
Django-Vitae Documentation
Release 0.0.1

Michael Bader

Nov 30, 2018

Contents

1 Overview 1

2 Installation 3

3 Organization of the Documentation 5

4 Contributing to Django-Vitae 7

5 Indices and tables 9

6 Documentation Contents 11
6.1 Getting Started . 11
6.2 Complete Vitae Views . 13

6.2.1 HTML . 13
6.2.2 PDF . 14

6.3 CV Sections . 14
6.3.1 Publications . 14
6.3.2 Other Works . 23

6.4 Shortcuts . 25
6.5 Settings . 25

6.5.1 CV_PUBLICATION_STATUS_CHOICES . 25
6.5.2 CV_FILE_TYPES_CHOICES . 25
6.5.3 CV_STUDENT_LEVELS_CHOICES . 26
6.5.4 CV_SERVICE_TYPES_CHOICES . 26
6.5.5 CV_KEY_CONTRIBUTORS_LIST . 26

6.6 Module Reference . 27
6.6.1 cv.models . 27
6.6.2 cv.models.managers . 45
6.6.3 cv.views . 45

Python Module Index 47

i

ii

CHAPTER 1

Overview

Django-Vitae allows users to make highly customizable curricula vitae for use on their websites. The application
provides models for common entries on curricula vitae such as education, employment, publications, teaching, and
service. Django-Vitae eliminates many of the repetitive tasks related to producing curricula vitae. The included
templates provide a complete CV “out of the box”, but allows researchers who might be interested to customize the
format using Django templating language.

1

Django-Vitae Documentation, Release 0.0.1

2 Chapter 1. Overview

CHAPTER 2

Installation

A stable version of Django-Vitae is available in the Python Package Index and can be installed using pip:

$ pip install django-vitae

The latest development version can be obtained from GitHub:

$ git clone https://github.com/mikebader/django-vitae
$ cd django-vitae
$ python setup.py install

If you do not have experience with Django, you might be interested in the Getting Started guide.

3

https://pypi.org/project/django-vitae/
https://github.com/mikebader/django-vitae
https://www.djangoproject.com

Django-Vitae Documentation, Release 0.0.1

4 Chapter 2. Installation

CHAPTER 3

Organization of the Documentation

• Complete Vitae Views

– HTML

– PDF

• CV Sections documents the API to write lines on CV by different sections on a CV

– Education & Employment

– Publications (Articles | Books | Chapters | Reports)

– Other Works (Grants | Talks | Other Writing | Datasets)

– Teaching

– Service

• Templates

– Template tags & filters

– Template structure

• Settings

• Module Reference

5

Django-Vitae Documentation, Release 0.0.1

6 Chapter 3. Organization of the Documentation

CHAPTER 4

Contributing to Django-Vitae

It’s quite possible that Django-Vitae does not include all types of publications necessary. You may open an issue,
or–even better–contribute code for other common types of publications not already incorporated into Django-Vitae.

7

Django-Vitae Documentation, Release 0.0.1

8 Chapter 4. Contributing to Django-Vitae

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

9

Django-Vitae Documentation, Release 0.0.1

10 Chapter 5. Indices and tables

CHAPTER 6

Documentation Contents

6.1 Getting Started

To get started with Django-Vitae, make sure that you have Python (version 3.5 or later) installed on your machine.

You might want to work in a virtual environment. If you know what those are, go ahead and set one up; if not, then
don’t worry it (you may want to learn how to if you end up using Python a lot, but if this is your only project, it’s not
a big deal).

Now you will want to create a directory where you will store all of the files for your CV. Move inside that directory
(the $ represents the command line where you enter text, don’t include it in what you type):

$ mkdir my_cv
$ cd my_cv

Once you are in that directory, you will install Django-Vitae. This will also install Django and a few other Python
packages:

$ pip install django-vitae

Once you have installed Django-Vitae and all of its dependencies, you will start a Django project. This opens up all
of Django’s magic to help you create your CV. In the example below, your Django project would be called myvitae,
but you can choose any name you wish as long as the name does not conflict with built-in Python module names. After
you make the project, you will move into the directory created for the project, which will have the same name as the
project (myvitae in this case):

$ django-admin.py startproject myvitae
$ cd myvitae

Next comes the trickiest part. You will need to edit two different files. Both are in the myvitae subdirectory. This
can be confusing: you will have two layers of directories, both named myvitae (or whatever you chose to call your
project). The files we will be editing are in the directory lower in the hierarchy.

The first file is called settings.py. Open the file in a text editor of your choice and you will see something that
looks like the following:

11

http://www.python.org/
https://virtualenv.pypa.io/en/stable/
http://www.djangoproject.com
https://docs.djangoproject.com/en/2.0/intro/tutorial01/#creating-a-project

Django-Vitae Documentation, Release 0.0.1

INSTALLED_APPS = [
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',

]

At the end of that list, you will want to add two lines so that it looks like this (make sure you include the quotes):

INSTALLED_APPS = [
'django.contrib.admin',
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',
'django_widgets',
'cv',

]

Save the settings.py file and close it.

Now, open up the file urls.py. Look for the following line:

from django.urls import path

and change it to:

from django.urls import path, include

Then, in the same file, you will find the part that looks like this:

urlpatterns = [
path('admin/', admin.site.urls),

]

and you will change it to look like this:

urlpatterns = [
path('admin/', admin.site.urls),
path('', include('cv.urls', namespace='cv')),

]

Save the urls.py file and close it. The hard part is done!

Now, in your Terminal you will need to run a series of commands from the top level myvitae directory (the one
directly under my_cv if you’ve used the same names as those used in this guide). These will set up your database
(each will produce some text on the screen that you don’t need to worry about):

$./manage.py makemigrations
$./manage.py migrate

After those commands complete you will run another command that will set up a “superuser” that allows you admin-
istrative access to your project. Type:

12 Chapter 6. Documentation Contents

Django-Vitae Documentation, Release 0.0.1

$./manage.py createsuperuser

You will be prompted to enter a username, an email, and a password.

After you have set all of that up, you will now create a local version of your CV website. To do that, you enter the
command:

$./manage.py runserver

Now open your browser of choice go to http://localhost:8000/admin or http://127.0.0.1:8000/admin. You will see, if
everything has gone correctly, a login screen asking for your username and password. These are the same as what you
just entered to create your superuser. After you successfully log in, you will see an interface where you can edit all of
the entries for you CV. After you so so, you can then point your browser to http://localhost:8000/ to see your CV (if
you log out from the admin site, you will not see the add and edit buttons).

And you, my friend, are on your way to making your own vitae!

6.2 Complete Vitae Views

Django Vitae provides two primary views that represent the entire CV document: HTML and PDF.

6.2.1 HTML

The primary view provided by Django Vitae represents a CV as a webpage. This is the view made available at
the application’s root URL, that is /. The URL retrieves the view cv.views.CVView that gathers the data from
individual models and presents them in appropriate sections.

Template Structure:

cv/
sections/

<plural model name>.html
base.html
cv.html
skeleton.html

The HTML views use a series of templates layered on top of one another. At the lowest level, cv/skeleton.html
defines the main structure for the page. The default template uses CSS styles and Javascript from Bootstrap and
icons from Font Awesome icons, using their respective CDNs.

At the next layer, the cv/base.html template inherits from cv/skeleton.html and defines the order of
sections as a series of Django template blocks. This is done by using blocks from Django templates. The name of
each block corresponds to the the plural of the model name, except the blocks for OtherWriting and Service
are named otherwriting and service.

The template cv/cv.html inherits from the cv/base.html template and defines the style for each section. In
the default template, each block consists of a <div> block and then includes the section template in the templates/
cv/sections directory. The section template is an html file named for the plural form of the section name (ex-
cept for OtherWriting and Service, as above); for example, the section template for articles would be the file
templates/cv/sections/articles.html. If you would like to customize the look of an individual section,
you should save a file with that name in the cv/sections/ subdirectory of the template directory of your own
project.

6.2. Complete Vitae Views 13

http://localhost:8000/admin
http://127.0.0.1:8000/admin
http://localhost:8000/
https://fontawesome.com/
https://en.wikipedia.org/wiki/Content_delivery_network/
https://docs.djangoproject.com/en/2.1/ref/templates/builtins/#block
https://docs.djangoproject.com/en/dev/ref/templates/builtins/#include

Django-Vitae Documentation, Release 0.0.1

6.2.2 PDF

Django Vitae will also create a PDF of your CV “on-the-fly”.

The PDF version of your CV can be found at the /pdf/URL. The URL retrives the view cv.views.pdf.cv_pdf.
The view gathers data from different sections of the CV and then creates a PDF using the Report Lab library.

Template Structure:

cv/
pdf/

pdf_list.json
<model name>.html

Creating PDFs requires that much of the style be controlled internally in the code. The internal coding makes it difficult
to customize the style of the PDF version of the CV. The content can be customized, however, by using templates.

