or Ubuntu server »

6. Gunicorn

6.1. Why Gunicorn?

We now need to replace the Django development server with a Python
application server. I will explain later why we need this. For now we
need to select which Python application server to use. There are three
popular servers: mod_wsgi, uWSGI, and Gunicorn.

mod_wsgi is for Apache only, and I prefer to use a method that can be
used with either Apache or nginx. This will make it easier to change the
web server, should such a need arise. I also find Gunicorn easier to
setup and maintain.

I used uWSGI for a couple of years and was overwhelmed by its features.
Many of them duplicate features that already exist in Apache or nginx or
other parts of the stack, and thus they are rarely, if ever, needed. Its
documentation is a bit chaotic. The developers themselves admit it: “We
try to make our best to have good documentation but it is a hard work.
Sorry for that.” I recall hitting problems week after week and spending
hours to solve them each time.

Gunicorn, on the other hand, does exactly what you want and no more. It
is simple and works fine. So I recommend it unless in your particular
case there is a compelling reason to use one of the others, and so far I
haven’t met any such compelling reason.

6.2. Installing and running Gunicorn

We will install Gunicorn with pip rather than with apt, because
the packaged Gunicorn (both in Debian 8 and Ubuntu 16.04) supports only
Python 2.

/opt/$DJANGO_PROJECT/venv/bin/pip install gunicorn

Now run Django with Gunicorn:

su $DJANGO_USER
source /opt/$DJANGO_PROJECT/venv/bin/activate
export PYTHONPATH=/etc/opt/$DJANGO_PROJECT:/opt/$DJANGO_PROJECT
export DJANGO_SETTINGS_MODULE=settings
gunicorn $DJANGO_PROJECT.wsgi:application

You can also write it as one long command, like this:

PYTHONPATH=/etc/opt/$DJANGO_PROJECT:/opt/$DJANGO_PROJECT \
 DJANGO_SETTINGS_MODULE=settings \
 su $DJANGO_USER -c "/opt/$DJANGO_PROJECT/venv/bin/gunicorn \
 $DJANGO_PROJECT.wsgi:application"

Either of the two versions above will start Gunicorn, which will be
listening at port 8000, like the Django development server did. Visit
http://$DOMAIN/, and you should see your Django project in action.

What actually happens here is that gunicorn, a Python program, does
something like from $DJANGO_PROJECT.wsgi import application. It uses
$DJANGO_PROJECT.wsgi and application because we told it so in
the command line. Open the file
/opt/$DJANGO_PROJECT/$DJANGO_PROJECT/wsgi.py to see that
application is defined there. In fact, application is a Python
callable. Now each time Gunicorn receives an HTTP request, it calls
application() in a standardized way that is specified by the WSGI
specification. The fact that the interface of this function is
standardized is what permits you to choose between many different Python
application servers such as Gunicorn, uWSGI, or mod_wsgi, and why each
of these can interact with many Python application frameworks like
Django or Flask.

The reason we aren’t using the Django development server is that it is
meant for, well, development. It has some neat features for development,
such as that it serves static files, and that it automatically restarts
itself whenever the project files change. It is, however, totally
inadequate for production; for example, it might leave files or
connections open, and it does not support processing many requests at
the same time, which you really want. Gunicorn, on the other hand, does
the multi-processing part correctly, leaving to Django only the things
that Django can do well.

Gunicorn is actually a web server, like Apache and nginx. However, it
does only one thing and does it well: it runs Python WSGI-compliant
applications. It cannot serve static files and there’s many other
features Apache and nginx have that Gunicorn does not. This is why we
put Apache or nginx in front of Gunicorn and proxy-pass requests to it.
The accurate name for Gunicorn, uWSGI, and mod_wsgi would be
“specialized web servers that run Python WSGI-compliant applications”,
but this is too long, which is why I’ve been using the vaguer “Python
application servers” instead.

Gunicorn has many parameters that can configure its behaviour. Most of
them work fine with their default values. Still, we need to modify a
few. Let’s run it again, but this time with a few parameters:

su $DJANGO_USER
source /opt/$DJANGO_PROJECT/venv/bin/activate
export PYTHONPATH=/etc/opt/$DJANGO_PROJECT:/opt/$DJANGO_PROJECT
export DJANGO_SETTINGS_MODULE=settings
gunicorn --workers=4 \
 --log-file=/var/log/$DJANGO_PROJECT/gunicorn.log \
 --bind=127.0.0.1:8000 --bind=[::1]:8000 \
 $DJANGO_PROJECT.wsgi:application

Here is what these parameters mean:

	--workers=4

	Gunicorn starts a number of processes called “workers”, and each
process, each worker that is, serves one request at a time. To serve
five concurrent requests, five workers are needed; if there are more
concurrent requests than workers, they will be queued. You probably
need two to five workers per processor core. Four workers are a good
starting point for a single-core machine. The reason you don’t want
to increase this too much is that your Django project’s RAM
consumption is approximately proportional to the number of workers,
as each worker is effectively a distinct instance of the Django
project. If you are short on RAM, you might want to consider
decreasing the number of workers. If you get many concurrent
requests and your CPU is underused (usually meaning your Django
projects do a lot of disk/database access) and you can spare the RAM,
you can increase the number of workers.

Tip

Check your CPU and RAM usage

If your server gets busy, the Linux top command will show you
useful information about the amount of free RAM, the RAM consumed
by your Django project (and other system processes), and the CPU
usage for various processes. You can read more about it in
The top command: memory management and The top command: CPU usage.

	--log-file=/var/log/$DJANGO_PROJECT/gunicorn.log

	I believe this is self-explanatory.

	--bind=127.0.0.1:8000

	This tells Gunicorn to listen on port 8000 of the local network
interface. This is the default, but we specify it here for two
reasons:

	It’s such an important setting that you need to see it to know
what you’ve done. Besides, you could be running many applications
on the same server, and one could be listening on 8000, another
on 8001, and so on. So, for uniformity, always specify this.

	We specify --bind twice (see below), to also listen on IPv6.
The second time would override the default anyway.

	--bind=[::1]:8000

	This tells Gunicorn to also listen on port 8000 of the local IPv6
network interface. This must be specified if IPv6 is enabled on the
virtual server. It is not specified, things may or may not work, and
the system may be a bit slower even if things work.

The reason is that the front-end web server, Apache or nginx, has
been told to forward the requests to http://localhost:8000/. It will
ask the the resolver what “localhost” means. If the system is
IPv6-enabled, the resolver will reply with two results, ::1,
which is the IPv6 address for the localhost, and 127.0.0.1. The
web server might then decide to try the IPv6 version first. If
Gunicorn has not been configured to listen to that address, then
nothing will be listening at port 8000 of ::1, so the connection will
be refused. The web server will then probably try the IPv4 version,
which will work, but it will have made a useless attempt first.

I could make some experiments to determine exactly what happens in
such cases, and not speak with “maybe” and “probably”, but it doesn’t
matter. If your server has IPv6, you must set it up correctly and use
this option. If not, you should not use this option.

6.3. Configuring systemd

The only thing that remains is to make Gunicorn start automatically. For
this, we will configure it as a service in systemd.

Note

Older systems don’t have systemd

systemd is relatively a novelty. It exists only in Debian 8 and
later, and Ubuntu 15.04 and later. In older systems you need to
start Gunicorn in another way. I recommend supervisor [http://supervisord.org/], which you can
install with apt install supervisor.

The first program the kernel starts after it boots is systemd. For this
reason, the process id of systemd is 1. Enter the command ps 1 and
you will probably see that the process with id 1 is /sbin/init, but
if you look at it with ls -lh /sbin/init, you will see it’s a
symbolic link to systemd.

After systemd starts, it has many tasks, one of which is to start and
manage the system services. We will tell it that Gunicorn is one of
these services by creating file
/etc/systemd/system/$DJANGO_PROJECT.service, with the following
contents:

[Unit]
Description=$DJANGO_PROJECT

[Service]
User=$DJANGO_USER
Group=$DJANGO_GROUP
Environment="PYTHONPATH=/etc/opt/$DJANGO_PROJECT:/opt/$DJANGO_PROJECT"
Environment="DJANGO_SETTINGS_MODULE=settings"
ExecStart=/opt/$DJANGO_PROJECT/venv/bin/gunicorn \
 --workers=4 \
 --log-file=/var/log/$DJANGO_PROJECT/gunicorn.log \
 --bind=127.0.0.1:8000 --bind=[::1]:8000 \
 $DJANGO_PROJECT.wsgi:application

[Install]
WantedBy=multi-user.target

After creating that file, if you enter service $DJANGO_PROJECT
start, it will start Gunicorn. However, it will not start it
automatically at boot until we tell it systemctl enable
$DJANGO_PROJECT.

The [Service] section of the configuration file should be
self-explanatory, so I will only explain the other two sections. Systemd
doesn’t only manage services; it also manages devices, sockets, swap
space, and other stuff. All these are called units; “unit” is, so to
speak, the superclass. The [Unit] section contains configuration
that is common to all unit types. The only option we need to specify
there is Description, which is free text. Its purpose is only to
show in the UI of management tools. Although $DJANGO_PROJECT will work
as a description, it’s better to use something more verbose. As the
systemd documentation says,

“Apache2 Web Server” is a good example. Bad examples are
“high-performance light-weight HTTP server” (too generic) or
“Apache2” (too specific and meaningless for people who do not know
Apache).

The [Install] section tells systemd what to do when the service is
enabled. The WantedBy option specifies dependencies. If, for
example, we wanted to start Gunicorn before nginx, we would specify
WantedBy=nginx.service. This is too strict a dependency, so we just
specify WantedBy=multi-user.target. A target is a unit type that
represents a state of the system. The multi-user target is a state all
GNU/Linux systems reach in normal operations. Desktop systems go beyond
that to the “graphical” target, which “wants” a multi-user system and
adds a graphical login screen to it; but we want Gunicorn to start
regardless whether we have a graphical login screen (we probably don’t,
as it is a waste of resources on a server).

As I already said, you tell systemd to automatically start the service
at boot (and automatically stop it at system shutdown) in this way:

systemctl enable $DJANGO_PROJECT

Do you remember that in nginx and Apache you enable a site just by
creating a symbolic link to sites-available from sites-enabled?
Likewise, systemctl enable does nothing but create a symbolic link.
The dependencies we have specified in the [Install] section of the
configuration file determine where the symbolic link will be created
(sometimes more than one symbolic links are created). After you enable
the service, try to restart the server, and check that your Django
project has started automatically.

As you may have guessed, you can disable the service like this:

systemctl disable $DJANGO_PROJECT

This does not make use of the information in the [Install] section;
it just removes all symbolic links.

6.4. More about systemd

While I don’t want to bother you with history, if you don’t read this
section you will eventually get confused by the many ways you can manage
a service. For example, if you want to tell nginx to reload its
configuration, you can do it with either of these commands:

systemctl reload nginx
service nginx reload
/etc/init.d/nginx reload

Before systemd, the first program that was started by the kernel was
init. This was much less smart than systemd and did not know what a
“service” is. All init could do was execute programs or scripts. So
if we wanted to start a service we would write a script that started the
service and put it in /etc/init.d, and enable it by linking it from
/etc/rc2.d. When init brought the system to “runlevel 2”, the
equivalent of systemd’s multi-user target, it would execute the scripts
in /etc/rc2.d. Actually it wasn’t init itself that did that, but
other programs that init was configured to run, but this doesn’t
matter. What matters is that the way you would start, stop, or restart
nginx, or tell it to reload its configuration, or check its running
status, was this:

/etc/init.d/nginx start
/etc/init.d/nginx stop
/etc/init.d/nginx restart
/etc/init.d/nginx reload
/etc/init.d/nginx status

The problem with these commands was that they might not always work
correctly, mostly because of environment variables that might have been
set, so the service script was introduced around 2005, which, as its
documentation says, runs an init script “in as predictable an
environment as possible, removing most environment variables and with
the current working directory set to /.” So a better alternative for the
above commands was

service nginx start
service nginx stop
service nginx restart
service nginx reload
service nginx status

The new way of doing these with systemd is the following:

systemctl start nginx
systemctl stop nginx
systemctl restart nginx
systemctl reload nginx
systemctl status nginx

Both systemctl and service will work the same with your Gunicorn
service, because service is a backwards compatible way to run
systemctl. You can’t manage your service with an /etc/init.d
script, because we haven’t created any such script (and it would have
been very tedious to do so, which is why we preferred to use supervisor
before we had systemd). For nginx and Apache, all three ways are
available, because most services packaged with the operating system are
still managed with init scripts, and systemd has a backwards compatible
way of dealing with such scripts. In future versions of Debian and
Ubuntu, it is likely that the init scripts will be replaced with systemd
configuration files like the one we wrote for Gunicorn, so the
/etc/init.d way will cease to exist.

Of the remaining two newer ways, I don’t know which is better.
service has the benefit that it exists in non-Linux Unix systems,
such as FreeBSD, so if you use both GNU/Linux and FreeBSD you can use
the same command in both. The systemctl version may be more
consistent with other systemd commands, like the ones for enabling and
disabling services. Use whichever you like.

6.5. The top command: memory management

If your server gets busy and you wonder whether its RAM and CPU are
enough, the Linux top command is a useful tool. Execute it simply by
entering top. You can exit top by pressing q on the
keyboard.

When you execute top you will see an image similar to Fig. 6.1.

[image: _images/top.png]
Fig. 6.1 The top command

Let’s examine available RAM first, which in Fig. 6.1 is
indicated in the red box. The output of top is designed so that it
fits in an 80-character wide terminal. For the RAM, the five values
(total, used, free, buffers, and cached) can’t fit on the line that is
labeled “KiB Mem”, so the last one has been moved to the line below,
that is, the “cached Mem” indication belongs in “KiB Mem” and not in
“KiB Swap”.

The “total” amount of RAM is simply the total amount of RAM; it is as
much as you asked your virtual server to have. The “used” plus the
“free” equals the total. Linux does heavy caching, which I explain
below, so the “used” should be close to the total, and the “free” should
be close to zero.

Since RAM is much faster than the disk, Linux caches information from
the disk in RAM. It does so in a variety of ways:

	If you open a file, read it, close it, then you open it
again and read it again, the second time it will be much faster; this
is because Linux has cached the contents of the file in RAM.

	Whenever you write a file, you are likely to read it again, so Linux
caches it.

	In order to speed up disk writing, Linux doesn’t actually write to the
disk when your program says f.write(data), not even when you close
the file, not even when your program ends. It keeps the data in the
cache and writes it later, attempting to optimize disk head movement.
This is why some data may be lost when the system is powered off
instead of properly shut down.

The part of RAM that is used for Linux’s disk cache is what top
shows as “buffers” and “cached”. Buffers is also a kind of cache, so it
is the sum of “buffers” and “cache” that matters (the difference between
“buffers” and “cached” doesn’t really matter unless you are a kernel
developer). “Buffers” is usually negligible, so it’s enough to only
look at “cache”.

Linux doesn’t want your RAM sitting down doing nothing, so if there is
RAM available, it will use it for caching. Give it more RAM and it will
cache more. If your server has a substantial amount of RAM labeled
“free”, it may mean that you have so much RAM that Linux can’t fill it
in even with its disk cache. This probably means the machine is larger
than it needs to be, so it’s a waste of resources. If, on the other
hand, the cache is very small, this may mean that the system is short on
RAM. On a healthy system, the cache should be 20–50% of RAM.

Since we are talking about RAM, let’s also examine the amount of RAM
used by processes. By default top sorts processes by CPU usage,
but you can type M (Shift + m) to sort by memory usage (you can
go back to sort by CPU usage by typing P). The RAM used by each
process is indicated by the “RES” column in KiB and the “%MEM” column in
percentage.

There are two related columns; “VIRT”, for virtual memory, and “SHR”,
for shared memory. First of all, you need to forget the Microsoft
terminology. Windows calls “virtual memory” what everyone else calls
“swap space”; and what everyone else calls “virtual memory” is a very
different thing from swap space. In order to better understand what
virtual memory is, let’s see it with this C program (it doesn’t matter
if you don’t speak C):

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>

int main() {
 char c;
 void *p;

 /* Allocate 2 GB of memory */
 p = malloc(2L * 1024 * 1024 * 1024);
 if (!p) {
 fprintf(stderr, "Can't allocate memory: %s\n",
 strerror(errno));
 exit(1);
 }

 /* Do nothing until the user presses Enter */
 fputs("Press Enter to continue...", stderr);
 while((c = fgetc(stdin)) != EOF && c != '\n')
 ;

 /* Free memory and exit */
 free(p);
 exit(0);
}

When I run this program on my laptop, and while it is waiting for me to
press Enter, this is what top shows about it:

. PID ... VIRT RES SHR S %CPU %MEM ... COMMAND
13687 ... 2101236 688 612 S 0.0 0.0 ... virtdemo

It indicates 2 GB VIRT, but actually uses less than 1 MB of RAM, while
swap usage is still at zero. Overall, running the program has had a
negligible effect on the system. The reason is that the malloc
function has only allocated virtual memory; “virtual” as in “not real”.
The operating system has provided 2 GB of virtual address space to the
program, but the program has not used any of that. If the program had
used some of this virtual memory (i.e. if it had written to it), the
operating system would have automatically allocated some RAM and would
have mapped the used virtual address space to the real address space in
the RAM.

So virtual memory is neither swap nor swap plus RAM; it’s virtual. The
operating system maps only the used part of the process’s virtual memory
space to something real; usually RAM, sometimes swap. Many programs
allocate much more virtual memory than they actually use. For this
reason, the VIRT column of top is not really useful. The RES
column, that stands for “resident”, indicates the part of RAM actually
used.

