

django-xross documentation

https://github.com/idlesign/django-xross

Description

Reusable application for Django nicely bridging client and server sides.

Streamline you server and client interaction using some declarative techniques in your HTML,
and a couple of xross functions in your views.

Requirements

	Python 3.3+

	Django 1.4+

	jQuery (make it available in templates)

Table of Contents

	Quickstart

	Python Part
	Operations

	xross_view()

	xross_listener()

	Debugging

	JavaScript Part
	xross.debug

	xross.dataItemsPrefix

	xross.automate()

	xross.describe()

	xross handlers

	AJAX handler

Get involved into django-xross

Submit issues. If you spotted something weird in application behavior or want to propose a feature you can do
that at https://github.com/idlesign/django-xross/issues

Write code. If you are eager to participate in application development, fork it
at https://github.com/idlesign/django-xross, write your code, whether it should be a bugfix or a feature
implementation, and make a pull request right from the forked project page.

Spread the word. If you have some tips and tricks or any other words in mind that you think might be of interest
for the others — publish it.

Quickstart

xross requires a few steps to serve you well.

Warning

Do not forget to add the xross application to INSTALLED_APPS in your settings file (usually ‘settings.py’).

Somewhere in your views.py:

from django.shortcuts import render
from xross.toolbox import xross_view, xross_listener # That's all we need from xross.

def get_quote(request, vysotsky_only=False):
 """This function (operation in terms of xross) will be used by xross to get a random quote using AJAX.
 Note that this function could be used as an ordinary view also.

 """
 if vysotsky_only:
 quote = ... # Some random quote by Vladimir Vysotsky.
 else:
 quote = ... # Some random quote by any author.
 return render(request, 'mytemplates/sub_quote.html', {'quote': quote})

def list_news(request):
 """This function (operation in terms of xross) will be used by xross to load news using AJAX.
 Note that this function could be used as an ordinary view too.

 """
 news = ... # Here we fetch some news from DB.
 return render(request, 'mytemplates/sub_news.html', {'news': news})

@xross_view(get_quote, list_news) # Decorate your view - instruct xross to use `get_quote` and `list_news` when needed.
def index_page(request):
 """This is our view to streamline."""

 xross_listener() # xross will handle AJAX calls from that moment.

 return render(request, 'mytemplates/index.html')

Now to your mytemplates/index.html. Here we work with xross in quite a declarative way:

<!DOCTYPE html>
<html>
<head>
 <!-- xross depends on jQuery. Include it. -->
 <script src="http://yandex.st/jquery/2.1.1/jquery.min.js"></script>

 <!-- Now xross itself. -->
 <script src="{{ STATIC_URL }}js/xross/xross.min.js"></script>
 <script type="text/javascript">
 xross.automate(); // Instruct xross to watch for page elements with `xross` class.
 </script>
</head>
<body>
 <div id="list_news" class="xross">
 <!--
 Contents of this div will be replaced with news from Django's `list_news()`
 automatically on page load.
 That's the default of xross, but it knows some other nice little tricks.
 Watch for one of those below.
 -->
 </div>

 <!--
 Now let's put here a button which adds a random quote (using `get_quote()`)
 into `quotes_here` div below when clicked.

 Notice that we use some `data-x` attributes to program desired xross behaviour (`x` prefix stands for `xross`):

 1. data-xvysotsky_only="true" - True will be passed into `vysotsky_only` keyword argument of `get_quote()`;

 2. data-xtarget="quotes_here" - Defines a target html element (here a div with id `quotes_here`) to place quote into;

 3. data-xsuccess="append" - Defines an action to be performed by xross upon a target element.
 In this example we `append` a quote to `quotes_here`.

 -->
 <button id="get_quote" data-xvysotsky_only="true" data-xtarget="quotes_here" data-xsuccess="append">Get a quote ...</button>

 <div id="quotes_here">
 <!--
 Click the above button and a quote by Vladimir Vysotsky will be placed here.
 -->
 </div>

</body>
</html>

Note

Note that every xross-related DOM element has an ID attribute.