The content of the PDF, including the order, is controlled by the template pdf_list.json JSON file. The JSON
file is structured as a list of dictionaries. Each dictionary must have a model_name key that is the model name in
lowercase. In addtion, the dictionary may have the following keys:

display_name A string of the section heading (including any capitalization that you desire)

date_field May either be a string representing the name of the field that you would like to use to
display as the date in each entry for that section or a list of two strings, the field names to be used to
render the start and end dates.

subsections A list of lists; each of the sub-lists should include two string values: the first contains the
heading for the subsection and the second is a string representing the method of the displayable
manager to use to get the queryset for that subsection.

The templates/cv/pdf/ also contains an XML file for each section of the PDF. The XML files use the intra-
paragraph markup described in the ReportLab User Guide (subsection 6.3) that include the <i> tag for italics,
for boldface, and <a> for links (among others).

6.3 CV Sections

6.3.1 Publications

Publications are the central component of Django-Vitae since publications are the key element of CVs. Django-Vitae
includes four types of publications: books, articles, chapters, and reports. These models share some common features.

Common Features

Publications, regardless of type, all have some common traits such as titles and lists of authors. Django-Vitae defines
a number of common features across the four different types of publications. Internally, Django-Vitae does this by
defining a series of abstract classes. The different publication models inherit from the VitaePublicationModel
abstract model.

Common Fields

The following fields are common across the four types of publications:

title The title of the publication (required).

14 Chapter 6. Documentation Contents

https://www.reportlab.com/
https://en.wikipedia.org/wiki/JSON
https://www.reportlab.com/docs/reportlab-userguide.pdf

Django-Vitae Documentation, Release 0.0.1

short_title A shortened title of the publication with a maximum length of 80 characters (required).

This can be the “running head” of a publication. Django-Vitae uses the slugified version of the short title to
construct URLs for the item.

slug A slugified version of the short-title to use in URLs (required).

The slugs are automatically constructed from the short_title in admin.

status The point in the publication process where the publication currently rests (required).

All publication models include an status field, which represents the where in publication process the pub-
lication currently exists. Django-Vitae implements the status field by using an IntegerField with
the choices parameter defined in CV_PUBLICATION_STATUS_CHOICES. The default values of the
PUBLICATION_STATUS_CHOICES setting are:

Integer Status
0 In preparation
1 Working paper
20 Submitted
30 Revision for resubmission invited
35 Resubmitted
40 Conditionally accepted
50 Forthcoming
55 In press
60 Published
99 “Resting”

A user may customize the integer values and labels by defining their own CV_PUBLICATION_STATUS option
in their settings.py file.

pub_date The date that the publication was published in final form.

primary_discipline The discipline to which the publication contributes most directly.

A ForeignKey relationship to a cv.models.Discipline object. Can be useful for researchers who
work in multiple disciplines to separate their CV into sections for each discipline.

other_disciplines Disciplines other than the primary discipline to which the publication contributes.

A ManyToManyField relationship to cv.models.Discipline objects.

Each publication model contains two non-editable fields managed internally that can be accessed for instances of the
model:

• abstract_html that converts text entered in Markdown in abstract field to html, and

• is_published that indicates whether status field is one of “Forthcoming,” “In Press,” or “Published”.

Ordering

The publication models order model instances by status in ascending order then by pub_date in descending
order. This places the publications with the highest probability of changing at the top of sorted lists.

Note: The publication models do not use pub_date field to identify published articles and the built-in templates do
not print the pub_date field. Therefore, users can use the pub_date field to order unpublished manuscripts in a
convenient order.

6.3. CV Sections 15

https://django.readthedocs.io/en/2.0.x/ref/models/fields.html#django.db.models.IntegerField
https://django.readthedocs.io/en/2.0.x/ref/models/fields.html#django.db.models.ForeignKey
https://django.readthedocs.io/en/2.0.x/ref/models/fields.html#django.db.models.ManyToManyField

Django-Vitae Documentation, Release 0.0.1

Managers

For all types of publications, users may access instances of publication with the displayable custom manager. In
addition to the all() method that returns all objects for which the display attribute is True, the manager also
includes three other methods:

published returns all publications that have been accepted for publication or published (forthcoming, in press, and
published).

revise returns all publications that are in the process of submission or revision (submitted, under revision for
resubmission, resubmitted, or conditionally accepted).

inprep returns all publications being prepared for submission and publication.

Note: The custom managers the include multiple statuses retain the default ordering of the model (that is, they are
ordered by status, then pub_date, then submission_date).

Authorship Sets

Publication types also share the common trait of having authors. More precisely, publications have authorships since
a list of authors contains information, such as the order of authorship.

For all publication type models, Django-Vitae includes an authorship attribute that returns a QuerySet of au-
thorships, e.g.:

>>> from cv.models import Article
>>> article = Article.objects.all().first()
>>> article.authorship.all()
<QuerySet [<ArticleAuthorship: Kahneman, Daniel>,

<ArticleAuthorship: Tversky, Amos]>]

Internally, the authorship attributes are implemented as a django.db.models.ManyToManyField that relate
an instance of the publication type (e.g., Article, Book, etc.) to Collaborator through a third model.

Authorship models for all publication types have three common fields:

display_order Integer that classifies the position of the author in the list of authors (required)

print_middle Boolean that indicates whether the author’s middle initials should be printed in list of authors
(default=True)

student_colleague Choice field with possible values defined by CV_STUDENT_LEVELS_CHOICES setting;
allows display of student collaborations

Custom Methods

Each of the publication models includes the custom functions, get_previous_published() and
get_next_published() that will return next and previous published instance of the model using the pub_date
field.

Note: The get_previous_published() and get_next_published() functions are designed to emulate
the Django built-in methods get_next_by_FOO and get_next_by_FOO

16 Chapter 6. Documentation Contents

https://django.readthedocs.io/en/2.0.x/ref/models/querysets.html#django.db.models.query.QuerySet
https://django.readthedocs.io/en/2.0.x/ref/models/fields.html#django.db.models.ManyToManyField
https://docs.djangoproject.com/en/2.1/ref/models/instances/#django.db.models.Model.get_next_by_FOO

Django-Vitae Documentation, Release 0.0.1

Articles

Article Model

Model field reference cv.models.publications.Article
Authorship set cv.models.publications.ArticleAuthorship

The Article model represents an instance of an article or other publications with similar characteristics as articles
(e.g., proceedings).

Article Views

Article List [cv.views.CVListView]

Context object {{object_list}}
Template 'cv/lists/article_list.html'
URL 'articles/'
MIME type text/html

The article list view produces a page with a list of an author’s articles. This may be helpful if an author does
not wish to display a full CV, but wants to list just their articles. The page renders an instance of the cv.
views.CVListView view with the named parameter model_name set to 'article'. The view returns
the {{object_list}} in the context with four objects on its dot path:

total_articles Integer of total number of article objects from all three status-based managers:

article_published_list queryset of all published articles (uses the published() method of the
PublicationManager)

article_revise_list queryset of all articles in the revision process (uses the revise() method of the
PublicationManager)

article_inprep_list queryset of all articles in preparation for submission (uses the inprep() method
of the PublicationManager)

The URL can be accessed in templates by using the URL template filter with the named URL section_list
and model_name parameter equal to article, i.e.:

{% url section_list model_name='article' %}

Article Detail: cv.views.CVDetailView

Context object {{article}}
Template 'cv/details/article_detail.html'
URL 'articles/<slug:slug>/
MIME type text/html

The article detail view produces a page that represents a single article. The default template includes the title, the
abstract, a link to the published version of the article (if published and a URL is defined), and links to download
the citation in both RIS and BibTeX formats (described below). The page is rendered as an instance of the class
cv.views.CVDetailView with the named parameters model_name set to 'article' and slug set to
the article’s slug attribute. The view returns the context {{article}} that represents the Article instance.

6.3. CV Sections 17

https://docs.djangoproject.com/en/2.1/ref/templates/builtins/#url

Django-Vitae Documentation, Release 0.0.1

The URL can be accessed using the named URL item_detail with model_name set to 'article' and
slug set to the article’s slug attribute, i.e.:

{% url item_detail model_name='article' slug='slug-from-short-title' %}

Article Citation: cv.views.citation_view()

Context object {{article}}
Templates 'cv/citations/article.ris' 'cv/citations/article.bib'
URL 'articles/<slug:slug>/cite/<str:format>/'
MIME type application/x-research-info-systems or application/x-bibtex

Returns view to allow citation to be downloaded to citation management software.

The <str:format> named parameter should be one of:

'ris' will create downloadable citation using Reference Manager format specification (see http://endnote.
com/sites/rm/files/m/direct_export_ris.pdf).