The SHR column indicates how much memory the program potentially shares
with other processes. Usually all of that memory is included in the RES
column. For example, in Fig. 6.1, there are four apache2
processes which I show again here:

. PID ... VIRT RES SHR S %CPU %MEM ... COMMAND
23268 ... 458772 37752 26820 S 0.2 3.7 ... apache2
16481 ... 461176 55132 41840 S 0.1 5.4 ... apache2
23237 ... 455604 14884 9032 S 0.1 1.5 ... apache2
23374 ... 459716 38876 27296 S 0.1 3.8 ... apache2

It is unlikely that the total amount of RAM used by these four processes
is the sum of the RES column (about 140 MB); it is more likely that
something like 9 MB is shared among all of them, which would bring the
total to about 110 MB. Maybe even less. They might also be sharing
something (such as system libraries) with non-apache processes. It is
not really possible to know how much of the memory marked as shared is
actually being shared, and by how many processes, but it is something
you need to take into account in order to explain why the total memory
usage on your system is less than the sum of the resident memory for all
processes.

Let’s now talk about swap. Swap is disk space used for temporarily
writing (swapping) RAM. Linux uses it in two cases. The first one is if
a program has actually used some RAM but has left it unused for a long
time. If a process has written something to RAM but has not read it back
for several hours, it means the RAM is being wasted. Linux doesn’t like
that, so it may save that part of RAM to the disk (to the swap space),
which will free up the RAM for something more useful (such as caching).
This is the case in Fig. 6.1. The system is far from low on memory,
and yet it has used a considerable amount of swap space. The only
explanation is that some processes have had unused data in RAM for too
long. When one of these processes eventually attempts to use swapped
memory, the operating system will move it from the swap space back to
the RAM (if there’s not enough free RAM, it will swap something else or
discard some of its cache).

The second case in which Linux will use swap is if it’s low on memory.
This is a bad thing to happen and will greatly slow down the system,
sometimes to a grinding halt. You can understand that this is the case
from the fact that swap usage will be considerable while at the same
time the free and cached RAM will be very low. Sometimes you will be
unable to even run top when this happens.

Whereas in Windows the swap space (confusingly called “virtual memory”)
is a file, on Linux it is usually a disk partition. You can find out
where swap is stored on your system by examining the contents of file
/proc/swaps, for example by executing cat /proc/swaps. (The
“files” inside the /proc directory aren’t real; they are created by
the kernel and they do not exist on the disk. cat prints the
contents of files, similar to less, but does not paginate.)

6.6. The top command: CPU usage

The third line of top has eight numbers which add up to 100%. They
are user, system, nice, idle, waiting, hardware interrupts, software
interrupts, and steal, and indicate where the CPU spent its time in the
last three seconds:

	us (user) and sy (system) indicate how much of its time the
processor was running programs in user mode and in kernel mode. Most
code runs in user mode; but when a process asks the Linux kernel to do
something (allocate memory, access the disk, network, or other device,
start another process, etc.), the kernel switches to kernel mode, which
means it has some priviliges that user mode doesn’t have. (For example,
kernel mode has access to all RAM and can modify the mapping between
the processes’ virtual memory and RAM/swap; whereas user mode simply
has access to the virtual address space and doesn’t know what happens
behind the scenes.)

	ni (nice) indicates how much of its time the processor was running
with a positive “niceness” value. If many processes need the CPU at
the same time, a “nice” process has lower priority. The “niceness” is
a number up to 19. A process with a “niceness” of 19 will practically
only run when the CPU would otherwise be idle. For example, the GNOME
desktop environment’s Desktop Search finds stuff in your files, and it
does so very fast because it uses indexes. These indexes are updated
in the background by the “tracker” process, which runs with a
“niceness” of 19 in order to not make the rest of the system slower.
Processes may also run with a negative niceness (up to -20), which
means they have higher priority. In the list of processes, the NI
column indicates the “niceness”. Most processes have the default zero
niceness, and it is unlikely you will ever need to know more about all
that.

	id (idle) and wa (waiting) indicate how much time the CPU was
sitting down doing nothing. “Waiting” is a special case of idle; it
means that while the CPU was idle there was at least one process
waiting for disk I/O. A high value of “waiting” indicates heavy disk
usage.

	The meaning of time spent in hi (hardware interrupts) and si
(software interrupts) is very technical. If this is non-negligible, it
indicates heavy I/O (such as disk or network).

	st (steal) is for virtual machines. When nonzero, it indicates
that for that amount of time the virtual machine needed to run
something on the (virtual) CPU, but it had to wait because the real
CPU was unavailable, either because it was doing something else (e.g.
servicing another virtual machine on the same host) or because of
reaching the CPU usage quota.

If the machine has more than one CPUs or cores, the “%Cpu(s)” line of
top shows data collectively for all CPUs; but you can press 1 to
toggle between that and showing information for each individual CPU.

In the processes list, the %CPU column indicates the amount of time the
CPU was working for that process, either in user mode or in kernel mode
(when kernel code is running, most of the time it is in order to service
a process, so this time is accounted for in the process). The %CPU
column can add up to more than 100% if you have more than one cores; for
four cores it can add up to 400% and so on.

Finally, let’s discuss about the CPU load. When your system is doing
nothing, the CPU load is zero. If there is one process using the CPU,
the load is one. If there is one process using the CPU and another
process that wants to run and is queued for the CPU to become available,
the load is two. The three numbers in the orange box in Fig. 6.1
are the load average in the last one, five, and 15 minutes. The load
average should generally be less than the number of CPU cores, and
preferably under 0.7 times the number of cores. It’s OK if it spikes
sometimes, so the load average for the last minute can occasionally go
over the number of cores, but the 5- or 15-minute average should stay
low. For more information about the load average, there’s an excellent
blog post by Andre Lewis, Understanding Linux CPU Load - when should
you be worried? [http://blog.scoutapp.com/articles/2009/07/31/understanding-load-averages]

6.7. Chapter summary

	Install gunicorn in your virtualenv.

	Create file /etc/systemd/system/$DJANGO_PROJECT.service with
these contents:

[Unit]
Description=$DJANGO_PROJECT

[Service]
User=$DJANGO_USER
Group=$DJANGO_GROUP
Environment="PYTHONPATH=/etc/opt/$DJANGO_PROJECT:/opt/$DJANGO_PROJECT"
Environment="DJANGO_SETTINGS_MODULE=settings"
ExecStart=/opt/$DJANGO_PROJECT/venv/bin/gunicorn \
 --workers=4 \
 --log-file=/var/log/$DJANGO_PROJECT/gunicorn.log \
 --bind=127.0.0.1:8000 --bind=[::1]:8000 \
 $DJANGO_PROJECT.wsgi:application

[Install]
WantedBy=multi-user.target

	Enable the service with systemctl enable $DJANGO_PROJECT, and
start/stop/restart it or get its status with systemctl $COMMAND
$DJANGO_PROJECT, where $COMMAND is start, stop, restart or status.

 Last updated on Apr 15, 2019.

 Navigation

 	
 next

 	
 previous |

 	Deploying Django on a single Debian or Ubuntu server »

7. Production settings

So far the only thing we’ve done in our production settings was to setup
ALLOWED_HOSTS. We still have some work to do. It is absolutely
essential to setup email and the secret key, it is a good idea to setup
logging, and we may also need to setup caching. Most installations will
not need anything beyond these.

7.1. Email

Even if your Django application does not use email at all, you must
still set it up. The reason is that your code has bugs. Even if it does
not have bugs, your server will eventually run into an error condition,
such as no disk space, out of memory, or something else going wrong. In
many of these cases, Django will throw a “500 error” to the user and
will try to email you. You really need to receive that email.

First, you need a mail server to which you can connect and ask to send
an email. Such a mail server is called a “smarthost”. The mechanism with
which Django connects to the smarthost is pretty much the same as the
one with which your desktop or mobile mail client connects to an
outgoing mail server. However, the term “outgoing mail server” is mostly
used for mailing software, and “smarthost” is used when some unattended
software like your Django app sends email. You can often, but not
always, use your outgoing mail server as smarthost.

I’m using Runbox for my email, and I also use it as a smarthost. There
are many other providers, one of the most popular being Gmail (I
believe, however, that it’s not possible to use Gmail as a smarthost if
all you have is a free account, and even if it is possible, it is hard
to setup).

Let’s set it up and then we will discuss more. Add the following to
/etc/opt/$DJANGO_PROJECT/settings.py:

SERVER_EMAIL = 'noreply@$DOMAIN'
DEFAULT_FROM_EMAIL = 'noreply@$DOMAIN'
ADMINS = [
 ('$ADMIN_NAME', '$ADMIN_EMAIL_ADDRESS'),
]
MANAGERS = ADMINS

EMAIL_HOST = '$EMAIL_HOST'
EMAIL_HOST_USER = '$EMAIL_HOST_USER'
EMAIL_HOST_PASSWORD = '$EMAIL_HOST_PASSWORD'
EMAIL_PORT = 587
EMAIL_USE_TLS = True

SERVER_EMAIL [https://docs.djangoproject.com/en/1.10/ref/settings/#server-email] is the email address from which emails with error messages
appear to come from. It is set in the “From:” field of the email. The
default is “root@localhost”, and while “root” is OK, “localhost” is not,
and some mail servers may refuse the email. The domain name where your
Django application runs is usually OK, but if this doesn’t work you can
use any other valid domain. The domain of your email address should work
properly.

If your Django project does not send any emails (other than the error
messages Django will send anyway), DEFAULT_FROM_EMAIL [https://docs.djangoproject.com/en/1.10/ref/settings/#default-from-email] does not need to
be specified. If it does send emails, it may be using
django.core.mail.EmailMessage [https://docs.djangoproject.com/en/1.10/topics/email/#django.core.mail.EmailMessage]. In order to specify what will be in
the “From:” field of the email, EmailMessage accepts a
from_email argument at initialization; if this is unspecified, it
will use DEFAULT_FROM_EMAIL. So DEFAULT_FROM_EMAIL is exactly
what it says: the default from_email of EmailMessage. It’s a
good idea to specify this, because even if your Django project does not
send emails today, it may well do so tomorrow, and the default,
“webmaster@localhost”, is not a good option. Remember that with
EmailMessage you are likely to send email to your users, and it
should be something nice. “noreply@$DOMAIN” is usually fine.

ADMINS [https://docs.djangoproject.com/en/1.10/ref/settings/#admins] is a list of people to whom error messages will be sent. Make
sure your name and email address are listed there, and also add any
fellow administrators. MANAGERS [https://docs.djangoproject.com/en/1.10/ref/settings/#managers] is similar to ADMINS, but for
broken link notifications, and usually you just need to set it to the
same values as ADMINS.

The settings starting with EMAIL_ describe how Django will connect
and authenticate to the mail server. Django will connect to EMAIL_HOST [https://docs.djangoproject.com/en/1.10/ref/settings/#email-host]
and authenticate using EMAIL_HOST_USER [https://docs.djangoproject.com/en/1.10/ref/settings/#email-host-user] and EMAIL_HOST_PASSWORD [https://docs.djangoproject.com/en/1.10/ref/settings/#email-host-password].
Needless to say, I have used placeholders that start with a dollar sign,
and you need to replace these with actual values. Mine are usually
these:

EMAIL_HOST = 'mail.runbox.com'
EMAIL_HOST_USER = 'smarthostclient%antonischristofides.com'
EMAIL_HOST_PASSWORD = 'topsecret'

However, the details depend on the provider and the account type you
have. I don’t use my personal email, which is
antonis@antonischristofides.com (Runbox requires you to change @ to %
when you use it as a user name for login), because my personal password
would then be in many settings.py files in many deployed Django
projects, and I’m not the only administrator of these servers (and even
if I were, I wouldn’t know when I would invite another one). So I
created another user (subaccount in Runbox parlance),
“smarthostclient”, which I use for that purpose.

There are three ports used for sending email: 25, 465, and 587. The
sender (Django in our case, or your mail client when you send email)
connects to a mail server and gives the email to it; the mail server
then delivers the email to another mail server, and so on, until the
destination is reached. In the old times both the initial submission and
the communication between mail servers was through port 25. Nowadays 25
is mostly used for communication between mail servers only. If you try
to use port 25 (which is the default setting for EMAIL_PORT [https://docs.djangoproject.com/en/1.10/ref/settings/#email-port]), it’s
possible that the request will get stuck in firewalls, and even if does
reach the mail server, the mail server is likely to refuse to send the
email. This is because spam depends much on port 25, so policies about
this port are very tight.

The other two ports for email submission are 465 and 587. 465 uses
encryption; just as 80 is for unencrypted HTTP and 443 is for encrypted
HTTP, 25 is for unencrypted SMTP and 465 is for encrypted SMTP.
However, 465 is deprecated in favour of 587, which can handle both
unencrypted and encrypted connections. The client (Django in our case)
connects to the server at port 587, they start talking unencrypted, and
the client may tell the server “I want to continue with encryption”, and
then they continue with encryption. Obviously this is done before
authentication, which requires the password to be transmitted.

There are thus two methods to start encryption; one is implicit and the
other one is explicit. When you connect to port 465, which always works
encrypted, the encryption starts implicitly. When you connect to port
587, the two peers (the client and the server) start talking
unencrypted, and at some point the client explicitly tells the server “I
want to continue with encryption”. Computer people often use “SSL” for
implicit encryption and “TLS” for explicit, however this is inaccurate;
SSL and TLS are encryption protocols, and do not refer to the method
used to initiate them; you could have implicit TLS or explicit SSL.
Django uses this inaccurate parlance in its settings, where
EMAIL_USE_TLS [https://docs.djangoproject.com/en/1.10/ref/settings/#email-use-tls] and EMAIL_USE_SSL [https://docs.djangoproject.com/en/1.10/ref/settings/#email-use-ssl] are used to specify whether,
respectively, the connection will use explicit or implicit encryption.
EMAIL_USE_TLS = True should be used with EMAIL_PORT = 587, and
EMAIL_USE_SSL = True with EMAIL_PORT = 465.

To test your settings, start a shell from your Django project:

PYTHONPATH=/etc/opt/$DJANGO_PROJECT:/opt/$DJANGO_PROJECT \
DJANGO_SETTINGS_MODULE=settings \
su $DJANGO_USER -c \
"/opt/$DJANGO_PROJECT/venv/bin/python \
/opt/$DJANGO_PROJECT/manage.py shell"

and enter these commands:

from django.conf import settings
from django.core.mail import send_mail

admin_emails = [x[1] for x in settings.ADMINS]
send_mail("Test1557", "Hello", settings.SERVER_EMAIL,
 admin_emails)

If something goes wrong, send_mail will raise an exception;
otherwise you should receive the email.

Because of spam, mail servers are often very picky about which emails
they will accept. It’s possible that even if your smarthost accepts the
email, the next mail server may refuse it. For example, I made some
experiments using from_email='noreply@example.com', EMAIL_HOST =
'mail.runbox.com', and recipient anthony@itia.ntua.gr (an old email
address of mine). In that case, Runbox accepted the email and
subsequently attempted to deliver it to the mail server of ntua.gr,
which rejected it because it didn’t like the sender
(noreply@example.com; I literally used “example.com”, and ntua.gr didn’t
like that domain). When something like this happens, the test we made
above with send_mail will appear to work, because send_mail
manages to deliver the email to the smarthost, and the error occurs
after that; not only will we never receive the email, but it is also
likely that we will not receive the failure notification (the returned
email), so it’s often hard to know what went wrong and we need to guess.

One thing you can do to lessen the probability of error is to make sure
that the recipient (or at least one of the recipients) has an email
address served by the provider who provides the smarthost. In my case,
the smarthost is mail.runbox.com, and the recipient is
antonis@antonischristofides.com, and the email for domain
antonischristofides.com is served by Runbox. It is unlikely that
mail.runbox.com would accept an email addressed to
antonis@antonischristofides.com if another Runbox server were to
subsequently refuse it. If something like this happened, I believe it
would be a configuration error on behalf of Runbox. But it’s very normal
that mail.runbox.com will accept an email which will subsequently be
refused by ntua.gr or Gmail or another provider downstream.

7.2. Debug

After you have configured email and verified it works, you can now turn
off DEBUG:

DEBUG = False

Now it’s good time to verify that error emails do indeed get sent
properly. You can do so by deliberately causing an internal server
error. A favourite way of mine is to temporarily rename a template file
and make a related request, which will raise a TemplateDoesNotExist
exception. Your browser should show the “server error” page. Don’t
forget to rename the template file back to what it was. By the time you
finish doing that, you should have received the email with the full
trace.

7.3. Using a local mail server

Usually I don’t configure Django to deliver to the smarthost; instead, I
install a mail server locally, have Django deliver to the local mail
server, and configure the local mail server to send the emails to the
smarthost. There are several reasons why installing a local mail server
is better:

	Your server, like all Unix systems, has a scheduler, cron, which
is configured to run certain programs at certain times. For example,
directory /etc/cron.daily contains scripts that are executed
once per day. Whenever a program run by cron throws an error
message, cron emails that error message to the administrator.
cron always works with a local mail server. If you don’t install
a local mail server, you will miss these error messages. We will
later use cron to clear sessions and to backup the server, and we
don’t want to miss any error messages.

	While Django attempts to send an error email, if something goes
wrong, it fails silently. This behaviour is appropriate (the system
is in error, it attempts to email its administrator with the
exception, but sending the email also results in an error; can’t do
much more). Suppose, however, that when you try to verify, as we
did in the previous section, that error emails work, you find out
they don’t work. What has gone wrong? Nothing is written in any log.
Intercepting the communication [http://djangodeployment.com/2016/10/24/how-to-use-ngrep-to-debug-http-headers/] with ngrep won’t work either,
because it’s usually encrypted. If you use a locally installed mail
server, you will at least be able to look at the local mail server’s
logs.

	Sending an error email might take long. The communication line might
be slow, or a firewall or the DNS could be misbehaving, and it might
take several seconds, or even a minute, before Django manages to
establish a connection to the remote mail server. During this time,
the browser will be in a waiting state, and a Gunicorn process will
be occupied. Some people will recommend to send emails from celery
workers, but this is not possible for error emails. In addition,
there is no reason to install and program celery just for this
reason. If we use a local mail server, Django will deliver the email
to it very fast and finish its job, and the local mail server will
queue it and send it when possible.