And two very simple templates:

mytemplates/sub_news.html:

{% for item in news %}
 <div>
 <div>{{ item.title }}</div>
 <div>{{ item.text }}</div>
 </div>
{% endfor %}

mytemplates/sub_quote.html:

<div>
 <blockquote>{{ quote.text }}</blockquote>
 <div><i>by {{ quote.author }}</i></div>
</div>

Note

To send form data just define data-xform attribute (it accept form ID) and optionally data-xmethod:

Example:

<form id="myfrom">
 {% csrf_token %}
 <input type="text" name="username" required>

 <button type="submit" id="handle_form_data" class="xross"
 data-xform="myfrom" data-xtarget="target-div" data-xmethod="post">Send</button>

</form>

Python Part

Here you’ll find some information on Python part of xross.

Note

Functions described here are located in xross.toolbox.

Operations

xross uses operation term to describe a function which is used for handling a xross request.

Practically any function can be used as an operation.

	View function:

def my_view_and_op(request, some_id, xross=None):
 """This view could be used both as a separate view,
 and xross operation.

 If use as an operation:

 `request`: is a request from the main view (those are decorated with @xross_view());

 `some_id`: is get from your template (namely, by default from `data-xsome_id` attribute
 of a page element with `my_view_and_op` id);

 `xross`: is a xross handler object. That can contain some useful stuff (e.g stuff in `xross.attrs`
 dictionary could be passed with `xross_listen()` -- see below).
 NB: This keyword argument may be omitted from operation signature if not used.

 """
 ...

	Ordinary function:

def my_op_func(some_id):
 """NB: it also could be made to accept `xross` keyword argument
 to have access to xross handler object."""

 ...

	Method (that applies also to class-based views):

from django.views.generic.base import View

class MyView(View):

 def my_op_method(self, request):
 """NB: it also could be made to accept `xross` keyword argument
 to have access to xross handler object."""

 ...

xross_view()

Arguments: *op_functions

This decorator should be used to decorate those applications views that require xross functionality.

Pass into it the functions (operations) responsible for handling xross requests.

from xross.toolbox import xross_view

@xross_view(my_op_func, my_view_and_op)
def index_page(request):
 """This is our view."""
 ...

xross_listener()

Arguments: **xross_attrs

Has to be put in your views in places when xross handling is expected.

Accepts xross handler attributes as keyword arguments. Those attributes will be available in operation functions
from xross handler object (see notes on xross keyword argument in Operations section above) in attrs attribute.

from django.shortcuts import render
from xross.toolbox import xross_view, xross_listener

def my_op_func(some_id, xross=None):

 ...

 item = xross.attrs['that_item'] # `that_item` is passed here from `xross_listener()` (see below)

 ...

 return render(request, 'mytemplates/some.html')

@xross_view(my_op_func)
def index_page(request):

 my_item = ... # Imagine we need to get some item data on every request.

 # Instruct xross to handle AJAX calls from that moment.
 # And make `that_item` available to operation functions.
 xross_listener({'that_item': my_item})

 ...

 return render(request, 'mytemplates/index.html')

Debugging

While DEBUG in your settings.py is set to True xross will supply you with useful debugging information
putting error description in every response to bad requests. Use your browser development console to watch it.

JavaScript Part

Here you’ll find some information on xross JavaScript part.

Warning

Do not forget to include jQuery and xross itself in your templates:

<script src="http://yandex.st/jquery/2.1.1/jquery.min.js"></script>
<script src="{{ STATIC_URL }}js/xross/xross.js"></script>

xross.debug

Setting debug attribute to True allows xross to put debug information into browser console.

xross.debug = true; // Remember to set this before other xross calls, e.g. automate().

xross.dataItemsPrefix

Allows to adjust a prefix for data- attributes of elements.

Attributes with this prefix will be considered by xross.

Default: x. E.g: use myx to pass all data-myx prefixed attributes to xross (data-myxsome, data-myxother, etc.).

xross.automate()

Arguments: xross_class, handler_name

Instructs xross to attach its handlers to page elements with a certain class (xross by default).