'bib' will create downloadable citation using the BibTeX format specification (see http://www.bibtex.org/
Format/)

Books

Book Model

Model field reference cv.models.publications.Book
Authorship set cv.models.publications.BookAuthorship

The Book model represents an instance of books, including information about different editions of the same book.

Book Views

Book List [cv.views.CVListView]

Context object {{object_list}}
Template 'cv/lists/book_list.html'
URL 'books/'
MIME type text/html

The book list view produces a page with a list of the author’s books. This may be useful for profiling an authors’
books with, for example, summaries and blurbs. This can be accomplished through the use of custom templates.
The default template produces a list of books using the same section formatting as the listing in the book section
of the complete CV.

The page renders an instance of the cv.views.CVListView view with the named parameter model_name
set to 'book'. The view returns {{object_list}} in the context with four objects on its dot path:

total_books Integer of total number of books from all three managers:

book_published_list queryset of all published books (uses the published() method of the
PublicationManager)

18 Chapter 6. Documentation Contents

http://endnote.com/sites/rm/files/m/direct_export_ris.pdf
http://endnote.com/sites/rm/files/m/direct_export_ris.pdf
http://www.bibtex.org/Format/
http://www.bibtex.org/Format/

Django-Vitae Documentation, Release 0.0.1

book_revise_list queryset of all books in the revision process (uses the revise() method of the
PublicationManager)

book_inprep_list queryset of all books in preparation for submission (uses the inprep() method of
the PublicationManager)

The URL can be accessed in templates by using the URL template filter with the named URL section_list
and model_name parameter equal to book, i.e.:

{% url section_list model_name='book' %}

Book Detail: cv.views.CVDetailView

Context object {{book}}
Template 'cv/details/book_detail.html'
URL 'books/<slug:slug>/'
MIME type text/html

The book detail view produces a page that represents a single book. This could be used to, for example, create
a feature page for a published book. The default view includes the title, abstract, edition information, and links
to download the citation information in both RIS and BibTeX formats (described below). The page is rendered
as an instance of the cv.views.CVDetailView with the named parameters model_name set to 'book'
and slug set to the book’s slug attribute. The view returns the context {{book}} that represents the Book
instance.

The URL can be accessed using the named URL item_detailwith model_name set to 'book' and slug
set to the book’s slug attribute, i.e.:

{% url item_detail model_name='book' slug='slug-from-short-title' %}

Book Citation: cv.views.citation_view()

Context object {{book}}
Templates 'cv/citations/book.ris' 'cv/citations/book.bib'
URL 'books/<slug:slug>/citation/<str:format>/'
MIME types application/x-research-info-systems or application/x-bibtex

Returns view to allow citation to be downloaded to citation management software.

The <str:format> named parameter should be one of:

'ris' will create downloadable citation using Reference Manager format specification (see http://endnote.
com/sites/rm/files/m/direct_export_ris.pdf).

'bib' will create downloadable citation using the BibTeX format specification (see http://www.bibtex.org/
Format/)

Book Editions

Django-Vitae allows users to link multiple editions of a book with the BookEdition class. This is done through a
ForeignKey relationship to the book. The Book model includes the get_editions() method to return all editions
associated with the book in reverse chronological order (i.e., newest first).

If an edition has been related to a book, the default templates will use the publication information (publisher, place of
publication, ISBN) of the edition instance, not the publication information defined for the book instance.

6.3. CV Sections 19

https://docs.djangoproject.com/en/2.1/ref/templates/builtins/#url
http://endnote.com/sites/rm/files/m/direct_export_ris.pdf
http://endnote.com/sites/rm/files/m/direct_export_ris.pdf
http://www.bibtex.org/Format/
http://www.bibtex.org/Format/

Django-Vitae Documentation, Release 0.0.1

Custom Methods

The Book class has two custom methods related to editions:

add_edition(dict)
Creates a new BookEdition instance with the referencing the Book instance on which the user
calls the method.

• dict: a dictionary containing field/value pairs for BookEdition fields; edition must be
one of the dict keys

get_editions()
Convenience function that returns a QuerySet of all the BookEdition objects related to the
Book instance

Chapters

Chapter Model

Model field reference cv.models.publications.Chapter
Authorship set cv.models.publications.ChapterAuthorship
Editorship set cv.models.publications.ChapterEditorship

The Chapter model represents an instance of a chapter. In addition to the authorship attribute that saves author-
ship information, the Chapter class also has an editorship attribute that contains information about editors of
the volume in which the chapter appears. The editorship relationship operates the same way as authorship sets and
include the same fields, except that the editorship model does not contain a student_colleague field.

Chapter Views

Chapter List [cv.views.CVListView]

Context object {{chapter_objects}}
Template 'cv/lists/chapter_list.html'
URL 'chapters/'
MIME type text/html

The chapter list view produces a page with a list of the author’s chapters. The page renders an instance of the
cv.views.CVListView with the named parameter model_name set to 'chapter'. This view returns
the object {{object_list}} in the context with four objects on its dot path:

total_chapters Integer of total number of chapters from all three managers:

chapter_published_list queryset of all published chapters (uses the published() method of the
PublicationManager)

chapter_revise_list queryset of all chapters in the revision process (uses the revise() method of
the PublicationManager)

chapter_inprep_list queryset of all chapters in preparation for submission (uses the inprep()
method of the PublicationManager)

The URL can be accessed in templates by using the URL template filter with the named URL section_list
and model_name parameter equal to chapter, i.e.:

20 Chapter 6. Documentation Contents

https://django.readthedocs.io/en/2.0.x/ref/models/querysets.html#django.db.models.query.QuerySet
https://docs.djangoproject.com/en/2.1/ref/templates/builtins/#url

Django-Vitae Documentation, Release 0.0.1

{% url section_list model_name='chapter' %}

Chapter Detail: cv.views.ChapterDetailView

Context object {{chapter}}
Template 'cv/details/chapter_detail.html'
URL 'chapters/<slug:slug>/'
MIME type text/html

The chapter detail view produces a page that represents a single chapter. The default template includes the title,
the abstract, and links to download the citation in both RIS and BibTeX formats (described below). The page is
rendered as an instance of the cv.views.CVDetailView view with the named parameters model_name
set to 'chapter' and the slug set to the value of the chapter’s slug field. The view returns the context
{{chapter}} that represents a the Chapter instance.

The URL can be accessed using the named URL item_detail with with model_name set to article
and slug set to the article’s slug attribute, i.e.:

{% url item_detail model_name='chapter' slug='slug-from-short-title' %}

Chapter Citation: cv.views.book_citation_view()

Context object {{chapter}}
Templates 'cv/citations/chapter.ris' 'cv/citations/chapter.bib'
URL 'chapter/<slug:slug>/citation/<str:format>/'
MIME types application/x-research-info-systems application/x-bibtex

Returns view to allow citation to be downloaded to citation management software.

The <str:format> named parameter should be one of:

'ris' will create downloadable citation using Reference Manager format specification (see http://endnote.
com/sites/rm/files/m/direct_export_ris.pdf).

'bib' will create downloadable citation using the BibTeX format specification (see http://www.bibtex.org/
Format/)

Reports

Report Model

Model field reference cv.models.Report
Authorship set cv.models.ReportAuthorship

The Report model represents an instance of a report or a publication with a similar format to a report (e.g., policy
brief, working paper, etc.)

Report Views

Report List : cv.views.CVListView

6.3. CV Sections 21

http://endnote.com/sites/rm/files/m/direct_export_ris.pdf
http://endnote.com/sites/rm/files/m/direct_export_ris.pdf
http://www.bibtex.org/Format/
http://www.bibtex.org/Format/

Django-Vitae Documentation, Release 0.0.1

Context object {{report_objects}}
Template 'cv/lists/report_list.html'
URL 'reports/'
MIME type text/html

The report list view produces a page with a list of an author’s reports. The page is a rendered instance of
the cv.views.CVListView view with the named parameter model_name set to 'report'. The
view returns the object {{object_list}} in the context with with four objects on its dot path:

total_reports Integer of total number of books from all three managers:

report_published_list QuerySet of all published books (uses the published manager <topics-
pubs-published-manager>)

report_revise_list queryset of all books in the revision process (uses the revise manager <topics-
pubs-revise-manager>)

report_inprep_list queryset of all books in preparation for submission (uses the inprep manager
<topics-pubs-published-manager>)

The URL can be accessed in templates by using the URL template filter with the named URL
section_list and model_name parameter equal to report, i.e.:

{% url section_list model_name='report' %}

Report Detail: cv.views.CVDetailView

Context object {{report}}
Template 'cv/details/report_detail.html'
URL 'reports/<slug:slug>/'
MIME type text/html

The report detail view produces a representation of a single report. The page renders an instance of cv.views.
CVDetailView with the named parameters model_name set to 'report' and the slug set to the value
of the report’s slug field. The view returns the context object {{report}} that represents a single Report
instance.