While the most popular mail servers for Debian and Ubuntu are exim and
postfix, I don’t recommend them. Mail servers are strange beasts. They
have large and tricky configuration files, because they can do a hell of
things. You will have a hard time understanding the necessary
configuration (which is buried under a hell of other configuration), and
if something goes wrong you will have a hard time debugging it. I also
see no great educational value in learning it. I used to run mail
servers for years but I’ve got ridden of all of them; it’s not worth the
effort when I can do the same thing at Runbox for €30 per year.

Instead, we are going to use dma (nothing to do with direct memory
access; this is the DragonFly Mail Agent). It’s a small mail server that
only does what we want; it collects messages in a queue, and sends them
to a smarthost. It is much easier to configure than the real thing.
Install it like this:

apt install dma

It will ask you a couple of questions:

	System mail name

	You should probably use $DOMAIN here. If that doesn’t work, you can
try to use the domain of your email address.

	Smarthost

	This is the remote mail server, the smarthost, that is; the one we
had specified in Django’s EMAIL_HOST.

Next, open /etc/dma/dma.conf in an editor, and uncomment or edit
these directives:

PORT 587
AUTHPATH /etc/dma/auth.conf
SECURETRANSFER
STARTTLS

(If your smarthost uses implicit encryption, you need to specify PORT
465 instead, and omit the STARTTLS.)

Next, open /etc/dma/auth.conf and add this line:

$EMAIL_USER|$EMAIL_HOST:$EMAIL_PASSWORD

(These are placeholders of course, which you need to replace.)

Next, open /etc/aliases and add this line:

root: $ADMIN_EMAIL_ADDRESS

Finally, open /etc/mailname in an editor and make sure it contains
a single line which contains your domain ($DOMAIN).

Let’s test it to see if it works:

sendmail $ADMIN_EMAIL_ADDRESS

This will pause for input. Type a short email message, and end it with a
line that contains a single fullstop. Check /var/log/mail.log to
verify it has been delivered to the smarthost (if it says “delivery
successful” it’s OK, even if it’s preceded by a warning message about
the authentication mechanism), and verify that you have received it.

The next step is to configure Django. You might think that we would set
EMAIL_HOST = 'localhost' and EMAIL_PORT = 25, but this is not
what we will do. dma does not listen on port 25 or on any other
port. The only way to send emails with it is by using the sendmail
command. Traditionally this has been the easiest and most widely
available way to send emails in Unix, and it is also what cron uses.
(In the old times, when sendmail was the only existing mail server,
the practice of using the sendmail command was standardized, so
today all mail servers create a sendmail command when they are
installed, which is usually a symbolic link to something else). We will
install a Django email backend that sends emails in the same way.

/opt/$DJANGO_PROJECT/venv/bin/pip install django-sendmail-backend

The only Django configuration we need is this:

EMAIL_BACKEND = 'django_sendmail_backend.backends.EmailBackend'

The dma configuration should have been obvious, except for
/etc/aliases and /etc/mailname. These are not dma-specific, they
are also used by exim, postfix, and most other mail servers, and
/etc/mailname may also be used by other programs.

/etc/aliases specifies aliases for email addresses. If cron
decides it needs to send an email, the recipient will most likely be a
mere root. The line we added specifies that root should be
translated to your actual email address. For Django, /etc/aliases
doesn’t matter, since Django will get the recipient email address from
the ADMINS and MANAGERS settings.

If a program somehow needs to know the domain used for the email of the
system, it usually takes it from /etc/mailname. Setting that to
$DOMAIN should be fine, but if this doesn’t work, you can try
setting it to the domain of your email address.

7.4. Secret key

Django uses the SECRET_KEY [https://docs.djangoproject.com/en/1.10/ref/settings/#secret-key] in several cases, for example, when
digitally signing sessions in cookies. If it leaks, attackers might be
able to compromise your system. You should not use the SECRET_KEY
you use in development, because that one is easy to leak, and because
many developers often have access to it, whereas they should not have
access to the production SECRET_KEY.

You can create a secret key in this way:

import sys

from django.utils.crypto import get_random_string

sys.stdout.write(get_random_string(50))

7.5. Logging

Even if your Django apps do no logging, they eventually will. At some
point one of your users is going to cause an error which you will be
unable to reproduce in the development environment, so you will
introduce some logging calls. It makes sense to configure logging so
that it is ready for that time. You need a configuration that will write
log messages in /var/log/$DJANGO_PROJECT/$DJANGO_PROJECT.log, and
here it is:

LOGGING = {
 'version': 1,
 'disable_existing_loggers': False,
 'formatters': {
 'default': {
 'format': '[%(asctime)s] %(levelname)s: '
 '%(message)s',
 }
 },
 'handlers': {
 'file': {
 'class': 'logging.handlers.'
 'TimedRotatingFileHandler',
 'filename': '/var/log/$DJANGO_PROJECT/'
 '$DJANGO_PROJECT.log',
 'when': 'midnight',
 'backupCount': 60,
 'formatter': 'default',
 },
 },
 'root': {
 'handlers': ['file'],
 'level': 'INFO',
 },
}

Here is the meaning of the various items:

	version

	This is reserved for the future; for now, it should always be 1.

	disable_existing_loggers

	Django already has a default logging configuration. If
disable_existing_loggers is True (the default), then this
configuration will override Django’s default, otherwise it will work
in addition to the default. We really want Django’s default
configuration, which is to email critical errors to the
administrators.

	root

	This defines the root logger. You can specify very complicated
logging schemes, where different loggers will be logging using
different handlers and different formatters. However, as long as our
system is small, we only need to specify a single logger, the root
logger, which uses a single handler (the “file” handler) with a
single formatter (the “default” formatter). In this example I have
specified 'level': 'INFO', which means the logger will ignore
messages with a lower priority (the only lower priority is DEBUG,
and the higher priorities are WARNING, ERROR and
CRITICAL). You can change this as needed, however INFO is
reasonable to begin with.

	handlers

	Here we define the “file” handler, whose class is
logging.TimedRotatingFileHandler. This essentially logs to a
file, but it has the added benefit that each midnight it starts a
new log file, renames the old one, and deletes log files older than
60 days. In this way it is very unlikely that your disk will fill up
because of the growing log files escaping your attention.

	formatters

	This defines a formatter named “default”. In a system where I’m using
this logging configuration, I have this code:

import logging

...

logging.info('Notifying user {} about the agrifields of '
 'user {}'.format(user, owner))

and it produces this line in the log file:

[2016-11-29 04:40:02,880] INFO: Notifying user aptiko about the agrifields of user aptiko

7.6. Caching

The only other setting I expect you to set to a different value from
development is CACHES. How you will set it depends on your needs. I
usually want my caches to persist across reboots, so I specify this:

CACHES = {
 'default': {
 'BACKEND': 'django.core.cache.backends.filebased.'
 'FileBasedCache',
 'LOCATION': '/var/cache/$DJANGO_PROJECT/cache',
 }
}

You also need to create the directory and give it the necessary
permissions:

mkdir /var/cache/$DJANGO_PROJECT/cache
chown $DJANGO_USER /var/cache/$DJANGO_PROJECT/cache

7.7. Recompile your settings

Remember that Django runs as $DJANGO_USER and does not (and should not)
have permission to write in directory /etc/opt/$DJANGO_PROJECT,
which is owned by root. Therefore it can’t write the Python 2 compiled
file settings.pyc, or the Python 3 compiled files directory
__pycache__. In theory you should be compiling it each time you make
a change to your settings:

/opt/$DJANGO_PROJECT/venv/bin/python -m compileall \
 /etc/opt/$DJANGO_PROJECT

Of course it’s not possible to remember to do this every single time you
change something in the settings. There are two solutions to this. The
first solution, which is fine, is to ignore the problem. If the compiled
file is absent or outdated, Python will compile the source file on the
spot. This will happen whenever each gunicorn worker starts, which is
only when you start or restart gunicorn, and it costs less than 1ms.
It’s really negligible.

The second solution is to create a script
/usr/local/sbin/restart-$DJANGO_PROJECT, with the following
contents:

#!/bin/bash
set -e
/opt/$DJANGO_PROJECT/venv/bin/python -m compileall -q \
 -x /opt/$DJANGO_PROJECT/venv/ /opt/$DJANGO_PROJECT \
 /etc/opt/$DJANGO_PROJECT
service $DJANGO_PROJECT restart

You must make that script executable:

chmod 755 /usr/local/sbin/restart-$DJANGO_PROJECT

You might object that we don’t want users other than root to be able to
recompile the Python files or to restart the gunicorn service. The
answer is that they won’t be able. They will be able to execute the
script, but when the script arrives at the point where it compiles the
Python files, they will be denied permission to write the compiled
Python files to the directory; and if the script ever arrives at the
last line, again systemd will deny to restart the service. Making a
script non-executable doesn’t achieve anything security-wise; a
malicious user could simply copy it and make the copy executable.

From now on, whenever you want to restart gunicorn, instead of service
$DJANGO_PROJECT restart, you can be using restart-$DJANGO_PROJECT,
which will run the above script. The set -e command tells bash to
stop executing the script when an error occurs, and the -q parameter
to compileall tells to not print the list of files compiled.

7.8. Clearing sessions

If you use django.contrib.sessions, Django stores session data in
the database (unless you use using a different SESSION_ENGINE [https://docs.djangoproject.com/en/1.10/ref/settings/#session-engine]).
Django does not automatically clean up the sessions table, so most of
the sessions remain in the database even after they expire. I’ve seen
sessions tables in small deployments of only a few requests per minute
grow to several hundreds of GB through the years. You can manually
remove expired sessions by executing python manage.py clearsessions.

To make sure your sessions are being cleared regularly, create file
/etc/cron.daily/$DJANGO_PROJECT-clearsessions with the following
contents:

#!/bin/bash
export PYTHONPATH=/etc/opt/$DJANGO_PROJECT:/opt/$DJANGO_PROJECT
export DJANGO_SETTINGS_MODULE=settings
su $DJANGO_USER -c "/opt/$DJANGO_PROJECT/venv/bin/python \
 /opt/$DJANGO_PROJECT/manage.py clearsessions"

Make the file executable:

chmod 755 /etc/cron.daily/$DJANGO_PROJECT-clearsessions

In Unix-like systems, cron is the standard scheduler; it executes tasks
at specified times. Scripts in /etc/cron.daily are executed once
daily, starting at 06:25 (am) local time. The time to which this
actually refers depends on the system’s time zone, which you can find by
examining the contents of the file /etc/timezone. In most of my
servers, I use UTC. The time during which these scripts are run doesn’t
really matter much, but it’s better to do it when the system is not very
busy—especially if some of the scripts are intensive, such as backup
(which we will see in a later chapter). For time zones with a
positive UTC offset, 06:25 UTC could be a busy time, so you might want
to change the system time zone with this command:

dpkg-reconfigure tzdata

There is a way to tell cron exactly at what time you want a task to run,
but I won’t go into that as throwing stuff into /etc/cron.daily
should be sufficient for most use cases.

Cron expects all the programs it runs to be silent, i.e., to not display
any output. If they do display output, cron emails that output to the
administrator. This is very neat, because if your tasks only display
output when there is an error, you will be emailed only when there is an
error. However, for this to work, you must setup a local mail server
as explained in Using a local mail server.

7.9. Chapter summary

	Install dma and (in the virtualenv) django-sendmail-backend

	Make sure /etc/dma/dma.conf has these contents:

SMARTHOST $EMAIL_HOST
PORT 587
AUTHPATH /etc/dma/auth.conf
SECURETRANSFER
STARTTLS
MAILNAME /etc/mailname

Also make sure /etc/dma/auth.conf has these contents:

$EMAIL_HOST_USER|$EMAIL_HOST:$EMAIL_HOST_PASSWORD

Make sure /etc/mailname contains $DOMAIN.

	Create the cache directory:

mkdir /var/cache/$DJANGO_PROJECT/cache
chown $DJANGO_USER /var/cache/$DJANGO_PROJECT/cache

	Create file /etc/cron.daily/$DJANGO_PROJECT-clearsessions with the
following contents:

#!/bin/bash
export PYTHONPATH=/etc/opt/$DJANGO_PROJECT:/opt/$DJANGO_PROJECT
export DJANGO_SETTINGS_MODULE=settings
su $DJANGO_USER -c "/opt/$DJANGO_PROJECT/venv/bin/python \
 /opt/$DJANGO_PROJECT/manage.py clearsessions"

Make the file executable:

chmod 755 /etc/cron.daily/$DJANGO_PROJECT-clearsessions

	Finally, this is the whole settings.py file:

 from django_project.settings import *

 debug = false
 allowed_hosts = ['$domain', 'www.$domain']
 databases = {
 'default': {
 'engine': 'django.db.backends.sqlite3',
 'name': '/var/opt/$django_project/$django_project.db',
 }
 }

 server_email = 'noreply@$domain'
 default_from_email = 'noreply@$domain'
 admins = [
 ('$admin_name', '$admin_email_address'),
]
 managers = admins
 email_backend = 'django_sendmail_backend.backends.' \
 'emailbackend'

 logging = {
 'version': 1,
 'disable_existing_loggers': false,
 'formatters': {
 'default': {
 'format': '[%(asctime)s] %(levelname)s: '
 '%(message)s',
 }
 },
 'handlers': {
 'file': {
 'class': 'logging.timedrotatingfilehandler',
 'filename': '/var/log/$django_project/'
 '$django_project.log',
 'when': 'midnight',
 'backupcount': 60,
 'formatter': 'default',
 },
 },
 'root': {
 'handlers': ['file'],
 'level': 'info',
 },
 }

caches = {
 'default': {
 'backend': 'django.core.cache.backends.filebased.'
 'filebasedcache',
 'location': '/var/cache/$django_project/cache',
 }
}

 Last updated on Apr 15, 2019.

 Navigation

 	
 next

 	
 previous |

 	Deploying Django on a single Debian or Ubuntu server »

8. PostgreSQL

8.1. Why PostgreSQL?

So far we have been using SQLite. Can we continue to do so? The answer,
as always, is “it depends”. Most probably you can’t.

I’m using SQLite in production in one application I’ve made for an
eshop hosted by BigCommerce. It gets the orders from the BigCommerce API
and formats them on a PDF for printing on labels. It has no models, and
all the data is stored in BigCommerce. The only significant data stored
in SQLite is the users’ names and passwords used for login, by
django.contrib.auth. It’s hardly three users. Recreating them would
be easier than maintaining a PostgreSQL installation. So SQLite it is.

What if your database is small and you don’t have many users, but you
store mission-critical data in the database? That’s a hard one. The
thing is, no-one really knows if SQLite is appropriate, because no-one
is using it for mission-critical data. Thunderbird doesn’t use it for
storing emails, but for storing indexes, which can be recreated.
Likewise for Firefox. The SQLite people claim [https://www.sqlite.org/testing.html] it’s appropriate for
mission-critical applications, but industry experience on that is
practically nonexistent. I’ve never seen corruption in SQLite. I’ve seen
corruption in PostgreSQL, but we are comparing apples to oranges. I have
a gut feeling (but no hard data) that I can trust SQLite more than
MySQL.

If I ever choose to use SQLite for mission-critical data, I will make
sure I not just backup the database file, but also backup a plain text
dump of the database. I trust plain text dumps more than database files
in case there is silent corruption that can go unnoticed for some time.

One problem with SQLite is that you may choose to go with it now that
your database is small and your users are few, but you can’t really be
certain what it will be like in three or five years. If for some reason
the database has grown or the users have increased, SQLite might be
unable to handle it. Migrating to PostgreSQL at that stage could be a
nightmare. So the safe option is to use PostgreSQL straight from the
beginning.

As for MySQL, I never understood why it has become so popular when
there’s PostgreSQL around. My only explanation is it was marketed
better. PostgreSQL is more powerful, it is easier, and it has better
documentation. If you have a reason to use MySQL, it’s probably that you
already know it, or that people around you know it (e.g. it is
company policy). In that case, hopefully you don’t need any help from
me. Otherwise, choose PostgreSQL and read the rest of this chapter.

8.2. Getting started with PostgreSQL

You may have noticed that I prefer to tell you to do things first and
then explain them. Same thing again. We will quickly install PostgreSQL
and configure Django to use it. You won’t be understanding clearly what
you are doing. After we finish it, you have some long sections to read.
You must read them, however. The way to avoid doing the reading is
to forget about PostgreSQL and continue using SQLite. It is risky to
put your customer’s data on a system that you don’t understand and that
you’ve set up just by blindly following instructions.

apt install postgresql

This will install PostgreSQL and create a cluster; I will explain later
what this means.

Warning

Make sure the locale is right

When PostgreSQL installs, it uses the encoding specified by the
default system locale (found in /etc/default/locale). If this is
not UTF-8, the databases will be using an encoding other than UTF-8.
You really don’t want that. If you aren’t certain, you can check,
using the procedure I explained in
Setting up the system locale, that the default system locale
is appropriate. You can also check that PostgreSQL was installed with
the correct locale with this command:

su postgres -c 'psql -l'

This will list your databases and some information about them,
including their locale. Immediately after installation, there should
be three databases (I explain them later on).

If you make an error and install PostgreSQL while the locale is
wrong, the easiest way to fix the problem is to drop and recreate the
cluster. I explain later what “cluster” means, but what you need to
know is that the following procedure will permanently and irrevocably
delete all your databases. Be careful not to type the commands in
the wrong window (you could delete the databases of the wrong
server). Fix your locale as described in
Setting up the system locale, then execute the following
commands:

service postgresql stop
pg_dropcluster 9.5 main
pg_createcluster 9.5 main
service postgresql start

If you have a database with useful data, obviously you can’t do this.
Fixing the problem is more advanced and isn’t covered by this
chapter; there is a question at Stackoverflow [http://stackoverflow.com/questions/5090858/how-do-you-change-the-character-encoding-of-a-postgres-database] that treats it, but
better finish this chapter first to get a grip on the basics.