// You can instruct xross to watch for page elements with `xross` class.
xross.automate();

// Or any other, e.g. `x`. Automate elements with the default `ajax` handler.
xross.automate('x');

xross.describe()

Arguments: el, handler_name, params

Under the cover automate() uses this method to describe various page elements in terms of xross.

// Attach the default (`ajax`) handler to 'my_element'.
xross.describe('#my_element');

xross handlers

xross relies on so-called handlers to perform certain actions.

Each handler can accept certain parameters to adjust its behaviour.

The default handler is ajax.

AJAX handler

Alias: ajax.

AJAX handler is the default one. It simplifies sending AJAX requests to server and handling responses.

Events:

You can listen to the following events on your xross elements:

	xrossajaxbefore: Fired right before AJAX call. Event has xrossData and xrossFormData attributes.

	xrossajaxafter: Fired after AJAX call is complete (both on success and on failure).

Supported parameters:

	op: operation identifier for server side. On server it is usually a name of a function to be executed.

If not set ID attribute value of a current DOM element is used as operation ID.

Default: null. Examples: null, myoperation.

	method: allows to set HTTP method for AJAX requests.

Default: GET. Examples: POST, GET.

	target: allows to define a target DOM element over which some actions would be performed on success.

Accepts a string (elements are addressed by their IDs) or an element object

Default: this. Examples: this, mydiv.

	event: allows to define a DOM event which triggers AJAX functionality.

If set to auto, xross will try to detect a proper event basing on element type.

Default: auto. Examples: auto, ready, click.

	success: allows to set an action to performed on success.

Accepts a function or a string (a function path, or action alias).

Function should accept the same arguments as jQuery.ajax().success() plus a target DOM element.

Default: fill. Examples: fill, replace, my_obj.my_method.

Action aliases:

	empty - empties target element;

	remove - removes target element;

	fill - replaces target element content with data from server;

	replace - replaces the whole target element with data from server;

	append - appends data from server to target element contents;

	prepend - prepends data from server to target element contents.

	error: allows to set an action to performed on request error.

Accepts a function or a string (a function path, or action alias).

Function should accept the same arguments as jQuery.ajax().error().

Default: log. Examples: log, my_obj.my_method.

Action aliases:

	log - dumps error description into browser console.

	complete: allows to define a function triggered after both operation success and failure.

Accepts a function or a string (a function path).

Function should accept the same arguments as jQuery.ajax().complete().

Default: null. Examples: my_func, my_obj.my_method.

	form: allows sending form data to server via AJAX.

Accepts a string (forms are addressed by their IDs) or a form object

Default: null. Examples: null, myform.

Index

RST Quick guide

Online reStructuredText editor - http://rst.ninjs.org/

Main heading

Secondary heading

Typography

Bold

Italic

Accent

Blocks

Double colon to consider the following paragraphs preformatted:

This text is preformated. Can be used for code samples.

code-block accepts language name to highlight code
E.g.: python, html
import this

Note

This text will be rendered as a note block (usually green).

Warning

This text will be rendered as a warning block (usually red).

Lists

	Ordered item 1.

Indent paragraph to make in belong to the above list item.

	Ordered item 2.

	Unordered item 1.

	Unordered item .

Links

Documentation inner link label

Outer link label [http://github.com/idlesign/makeapp/]

Inline URLs are converted to links automatically: http://github.com/idlesign/makeapp/

Automation

http://sphinx-doc.org/ext/autodoc.html

 nav.xhtml

 Table of Contents

 		
 django-xross documentation

 		
 Quickstart

 		
 Python Part

 		
 Operations

 		
 xross_view()

 		
 xross_listener()

 		
 Debugging

 		
 JavaScript Part

 		
 xross.debug

 		
 xross.dataItemsPrefix

 		
 xross.automate()

 		
 xross.describe()

 		
 xross handlers

 		
 AJAX handler

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