Report Citation: cv.views.citation_view()

Context object {{report}}
Templates 'cv/citations/report.ris' 'cv/citations/report.bib'
URL 'reports/<slug:slug>/citation/<str:format>/'
MIME types application/x-research-info-systems application/x-bibtex

Creates representation of a report as a file that can be downloaded or exported to citation management software.

The <str:format> named parameter should be one of:

'ris' will create downloadable citation using Reference Manager format specification (see http://endnote.
com/sites/rm/files/m/direct_export_ris.pdf).

'bib' will create downloadable citation using the BibTeX format specification (see http://www.bibtex.org/
Format/)

22 Chapter 6. Documentation Contents

https://django.readthedocs.io/en/2.0.x/ref/models/querysets.html#django.db.models.query.QuerySet
https://docs.djangoproject.com/en/2.1/ref/templates/builtins/#url
http://endnote.com/sites/rm/files/m/direct_export_ris.pdf
http://endnote.com/sites/rm/files/m/direct_export_ris.pdf
http://www.bibtex.org/Format/
http://www.bibtex.org/Format/

Django-Vitae Documentation, Release 0.0.1

6.3.2 Other Works

Grants

Talks

To list public presentations on CVs, Django-Vitae uses two models representing two different ideas. A “talk”, repre-
sented by Talk, reflects a single idea conveyed with a title. It can optionally also include other other elements related
to that talk such as notes and slides. A “presentation”, represented by Presentation, reflects a specific public
performance of a talk at a some location and at some time.

This structure allows multiple presentations of the same talk to be logically connected and can prevent multiple listings
with the same title, for example, in the “Presentations” section of a C.V.

Talk Model

The Talk model has three required fields:

• title

• short_title

• slug

The publication set for a given talk can be accessed with the presentations attribute of a Talk instance.

The Talk class contains a foreign key field, article_from_talk that connects a talk to an article. This may be
useful to provide a link to the article on a page about the talk to make it clear where visitors can find the publication
that resulted.

The Talk model also contains a convenience method, get_latest_presenation() that returns the
Presentation instance of the talk that was most recently performed (using the presentation_date field).

Talk Views

Talk List: TalkListView

Display a list of all talks given in order of most recent presentation date.

Context object {{talk_list}}
Template 'cv/lists/talk_list.html'
URL r'^talks/$'
URL name 'talk_object_list'
MIME type text/html

Talk Detail: TalkDetailView

Display detailed information for a particular talk.

Context object {{talk}}
Template 'cv/details/talk_detail.html'
URL r'^talks/(?P<slug>[-\w]+)/$'
URL name 'talk_object_detail'
MIME type text/html

6.3. CV Sections 23

Django-Vitae Documentation, Release 0.0.1

Presentations

The Presentation model instances relate to a Talk instance through a foreign key. The Presentation model
has three required fields in addition to the Talk foreign key:

• presentation_date that represents when this presentation was “performed;” presentations are ordered by
presentation date with the most recent presentation first

• type represents the form of the presentation; choices are “Invited”, “Conference”, “Workshop”, and “Keynote”.

• event contains the name of event or venue at which the presentation was given.

Django-Vitae assumes that presentations will be displayed in conjunction with talks and, therefore, not displayed on
their own.

Other Writing

Django-Vitae comes with a model to describe writing other than presenting research findings. These can be book
reviews, op eds, blog posts, or other types of non-academic writing. The OtherWriting class stores instances of
these writings.

The OtherWriting model has five required fields:

• title

• short_title

• slug

• date

• venue (e.g., publication where the writing was published)

The OtherWriting includes a field type that you may use to group different types of writing together on a CV
(Django-Vitae does not, however, currently do this by default).

A full reference of fields included in the OtherWritingmodel can be found in the cv.models.OtherWriting
model reference.

Datasets

Django-Vitae includes a model to describe datasets produced by the author. The Dataset class stores instances of
these datasets.

The Dataset model has three required fields:

• title

• short_title

• slug

The Dataset model also includes an authorship field that allows for authorships of the Dataset. The author-
ships are related to the Dataset through a foreign-key relationship to the DatasetAuthorship model. This
model works the same way that the authorship sets on publications.

A full description of fields can be found in the Dataset field reference.

24 Chapter 6. Documentation Contents

Django-Vitae Documentation, Release 0.0.1

6.4 Shortcuts

• Table of default publication status codes

6.5 Settings

6.5.1 CV_PUBLICATION_STATUS_CHOICES

Default:

(
(0,'INPREP',_('In preparation')),
(1,'WORKING',_('Working paper')),
(20,'SUBMITTED',_('Submitted')),
(30,'REVISE',_('Revise')),
(35,'RESUBMITTED',_('Resubmitted')),
(40,'CONDACCEPT', _('Conditionally accepted')),
(50,'FORTHCOMING',_('Forthcoming')),
(55,'INPRESS', _('In press')),
(60,'PUBLISHED',_('Published')),
(99,'RESTING',_('Resting'))

)

A list specifying the constants and display values used to create choices for the status field of
VitaePublicationModel proxy class and which publications Managers return

Django-Vitae managers. Each option must be composed of three elements:

• an integer setting the constant used by the database to store values

• a string indicating what the constant will be be called; these values will be used to set a constant with the suffix
_STATUS in the cv.settings module.

• value that will be displayed as the choice

Internally, Django-Vitae organizes the type of publication based on the value of the integer used for the choice. The
following table shows the ranges used for different publication statuses.

Values >= and < Status Manager
0 10 In preparation InprepManager
10 20 Reserved for user to use as needed <none>
20 50 In revision ReviseManager
50 90 Published PublishedManager
90 Reserved for user to use as needed <none>

6.5.2 CV_FILE_TYPES_CHOICES

Default:

CV_FILE_TYPES_CHOICES = (
(10, 'MANUSCRIPT_FILE', _('Manuscript')),
(20, 'PREPRINT_FILE', _('Preprint')),
(30, 'DRAFT_FILE', _('Draft')),

(continues on next page)

6.4. Shortcuts 25

Django-Vitae Documentation, Release 0.0.1

(continued from previous page)

(40, 'SLIDE_FILE', _('Slides')),
(50, 'CODE_FILE', _('Code')),
(60, 'TABLE_FILE', _('Table')),
(70, 'IMAGE_FILE', _('Image')),
(80, 'SUPPLEMENT_FILE', _('Supplement')),
(100, 'OTHER_FILE', _('Other'))

)

A tuple that contains the values, names, and labels of choices to classify file types for CVFile. The cv.settings
module stores tuple of values and labels of choices in FILE_TYPES_CHOICES and a dictionary of names to access
choice values in FILE_TYPES.

6.5.3 CV_STUDENT_LEVELS_CHOICES

Default:

CV_STUDENT_LEVELS_CHOICES =(
(0,'UNDERGRAD',_('Undergraduate student')),
(10,'MASTERS',_('Masters student')),
(20,'DOCTORAL',_('Doctoral student'))
)

A tuple of three-tuples that each contain the value, name, and label to customize the choices related to the level
of student. Used for the cv.models.Student model for advising and for student collaborations in publication
authorship sets.

6.5.4 CV_SERVICE_TYPES_CHOICES

Default:

CV_SERVICE_TYPES_CHOICES = (
(10,'DEPARTMENT',_('Department')),
(20,'SCHOOL', _('School or College')),
(30,'UNIVERSITY',_('University-wide')),
(40,'DISCIPLINE',_('Discipline')),
(50,'COMMUNITY',_('Community')),
(90,'OTHER',_('Other'))
)

A tuple of three-tuples that each contain the value, name, and label to customize the choices related to the types of
service.

6.5.5 CV_KEY_CONTRIBUTORS_LIST

Default: [] (Empty list)

A list of e-mails identifying contributors that should be highlighted in the CV.

26 Chapter 6. Documentation Contents

Django-Vitae Documentation, Release 0.0.1

6.6 Module Reference

6.6.1 cv.models

Reference for cv.models generated from docstrings.

Publications

Defines Django-CV publication models.

class cv.models.publications.Article(*args, **kwargs)
Store instance representing an article.