Let’s now try to connect to PostgreSQL with a client program:

su postgres -c 'psql template1'

This connects you with the “template1” database and gives you a prompt
ending in #. You can give it some commands like \l to list the
databases (there are three just after installation). Let’s create a
user and a database. I will use placeholders $DJANGO_DB_USER,
$DJANGO_DB_PASSWORD, and $DJANGO_DATABASE. We normally use the same as
$DJANGO_PROJECT for both $DJANGO_DB_USER and $DJANGO_DATABASE, and I
have the habit of using the SECRET_KEY as the database password, but in
principle all these can be different; so I will be using these different
placeholders here to signal to you that they denote something different.

CREATE USER $DJANGO_DB_USER PASSWORD '$DJANGO_DB_PASSWORD';
CREATE DATABASE $DJANGO_DATABASE OWNER $DJANGO_DB_USER;

The command to exit psql is \q.

Next, we need to install psycopg2:

apt install python-psycopg2 python3-psycopg2

This will work only if you have created your virtualenv with the
--system-site-packages option, which is what I told you to do many
pages ago. Otherwise, you need to pip install psycopg2 inside the
virtualenv. Most people do it in the second way. However, attempting to
install psycopg2 with pip will require compilation, and
compilation can be tricky, and different psycopg2 versions might
behave differently, and in my experience the easiest and safest way is
to install the version of psycopg2 that is packaged with the
operating system. If your site-wide Python installation is clean
(meaning you have used pip only in virtualenvs),
--system-site-packages works great.

Finally, change your DATABASES setting to this:

DATABASES = {
 'default': {
 'ENGINE': 'django.contrib.gis.db.backends.postgis',
 'NAME': '$DJANGO_DATABASE',
 'USER': '$DJANGO_DB_USER',
 'PASSWORD': '$DJANGO_DB_PASSWORD',
 'HOST': 'localhost',
 'PORT': 5432,
 }
}

From now on, Django should be using PostgreSQL (you may need to restart
Gunicorn). You should be able to setup your database with this:

PYTHONPATH=/etc/opt/$DJANGO_PROJECT:/opt/$DJANGO_PROJECT \
DJANGO_SETTINGS_MODULE=settings \
su $DJANGO_USER -c \
"/opt/$DJANGO_PROJECT/venv/bin/python \
/opt/$DJANGO_PROJECT/manage.py migrate"

8.3. PostgreSQL connections

A short while ago we run this innocent looking command:

su postgres -c 'psql template1'

Now let’s explain what this does. Brace yourself, as it will take
several sections. Better go make some tea, relax, and come back.

A web server listens on TCP port 80 and a client, usually a browser,
connects to that port and asks for some information. The server and the
client communicate in a language, in this case the Hypertext Transfer
Protocol or HTTP. In very much the same way, the PostgreSQL server is
listening on a communication port and a client connects to that port.
The client and the server communicate in the PostgreSQL Frontend/Backend
Protocol.

In the case of the psql template1 command, psql, the PostgreSQL
interactive terminal, is the client. It connects to the server, and gets
commands from you. If you tell it \l, it asks the server for the
list of databases. If you give it an SQL command, it sends it to the
server and gets the response from the server.

When you connect to a web server with your browser, you always provide
the server address in the form of a URL. But here we only provided a
database name. We could have told it the server as follows (but it’s not
going to work without a fight, because the user authentication kicks in,
which I explain in the next section):

psql --host=localhost --port=5432 template1

You might think localhost and 5432 is the default, but it isn’t. The
default is Unix domain socket /var/run/postgresql/.s.PGSQL.5432.
Let’s see what this means.

If you think about it, TCP is nothing more than a way for different
processes to communicate. One process, the browser, opens a
communication channel to another process, the web server. Unix domain
sockets are an alternative interprocess communication system that has
some advantages but only works on the same machine. Two processes on the
same machine that want to communicate can do so via a socket; one
process, the server, will create the socket, and another, the client,
will connect to the socket. One of the philosophies of Unix is that
everything looks like a file, so Unix domain sockets look like files,
but they don’t occupy any space on your disk. The client opens what
looks like a file, and sends and receives data from it.

When the PostgreSQL server starts, it creates socket
/var/run/postgresql/.s.PGSQL.5432. The “5432” is nothing of meaning
to the system; if the socket had been named
/var/run/postgresql/hello.world, it would have worked exactly the
same. The PostgreSQL developers chose to include the “5432” in the name
of the socket as a convenience, in order to signify that this socket
leads to the same PostgreSQL server as the one listening on TCP port
5432. This is useful in the rare case where many PostgreSQL instances
(called “clusters”, which I explain later) are running on the same
machine.

Hint

Hidden files

In Unix, when a file begins with a dot, it’s “hidden”. This means
that ls doesn’t normally show it, and that when you use wildcards
such as * to denote all files, the shell will not include it.
Otherwise it’s not different from non-hidden files.

To list the contents of a directory including hidden files, use the
-a option:

ls -a /var/run/postgresql

This will include . and .., which denote the directory itself
and the parent directory (/var/run/postgresql/. is the same as
/var/run/postgresql; /var/run/postgresql/.. is the same as
/var/run). You can use -A instead of -a to include all
hidden files except . and ...

8.4. PostgreSQL roles and authentication

After a client such as psql connects to the TCP port or to the Unix
domain socket of the PostgreSQL server, it must authenticate before
doing anything else. It must login, so to speak, as a user. Like many
other relational database management systems (RDBMS’s), PostgreSQL keeps
its own list of users and has a sophisticated permissions system with
which different users have different permissions on different databases
and tables. This is useful in desktop applications. In the Greek tax
office, for example, employees run a program on their computer, and the
program asks them for their username and password, with which they login
to the tax office RDBMS, which is Oracle, and Oracle decides what this
user can or cannot access.

Web applications changed that. Instead of PostgreSQL managing the users
and their permissions, we have a single PostgreSQL user,
$DJANGO_DB_USER, as which Django connects to PostgreSQL, and this user
has full permissions on the $DJANGO_DB database. The actual users and
their permissions are managed by django.contrib.auth. What a user
can or cannot do is decided by Django, not by PostgreSQL. This is a pity
because django.contrib.auth (or the equivalent in other web
frameworks) largely duplicates functionality that already exists in the
RDBMS, and because having the RDBMS check the permissions is more robust
and more secure. I believe that the reason web frameworks were developed
this way is independence from any specific RDBMS, but I don’t really
know. Whatever the reason, we will live with that, but I am telling you
the story so that you can understand why we need to create a PostgreSQL
user for Django to connect to PostgreSQL as.

Just as in Unix the user “root” is the superuser, meaning it has full
permissions, and likewise the “administrator” in Windows, in PostgreSQL
the superuser is “postgres”. I am talking about the database user, not
the operating system user. There is also an operating system “postgres”
user, but here I don’t mean the user that is stored in /etc/passwd
and which you can give as an argument to su; I mean a PostgreSQL
user. The fact that there exists an operating system user that happens
to have the same username is irrelevant.

Let’s go back to our innocent looking command:

su postgres -c 'psql template1'

As I explained, since we don’t specify the database server, psql by
default connects to the Unix domain socket
/var/run/postgresql/.s.PGSQL.5432. The first thing it must do after
connecting is authenticating. We could have specified a user to
authenticate as with the --username option. Since we did not,
psql uses the default. The default is what the PGUSER
environment variable says, and if this is absent, it is the username of
the current operating system user. In our case, the operating system
user is postgres, because we executed su postgres; so psql
attempts to authenticate as the PostgreSQL user postgres.

To make sure you understand this clearly, try to run psql template1
as root:

psql template1

What does it tell you? Can you understand why? If not, please re-read
the previous paragraph. Note that after you have just installed
PostgreSQL, it has only one user, postgres.

So, psql connected to /var/run/postgresql/.s.PGSQL.5432 and
asked to authenticate as postgres. At this point, you might have
expected the server to request a password, which it didn’t. The reason
is that PostgreSQL supports many different authentication methods, and
password authentication is only one of them. In that case, it used
another method, “peer authentication”. By default, PostgreSQL is
configured to use peer authentication when the connection is local (that
is, through the Unix domain socket) and password authentication when the
connection is through TCP. So try this instead to see that it will ask
for a password:

su postgres -c 'psql --host=localhost template1'

You don’t know the postgres password, so just provide an empty
password and see that it refuses the connection. I don’t know the
password either. I believe that Debian/Ubuntu sets no password (i.e.
invalid password) at installation time. You can set a valid password
with ALTER USER postgres PASSWORD 'topsecret', but don’t do that.
There is no reason for the postgres user to connect to the database
with password authentication, it could be a security risk, and you
certainly don’t want to add yet another password to your password
manager.

Let’s go back to what we were saying. psql connected to the socket
and asked to authenticate as postgres. The server decided to use
peer authentication, because the connection is local. In peer
authentication, the server asks the operating system: “who is the user
who connected to the socket?” The operating system replied: “postgres”.
The server checks that the operating system user name is the same as the
PostgreSQL user name which the client has requested to authenticate as.
If it is, the server allows. So the Unix postgres user can always
connect locally (through the socket) as the PostgreSQL postgres
user, and the Unix joe user can always connect locally as the
PostgreSQL joe user.

So, in fact, if $DJANGO_USER and $DJANGO_DB_USER are the same (and they
are if so far you have followed everything I said), you could use these
Django settings:

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.postgresql_psycopg2',
 'NAME': '$DJANGO_DATABASE',
 'USER': '$DJANGO_DB_USER',
 }
}

In this case, Django will connect to PostgreSQL using the Unix domain
socket, and PostgreSQL will authenticate it with peer authentication.
This is quite cool, because you don’t need to manage yet another
password. However, I don’t recommend it. First, most of your colleagues
will have trouble understanding that setup, and you can’t expect
everyone to sit down and read everything and understand everything in
detail. Second, next month you may decide to put Django and PostgreSQL
on different machines, and using password authentication you make your
Django settings ready for that change. It’s also better, both for
automation and your sanity, to have similar Django settings on all your
deployments, and not to make some of them different just because it
happens that PostgreSQL and Django run on the same machine there.

Remember that when we created the $DJANGO_DATABASE database, we made
$DJANGO_DB_USER its owner?

CREATE DATABASE $DJANGO_DATABASE OWNER $DJANGO_DB_USER;

The owner of a database has full permission to do anything in that
database: create and drop tables; update, insert and delete any rows
from any tables; grant other users permission to do these things; and
drop the entire database. This is by far the easiest and recommended way
to give $DJANGO_DB_USER the required permissions.

Before I move to the next section, two more things you need to know.
PostgreSQL authentication is configurable. The configuration is at
/etc/postgresql/9.x/main/pg_hba.conf. Avoid touching it, as it is a
bit complicated. The default (peer authentication for Unix domain socket
connections, password authentication for TCP connections) works fine for
most cases. The only problem you are likely to face is that the default
configuration does not allow connection from other machines, only from
localhost. So if you ever put PostgreSQL on a different machine from
Django, you will need to modify the configuration.

Finally, PostgreSQL used to have users and groups, but the PostgreSQL
developers found out that these two types of entity had so much in
common that they joined them into a single type that is called “role”. A
role can be a member of another role, just as a user could belong to a
group. This is why you will see “role joe does not exist” in error
messages, and why CREATE USER and CREATE ROLE are exactly the
same thing.

8.5. PostgreSQL databases and clusters

Several pages ago, we gave this command:

su postgres -c 'psql template1'

I have explained where it connected and how it authenticated, and to
finish this up I only need to explain why we told it to connect to the
“template1” database.

The thing is, there was actually no theoretical need to connect to a
database. The only two commands we gave it were these:

CREATE USER $DJANGO_DB_USER PASSWORD '$DJANGO_DB_PASSWORD';
CREATE DATABASE $DJANGO_DATABASE OWNER $DJANGO_DB_USER;

I also told you, for experiment, to also provide the \l command,
which lists the databases.

All three commands are independent of database and would work exactly
the same regardless of which database we are connected to. However,
whenever a client connects to PostgreSQL, it must connect to a
database. There is no way to tell the server “hello, I’m user postgres,
authenticate me, but I don’t want to connect to any specific database
because I only want to do work that is independent of any specific
database”. Since you must connect to a database, you can choose any of
the three that are always known to exist: postgres, template0,
and template1. It is a long held custom to connect to template1
in such cases (although postgres is a bit better, but more on that
below).

The official PostgreSQL documentation explains template0 and
template1 so perfectly that I will simply copy it here:

CREATE DATABASE actually works by copying an existing database. By
default, it copies the standard system database named template1.
Thus that database is the “template” from which new databases are
made. If you add objects to template1, these objects will be
copied into subsequently created user databases. This behavior
allows site-local modifications to the standard set of objects in
databases. For example, if you install the procedural language
PL/Perl in template1, it will automatically be available in user
databases without any extra action being taken when those databases
are created.

There is a second standard system database named template0. This
database contains the same data as the initial contents of
template1, that is, only the standard objects predefined by your
version of PostgreSQL. template0 should never be changed after
the database cluster has been initialized. By instructing CREATE
DATABASE to copy template0 instead of template1, you can
create a “virgin” user database that contains none of the site-local
additions in template1. This is particularly handy when
restoring a pg_dump dump: the dump script should be restored in
a virgin database to ensure that one recreates the correct contents
of the dumped database, without conflicting with objects that might
have been added to template1 later on.

There’s more about that in Section 22.3 [https://www.postgresql.org/docs/9.6/static/manage-ag-templatedbs.html] of the documentation. In
practice, I never touch template1 either. I like to have PostGIS in
the template, but what I do is create another template,
template_postgis, for the purpose.

Before explaining what the postgres database is for, we need to look
at an alternative way of creating users and databases. Instead of using
psql and executing CREATE USER and CREATE DATABASE, you can
run these commands:

su postgres -c "createuser --pwprompt $DJANGO_DB_USER"
su postgres -c "createdb --owner=$DJANGO_DB_USER $DJANGO_DATABASE"

Like psql, createuser and createdb are PostgreSQL clients;
they do nothing more than connect to the PostgreSQL server, construct
CREATE USER and CREATE DATABASE commands from the arguments you
have given, and send these commands to the server. As I’ve explained,
whenever a client connects to PostgreSQL, it must connect to a
database. What createuser and createdb (and other PostgreSQL
utility programs) do is connect to the postgres database. So
postgres is actually an empty, dummy database used when a client
needs to connect to the PostgreSQL server without caring about the
database.

I hinted above that it is better to use psql postgres than psql
template1 (though most people use the latter). The reason is that
sometimes you may accidentally create tables while being connected to
the wrong database. It has happened to me more than once to screw up my
template1 database. You don’t want to accidentally modify your
template1 database, but it’s not a big deal if you modify your
postgres database. So use that one instead when you want to connect
with psql. The only reason I so far told you to use the suboptimal
psql template1 is that I thought you would be confused by the many
instances of “postgres” (there’s an operating system user, a PostgreSQL
user, and a database named thus).

Now let’s finally explain what a cluster is. Let’s see it with an
example. Remember that nginx reads /etc/nginx/nginx.conf and listens
on port 80? Well, it’s entirely possible to start another instance of
nginx on the same server, that reads /home/antonis/nginx.conf and
listens to another port. That other instance will have different lock
files, different log files, different configuration files, and can have
different directory roots, so it can be totally independent. It’s very
rarely needed, but it can be done (I’ve done it once to debug a
production server of a problem I couldn’t reproduce in development).
Likewise, you can start a second instance of PostgreSQL, that uses
different configuration files and a different data file directory, and
listens on a different port (and different Unix domain socket). Since it
is totally independent of the other instance, it also has its own users
and its own databases, and is served by different server processes.
These server processes could even be run by different operating system
users (but in practice we use the same user, postgres, for all of
them). Each such instance of PostgreSQL is called a cluster. By far most
PostgreSQL installations have a single cluster called “main”, so you
needn’t worry further about it; just be aware that this is why the
configuration files are in /etc/postgresql/9.x/main, why the data
files are in /var/lib/postgresql/9.x/main, and why the log files are
named /var/log/postgresql/postgresql-9.x-main.log. If you ever
create a second cluster on the same machine, you will be doing something
advanced, like setting up certain kinds of replication. If you are doing
such an advanced thing now, you are probably reading the wrong book.

8.6. Further reading

You may have noticed that I close most chapters with a summary, which,
among other things, repeats most of the code and configuration snippets
of the chapter. In this chapter I have no summary to write, because I
have already written it; it’s Section Getting started with
PostgreSQL. In the rest of the chapter I merely explained it.

I explain in the next chapter, but it is so important that I must repeat
it here, that you should not backup your PostgreSQL database by
copying its data files from /var/lib/postgresql. If you do such a
thing, you risk being unable to restore it when you need it. Read the
next chapter for more information.

I hope I wrote enough to get you started. You should be able to use it
in production now, and learn a little bit more and more as you go on.
Its great documentation is the natural place to continue. If you ever do
anything advanced, Gregory Smith’s PostgreSQL High Performance is a nice
book.

 Last updated on Apr 15, 2019.

 Navigation

 	
 next

 	
 previous |

 	Deploying Django on a single Debian or Ubuntu server »

9. Recovery part 1

9.1. Why “recovery”?

Usually book chapters and blog posts dealing with what I’m dealing in
this chapter call it “backup and recovery”. To me, backup is just a part
of recovery, it is only the first step towards recovery. This is why I
prefer to just use “recovery”. It’s not just a language issue, it’s a
different way of thinking. When you deal with “backup and recovery”, you
view them as two separate things. You might finish your backup and think
“I’m through with this, I’ll deal with recovery if and when the time
comes”. When we name it just “recovery”, you understand that backup
isn’t something isolated, and certainly it isn’t the point. Backup on
its own is useless and pointless. Your customer doesn’t care about
backup; they care about whether you are able to recover the system when
it breaks. In fact, they don’t even care about that; they just care that
the system works, and they prefer to not know what you are doing behind
the scenes for it to work. One of the things you are doing behind the
scenes is to recover the system.

The most important thing about recovery is that it should be tested.
Once a year, or once in two years, you should switch off the server,
pretend it exploded, and recover on a new server. Without doing this,
you will not know if you can recover. Recovery plans contain all sorts
of silly errors. Maybe your backups are encrypted, and the decryption
key is only stored in the server itself, and you won’t have it when you
need to recover. Maybe you don’t backup some files that you think can be
recreated, and it turns that among them there are some valuable data
files. The thing is, you won’t be able to know what you did wrong until
you test your recovery.

Untested recovery always takes way longer than you think. When you have
written down the recovery procedure and you have tested it, you may be
able to recover within a couple of hours or even a few minutes, with
minimal stress. It can be part of your day-to-day work and not a huge
event. Without a written procedure, or with an untested procedure, you
will be sweating over your keyboard for a whole day or more, while your
customer will be frustrated. It’s hard to imagine how much time you can
waste because you are getting a pg_restore option wrong until you
try it.

So, think about recovery. Recovery starts with backup, continues with
the creation of a written restore procedure, and is mostly completed
when that procedure is tested. Anything less than that is dangerous.

9.2. Where to backup

The cloud is very attractive. Amazon, Google, Backblaze, Microsoft, they
sell cheap storage. All your server has to do is save its stuff there.
You don’t need to change tapes every day and move them off site, as we
used to do 10 years ago. And your backup is on another continent. No
chance it will explode the same time as your server, right? Wrong!

The problem is that your system has a single point of failure: the
security of your server. For your server to backup itself to the remote
storage, it must have write access to the remote storage. So if the
security of your server is compromised, the attacker can delete your
server’s data and the backup.

Do you think this is far-fetched? Code Spaces was a company that had its
code and data on Amazon Web Services. One day in 2014 an attacker
managed to get access to their account and demanded ransom. Negotiations
didn’t go well and the attacker deleted all data. All backups.
Everything. The company was wiped out overnight. It ceased to exist.
Undoubtedly its customers were also damaged.

Forget about two-factor authentication or Amazon’s undeletable S3 files.
Your phone might be stolen. Or the employee who has access to the
account and has two factor-authentication on his phone might go crazy
and want to harm you. Or you might go crazy and want to hurt your
customers. Or you might be paying the server and the backup from the
same credit card, with the same obsolete email in both, and the credit
card might be cancelled, and you’d fail to receive the emails, and the
providers might delete the server and the backups at the same time. Or
the whole system, regardless its safety checks and everything, might
have a bug somewhere. Our experience of the last 20 years does not
indicate that systems are getting safer; on the contrary. Heartbleed [https://en.wikipedia.org/wiki/Heartbleed]
and Shellshock [https://en.wikipedia.org/wiki/Shellshock_%28software_bug%29] showed how vulnerable the whole Internet is; and the
next such problem is just waiting to be discovered.

The only way to be reasonably certain that your data is safe is if the
backup is offline, on a medium you can actually touch, disconnected from
the network. But this is very expensive, so you need to compromise on
something.

What I do is backup my systems online daily, but I also copy the backup
to a disk once a month, and I take the disk offline. The next month I
use another disk. I will tell you more about it later on.

9.3. Estimating storage cost

Cloud storage services advertise a cost per GB per month. For example,
for Backblaze the amount at the time of this writing is $0.005. We need
to multiply this by 12 to arrive at a cost of $0.06 per year.

Depending on the backup scheme you use, you might save the data multiple
times. For example, the scheme I will propose involves a full backup
every three months, and backups kept for two years. This means that each
GB will be stored a total of eight times. So this means that each GB of
data, or eight GB of backup storage, will cost $0.48 per year.

There are also charges for downloading. Backblaze charges $0.05 per GB
for each download. If you download the backups twice a year for
recovery testing, that’s $0.10. So the total so far is $0.58 per GB per
year. For a Django installation with 10 GB of data, this will be $5.80
per year. For 30 GB of data, it will be $17.40 per year. While it is
not much, if you maintain many Django installations it can add up, so
you must make sure you take the cost into account when you offer a
support contract to the customer.

If you download the backups once a month in order to save them to an
offline disk, this will cost an additional $0.05 per month, which
amounts to $0.60 per year, so this doubles online storage costs. In the
scheme I explain in the next chapter, we take offline backups directly
from the server, not from the online backups, so you don’t have this
cost. However, it’s perfectly valid to backup the backups instead, and
sometimes it’s preferable; if you do it this way, don’t forget to take
the download cost into account.

If you use external disks for offline backups, you need two disks, and
each disk must have a capacity of all the data of all your installations
combined. They must be rotating disks (i.e. not SSD), preferably
portable USB ones. You may also be able to use SATA disks with a
SATA-to-USB adapter; however, one of the advantages of USB disks is that
it’s much easier to label them by attaching a sticker (SATA disks have
very little space available for attaching a sticker, unless you cover
their original label, which you don’t want). You might want to use small
(2.5-inch) disks, which are much easier to carry. In any case, in this
book we deal with deployments on a single server, so these are probably
small and a 1TB disk is likely enough for all your deployments. Two
such external disks cost around $100. They might live for five years,
but I prefer to be more conservative and assume they’ll last for a
maximum of two years; your backup schemes, your customers, and your
business in general will have changed enough by then. So the total cost
of backup (assuming it all fits in a 1TB disk) is $50 per year plus
$0.58 per GB per year.

9.4. Setting up backup storage

How exactly you will setup your backup storage depends on the type of
storage you use. You might use Backblaze B2, Google Cloud Storage,
Amazon S3, or various other services. If you have a static IP address,
you could also setup a physical machine, but this is typically harder
and more expensive. In the rest of this chapter, I will assume you are
using Backblaze B2. If you are familiar with another storage system, go
ahead and use that. (Note: I am not affiliated with Backblaze.)

To setup your backup storage on Backblaze, go to https://backblaze.com/,
select “B2 Cloud Storage”, and sign up or login. Then create a bucket.

A bucket is a virtual hard disk, so to speak. It has no fixed size; it
grows as you add files to it. Rather than having different buckets for
different customers, in this chapter I assume you have only one bucket,
which is simpler. Remember, always choose the simplest solution first,
and don’t make assumptions about how the future will be; very often you
ain’t gonna need it. If and when the future brings in needs that can’t
be covered by the solution I’m proposing here, you will need to revise
your strategy.

In order to create the bucket, you will be asked for a name, and about
whether it’s going to be private or public. It will be private of
course; as for the name, I like $NICK-backup, where $NICK is my
usual username (such as the one you have on Twitter perhaps). After you
create it, go to the Bucket Settings, and tell it to keep only the last
version of the file versions. This is because whenever you change a
file, or whenever you delete a file, Backblaze B2 has the option of also
keeping the previous version of the file. While this can be neat in some
use cases, we won’t be needing it here and it’s going to be a waste of
disk space (and therefore money). We just want the bucket to behave like
a normal hard disk.

Now, if you go to the “Buckets” section of the Backblaze B2 dashboard
(“Buckets” is actually the front page of the dashboard), near the top it
says “Show Accout ID and Application Key”. Click on that link and it
will show you your Account ID. If you don’t know your Application Key
(for example, if it’s your first time in Backblaze B2) create a new one.
Take note of both your Account ID and your Application Key; we will need
them later. I will be calling them $ACC_ID and $APP_KEY.

9.5. Setting up duplicity and duply

The recovery software we will use is duplicity. While it works quite
well, it is hard to use on its own because its user interface is
inconvenient. It does not have a configuration file, but you tell it
everything it needs to know on the command line, and a very long command
line indeed. I believe that the authors of duplicity intended it to be
run by scripts and not by humans. Here we are going to use duply, a
front-end to duplicity that makes our job much easier. Let’s start by
installing it:

apt install duply

Hint

Installing duplicity in Debian

Although apt install duply will work on Debian 8, it will install
duplicity 0.6.24, which does not support Backblaze B2. Therefore, you
may want to install a more recent version of duplicity.

Go to duplicity’s home page, http://duplicity.nongnu.org/, and copy
the link to the current release in the Download section. I will call
it $DUPLICITY_TARBALL_SOURCE, and I will also use the placeholder
$DUPLICITY_VERSION.

Install duplicity with the following commands:

apt install python-dev build-essential \
 python-setuptools librsync-dev
cd
wget $DUPLICITY_TARBALL_SOURCE
tar xzf duplicity-$DUPLICITY_VERSION.tar.gz
cd duplicity-$DUPLICITY_VERSION
python setup.py install

wget downloads stuff from the web. You give it a URL, it fetches
it and stores it in a file. In this case, it will fetch file
duplicity-$DUPLICITY_VERSION.tar.gz and store it in the current
directory (which should be /root if you run cd as I
suggested).

tar is very roughly the equivalent of zip/unzip on Unix;
it can create and read files containing other files (but tar
can’t read zip files, neither can zip read tar files). These
files are called “archive files”. The x in xzf means that the
desired operation is extraction of files from an archive (as opposed
to c, which is the creation of an archive, or t, which is for
listing the contents of an archive); the z means that the archive
is compressed; and f means that “the next argument in the command
line is the archive name”. I have long forgotten what it does if you
don’t specify the f option, but the default was something
suitable for 1979, when the first version of tar was created and
had to do with tape drives (in fact “tar” is short for “tape
archiver”). If more arguments follow, they are names of files to
extract from the archive. Since we don’t specify any, it will extract
all files. In this particular archive, all contained files are in
directory duplicity-$DUPLICITY_VERSION, so tar creates the
directory to put the files in there.

Next, let’s create a configuration directory:

mkdir -p /etc/duply/main
chmod 700 /etc/duply/main

With duply you can create many different configurations which it calls
“profiles”. We only need one here, and we will call it “main”. This is
why we created directory /etc/duply/main. Inside it, create a file
called conf, with the following contents:

GPG_KEY=disabled

SOURCE=/
TARGET=b2://$ACC_ID:$APP_KEY@$NICK-backup/$SERVER_NAME/

MAX_AGE=2Y
MAX_FULLS_WITH_INCRS=2
MAX_FULLBKP_AGE=3M
DUPL_PARAMS="$DUPL_PARAMS --full-if-older-than $MAX_FULLBKP_AGE "

VERBOSITY=warning
ARCH_DIR=/var/cache/duplicity/duply_main/

Warning

Syntax is bash

The duply configuration file is neither Python (such as
settings.py) nor an ini-style file; it is a shell script. This
notably means that, when defining variables, there can be no space on
either side of the equals sign (‘=’). Strings need to be quoted only
if they contain spaces, so, for example, the following three
definitions are exactly the same:

GREETING=hello
GREETING="hello"
GREETING='hello'

However, variables are replaced inside double quotes, but not inside
single quotes:

WHO=world
GREETING1="hello, $WHO"
GREETING2='hello, $WHO'

After this is run, GREETING1 will have the value “hello, world”,
whereas GREETING2 will be “hello, $WHO”. You can experiment by
simply typing these commands in the shell prompt, and examine the
values of variables with echo $GREETING1 and so on.

Also create a file /etc/duply/main/exclude, with the following
contents:

- /dev
- /proc
- /sys
- /run
- /var/lock
- /var/run
- /lost+found
- /boot
- /tmp
- /var/tmp
- /media
- /mnt
- /var/cache
- /var/crash
- /var/swap
- /var/swapfile
- /var/swap.img
- /var/lib/mysql
- /var/lib/postgresql

You can now backup your system by executing this command:

duply main backup

If this is a small virtual server, it should finish in a few minutes.
This, however, is just a temporary test. There are many things that
won’t work correctly, and one of the most important is that we haven’t
backed up PostgreSQL (and MySQL, if you happen to use it), and any
SQLite files we backed up may be corrupted. We just made this test to
get you up and running. Let me now explain what these configuration
files mean.

9.6. Duply configuration

Let’s check again the duply configuration file,
/etc/duply/main/conf:

GPG_KEY=disabled

SOURCE=/
TARGET=b2://$ACC_ID:$APP_KEY@$NICK-backup/$SERVER_NAME/

MAX_AGE=2Y
MAX_FULLS_WITH_INCRS=2
MAX_FULLBKP_AGE=3M
DUPL_PARAMS="$DUPL_PARAMS --full-if-older-than $MAX_FULLBKP_AGE "

VERBOSITY=warning
ARCH_DIR=/var/cache/duplicity/duply_main/

	GPG_KEY=disabled

	Duplicity, and therefore duply, can encrypt the backups. The
rationale is that the backup storage provider shouldn’t be able to
read your files. So if you have a company, and you have a server at
the company premises, and you backup the server at Backblaze or at
Google, you might not want Backblaze or Google to be able to read
the company’s files. In our case this would achieve much less. Our
virtual server provider can read our files anyway, since they are
stored in our virtual server, in a data centre owned by the
provider. Making it impossible for Backblaze to read our files
doesn’t achieve much if DigitalOcean can read them. Encrypting the
backups is often more trouble than what it’s worth, so we just
disable it.

	SOURCE=/

	This specifies the directory to backup. We specify the root
directory in order to backup the entire file system. We will
actually exclude some files and directories as I explain in the next
section.

	TARGET=b2://...

	This is the place to backup to. The first part, b2:, specifies
the “storage backend”. Duplicity supports many storage backends;
they are listed in man duplicity, Section “URL Format”. As you
can see, the syntax for the Backblaze B2 backend is
“b2://account_id:application_key@bucket/directory”. Even if you have
only one server, it’s likely that soon you will have more, so store
your backups in the $SERVER_NAME directory.

	MAX_AGE=2Y

	This means that backups older than 2 years will be deleted. Note
that, if your databases and files contain customer data, it may be
illegal to keep the backups for more than a specified amount of
time. If a user decides to unsubscribe or otherwise remove their
data from your database, you are often required to delete every
trace of your customer’s data from everywhere, including the
backups, within a specified amount of time, such as six months or
two years. You need to check your local privacy laws.

	MAX_FULLS_WITH_INCRS=2, MAX_FULLBKP_AGE=3M

	A full backup backs up everything. In an incremental backup
only the things that have changed since the previous backup are
backed up. So if on 12 January you perform a full backup, an
incremental backup on 13 January will only save the things that have
changed since 12 January, and another incremental on 14 January will
only save what has changed since 13 January. MAX_FULLBKP_AGE=3M
means that every three months a new full backup will occur.
MAX_FULLS_WITH_INCRS=2 means that incremental backups will be
kept only for the last two full backups; for older full backups,
incrementals will be removed.

Collectively these parameters (together with MAX_AGE=2Y) mean
that a total of about eight full backups will be kept; for the most
recent three to six months, the daily history of the files will be
kept, whereas for older backups the quarterly history will be kept.
You will thus be able to restore your system to the state it was two
days ago, or three days ago, or 58 days ago, but not necessarily
exactly 407 days ago—you will need to round this up to about 45 days
earlier or later.

Keeping the history of your system is very important. It is common
to lose some data and realize it some time later. If each backup
simply overwrote the previous one, and you realized today that you
had accidentally deleted a file four days ago, you’d be in trouble.

	DUPL_PARAMS=”$DUPL_PARAMS ...”

	If you want to add any parameters to duplicity that have not been
foreseen in duply, you can specify them in DUPL_PARAMS. Duply
just takes the value of DUPL_PARAMS and adds it to the duplicity
command line. Duply does not directly support MAX_FULLBKP_AGE,
so we need to manually add it to DUPL_PARAMS.

The $DUPL_PARAMS and $MAX_FULLBKP_AGE should be included
literally in the file, the aren’t placeholders such as $NICK,
$ACC_ID and $APP_KEY

	VERBOSITY=warning

	Options are error, warning, notice, info, and debug. “warning” will
show warnings and errors; “notice” will show notices and warnings
and errors; and so on. “warning” is usually fine.

	ARCH_DIR=/var/cache/duplicity/duply_main/

	Duplicity keeps a cache on the local machine that helps it know what
things it has backed up, without actually needing to fetch that
information from the backup storage—this speeds things up and
lessens network traffic. If this local cache is deleted, it
recreates it by reading stuff from remotely. Duply’s default cache
path is suboptimal so we change it.

In order to see duply’s documentation for these settings you need to ask
it to create a configuration file. We created the configuration files
above ourselves, but we could have given the command duply main
create, and this would have created /etc/duply/main/conf and
/etc/duply/main/exclude; actually it creates these files under
/etc/duply only if that directory exists; otherwise it creates them
under ~/.duply. After it creates the files, you are supposed to go
and edit them. The automatically created conf is heavily commented
and the comments explain what each setting does. So if you want to read
the docs, duply tmp create, then go to /etc/duply/tmp/conf and
read.

When you run duply what it actually does is read your configuration
files, convert them into command line arguments for duplicity, and
execute duplicity with a huge command line. For this reason, the
documentation of duply’s settings often refers you to duplicity. For
example, for details on MAX_FULLS_WITH_INCRS, the comments in
conf tell you to execute man duplicity and read about
remove-all-inc-of-but-n-full.

9.7. Excluding files

The file /etc/duply/main/exclude contains files and directories that
shall be excluded from the backup. Actually it uses a slightly
complicated language that allows you to say things like “exclude
directory X but include X/Y but do not include X/Y/Z”. However, we will
use it in a simple way, just in order to exclude files and directories,
which means we just precede each path with “-”. The exclude file we
specified two sections ago is this:

- /dev
- /proc
- /sys
- /run
- /var/lock
- /var/run
- /lost+found
- /boot
- /tmp
- /var/tmp
- /media
- /mnt
- /var/cache
- /var/crash
- /var/swap
- /var/swapfile
- /var/swap.img
- /var/lib/mysql
- /var/lib/postgresql

	/dev, /proc, /sys

	In these directories you will not find real files. /dev contains
device files. In Unix most devices look like files. In fact, one of
the Unix principles is that everything is a file. So the first hard
disk is usually /dev/sda (but in virtual machines it is often
/dev/vda). /dev/sda1 (or /dev/vda1) is the first
partition of that disk. You can actually open /dev/sda (or
/dev/vda) and write to it (the root user has permission to do
so), which will of course corrupt your system. Reading it is not a
problem though (but it’s rarely useful).

/sys and /proc contain information about the system. For
example, /proc/meminfo contains information about RAM, and
/proc/cpuinfo about the CPU. You can examine the contents of
these “files” by typing, for example, cat /proc/meminfo (cat
prints the contents of files).