Parameters

• id (AutoField) –

• display (BooleanField) – (required)

• extra (TextField) –

• title (CharField) – (required)

• short_title (CharField) – (required)

• slug (SlugField) – (required), Automatically built from short title

• primary_discipline_id (ForeignKey to Discipline) –

• status (IntegerField) – (required)

• pub_date (DateField) –

• submission_date (DateField) –

• is_published (BooleanField) – (required)

• is_inrevision (BooleanField) – (required)

• is_inprep (BooleanField) – (required)

• abstract (TextField) –

• journal_id (ForeignKey to Journal) –

• volume (CharField) –

• issue (CharField) –

• start_page (CharField) –

• end_page (CharField) –

• series (CharField) –

• number (CharField) –

• url (URLField) –

• doi (CharField) –

• pmcid (CharField) – , PubMed Central reference number (for more info see: https:
//publicaccess.nih.gov/include-pmcid-citations.htm#Difference)

• pmid (CharField) – , PubMed Central reference number (for more info see: https://
publicaccess.nih.gov/include-pmcid-citations.htm#Difference)

6.6. Module Reference 27

https://publicaccess.nih.gov/include-pmcid-citations.htm#Difference
https://publicaccess.nih.gov/include-pmcid-citations.htm#Difference
https://publicaccess.nih.gov/include-pmcid-citations.htm#Difference
https://publicaccess.nih.gov/include-pmcid-citations.htm#Difference

Django-Vitae Documentation, Release 0.0.1

• abstract_html (TextField) –

• other_disciplines (ManyToManyField) –

• authors (ManyToManyField) – (required)

• grants (ManyToManyField) –

• files (GenericRelation) –

exception DoesNotExist

exception MultipleObjectsReturned

class cv.models.publications.ArticleAuthorship(*args, **kwargs)
Store object relating collaborators to article.

Parameters

• id (AutoField) –

• collaborator_id (ForeignKey to Collaborator) – (required)

• print_middle (BooleanField) – (required), Display author’s middle initial?

• display_order (IntegerField) – (required), Order that collaborators should be
listed

• student_colleague (IntegerField) –

• article_id (ForeignKey to Article) – (required)

exception DoesNotExist

exception MultipleObjectsReturned

class cv.models.publications.Book(*args, **kwargs)
Store instance representing a book.

Parameters

• id (AutoField) –

• display (BooleanField) – (required)

• extra (TextField) –

• title (CharField) – (required)

• short_title (CharField) – (required)

• slug (SlugField) – (required), Automatically built from short title

• primary_discipline_id (ForeignKey to Discipline) –

• status (IntegerField) – (required)

• pub_date (DateField) –

• submission_date (DateField) –

• is_published (BooleanField) – (required)

• is_inrevision (BooleanField) – (required)

• is_inprep (BooleanField) – (required)

• abstract (TextField) –

• publisher (CharField) –

28 Chapter 6. Documentation Contents

Django-Vitae Documentation, Release 0.0.1

• place (CharField) –

• volume (IntegerField) –

• series (CharField) –

• series_number (CharField) –

• num_pages (IntegerField) –

• isbn (CharField) –

• url (URLField) –

• abstract_html (TextField) –

• other_disciplines (ManyToManyField) –

• authors (ManyToManyField) – (required)

• grants (ManyToManyField) –

• files (GenericRelation) –

add_edition(**kwargs)
Add edition to book.

get_editions()
Return queryset of all editions associated with book.

exception DoesNotExist

exception MultipleObjectsReturned

class cv.models.publications.BookAuthorship(*args, **kwargs)
Store authorship object relating collaborators to book.

Parameters

• id (AutoField) –

• collaborator_id (ForeignKey to Collaborator) – (required)

• print_middle (BooleanField) – (required), Display author’s middle initial?

• display_order (IntegerField) – (required), Order that collaborators should be
listed

• student_colleague (IntegerField) –

• book_id (ForeignKey to Book) – (required)

exception DoesNotExist

exception MultipleObjectsReturned

class cv.models.publications.BookEdition(*args, **kwargs)
Store edition information of a book.

Parameters

• id (AutoField) –

• display (BooleanField) – (required)

• extra (TextField) –

• book_id (ForeignKey to Book) – (required)

• edition (CharField) – (required)

6.6. Module Reference 29

Django-Vitae Documentation, Release 0.0.1

• pub_date (DateField) –

• submission_date (DateField) –

• publisher (CharField) –

• place (CharField) –

• num_pages (IntegerField) –

• isbn (CharField) –

• files (GenericRelation) –

clean()
Hook for doing any extra model-wide validation after clean() has been called on every field by
self.clean_fields. Any ValidationError raised by this method will not be associated with a particular field;
it will have a special-case association with the field defined by NON_FIELD_ERRORS.

exception DoesNotExist

exception MultipleObjectsReturned

class cv.models.publications.Chapter(*args, **kwargs)
Store instance representing book chapter.

Parameters

• id (AutoField) –

• display (BooleanField) – (required)

• extra (TextField) –

• title (CharField) – (required)

• short_title (CharField) – (required)

• slug (SlugField) – (required), Automatically built from short title

• primary_discipline_id (ForeignKey to Discipline) –

• abstract (TextField) –

• status (IntegerField) – (required)

• pub_date (DateField) –

• submission_date (DateField) –

• is_published (BooleanField) – (required)

• is_inrevision (BooleanField) – (required)

• is_inprep (BooleanField) – (required)

• book_title (CharField) – (required)

• volume (CharField) –

• volumes (CharField) –

• edition (CharField) –

• publisher (CharField) –

• place (CharField) –

• series (CharField) –

30 Chapter 6. Documentation Contents

Django-Vitae Documentation, Release 0.0.1

• series_number (CharField) –

• start_page (CharField) –

• end_page (CharField) –

• isbn (CharField) –

• url (URLField) –

• abstract_html (TextField) –

• other_disciplines (ManyToManyField) –

• authors (ManyToManyField) – (required)

• editors (ManyToManyField) –

• grants (ManyToManyField) –

• files (GenericRelation) –

exception DoesNotExist

exception MultipleObjectsReturned

class cv.models.publications.ChapterAuthorship(*args, **kwargs)
Store object relating collaborators to article.

Parameters

• id (AutoField) –

• collaborator_id (ForeignKey to Collaborator) – (required)

• print_middle (BooleanField) – (required), Display author’s middle initial?

• display_order (IntegerField) – (required), Order that collaborators should be
listed

• student_colleague (IntegerField) –

• chapter_id (ForeignKey to Chapter) – (required)

exception DoesNotExist

exception MultipleObjectsReturned

class cv.models.publications.ChapterEditorship(*args, **kwargs)
Store object relating editors to chapter.

Parameters

• id (AutoField) –

• collaborator_id (ForeignKey to Collaborator) – (required)

• print_middle (BooleanField) – (required), Display author’s middle initial?

• display_order (IntegerField) – (required), Order that collaborators should be
listed

• chapter_id (ForeignKey to Chapter) – (required)

exception DoesNotExist

exception MultipleObjectsReturned

class cv.models.publications.Report(*args, **kwargs)
Store instance representing reports.

6.6. Module Reference 31

Django-Vitae Documentation, Release 0.0.1

Parameters

• id (AutoField) –

• display (BooleanField) – (required)

• extra (TextField) –

• title (CharField) – (required)

• short_title (CharField) – (required)

• slug (SlugField) – (required), Automatically built from short title

• primary_discipline_id (ForeignKey to Discipline) –

• abstract (TextField) –

• status (IntegerField) – (required)

• pub_date (DateField) –

• submission_date (DateField) –

• is_published (BooleanField) – (required)

• is_inrevision (BooleanField) – (required)

• is_inprep (BooleanField) – (required)

• report_number (CharField) –

• report_type (CharField) –

• series_title (CharField) –

• place (CharField) –

• institution (CharField) –

• pages (CharField) –

• url (URLField) –

• doi (CharField) –

• abstract_html (TextField) –

• other_disciplines (ManyToManyField) –

• authors (ManyToManyField) – (required)

• grants (ManyToManyField) –

• files (GenericRelation) –

exception DoesNotExist

exception MultipleObjectsReturned

class cv.models.publications.ReportAuthorship(*args, **kwargs)
Store object relating collaborators to report.

Parameters

• id (AutoField) –

• collaborator_id (ForeignKey to Collaborator) – (required)

• print_middle (BooleanField) – (required), Display author’s middle initial?

32 Chapter 6. Documentation Contents

Django-Vitae Documentation, Release 0.0.1

• display_order (IntegerField) – (required), Order that collaborators should be
listed

• student_colleague (IntegerField) –

• report_id (ForeignKey to Report) – (required)

exception DoesNotExist

exception MultipleObjectsReturned

Works

class cv.models.works.Grant(*args, **kwargs)
Create instance of funded grant.

Parameters

• id (AutoField) –

• display (BooleanField) – (required)

• extra (TextField) –

• title (CharField) – (required)

• short_title (CharField) – (required)

• slug (SlugField) – (required), Automatically built from short title

• primary_discipline_id (ForeignKey to Discipline) –

• source (IntegerField) – (required), Internal/external source of funding

• agency (CharField) –

• agency_acronym (CharField) –

• division (CharField) –

• division_acronym (CharField) –

• grant_number (CharField) –

• amount (IntegerField) – (required)

• start_date (DateField) – (required)

• end_date (DateField) –

• role (CharField) –

• is_current (BooleanField) – (required)

• abstract (TextField) –

• abstract_html (TextField) –

• other_disciplines (ManyToManyField) –

• collaborators (ManyToManyField) – (required)

• files (GenericRelation) –

save(force_insert=False, force_update=False, *args, **kwargs)
Save the current instance. Override this in a subclass if you want to control the saving process.