The /dev, /sys and /proc directories exist on your disk
only as empty directories. The “files” inside them are created by the
kernel, and they do not exist on the disk. Not only does
it not make sense to backup, you would also be in trouble if you
attempted to.

	/run, /var/lock, /var/run

	/run stores information about running services, in order to keep
track of them. This information is mostly process ids and locks. For
example, /run/sshd.pid contains the process id of the SSH server.
The system will use this information if, for example, you ask to
restart the SSH server. Whenever the system boots, it empties that
directory, otherwise the system would be confused. In older versions
such information was stored in /var/lock and /var/run, which
are now usually just symbolic links to /run or to a subdirectory
of /run.

	/lost+found

	In certain types of filesystem corruption, fsck (the equivalent of
Windows checkdsk) puts in there orphan files that existed on the disk
but did not have a directory entry. I’ve been using Unix systems for
25 years now, and I’ve had plenty of power failures while the system
was on, and many of them were in the old times without journaling,
and yet I believe I’ve only once seen files in that directory, and
they were not useful to me. It’s more a legacy directory, and many
modern filesystems, such as XFS, don’t have it at all. You will not
use it, let alone back it up.

	/boot

	This directory contains the stuff essential to boot the system,
namely the boot loader and the Linux kernel. The installer creates it
and you normally don’t need it in backup.

	/tmp, /var/tmp

	/tmp is for temporary files; any file you create there will be
deleted in the next reboot. If you want to create a temporary file
that will survive reboots, use /var/tmp.

	/media, /mnt

	Unlike Windows, where disks and disk-like devices get a letter (C:,
D:, E: and so on), in Unix there is a single directory tree. There is
only one /bin. So, assume you have two disks. How do you access
the second disk? The answer is that you “mount” it on a point of the
directory tree. For example, a relatively common setup for multiuser
systems is for the second disk to contain the /home directory
with the user data, and for the first disk to contain all the rest.
In that case, after the system boots, it will mount the second disk
at /home, so if you ls /home you will see the contents of the
second disk (if the first disk also has files inside the /home
directory, these will become hidden and inaccessible after the second
disk is mounted).

The /media directory is used mostly in desktop systems. If you
plugin a USB memory stick or a CDROM, it is usually mounted in a
subdirectory of /media. The /mnt directory exists only as a
facility for the administrator, whenever there is a need to
temporarily mount another disk. These two directories are rarely used
in small virtual servers.

	/var/cache

	As its name implies, this directory is for cached data. Anything in
it can be recreated. Its purpose is to speed things up, for example
by keeping local copies of things whose canonical position is
somewhere in the network. It can be quite large and it would be a
waste of storage to back it up.

	/var/swap, /var/swapfile, /var/swap.img

	These are nonstandard files that some administrators use for swap
space (swap space is what Windows incorrectly calls “virtual
memory”). Swap space is normally placed on dedicated disk partitions.
If your system doesn’t have such files, so much the better, but keep
these files excluded because in the future you or another
administrator might create them.

	/var/crash

	If the system crashes the kernel may dump some debugging information
in there.

	/var/lib/mysql, /var/lib/postgresql

	We won’t directly backup your databases. Section “Backing up
databases” explains why and how.

One more directory that is giving me headaches is /var/lib/lxcfs.
Like /proc, it creates error messages when you try to walk through.
It is related to LXC, a virtual machine technology, which seems to be
installed on Ubuntu by default (at least in DigitalOcean). I think it
could be a bad idea to exclude it, in case you start using LXC in the
future and forget it’s not being backed up. I just remove LXC with apt
purge lxc-common lxcfs and I’m done, as this also removes the
directory.

9.8. Additional directories for excluding or including

Your backup system will work well if you exclude only the directories I
already mentioned. In this section I explain what the other directories
are and I discuss whether and under what circumstances they should be
excluded.

	/bin, /lib, /sbin

	/bin and /sbin contain executable programs. For example, if
you list the contents of /bin, you will find that ls itself
is among the files listed. The files in /bin and /sbin are
roughly the equivalent of the .EXE files in C:\Windows\System32.
The difference between /bin and /sbin is that programs in
/bin are intended to be run by all users, whereas the ones in
/sbin are for administrators only. For example, all users are
expected to want to list their files with ls, but only
administrators are expected to partition disks with fdisk, which
is why fdisk is /sbin/fdisk.

/lib contains shared libraries (the equivalent of Windows Dynamic
Link Libraries). The files in /lib are roughly the equivalent of
the .DLL files in C:\Windows\System32. One difference is that in
C:\Windows\System32 you may also find DLLs installed by
third-party software; in /lib, however, there are only shared
libraries essential for the operation of the system.

There may also be other /lib directories, such as /lib32 or
/lib64. These also contain essential shared libraries. On my
64-bit systems the libraries are actually in /lib, but there also
exists /lib64, which only contains a symbolic link to a library
in /lib. On other systems /lib may be a symbolic to either
/lib32 or /lib64. In any case, the system manages all these
directories itself and we usually don’t need to care.

	/etc

	As we have already said in Users and directories, /etc
contains configuration files.

	/home, /root

	/home is where user files are stored. It’s the equivalent of
Windows’ C:\Users (formerly C:\Documents and Settings).
However, the root user doesn’t have a directory under /home;
instead, the home directory for the root user is /root. Since
the root user is only meant to do administrative work on a system and
not to use it and create files like a normal user, the /root
directory is often essentially empty and unused. However, if you want
to create some files it’s an appropriate place.

Very often in servers /home is also empty, since there are no
real users (people), but this actually depends on how the
administrator decides to setup the system. For example, some people
may create a django user with a /home/django directory and install
their django project in there. In this book we have created a user,
but we have been using different directories for the Django project,
as explained in previous chapters.

	/usr, /opt, /srv

	/usr has nothing to do with users, and its name is a historical
accident. It’s the closest thing there is to Windows’ C:\Program
Files. Everything in /usr is in subdirectories.

/usr/bin, /usr/lib, and /usr/sbin are much like /bin,
/lib and /sbin. The difference is that the latter contain the
most essential utilities and libraries of the operating system,
whereas the ones under /usr contain stuff from add-on packages
and the less important utilities. Nowadays the distinction is not
important, and I think that lately some systems are starting to make
/bin a link to /usr/bin and so on. It used to be important
when the disks were small and the whole of /usr was on another
disk that was being mounted later in the boot process.

I’m not going to bother you with more details about the /usr
subdirectories, except /usr/local. Everything installed in
/usr, except /usr/local, is managed by the Debian/Ubuntu
package manager. For example, apt will install programs in
/usr, but will not touch /usr/local. Likewise, while you can
modify stuff inside /usr/local, you should not touch any other
place under /usr, because this is supposed to be managed only by
the system’s package manager. The tools you use respect that; for
example, if you install a Python module system-wide with pip, it
will install it somewhere under /usr/local/lib and/or
/usr/local/share. /usr/local has more or less the same
subdirectories as /usr, and the difference is that only you (or
your tools) write to /usr/local, and only the system package
manager writes to the rest of /usr.

Programs not installed by the system package manager should go either
to /usr/local, or to /opt, or to /srv. Here is the
theory:

	If the program replaces a system program, use /usr/local. For
example, a few pages ago I explained how we can install duplicity
on Debian 8. The installation procedure I specified will by
default put it in /usr/local.

	If the program, its configuration and its data are to be installed
in a single directory, it should be a subdirectory of /srv.

	If the program directories are going to be cleanly separated into
executables, configuration, and data, the program should go to
/opt (and the configuration to /etc/opt, and the data to
/var/opt). This is what we have been doing with our Django
project throughout this book.

This subtle distinction is not always followed in practice by all
people, so you should be careful with your assumptions.

On carefully setup systems, you don’t need to backup /bin, /lib,
/sbin, /usr and /opt, because you can recreate them by
re-installing the programs. This is true particularly if you are setting
up your servers using some kind of automation system. I use Ansible. If
a server explodes, I create another one, I press a button, and Ansible
sets up the server in a few minutes, installing and configuring all
necessary software. I only need to restore the data. In theory (and in
practice) I don’t need /etc either, but I never exclude it from
backup, it’s only about 10MB anyway. So, in theory, the only
directories you need to backup are /var, /srv, /root and
/home.

Warning

Specify what you want to exclude, not what you want to backup

If you decide that only a few directories are worth backing up, it
may be tempting to tell the system “backup directories X, Y and Z”
instead of telling it “backup the root directory and exclude A, B, C,
D, E, F, G, H, I and J”. Don’t do it. In the future, you or another
administrator will create a directory such as /data and put
critical stuff in there, and everyone will forget that it is not
being backed up. Always backup the root file system and specify what
you want to exclude, not what you want to include.

If you aren’t using automation (and this could fill another book on its
own), it would be better to not exclude /opt from backup, because it
will make it harder to recover. It’s very unlikely /bin, /lib
and /sbin will be useful when restoring, but they’re not much disk
space anyway. The only real question is whether to backup /usr,
which can be perhaps 1GB. At $0.58 per year it’s not much, but it might
also make backup and restore slower.

Is your head spinning? Here’s the bottom line: use the exclude list
provided in the previous section, and if you feel confident also exclude
/bin, /lib, /sbin and /usr. If your Django project’s
files in /opt consume much space, and you believe you can re-clone
them fast and setup the virtualenv fast (as described in
Users and directories), you can also exclude /opt.

Whatever you decide, you might make an error. You might accidentally
exclude something crucial. This is true even if you don’t exclude
anything at all. For example, if you keep encrypted backups, you might
think you are saving everything but you might be forgetting to store the
decryption password somewhere.

The only way to be reasonably certain you are not screwing up is to
test your recovery as I explain later.

Tip

Check the disk space

Two commands you will find useful are df and du.

df -h

This shows the disk space usage for all the file systems. You are
normally only interested for the file system that is mounted on “/”,
which is something like /dev/sda1 or /dev/vda1. This is your
main disk.

cd /
du -sh *

This will calculate and display the disk space that is occupied by each
directory. It will throw some error messages, which can be ignored.

A useful variation is this:

du -sh * | sort -h

This means “take the standard output of du -sh * and use it as
standard input to sort -h”. The standard output does not include
the error messages (these go to the standard error). sort is a
program that sorts its input; with the -h option, it sorts human
readable byte counts such as “15M” and “1.1G”.

If the output of du is longer than your terminal, another useful
idiom is this:

du -sh * | sort -h | less

This will take the standard output of sort and give it as input
to less. less is a program that only shows only one screenful
of information at a time. If you get accustomed to it you’ll find
it’s much more convenient than using the scrollbar of your terminal.
You can use j and k (or the arrow keys) to go down and up, space and
b (or Page Down/Up) for the next and previous screenful, G and g to
go to the end and beginning, and q to exit. You can also search with
a slash, and repeat a search forwards and backwards with n and N.

9.9. Backing up databases

Databases cannot usually be backed up just by copying their data files.
For small databases, copying can take a few seconds or a few minutes.
During this time, the files could be changing. As a result, when you
restore the files, the database might not be internally consistent. Even
if you ensure that no-one is writing to the database, or even that there
are no connections, you can still not copy the files, because the RDBMS
may be caching information and flushing it whenever it likes. To backup
by copying data files you need to shutdown the RDBMS, which means
downtime.

The problem of internal consistency is also present with SQLite. Copying
the database file can take some time, and if the database is being
written to during that time, the file will be internally inconsistent,
that is, corrupt.

Backing up large databases involves complicated strategies, such as
those described in Chapter 25 of the PostgreSQL 9.6 manual. Here we are
going to follow the simplest strategy which is to dump all the database
to a plain text file. Database dumps are guaranteed to be internally
consistent. SQLite may lock the database during the dump, meaning
writing to it will have to wait, but the time you need to wait for small
databases is very little.

For PostgreSQL, create file /etc/duply/main/pre, with the
following contents:

#!/bin/bash
su postgres -c 'pg_dumpall --file=/var/backups/postgresql.dump'

For SQLite, the contents of /etc/duply/main/pre should be:

#!/bin/bash
echo '.dump' | \
 sqlite3 /var/opt/$DJANGO_PROJECT/$DJANGO_PROJECT.db \
 >/var/backups/sqlite-$DJANGO_PROJECT.dump

Better let’s make /etc/duply/main/pre executable:

chmod 755 /etc/duply/main/pre

The file is actually a shell script. In their simplest form, shell
scripts are just commands one after the other (much like Windows
.bat files). However, Unix shells like bash are complete programming
languages (in fact duply itself is written in bash). We won’t do any
complicated shell programming here, but if, for some reason, you have
both PostgreSQL and SQLite on a server, you can join the two above
scripts like this:

#!/bin/bash
su postgres -c 'pg_dumpall --file=/var/backups/postgresql.dump'
echo '.dump' | \
 sqlite3 /var/opt/$DJANGO_PROJECT/$DJANGO_PROJECT.db \
 >/var/backups/sqlite-$DJANGO_PROJECT.dump

Likewise, if you have many SQLite databases, you need to add a dump
command for each one in the file (this is not necessary for PostgreSQL,
as pg_dumpall will dump all databases of the cluster).

Duply will execute /etc/duply/main/pre before proceeding to copy the
files. (It will also execute /etc/duply/main/post, if it exists,
after copying, but we don’t need to do anything like that; with
different backup schemes pre could, for example, shutdown the
database and post could start it again.)

If you don’t understand the pre file for SQLite, here is the
explanation: to dump a SQLite database, you connect to it with sqlite3
dbname and then execute the SQLite .dump command. The sqlite3
program reads commands from the standard input and writes dumps to the
standard output. The standard input is normally your keyboard; but by
telling it echo '.dump' | sqlite3 ... we give it the string ”.dump”,
followed by newline, as standard input (the echo command just
displays stuff and follows it with a newline; for example, try echo
'hello, world'). The vertical line, as I explained in the previous
section (see Check the disk space) sends
the output of one command as input to another command. Finally, the “>”
is the redirection symbol, it redirects the standard output of the
sqlite3 program, which would otherwise be displayed on the terminal,
to a file.

Tip

Compressing database dumps

Database dumps are plain text files. If compressed, they can easily
become five times smaller. However, compressing them might make
incremental backups larger and slower. The reason is that in
incremental backups duplicity saves only what has changed since the
previous backup. It might be easier for duplicity to detect changes
in a plain text file than in a compressed file, and the result could
be to backup the entire compressed file each time. Since duplicity
compresses backups anyway, storing the dump file uncompressed will
never result in larger backups.

The only downside of storing the dump file uncompressed is that it
takes up more disk space in the server. This is rarely a problem.

Tip

Excluding SQLite

Technically, since you are dumping the database, you should be
excluding /var/opt/$DJANGO_PROJECT/$DJANGO_PROJECT.db, from the
backup; however if the database file is only a few hundreds of
kilobytes the savings aren’t worth the trouble of adding it to your
exclude file.

9.10. Running scheduled backups

Create file /etc/cron.daily/duply with the following contents:

#!/bin/bash
duply main purge --force >/tmp/duply.out
duply main purgeIncr --force >>/tmp/duply.out
duply main backup >>/tmp/duply.out

Make the file executable:

chmod 755 /etc/cron.daily/duply

We saw about cron in Clearing sessions.
In the /etc/cron.daily/duply script, the first command, purge,
will delete full backups that are older than MAX_AGE. The second
command, purgeIncr, will delete incremental backups that build on
full backups that are older than MAX_FULLS_WITH_INCRS. Finally, the
third command, backup, will perform an incremental backup, unless a
full backup is due. A full backup is due if you have never backed up in
the past, or if the latest full backup was done more than
MAX_FULLBKP_AGE ago.

Duply displays a lot of information even when everything’s working fine,
which would result in cron to email the administrator. We only want
to be emailed in case of error, so we redirect duply’s output to a file,
/tmp/duply.out. We only redirect its standard output, not its
standard error, which means that error (and warning) messages will still
be caught by cron and emailed. Note, however, that /tmp/duply.out is
not a complete log file, because it only contains the standard output,
not the standard error. It might have been better to include both output
and error in /tmp/duply.out, and in addtion display the standard
error, so that cron can catch it; however, this requires more advanced
shell scripting techniques and it’s more trouble than it’s worth.

The redirection for the first command, >/tmp/duply.out, overwrites
/tmp/duply.out if it already exists. The redirection for the next
two commands, >>/tmp/duply.out, appends to the file.

Warning

You must use a local mail server

The emails of cron cannot be sent unless a mail server is installed
locally on the server. See Using a local mail server to setup
one. Don’t omit it, otherwise you won’t know when your system has a
problem and cannot backup itself.

9.11. Chapter summary

	Keep some offline backups and regularly test recovery (the next
chapter deals with these).

	Calculate storage costs.

	Create a bucket in your backup storage. A single bucket for all your
deployments is probably enough. You can name it $NICK-backup.

	Install duply, create directory /etc/duply/main, and chmod it to 700.

	Create configuration file /etc/duply/main/conf with these
contents:

GPG_KEY=disabled

SOURCE=/
TARGET=b2://$ACC_ID:$APP_KEY@$NICK-backup/$SERVER_NAME/

MAX_AGE=2Y
MAX_FULLS_WITH_INCRS=2
MAX_FULLBKP_AGE=3M
DUPL_PARAMS="$DUPL_PARAMS --full-if-older-than $MAX_FULLBKP_AGE "

VERBOSITY=warning
ARCH_DIR=/var/cache/duplicity/duply_main/

	Create file /etc/duply/main/exclude with the following contents:

- /dev
- /proc
- /sys
- /run
- /var/lock
- /var/run
- /lost+found
- /boot
- /tmp
- /var/tmp
- /media
- /mnt
- /var/cache
- /var/crash
- /var/swap
- /var/swapfile
- /var/swap.img
- /var/lib/mysql
- /var/lib/postgresql

If you feel like it, also exclude /bin, /lib, /sbin and
/usr, maybe also /opt.