6.6. Module Reference 33

Django-Vitae Documentation, Release 0.0.1

The ‘force_insert’ and ‘force_update’ parameters can be used to insist that the “save” must be an SQL
insert or update (or equivalent for non-SQL backends), respectively. Normally, they should not be set.

exception DoesNotExist

exception MultipleObjectsReturned

class cv.models.works.GrantCollaboration(*args, **kwargs)
Store object relating collaborators to grant.

Parameters

• id (AutoField) –

• collaborator_id (ForeignKey to Collaborator) – (required)

• print_middle (BooleanField) – (required), Display author’s middle initial?

• display_order (IntegerField) – (required), Order that collaborators should be
listed

• grant_id (ForeignKey to Grant) – (required)

• is_pi (BooleanField) – (required)

• role (CharField) –

exception DoesNotExist

exception MultipleObjectsReturned

class cv.models.works.Talk(*args, **kwargs)
Store object representing a talk.

Parameters

• id (AutoField) –

• display (BooleanField) – (required)

• extra (TextField) –

• title (CharField) – (required)

• short_title (CharField) – (required)

• slug (SlugField) – (required), Automatically built from short title

• primary_discipline_id (ForeignKey to Discipline) –

• abstract (TextField) –

• abstract_html (TextField) –

• latest_presentation_date (DateField) –

• created (DateField) –

• modified (DateField) –

• other_disciplines (ManyToManyField) –

• collaborator (ManyToManyField) –

• grants (ManyToManyField) –

• files (GenericRelation) –

34 Chapter 6. Documentation Contents

Django-Vitae Documentation, Release 0.0.1

save(force_insert=False, force_update=False, *args, **kwargs)
Save the current instance. Override this in a subclass if you want to control the saving process.

The ‘force_insert’ and ‘force_update’ parameters can be used to insist that the “save” must be an SQL
insert or update (or equivalent for non-SQL backends), respectively. Normally, they should not be set.

exception DoesNotExist

exception MultipleObjectsReturned

class cv.models.works.Presentation(*args, **kwargs)
Create an instance in which a talk was given.

This model creates separate objects for each time the same talk was given.

Parameters

• id (AutoField) –

• talk_id (ForeignKey to Talk) – (required)

• presentation_date (DateField) – (required)

• type (IntegerField) – (required)

• event (CharField) – (required)

• event_acronym (CharField) –

• city (CharField) –

• state (CharField) –

• country (CharField) –

save(*args, **kwargs)
Save latest presentation date in related talk if instance is later than current latest presentation date.

exception DoesNotExist

exception MultipleObjectsReturned

class cv.models.works.OtherWriting(*args, **kwargs)
Create an instance of writing in venues other than traditional scholarly venues.

Default ordering by type and then date in descending order.

Parameters

• id (AutoField) –

• display (BooleanField) – (required)

• extra (TextField) –

• title (CharField) – (required)

• short_title (CharField) – (required)

• slug (SlugField) – (required), Automatically built from short title

• primary_discipline_id (ForeignKey to Discipline) –

• type (CharField) – , Genre of writing (e.g., ‘book review’,’op ed’, ‘blog post’) that can
be used for grouping contributions by type.

• abstract (TextField) –

• venue (CharField) – (required)

6.6. Module Reference 35

Django-Vitae Documentation, Release 0.0.1

• date (DateField) – (required)

• pages (CharField) –

• url (URLField) –

• place (CharField) –

• volume (CharField) –

• issue (CharField) –

• abstract_html (TextField) –

• other_disciplines (ManyToManyField) –

• files (GenericRelation) –

save(force_insert=False, force_update=False, *args, **kwargs)
Saves abstract in html format.

exception DoesNotExist

exception MultipleObjectsReturned

class cv.models.works.Dataset(*args, **kwargs)
Stores instance representing a dataset.

Parameters

• id (AutoField) –

• display (BooleanField) – (required)

• extra (TextField) –

• title (CharField) – (required)

• short_title (CharField) – (required)

• slug (SlugField) – (required), Automatically built from short title

• primary_discipline_id (ForeignKey to Discipline) –

• pub_date (DateField) –

• version_number (CharField) –

• format (CharField) – , Form of data (e.g., ‘Datafile and Codebook’ or ‘Datafile’)

• producer (CharField) –

• producer_place (CharField) –

• distributor (CharField) –

• distributor_place (CharField) –

• retrieval_url (URLField) – , Used for URL linked to dataset

• available_from_url (URLField) – , Used to link to a download page

• doi (CharField) –

• other_disciplines (ManyToManyField) –

• authors (ManyToManyField) – (required)

• files (GenericRelation) –

36 Chapter 6. Documentation Contents

Django-Vitae Documentation, Release 0.0.1

get_absolute_url()
“Returns reverse URL for an instance of a dataset.

exception DoesNotExist

exception MultipleObjectsReturned

class cv.models.works.DatasetAuthorship(*args, **kwargs)
Store object relating creators of dataset to a dataset instance.

Parameters

• id (AutoField) –

• collaborator_id (ForeignKey to Collaborator) – (required)

• print_middle (BooleanField) – (required), Display author’s middle initial?

• display_order (IntegerField) – (required), Order that collaborators should be
listed

• student_colleague (IntegerField) –

• dataset_id (ForeignKey to Dataset) – (required)

exception DoesNotExist

exception MultipleObjectsReturned

Base Models

class cv.models.base.DisplayableModel(*args, **kwargs)
Abstract class including fields shared by all CV models.

DisplayableModel makes the displayable manager available to all models that inherit from it that
returns all instances where display==True.

display : boolean (required) Indicates whether model instance should be displayed and returned by
cv.models.DisplayManager. Defaults to True.

extra [string] Text to be included with instance of model. Should be written in final format.

files [GenericRelation to cv.models.CVFile] Relates files to model.

Note: due to rules that Django uses to load managers, it will be defined as the default manager)

Parameters

• display (BooleanField) – (required)

• extra (TextField) –

• files (GenericRelation) –

class cv.models.base.Collaborator(*args, **kwargs)
Store object representing collaborator.

By default, collaborators are ordered (in ascending order) by last name. Internally, Django-CV uses the email
attribute to identify collaborators. For example, the template filter print_authors() matches collabo-
rators on e-mails to emphasize key contributors in the list of CV entries based on the list defined in the
CV_KEY_CONTRIBUTORS_LIST setting.

6.6. Module Reference 37

Django-Vitae Documentation, Release 0.0.1

Parameters

• id (AutoField) –

• first_name (CharField) – (required)

• last_name (CharField) – (required)

• email (EmailField) – (required)

• middle_initial (CharField) –

• suffix (CharField) –

• institution (CharField) –

• website (URLField) –

• alternate_email (EmailField) –

exception DoesNotExist

exception MultipleObjectsReturned

class cv.models.base.CollaborationModel(*args, **kwargs)
Abstract model to connect collaborators to products.

collaborator : models.ForeignKey relationship to Collaborator Foreign key of collabora-
tor.

print_middle [boolean] Indicates that the collaborator’s middle initial should be included.

display_order [integer (required)] Order that collaborators should be listed when printed.

Parameters

• collaborator_id (ForeignKey to Collaborator) – (required)

• print_middle (BooleanField) – (required), Display author’s middle initial?

• display_order (IntegerField) – (required), Order that collaborators should be
listed

class cv.models.base.StudentCollaborationModel(*args, **kwargs)
Abstract model to include whether collaborator was a student.

Parameters student_colleague (IntegerField) –

class cv.models.base.Discipline(*args, **kwargs)
Store object representing disciplines in which work can be published.

Some models include a Foreign Key relationship to Discipline to allow instances to be classified by discipline
(e.g., to sort CV by discipline in which articles are published)

Parameters

• id (AutoField) –

• name (CharField) – (required)

• slug (SlugField) – (required)

exception DoesNotExist

exception MultipleObjectsReturned

38 Chapter 6. Documentation Contents

Django-Vitae Documentation, Release 0.0.1

class cv.models.base.VitaeModel(*args, **kwargs)
Create reusable model containing basic titling and discipline fields.

Parameters

• display (BooleanField) – (required)

• extra (TextField) –

• title (CharField) – (required)

• short_title (CharField) – (required)

• slug (SlugField) – (required), Automatically built from short title

• primary_discipline_id (ForeignKey to Discipline) –

• other_disciplines (ManyToManyField) –

• files (GenericRelation) –

class cv.models.base.VitaePublicationModel(*args, **kwargs)
Create reusable model containing managers for different types of publications based on VitaeModel fields

Parameters

• display (BooleanField) – (required)

• extra (TextField) –

• title (CharField) – (required)

• short_title (CharField) – (required)

• slug (SlugField) – (required), Automatically built from short title

• primary_discipline_id (ForeignKey to Discipline) –

• abstract (TextField) –

• status (IntegerField) – (required)

• pub_date (DateField) –

• submission_date (DateField) –

• is_published (BooleanField) – (required)

• is_inrevision (BooleanField) – (required)

• is_inprep (BooleanField) – (required)

• other_disciplines (ManyToManyField) –

• files (GenericRelation) –

save(*args, **kwargs)
Save the current instance. Override this in a subclass if you want to control the saving process.

The ‘force_insert’ and ‘force_update’ parameters can be used to insist that the “save” must be an SQL
insert or update (or equivalent for non-SQL backends), respectively. Normally, they should not be set.

clean(*args, **kwargs)
Hook for doing any extra model-wide validation after clean() has been called on every field by
self.clean_fields. Any ValidationError raised by this method will not be associated with a particular field;
it will have a special-case association with the field defined by NON_FIELD_ERRORS.

get_primary_files()
Return queryset of cv.models.CVFile objects designated as “primary files” associated with article.

6.6. Module Reference 39

Django-Vitae Documentation, Release 0.0.1

cite()
Return citation based on format defined in CV_CSL_STYLE setting.

class cv.models.base.Journal(*args, **kwargs)
Store object representing journal/periodical in field.

Three fields are required: * title (the title of journal)

• issn (the International Standard Serial Number , written in the format XXXX-XXXX), and

• primary_discipline (a Foreign Key to cv.Discipline)

Parameters

• id (AutoField) –

• title (CharField) – (required)

• abbreviated_title (CharField) – , Abbreviated journal title; use style you wish to
display in views

• issn (CharField) – (required), Enter ISSN in format: XXXX-XXXX

• website (URLField) –

• primary_discipline_id (ForeignKey to Discipline) – (required)

• other_disciplines (ManyToManyField) –

exception DoesNotExist

exception MultipleObjectsReturned

class cv.models.base.Award(*args, **kwargs)
Store object representing an award earned.

Parameters

• id (AutoField) –

• display (BooleanField) – (required)

• extra (TextField) –

• name (CharField) – (required)

• organization (CharField) – (required)

• date (DateField) – (required)

• description (TextField) –

• files (GenericRelation) –

exception DoesNotExist

exception MultipleObjectsReturned

class cv.models.base.Degree(*args, **kwargs)
Store object representing degree earned.

Degrees are sorted by end_date.

This class contains two managers: * objects: return all positions * displayable: return only positions
for which display==True

Parameters

40 Chapter 6. Documentation Contents

http://www.issn.org/understanding-the-issn/what-is-an-issn/

Django-Vitae Documentation, Release 0.0.1

• id (AutoField) –

• display (BooleanField) – (required)

• extra (TextField) –

• degree (CharField) – (required)

• major (CharField) –

• date_earned (DateField) – (required)

• institution (CharField) – (required)

• city (CharField) – (required)

• state (CharField) – (required)

• country (CharField) – (required)

• honors (CharField) –

• files (GenericRelation) –

exception DoesNotExist

exception MultipleObjectsReturned

class cv.models.base.Position(*args, **kwargs)
Store single position object representing employment or research experience.

Positions are sorted by end_date.

This class contains three managers: * objects: return all positions

• displayable: return only positions for which display==True

• primarypositions: return only positions for which primary_position==True (indicating a
primary position should be used sparingly since it will be used, for example, in the heading of a CV)

Parameters

• id (AutoField) –

• display (BooleanField) – (required)

• extra (TextField) –

• title (CharField) – (required)

• start_date (DateField) – (required)

• end_date (DateField) – (required), If current, set date to future (by default positions
will be ordered by end date

• project (CharField) –

• department (CharField) –

• institution (CharField) – (required)

• current_position (BooleanField) – (required), Are you currently in this posi-
tion?

• primary_position (BooleanField) – (required), Should this position be displayed
as the main position (e.g., on heading of CV)?

• files (GenericRelation) –

6.6. Module Reference 41

Django-Vitae Documentation, Release 0.0.1

clean()
Ensure start date is before end date.

exception DoesNotExist

exception MultipleObjectsReturned

class cv.models.base.MediaMention(*args, **kwargs)
Store object containing media mention.

Parameters

• id (AutoField) –

• display (BooleanField) – (required)

• extra (TextField) –

• outlet (CharField) – (required), Publication or station

• section (CharField) – , Section of publication or program

• title (CharField) –

• date (DateField) – (required)

• url (URLField) –

• author (CharField) – , E.g., author of written piece or interviewer on visual medium

• description (TextField) –

• snapshot (FileField) –

• files (GenericRelation) –

exception DoesNotExist

exception MultipleObjectsReturned

class cv.models.base.DepartmentServiceManager
Return queryset of services perfomed for department.

get_queryset()
Return a new QuerySet object. Subclasses can override this method to customize the behavior of the
Manager.

class cv.models.base.UniversityServiceManager
Return queryset of services perfomed for university.

get_queryset()
Return a new QuerySet object. Subclasses can override this method to customize the behavior of the
Manager.

class cv.models.base.DisciplineServiceManager
Return queryset of services perfomed for university.

get_queryset()
Return a new QuerySet object. Subclasses can override this method to customize the behavior of the
Manager.

class cv.models.base.Service(*args, **kwargs)
Add object to record service commitments.

Parameters

• id (AutoField) –

42 Chapter 6. Documentation Contents

Django-Vitae Documentation, Release 0.0.1

• display (BooleanField) – (required)

• extra (TextField) –

• role (CharField) – (required)

• group (CharField) – , Group or committee on which service was performed

• organization (CharField) – (required)

• type (IntegerField) – (required)

• start_date (DateField) – , Leave blank of one-time service

• end_date (DateField) – , Leave blank if service is ongoing

• description (TextField) –

• files (GenericRelation) –

clean()
Hook for doing any extra model-wide validation after clean() has been called on every field by
self.clean_fields. Any ValidationError raised by this method will not be associated with a particular field;
it will have a special-case association with the field defined by NON_FIELD_ERRORS.

exception DoesNotExist

exception MultipleObjectsReturned

class cv.models.base.JournalService(*args, **kwargs)
Objects representing journals for which one has reviewed.

Parameters

• id (AutoField) –

• display (BooleanField) – (required)

• extra (TextField) –

• journal_id (OneToOneField to Journal) –

• is_reviewer (BooleanField) – (required)

• files (GenericRelation) –

exception DoesNotExist

exception MultipleObjectsReturned

class cv.models.base.Student(*args, **kwargs)
Add object to represent students that have been advised.

Parameters

• id (AutoField) –

• display (BooleanField) – (required)

• extra (TextField) –

• first_name (CharField) – (required)

• last_name (CharField) – (required)

• middle_name (CharField) –

• student_level (IntegerField) –

• role (CharField) – (required)

6.6. Module Reference 43

Django-Vitae Documentation, Release 0.0.1

• thesis_title (CharField) –

• is_current_student (BooleanField) – (required)

• graduation_date (DateField) –

• first_position (CharField) –

• current_position (CharField) –

• files (GenericRelation) –

exception DoesNotExist

exception MultipleObjectsReturned

class cv.models.base.Course(*args, **kwargs)
Instance of a class or course prepared.

Parameters

• id (AutoField) –

• display (BooleanField) – (required)

• extra (TextField) –

• title (CharField) – (required)

• slug (SlugField) –

• short_description (TextField) –

• full_description (TextField) –

• student_level (IntegerField) –

• short_description_html (TextField) – (required)

• description_html (TextField) – (required)

• last_offered (DateField) –

• files (GenericRelation) –

save(force_insert=False, force_update=False)
Prepares html versions and records last offering.

Saves the markdown input into html to reduce load on templates and updates last_offered field to latest
CourseOffering instance associated with the class.

exception DoesNotExist

exception MultipleObjectsReturned

class cv.models.base.CourseOffering(*args, **kwargs)
Instance of a term when a course was taught.

Parameters

• id (AutoField) –

• course_id (ForeignKey to Course) – (required)

• term (IntegerField) – (required)

• start_date (DateField) –

• end_date (DateField) –

44 Chapter 6. Documentation Contents

Django-Vitae Documentation, Release 0.0.1

• institution (CharField) –

• course_number (CharField) –

• is_current_offering (BooleanField) – (required)

exception DoesNotExist

exception MultipleObjectsReturned

6.6.2 cv.models.managers

class cv.models.managers.DisplayManager
Returns displayable objects from models.

get_queryset()
Return objects for which field display has been set to True.

class cv.models.managers.PublicationManager
Class to manage publications.

This class subclasses DisplayManager and includes the default queryset of all displayable objects. In ad-
dition, it provides three methods: published, revise, and inprep to return querysets of publications at
stages in the publication process.

published()
Return queryset of articles accepted for publication or published.

revise()
Return queryset of articles in revision process.

inprep()
Return queryset of articles being prepared for submission.

class cv.models.managers.GrantManager
Class to manage grants.