	Create file /etc/duplicity/main/pre with contents similar to the
following (delete the PostgreSQL or SQLite part as needed, or add
more SQLite commands if you have many SQLite databases):

#!/bin/bash
su postgres -c 'pg_dumpall --file=/var/backups/postgresql.dump'
echo '.dump' | \
 sqlite3 /var/opt/$DJANGO_PROJECT/$DJANGO_PROJECT.db \
 >/var/backups/sqlite-$DJANGO_PROJECT.dump

Chmod the file to 755.

	Create file /etc/cron.daily/duply with the following contents:

#!/bin/bash
duply main purge --force >/tmp/duply.out
duply main purgeIncr --force >>/tmp/duply.out
duply main backup >>/tmp/duply.out

Chmod the file to 755.

	Make sure you have a local mail server installed.

 Last updated on Apr 15, 2019.

 Navigation

 	
 next

 	
 previous |

 	Deploying Django on a single Debian or Ubuntu server »

10. Recovery part 2

10.1. Restoring a file or directory

You made some changes to /etc/opt/$DJANGO_PROJECT/settings.py,
changed your mind, and you want it back? No problem:

duply main fetch etc/opt/$DJANGO_PROJECT/settings.py \
 /tmp/restored_settings.py

This will fetch the most recent version of the file from backup and will
put it in /tmp/restored_settings.py. Note that when you specify the
source file there is no leading slash.

You can also fetch previous versions of the file:

Fetch it as it was 4 days ago
duply main fetch etc/opt/$DJANGO_PROJECT/settings.py \
 /tmp/restored_settings.py 4D

Fetch it as it was on 4 January 2017
duply main fetch etc/opt/$DJANGO_PROJECT/settings.py \
 /tmp/restored_settings.py 2017-01-04

Here is how to restore all the backup into /tmp/restored_files:

duply main restore /tmp/restored_files

As before, you can append age specifiers such as 4D or
2017-01-04 to the command. Note that restoring a large backup can
incur charges by your backup storage provider.

You should probably never restore files directly to their original
location. Instead, restore into /tmp or /var/tmp and move
or copy them.

10.2. Restoring SQLite

Restoring SQLite is very simple. Assuming the dump file is in
/tmp/restored_files/var/backups/sqlite-$DJANGO_PROJECT.dump, you
should be able to recreate your database file thus:

sqlite3 /tmp/$DJANGO_PROJECT.db \
 </tmp/restored_files/var/backups/sqlite-$DJANGO_PROJECT.dump

This will create /tmp/$DJANGO_PROJECT.db and it will execute the
commands in the dump file. You can then move the file to its normal
position, such as /var/opt/$DJANGO_PROJECT/$DJANGO_PROJECT.db. You
probably need to chown it to $DJANGO_USER.

10.3. Restoring PostgreSQL

How you will restore PostgreSQL depends on what exactly you want to
restore and what the current state of your cluster is. For a moment,
let’s assume this:

	You have just installed PostgreSQL with apt install postgresql
and it has created a brand new cluster that only contains the
databases postgres, template0 and template1.

	You want to restore all your databases.

Assuming /tmp/restored_files/var/backups/postgresql.dump is the dump
file, you can do it this way:

cd /tmp/restored_files/var/backups
su postgres -c 'psql -f postgresql.dump postgres' >/dev/null

psql shows a lot of output, which we don’t need. We redirect the
output to /dev/null, which in Unix-like systems is a black hole; it
is a device file that merely discards everything written to it. We
discard only the standard output, not the standard error, because we
want to see error messages. If everything goes well, it should show only
one error message:

ERROR: role “postgres” already exists

The file written to by pg_dumpall contains SQL commands that can be
used to recreate all databases. In the beginning of the file there are
commands that first create the users. One of these users is
postgres, but this already exists in your new cluster, therefore the
error message. (The dump file also includes commands to create the
databases, but pg_dumpall is smart enough to not include database
creation commands for template0, template1, and postgres.)

Hint

Playing with redirections

You might want to redirect the standard error as well as the standard
output. You can do it like this:

su postgres -c 'psql -f postgresql.dump postgres' \
 >/tmp/psql.out 2>/tmp/psql.err

This actually means “redirect file descriptor 1 to /tmp/psql.out and
file descriptor 2 to /tmp/psql.err”. Instead of >file you can
write 1>file, but 1 is the default and custom has it to omit it
almost always. File descriptor 1 is always standard output, and 2 is
always standard error. There are several use cases for redirecting
the standard error, and one of them is if you want to keep a record
of the error messages so that you can examine them later.

One problem is that psql actually throws error messages
interspersed with standard output messages, and if you separate
output from error you might not know at which stage the error
occurred. If you want to log the error messages in the same file and
in the correct position in relation to the output messages, you can
do this:

su postgres -c 'psql -f postgresql.dump postgres' \
 >/tmp/psql.out 2>&1

The 2 > &1 means “redirect the standard error to the same place
where you’re putting the standard output”.

However, this will not always work as you expect because the standard
output is buffered whereas the standard error is unbuffered; so
sometimes error messages can appear in the file before output
that was supposed to be printed before the error.

If something goes wrong and you want to start over, here is how, but
be careful not to type these in the wrong window (you could delete a
production cluster in another server):

service postgresql stop
pg_dropcluster 9.5 main
pg_createcluster 9.5 main
service postgresql start

The second command will remove the “main” cluster of PostgreSQL version
9.5 (replace that with your actual PostgreSQL version). The third
command will initialize a brand new cluster.

10.4. Restoring an entire system

A few sections ago we saw how to restore all backed up files in a
temporary directory such as /tmp/restored_files. If your server (the
“backed up server”) has exploded, you might be tempted to setup a new
server (the “restored server”) and then just restore all the backup
directly in the root directory instead of a temporary directory. This
won’t work correctly, however. For example, if you restore all of
/var/lib, you will overwrite /var/lib/apt and /var/lib/dpkg,
where the system keeps track of what packages it has installed, so it
will think it has installed all the packages that had been installed in
the backed up server, and the system will essentially be broken. Or if
you restore /etc/network you might overwrite the restored system’s
network configuration with the network configuration of the backed up
server. So you can’t do this; you need restore the backup in
/tmp/restored_files and then selectively move or copy stuff from
there to its normal place.

Below I present a complete recovery plan that you can use whenever your
system needs recovery. It should be applicable in its entirety only when
you need a complete recovery; however, if you need a partial recovery
you can still follow it and omit some parts as you go. I assume the
backed up system only had Django apps deployed in the way I have
described in the rest of this book. If you have something else
installed, or if you have deployed in a different way (e.g. in different
directories), you must modify the plan with one of your own.

You must also make sure that you have access to the recovery plan even
if the server goes down; that is, don’t store the recovery plan on a
server that is among those that may need to be recovered.

Hint

The rm command

In various places in the following recovery plan, I tell you to use
the rm command, which is the Unix command that removes files.
With the -r option it recursively removes directories, and -f
means “ask no questions”. The following will delete the nginx
configuration, asking no questions:

rm -rf /etc/nginx

rm accepts many arguments, so rm -rf /etc/nginx /etc/apache2
will delete both directories. Accidentally inserting a space, as in
rm -rf / etc/nginx, will delete mostly all your system.

AAA.

	Notify management, or the customer, or whoever is affected and needs
to be informed.

	Take notes. In particular, mark on this recovery plan anything that
needs improvement.

	Create a new server and add your ssh key.

	Change the DNS so that $DOMAIN, www.$DOMAIN, and any other needed
name points to the IP address of the new server (see
Adding records to your domain).

	Create a user and group for your Django project (see
Creating a user and group).

	Install packages:

apt install python python3 \
 python-virtualenv python3-virtualenv \
 postgresql python-psycopg2 python3-psycopg2 \
 sqlite3 dma nginx-light duply

(Ignore questions on how to setup dma, we will restore its
configuration from the backup later.)

If you use Apache, install apache2 instead of nginx-light.
The actual list of packages you need might be different (but you
can also find this out while restoring).

	Check duplicity version with duplicity --version; if earlier
than 0.7.6 and your backups are in Backblaze B2, install a more
recent version of duplicity as explained in
Installing duplicity in Debian.

	Create the duply configuration directory and file as explained in
Setting up duplicity and duply (you don’t need to create any
files beside conf, you don’t need exclude or pre).

	Restore the backup in /var/tmp/restored_files:

duply main restore /var/tmp/restored_files

	Restore the /opt, /var/opt and /etc/opt directories:

cd /var/tmp/restored_files
cp -a var/opt/* /var/opt/
cp -a etc/opt/* /etc/opt/
cp -a opt/* /opt/

(If you have excluded /opt from backup, clone/copy your Django
project in /opt and create the virtualenv as described in
The program files.)

	Create the log directory as explained in The log directory.

	Restore your nginx configuration:

service nginx stop
rm -r /etc/nginx
cp -a /var/tmp/restored_files/etc/nginx /etc
service nginx start

If you use Apache, restore your Apache configuration instead:

service apache2 stop
rm -r /etc/apache2
cp -a /var/tmp/restored_files/etc/apache2 /etc/
service apache2 start

	Create your static files directory and run collectstatic as
explained in Static and media files.

	Restore the systemd service file for your Django project and enable
the service:

cd /var/tmp/restored_files
cp etc/systemd/system/$DJANGO_PROJECT.service \
 /etc/systemd/system/
systemctl enable $DJANGO_PROJECT

	Restore the configuration for the DragonFly Mail Agent:

rm -r /etc/dma
cp -a /var/tmp/restored_files/etc/dma /etc/

	Create the cache directory as described in Caching.

	Restore the databases as explained in Restoring SQLite and
Restoring PostgreSQL.

	Restore the duply configuration:

rm -r /etc/duply
cp -a /var/tmp/restored/files/etc/duply /etc/

	Restore the duply cron job:

cp /var/tmp/restored/etc/cron.daily/duply /etc/cron.daily/

(You may want to list /var/tmp/restored/etc/cron.daily and
/etc/cron.daily to see if there is any other cronjob that needs
restoring.)

	Start the Django project and verify it works:

service $DJANGO_PROJECT start

	Restart the system and verify it works:

shutdown -r now

The system might work perfectly without restart; the reason we restart
it is to verify that if the server restarts, all services will startup
properly.

After you’ve finished, update your recovery plan with the notes you
took.

10.5. Recovery testing

In the previous chapter I said several times that you must test your
recovery. Your recovery testing plan depends on the extent to which
downtime is an issue.

If downtime is not an issue, that is, you can find a date and time in
which the system is not being used, the simplest way to test the
recovery is to shutdown the server, pretend it has been entirely
deleted, and follow the recovery plan in the previous section to bring
the system up on a new server. Keep the old server off for a week or a
month or until you feel confident it really has no useful information,
then delete it.

If you can’t have much downtime, maybe there are times when the system
is not being written to. Many web apps are like this; you want them to
always be readable by the visitors, but maybe they are not being updated
off hours. In that case, notify management or the customer about what
you are going to do, pick up an appropriate time, and test the recovery
with the following procedure:

	In the DNS, verify that the TTL of $DOMAIN, www.$DOMAIN, and any
other necessary record is no more than 300 seconds or 5 minutes (see
Adding records to your domain).

	Follow the recovery plan of the previous section to bring up the
system on a new server, but omit the step about changing the
DNS. (Hint: you can edit your own hosts file while checking if the new system works.)

	After the system works and you’ve fixed all problems, change the DNS
so that $DOMAIN, www.$DOMAIN, and any other needed name points to
the IP address of the new server (see Adding records to your domain).

	Wait for five minutes, then shut down the old server.

You could have zero downtime by only following the first two steps
instead of all four, and after you are satisfied discard the new
server instead of the old one. However, you can’t really be certain you
haven’t left something out if you don’t use the new server
operationally. So while following half the testing plan can be a good
idea as a preliminary test in order to get an idea of how much time will
be needed by the actual test, staying there and not doing the actual
test is a bad idea.

If you think you can’t afford any downtime at all, you are doing
something wrong. You will have downtime when you accidentally delete a
database, when there is a hardware or network error, and in many other
cases. Pretending you won’t is a bad idea. If you really can’t afford
downtime, you should setup high availability (which is a lot of work and
can fill in several books by itself). If you don’t, it means that the
business can afford a little downtime once in a while, so having a
little scheduled downtime once a year shouldn’t be a big deal.

In fact, I think that, in theory at least, recovery should be tested
during business hours, possibly without notifying the business in
advance (except to get permission to do it, but not to arrange a
specific time). Recovery isn’t merely a system administrator’s issue,
and an additional recovery plan for management might need to be
created, that describes how the business will handle the situation (what
to tell the customers, what the employees should do, and so on).
Recovery with downtime during business hours can be a good exercise for
the whole business, not just for the administrator.

10.6. Copying offline

Briefly, here is how to copy the server’s data to your local machine:

awk '{ print $2 }' /etc/duply/main/exclude >/tmp/exclude
tar czf - --exclude-from=/tmp/exclude / | \
 split --bytes=200M - \
 /tmp/`hostname`-`date --iso-8601`.tar.gz.

This will need some explanation, of course, but it will create one or more
files with filenames similar to the following:

/tmp/myserver-2017-01-22.tar.gz.aa

/tmp/myserver-2017-01-22.tar.gz.ab

/tmp/myserver-2017-01-22.tar.gz.ac

We will talk about downloading them later on. Now let’s examine what we
did. We will check the last command (i.e. the tar and split)
first.

We’ve seen the tar command earlier, in Installing duplicity in
Debian. The “c” in “czf” means we will
create an archive; the “z” means the archive will be compressed; the “f”
followed by a file name specifies the name of the archive; “f” followed
by a hyphen means the archive will be created in the standard output.
The last argument to the tar command specifies which directory
should be put in the archive; in our case it’s a mere slash, which means
the root directory. The --exclude-from=/tmp/exclude option means
that files and directories specified in the /tmp/exclude file should
not be included in the archive.

This would create an archive with all the files we need, but it might be
too large. If your external disk is formatted in FAT32, it might not be
able to hold files larger than 2 GB. So we take the data thrown at the
standard output and we split it in manageable chunks of 200 MB each.
This is what the split command does. The hyphen in split means
“split the standard input”. The last argument to split is the file
prefix; the files split creates are named PREFIXaa,
PREFIXab, and so on.

The backticks in the specified prefix are a neat shell trick: the shell
executes the command within the backticks, takes the command’s standard
output, and inserts it in the command line. So the shell will first
execute hostname and date --iso-8601, it will then create the
command line for split that contains among other things the output
of these commands, and then it will execute split giving it the
calculated command line. We have chosen a prefix that ends in
.tar.gz, because that is what compressed tar files end in. If you
concatenate these files into a single file ending in .tar.gz, that
will be the compressed tar file. We will see how to concatenate them two
sections ahead.

Finally, let’s explain the first command, which creates
/tmp/exclude. We want to exclude the same directories as those
specified in /etc/duply/main/exclude. However, the syntax used by
duplicity is different from the syntax used by tar. Duplicity needs
the pathnames to be preceded by a minus sign and a space, whereas
tar just wants them listed. So the first command merely strips the
minus sign. awk is actually a whole programming language, but you
don’t need to learn it (I don’t know it either). The { print $2 }
means “print the second item of each line”. While awk is the
canonical way of doing this in Unix-like systems, you could do it with
Python if you prefer, but it’s much harder:

python -c "import sys;\
 print('\n'.join([x.split()[1] for x in sys.stdin]))" \
 </etc/duply/main/exclude >/tmp/exclude

Now let’s download the archive. That’s easy using scp (on
Unix-like systems) or pscp (on Windows). Assuming the external disk
is plugged in and available as $EXTERNAL_DISK (i.e. something like
/media/user/DISK on GNU/Linux, and something like E:\ on
Windows), you can put it directly in there like this:

scp root@$SERVER_IP_ADDRESS:/tmp/*.tar.gz.* $EXTERNAL_DISK

In Windows, use pscp instead of scp. You can also use graphical
tools, however command-line tools can often be more convenient.

In Unix-like systems, a better command is rsync:

rsync root@$SERVER_IP_ADDRESS:/tmp/*.tar.gz.* $EXTERNAL_DISK

If for some reason the transfer is interrupted and you restart it,
rsync will only transfer the parts of the files that have not yet
been transferred. rsync must be installed both on the server and
locally for this to work. You may have success with Windows rsync
programs such as DeltaCopy.

One problem with the above scheme is that we temporarily store the split
tar file on the server, and the server might not have enough disk space
for that. In that case, if you run a Unix-like system locally, this
might work:

ssh root@$SERVER_IP_ADDRESS \
 "awk '{ print \$2 }' /etc/duply/main/exclude
 >/tmp/exclude; \
 tar czf - --exclude-from=/tmp/exclude /" | \
 split --bytes=200M - \
 $EXTERNAL_DISK/$SERVER_NAME-`date --iso-8601`.tar.gz.

The ssh command will login to the remote server and execute the
commands awk and tar, and it will capture their standard output
(i.e. tar‘s standard output, because awk‘s is redirected) and it
will throw it in its own standard output.

The trickiest part of this ssh command is that, in the awk, we
have escaped the dollar sign with a backslash. awk is a programming
language, and { print $2 } is an awk program. awk must
literally receive the string { print $2 } as its program. When we
give a local shell the command awk '{ print $2 }', the shell leaves
the { print $2 } as it is, because it is enclosed in single quotes.
If, instead, we used double quotes, we would use awk "{ print \$2
}", otherwise, if we simply used $2, the shell would try to expand
it to whatever $2 means (see Bash syntax).
Now the string given to ssh is a double-quoted string. The local
shell gets that string and performs expansions and runs ssh after it
has done these expansions; and ssh gets the resulting string,
executes a shell remotely, and gives it that string. You can understand
the rest of the story with a bit of thinking.

If you aren’t running a Unix-like system locally, something else you can
do is use another Debian/Ubuntu server that you have on the network and
does have the disk space. You can also temporarily create one at Digital
Ocean just for the job. After running the above command to create the
backup and store it in the temporary server, you can then copy it to
your local machine and external disk.

You may have noticed we did not backup the databases. I assume that your
normal backup script does this every day, and it stores the saved
databases in /var/backups. You need to be careful, however, to not
run the tar command at the same time cron and duply run
/etc/duply/main/pre, otherwise you might be copying them at exactly
the time they are being overwritten.

10.7. Storing and rotating external disks

In the previous chapter I told you you need two external disks. Store
one of them at your office and the other elsewhere—at your home, at your
boss’s home, at a bank vault, at a backup storage company, or at your
customer’s office or home (however don’t give your customer a disk that
also contains data of other customers of yours). Whatever place you
chose, I will be calling it “off site”. So you will be keeping one disk
off site and one on site. Whenever you want to perform an offline backup
(say once per month), connect the disk you have on site, delete all the
files it contains, and perform the procedure described in the previous
section to backup your servers on it. After that, physically label it
with the date (overwriting or removing the previous label), and move it
off site. Bring the other disk on site and let it sit there until the
next offline backup.

Why do we use two disks instead of just one? Well, it’s quite
conceivable that your online data (and online backup) will be severely
damaged, and you can perform an offline backup, wiping out the previous
one, before realizing the server’s severely damanged. In that case, your
offline disk will contain damaged data. Or the attacker might wait for
you to plug in the backup disk, and then wipe it out and proceed to wipe
out the online backup and your servers.

You might object that there is a weakness to this plan because the two
disks are at the same location, off site, when you take there the
recently used disk and exchange it with the older one. I wouldn’t worry
too much about this. Offline backups are extra backups anyway, and you
hope to never need to use them. While it’s possible that someone can get
access to all your passwords and delete all your online servers and
backups, the probability of this happening at the same time as the
physical destruction of your two offline disks at the limited time they
are both off site is so low that you should probably worry more about
your plane crashing.

With this scheme, you might lose up to one month of data. Normally this
is too much, but maybe for the extreme case we are talking about it’s
OK. Only you can judge that. If you think it’s unacceptable, you might
perform offline backups more often. If you do them more often than once
every two weeks, it would be better to use more external disks.

10.8. Recovering from offline backups

You will probably never need to recover from offline backups, so we
won’t go into much detail. If a disaster happens and you need to restore
from offline, the most important thing you need to care about is the
safety of your external disk. Make absolutely certain you will only
plug it on a safe computer, one that is certainly not compromised by any
attacker. Do this very slowly and think about every step. After plugging
the external disk in, copy its files to the computer’s disk, then unplug
the external disk immediately and keep it safe.

Recovery is the same as what’s described in
Restoring an entire system, except for the steps that use duply
and duplicity to restore the backup in /var/tmp/restored_files.
Instead, copy the .tar.gz.XX files to the server’s /var/tmp
directory; use scp or pscp or rsync for that (rsync is
the best if you have it). When you have them all, join them in one
piece with the concatenation command, cat, then untar them:

cd /tmp
cat *.tar.gz.* >backup.tar.gz
mkdir restored_files
cd restored_files
tar xf ../backup.tar.gz

If you are low on disk space, you might join the concatenation command
with the tar command, like this:

cd /tmp
mkdir restored_files
cd restored_files
cat ../*.tar.gz.* | tar xf -

10.9. Scheduling manual operations

In the previous chapter, I described stuff that you will eventually
set up in such a way that it runs alone. Your servers will be backing up
themselves without your knowing anything about it. In contrast, all the
procedures I described in this chapter are to be manually executed by a
human:

	Restoring part of a system or the whole system

	Recovery testing

	Copying offline

	Recovering from offline backups

Some of these procedures will be triggered by an event, such as losing
data. Recovery testing, however, and copying offline, will not be
triggered; you must take care that they occur. This can be as simple
as adding a few recurring entries to your calendar, or as hard as
inventing foolproof procedures to be added to the company’s operations
manual. Whatever you do, you must make sure it works. If you don’t
test recovery, it is almost certain it will take too long when you need
it, and it is quite likely you will be unable to recover at all.

10.10. Chapter summary

	Use the provided recovery plan or devise your own.

	Make sure you will have access to the recovery plan (and all required
information such as logins and passwords) even if your server stops
existing.

	Test your recovery plan once a year or so.

	Backup online as well as to offline disks and store them safely.

	Don’t backup to offline disks at the same time as the system is
performing its online backup.

	Create an offline backup schedule and a recovery testing schedule and
make sure they are being followed.

 Last updated on Apr 15, 2019.

 Navigation

 	
 previous

 	Deploying Django on a single Debian or Ubuntu server »

11. About/Copyright

Deploying Django on a single Debian or Ubuntu server

Edition DEV (DATE)

© 2016–2018 Antonis Christofides

This book is licensed under the Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License [http://creativecommons.org/licenses/by-nc-sa/4.0/], except
for the code and configuration snippets; to the extent possible under
law, Antonis Christofides has waived all copyright and related or
neighboring rights to said snippets.

The book (and the source code) can be reached through
https://djangodeployment.com.

I am grateful to Aisha Bello for a review of the Static and Media Files
chapter; to Curtis Maloney for a review of the Gunicorn chapter;
and to Markus Holtermann and Chris Pantazis for useful comments.

 Last updated on Apr 15, 2019.

 Navigation

 	Deploying Django on a single Debian or Ubuntu server »

	1. Getting started
	1.1. Introduction

	1.2. Getting a server

	1.3. Introduction to SSH keys

	1.4. How SSH keys work

	1.5. Using an SSH agent

	1.6. Essential GNU/Linux commands

	1.7. Shell files, editing files, remote copying

	1.8. Installing software on a Debian/Ubuntu server

	1.9. Reading the documentation

	1.10. Setting up the system locale

	1.11. Quickly starting Django on a server

	1.12. Things we need to fix

	2. DNS
	2.1. Introduction to the DNS

	2.2. Registering a domain name

	2.3. Adding records to your domain

	2.4. Changing the domain’s name servers

	2.5. Editing the hosts file

	2.6. Visiting your Django project through the domain

	2.7. Chapter summary

	3. Users and directories
	3.1. Creating a user and group

	3.2. The program files

	3.3. The data directory

	3.4. The log directory

	3.5. The production settings

	3.6. Managing production vs. development settings

	3.7. Running the Django server

	3.8. Chapter summary

	4. The web server
	4.1. Installing nginx

	4.2. Configuring nginx to serve the domain

	4.3. Configuring nginx for django

	4.4. Installing Apache

	4.5. Configuring Apache to serve the domain

	4.6. Configuring Apache for django

	4.7. Chapter summary

	5. Static and media files
	5.1. Setting up Django

	5.2. Setting up nginx

	5.3. Setting up Apache

	5.4. Media files

	5.5. File locations

	5.6. Chapter summary

	6. Gunicorn
	6.1. Why Gunicorn?

	6.2. Installing and running Gunicorn

	6.3. Configuring systemd

	6.4. More about systemd

	6.5. The top command: memory management

	6.6. The top command: CPU usage

	6.7. Chapter summary

	7. Production settings
	7.1. Email

	7.2. Debug

	7.3. Using a local mail server

	7.4. Secret key

	7.5. Logging

	7.6. Caching

	7.7. Recompile your settings

	7.8. Clearing sessions

	7.9. Chapter summary

	8. PostgreSQL
	8.1. Why PostgreSQL?

	8.2. Getting started with PostgreSQL

	8.3. PostgreSQL connections

	8.4. PostgreSQL roles and authentication

	8.5. PostgreSQL databases and clusters

	8.6. Further reading

	9. Recovery part 1
	9.1. Why “recovery”?

	9.2. Where to backup

	9.3. Estimating storage cost

	9.4. Setting up backup storage

	9.5. Setting up duplicity and duply

	9.6. Duply configuration

	9.7. Excluding files

	9.8. Additional directories for excluding or including

	9.9. Backing up databases

	9.10. Running scheduled backups

	9.11. Chapter summary

	10. Recovery part 2
	10.1. Restoring a file or directory

	10.2. Restoring SQLite

	10.3. Restoring PostgreSQL

	10.4. Restoring an entire system

	10.5. Recovery testing

	10.6. Copying offline

	10.7. Storing and rotating external disks

	10.8. Recovering from offline backups

	10.9. Scheduling manual operations

	10.10. Chapter summary

 Last updated on Apr 15, 2019.

 Navigation

 	Deploying Django on a single Debian or Ubuntu server »

Deploying Django on a single Debian or Ubuntu server

Edition DEV (DATE)

© 2016–2018 Antonis Christofides

This book is licensed under the Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License [http://creativecommons.org/licenses/by-nc-sa/4.0/], except
for the code and configuration snippets; to the extent possible under
law, Antonis Christofides has waived all copyright and related or
neighboring rights to said snippets.

The book (and the source code) can be reached through
https://djangodeployment.com.

I am grateful to Aisha Bello for a review of the Static and Media Files
chapter; to Curtis Maloney for a review of the Gunicorn chapter;
and to Markus Holtermann and Chris Pantazis for useful comments.

 Last updated on Apr 15, 2019.

 Navigation

 	Deploying Django on a single Debian or Ubuntu server »

Book on Django Deployment

Get the book

Read online at readthedocs [https://djangodeployment.readthedocs.io/] or get it in epub or pdf at the “releases” page.

Compiling the source

apt install texlive-latex-extra
mkvirtualenv ddbook
pip install -r requirements.txt
make latexpdf
make epub

After the above, the PDF should be in _build/latex and the epub in
_build/epub.

Contributing

If you want something to be fixed or added, please add an issue.

If you fix or add something, please add a pull request. When fixing/adding
configuration and code snippets, please use (and fix) testscript to verify
that things work.

Copyright and license

Please see file meta.rst.

 Last updated on Apr 15, 2019.

 _static/how-static-files-work-nginx.png
The user requests Reque’t One

http-//yoursite.com/a_page_served_by_django/

@ @ Nginx delivers Django's
The brower asks the web server. response to the browser.
]
NGiINX

In the response, Django renders
href="{% static 'yourfile.css' %}" as
href‘="/9our/rtatic/url/gourfile.css".
Nginx is conf‘igored (with proxy_pass)

It does this becavse it's been told that
to pass such requests to Django. STATIC_URL-"/your/static/or(/"

django

Request two

The browser subsequently requests @ Nginx delivers the contents of
http-//yoursite.com/your/static/vri/yourfile.css ic fi

the static file to the browser.
NGiNX

nginx has this little bit of configuration:
location /your/static/vrl/ { @
alias /path/to/static/files/;
}

Therefore, it decides that the response should be the
contents of the file /path/to/static/files/yourfile.css

Django had put the file there earlier when you
had told it "python manage.py collectstatic". It
knew the destination directory because it was
told that STATIC_ROOT-"/path/to/static/files".

DIRECTORY —

/path/to/static/files @ — django

_static/comment-bright.png

_static/top.png
Load

Terminal

File Edit View Search Terminal Help

top - 15:23:33 up 8 days, 23:44, 1 user, |[load average: 0.09, 0.06, 0.07
Tasks: 109 total, 1 running, 108 sleeping, 0 stopped, 0 zombie

145 us, 1.7 S 0.0 ni, 81.6 id, 2.0 wa, 0.0Hhi 0.2 i, 0.0-st
: 024428 ftotal 880556 _used 143872 free 21524 buffers RAM
524284 total 458436 _used 65848 free 417932 cached Mem

M TIME+ COMMAND
164508 . . :19. gunicorn
natureb+ 571504 102644 . . :19. gunicorn
www-data 458772 37752 . . :00. apache2
ntp 33380 1672 . . :58. ntpd
www-data 461176 55132 . . :02. apache2
root 59132 1608 . . :23. supervisord
www-data 455604 14884 . . :00. apache2
root (<] 0 . . :00. kworker/0:2
www-data 459716 38876 . . :00. apache2
mysql 887136 9864 . . :48. mysqld
zadig_i+ 154860 47228 . . :52. gunicorn
root 3400 . . :23.53 systemd
2 root 0 . . :00. kthreadd
root 0 ksoftirqd/0@
root 0 . . kworker/0:0H
root 0 . . :58. rcu_sched
root 0 rcu_bh

_static/minus.png

_static/down.png

_static/putty-config.png
[—— ——— Cre—
el P — s
T | Metemepem P
o e B s
o ot B e
[R i 0 w50 O
| ot s s ——
T | S = O
gy P B
o = [—
& Comecn h i)
= (=) - -
T (Cowen) - =]
= \—/
[——

S S o o T
s Prrrrm——

T i Eowes e pied S 5
P R et

S [— R i 0 5 5w
Covarres || Tt 5501
Pl ek onmammms
— Artcsn st ——
ey [y e

& comn o et gt rana 5542 (=i ==
=y P o
= e e e (o]

_images/how-static-files-work-nginx.png
The user requests Reque’t One

http-//yoursite.com/a_page_served_by_django/

@ @ Nginx delivers Django's
The brower asks the web server. response to the browser.
]
NGiINX

In the response, Django renders
href="{% static 'yourfile.css' %}" as
href‘="/9our/rtatic/url/gourfile.css".
Nginx is conf‘igored (with proxy_pass)

It does this becavse it's been told that
to pass such requests to Django. STATIC_URL-"/your/static/or(/"

django

Request two

The browser subsequently requests @ Nginx delivers the contents of
http-//yoursite.com/your/static/vri/yourfile.css ic fi

the static file to the browser.
NGiNX

nginx has this little bit of configuration:
location /your/static/vrl/ { @
alias /path/to/static/files/;
}

Therefore, it decides that the response should be the
contents of the file /path/to/static/files/yourfile.css

Django had put the file there earlier when you
had told it "python manage.py collectstatic". It
knew the destination directory because it was
told that STATIC_ROOT-"/path/to/static/files".

DIRECTORY —

/path/to/static/files @ — django

_static/down-pressed.png

_images/putty-config.png
[—— ——— Cre—
el P — s
T | Metemepem P
o e B s
o ot B e
[R i 0 w50 O
| ot s s ——
T | S = O
gy P B
o = [—
& Comecn h i)
= (=) - -
T (Cowen) - =]
= \—/
[——

S S o o T
s Prrrrm——

T i Eowes e pied S 5
P R et

S [— R i 0 5 5w
Covarres || Tt 5501
Pl ek onmammms
— Artcsn st ——
ey [y e

& comn o et gt rana 5542 (=i ==
=y P o
= e e e (o]

_static/ajax-loader.gif

_static/how-static-files-work-apache.png
The user requests

Request one
http-//yoursite.com/a_page_served_by_django/

@ @ Apache delivers Django's
The brower asks the web server. response to the browser.

It does this because it's been told that
to pass such requests to Django.

In the response, Django renders
href="{% static 'yourfile.css' %}" as
href‘="/9oor/static/orl/goorfile.css".
Apache is conf‘igured (with ProxyPass)
STATIC_URL="/your/static/vri/".

django

The browser subsequently requests @ Apache delivers the contents of
http-//yoursite.com/your/static/vri/yourfile.css

the static file to the browser.

Apache has this configuration @ Django had put the file there earlier when yov

Alias /your/static/url /path/to/static/files had told it "python manage.py collectstatic". It
Therefore, it decides that the response should be the knew the destination directory because it was
contents of the file /path/to/static/files/yourfile.css

told that STATIC_ROOT="/path/to/static/files".

DIRECTORY i
/path/to/static/files @/ django

_images/output_of_ls.png
Size (useful mainly File or directory name

for files) Last modified date
User \Group\ 1

drwxr-xr-x 2 root root 4096 Nov 4 12:47 bin

Hard link count
Permissions (rarely used)

"=normal file)

_static/cover.png
‘The Unix administration guide for Django developers

Deploying Django

on a single Debian or Ubunto server

Antonis Christofides

_images/top.png
Load

Terminal

File Edit View Search Terminal Help

top - 15:23:33 up 8 days, 23:44, 1 user, |[load average: 0.09, 0.06, 0.07
Tasks: 109 total, 1 running, 108 sleeping, 0 stopped, 0 zombie

145 us, 1.7 S 0.0 ni, 81.6 id, 2.0 wa, 0.0Hhi 0.2 i, 0.0-st
: 024428 ftotal 880556 _used 143872 free 21524 buffers RAM
524284 total 458436 _used 65848 free 417932 cached Mem

M TIME+ COMMAND
164508 . . :19. gunicorn
natureb+ 571504 102644 . . :19. gunicorn
www-data 458772 37752 . . :00. apache2
ntp 33380 1672 . . :58. ntpd
www-data 461176 55132 . . :02. apache2
root 59132 1608 . . :23. supervisord
www-data 455604 14884 . . :00. apache2
root (<] 0 . . :00. kworker/0:2
www-data 459716 38876 . . :00. apache2
mysql 887136 9864 . . :48. mysqld
zadig_i+ 154860 47228 . . :52. gunicorn
root 3400 . . :23.53 systemd
2 root 0 . . :00. kthreadd
root 0 ksoftirqd/0@
root 0 . . kworker/0:0H
root 0 . . :58. rcu_sched
root 0 rcu_bh

_images/how-static-files-work-apache.png
The user requests

Request one
http-//yoursite.com/a_page_served_by_django/

@ @ Apache delivers Django's
The brower asks the web server. response to the browser.

It does this because it's been told that
to pass such requests to Django.

In the response, Django renders
href="{% static 'yourfile.css' %}" as
href‘="/9oor/static/orl/goorfile.css".
Apache is conf‘igured (with ProxyPass)
STATIC_URL="/your/static/vri/".

django

The browser subsequently requests @ Apache delivers the contents of
http-//yoursite.com/your/static/vri/yourfile.css

the static file to the browser.

Apache has this configuration @ Django had put the file there earlier when yov

Alias /your/static/url /path/to/static/files had told it "python manage.py collectstatic". It
Therefore, it decides that the response should be the knew the destination directory because it was
contents of the file /path/to/static/files/yourfile.css

told that STATIC_ROOT="/path/to/static/files".

DIRECTORY i
/path/to/static/files @/ django

_static/output_of_ls.png
Size (useful mainly File or directory name

for files) Last modified date
User \Group\ 1

drwxr-xr-x 2 root root 4096 Nov 4 12:47 bin

Hard link count
Permissions (rarely used)

"=normal file)

_static/up.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/plus.png

_static/up-pressed.png