This class subclasses DisplayManager and includes the default queryset of all displayable objects. In addi-
tion, it provides two methods: internal_grants and external_grants for different grant sources.

class cv.models.managers.ServiceManager
Class to manage service work.

This class subclasses DisplayManager and includes the default queryset of all displayable objects.
In addition, it provides three methods: department_services, university services, and
discipline_services for service work to different institutions.

class cv.models.managers.PrimaryPositionManager
Manages positions used in heading of CV.

Returns a queryset of positions in which primary_position has been set to True.

get_queryset()
Return a new QuerySet object. Subclasses can override this method to customize the behavior of the
Manager.

6.6.3 cv.views

Reference for cv.views generated from docstrings.

6.6. Module Reference 45

Django-Vitae Documentation, Release 0.0.1

46 Chapter 6. Documentation Contents

Python Module Index

m
cv.models.base, 37
cv.models.managers, 45
cv.models.publications, 27
cv.models.works, 33

47

Django-Vitae Documentation, Release 0.0.1

48 Python Module Index

Index

A
add_edition(), 20
add_edition() (cv.models.publications.Book method), 29
Article (class in cv.models.publications), 27
Article.DoesNotExist, 28
Article.MultipleObjectsReturned, 28
ArticleAuthorship (class in cv.models.publications), 28
ArticleAuthorship.DoesNotExist, 28
ArticleAuthorship.MultipleObjectsReturned, 28
Award (class in cv.models.base), 40
Award.DoesNotExist, 40
Award.MultipleObjectsReturned, 40

B
Book (class in cv.models.publications), 28
Book.DoesNotExist, 29
Book.MultipleObjectsReturned, 29
BookAuthorship (class in cv.models.publications), 29
BookAuthorship.DoesNotExist, 29
BookAuthorship.MultipleObjectsReturned, 29
BookEdition (class in cv.models.publications), 29
BookEdition.DoesNotExist, 30
BookEdition.MultipleObjectsReturned, 30

C
Chapter (class in cv.models.publications), 30
Chapter.DoesNotExist, 31
Chapter.MultipleObjectsReturned, 31
ChapterAuthorship (class in cv.models.publications), 31
ChapterAuthorship.DoesNotExist, 31
ChapterAuthorship.MultipleObjectsReturned, 31
ChapterEditorship (class in cv.models.publications), 31
ChapterEditorship.DoesNotExist, 31
ChapterEditorship.MultipleObjectsReturned, 31
cite() (cv.models.base.VitaePublicationModel method),

39
clean() (cv.models.base.Position method), 41
clean() (cv.models.base.Service method), 43

clean() (cv.models.base.VitaePublicationModel method),
39

clean() (cv.models.publications.BookEdition method), 30
CollaborationModel (class in cv.models.base), 38
Collaborator (class in cv.models.base), 37
Collaborator.DoesNotExist, 38
Collaborator.MultipleObjectsReturned, 38
Course (class in cv.models.base), 44
Course.DoesNotExist, 44
Course.MultipleObjectsReturned, 44
CourseOffering (class in cv.models.base), 44
CourseOffering.DoesNotExist, 45
CourseOffering.MultipleObjectsReturned, 45
cv.models.base (module), 37
cv.models.managers (module), 45
cv.models.publications (module), 27
cv.models.works (module), 33
CV_FILE_TYPES_CHOICES

setting, 25
CV_KEY_CONTRIBUTORS_LIST

setting, 26
CV_PUBLICATION_STATUS_CHOICES

setting, 25
CV_SERVICE_TYPES_CHOICES

setting, 26
CV_STUDENT_LEVELS_CHOICES

setting, 26

D
Dataset (class in cv.models.works), 36
Dataset.DoesNotExist, 37
Dataset.MultipleObjectsReturned, 37
DatasetAuthorship (class in cv.models.works), 37
DatasetAuthorship.DoesNotExist, 37
DatasetAuthorship.MultipleObjectsReturned, 37
Degree (class in cv.models.base), 40
Degree.DoesNotExist, 41
Degree.MultipleObjectsReturned, 41
DepartmentServiceManager (class in cv.models.base), 42
Discipline (class in cv.models.base), 38

49

Django-Vitae Documentation, Release 0.0.1

Discipline.DoesNotExist, 38
Discipline.MultipleObjectsReturned, 38
DisciplineServiceManager (class in cv.models.base), 42
DisplayableModel (class in cv.models.base), 37
DisplayManager (class in cv.models.managers), 45

G
get_absolute_url() (cv.models.works.Dataset method), 36
get_editions(), 20
get_editions() (cv.models.publications.Book method), 29
get_primary_files() (cv.models.base.VitaePublicationModel

method), 39
get_queryset() (cv.models.base.DepartmentServiceManager

method), 42
get_queryset() (cv.models.base.DisciplineServiceManager

method), 42
get_queryset() (cv.models.base.UniversityServiceManager

method), 42
get_queryset() (cv.models.managers.DisplayManager

method), 45
get_queryset() (cv.models.managers.PrimaryPositionManager

method), 45
Grant (class in cv.models.works), 33
Grant.DoesNotExist, 34
Grant.MultipleObjectsReturned, 34
GrantCollaboration (class in cv.models.works), 34
GrantCollaboration.DoesNotExist, 34
GrantCollaboration.MultipleObjectsReturned, 34
GrantManager (class in cv.models.managers), 45

I
inprep() (cv.models.managers.PublicationManager

method), 45

J
Journal (class in cv.models.base), 40
Journal.DoesNotExist, 40
Journal.MultipleObjectsReturned, 40
JournalService (class in cv.models.base), 43
JournalService.DoesNotExist, 43
JournalService.MultipleObjectsReturned, 43

M
MediaMention (class in cv.models.base), 42
MediaMention.DoesNotExist, 42
MediaMention.MultipleObjectsReturned, 42

O
OtherWriting (class in cv.models.works), 35
OtherWriting.DoesNotExist, 36
OtherWriting.MultipleObjectsReturned, 36

P
Position (class in cv.models.base), 41

Position.DoesNotExist, 42
Position.MultipleObjectsReturned, 42
Presentation (class in cv.models.works), 35
Presentation.DoesNotExist, 35
Presentation.MultipleObjectsReturned, 35
PrimaryPositionManager (class in cv.models.managers),

45
PublicationManager (class in cv.models.managers), 45
published() (cv.models.managers.PublicationManager

method), 45

R
Report (class in cv.models.publications), 31
Report.DoesNotExist, 32
Report.MultipleObjectsReturned, 32
ReportAuthorship (class in cv.models.publications), 32
ReportAuthorship.DoesNotExist, 33
ReportAuthorship.MultipleObjectsReturned, 33
revise() (cv.models.managers.PublicationManager

method), 45

S
save() (cv.models.base.Course method), 44
save() (cv.models.base.VitaePublicationModel method),

39
save() (cv.models.works.Grant method), 33
save() (cv.models.works.OtherWriting method), 36
save() (cv.models.works.Presentation method), 35
save() (cv.models.works.Talk method), 34
Service (class in cv.models.base), 42
Service.DoesNotExist, 43
Service.MultipleObjectsReturned, 43
ServiceManager (class in cv.models.managers), 45
setting

CV_FILE_TYPES_CHOICES, 25
CV_KEY_CONTRIBUTORS_LIST, 26
CV_PUBLICATION_STATUS_CHOICES, 25
CV_SERVICE_TYPES_CHOICES, 26
CV_STUDENT_LEVELS_CHOICES, 26

Student (class in cv.models.base), 43
Student.DoesNotExist, 44
Student.MultipleObjectsReturned, 44
StudentCollaborationModel (class in cv.models.base), 38

T
Talk (class in cv.models.works), 34
Talk.DoesNotExist, 35
Talk.MultipleObjectsReturned, 35

U
UniversityServiceManager (class in cv.models.base), 42

V
VitaeModel (class in cv.models.base), 38

50 Index

Django-Vitae Documentation, Release 0.0.1

VitaePublicationModel (class in cv.models.base), 39

Index 51

	Overview
	Installation
	Organization of the Documentation
	Contributing to Django-Vitae
	Indices and tables
	Documentation Contents
	Getting Started
	Complete Vitae Views
	HTML
	PDF

	CV Sections
	Publications
	Other Works

	Shortcuts
	Settings
	CV_PUBLICATION_STATUS_CHOICES
	CV_FILE_TYPES_CHOICES
	CV_STUDENT_LEVELS_CHOICES
	CV_SERVICE_TYPES_CHOICES
	CV_KEY_CONTRIBUTORS_LIST

	Module Reference
	cv.models
	cv.models.managers
	cv.views

	Python Module Index

