

Welcome to Django Wordpress API’s documentation!

Contents:

	Django Wordpress API
	Documentation

	Quickstart

	Features

	Running Tests

	Credits

	Installation

	Integration
	Configure django-wordpress_api inside your aplication

	Add django-wordpress-api

	Multilingual support

	Page cache

	RSS Feed

	Usage

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	History
	0.1.0 (2016-09-02)

Django Wordpress API

[image: https://badge.fury.io/py/django-wordpress-api.png]
 [https://badge.fury.io/py/django-wordpress-api][image: https://travis-ci.org/swappsco/django-wordpress-api.png?branch=master]
 [https://travis-ci.org/swappsco/django-wordpress-api][image: https://coveralls.io/repos/github/swappsco/django-wordpress-api/badge.svg?branch=master]
 [https://coveralls.io/github/swappsco/django-wordpress-api?branch=master][image: https://readthedocs.org/projects/django-wordpress-api/badge/?version=latest]
 [http://django-wordpress-api.readthedocs.io/en/latest/?badge=latest]Easily Install your Wordpress blog in your Django project

This package allows to communicate easily with any wordpress project that is using WP REST API v1 [http://wp-api.org/index-deprecated.html] .

Even though the WP REST API package is already on the 2 version; it is still on beta so it was decided that this package will only support v1 until v2 is out of beta.

Documentation

The full documentation is at https://django-wordpress-api.readthedocs.org.

Quickstart

Install Django Wordpres API:

pip install django-wordpress-api

Then use it in a project:

import wordpress_api

Features

	Connect to an external wordpress application

	Retrieves all the blog posts ordered by pages

	Filter blog posts using several of the available filters in WP REST API [http://wp-api.org/index-deprecated.html#posts_retrieve-posts]

	Search blog posts using a keyword

	order the blog posts by several attributes like author, title, type, etc; ascending and descending order (default order is descending date)

	Retrieve posts with a different type than “post”

	Four Views to display the blog page, The Post detail, The Posts filtered by category and the Posts filtered by tag; All of this with the search by keyword option

Running Tests

Does the code actually work?

source <YOURVIRTUALENV>/bin/activate
(myenv) $ pip install -r requirements.txt
(myenv) $ pip install -r requirements_test.txt
(myenv) $ python manage.py test

Credits

Tools used in rendering this package:

	Cookiecutter [https://github.com/audreyr/cookiecutter]

	cookiecutter-djangopackage [https://github.com/pydanny/cookiecutter-djangopackage]

Installation

At the command line:

$ easy_install django-wordpress-api

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv django-wordpress-api
$ pip install django-wordpress-api

Integration

This section describes step by step integration of django_wordpress_api with your application.

Configure django-wordpress_api inside your aplication

Add this app to your INSTALLED_APPS in your settings file:

INSTALLED_APPS += ('wordpress_api',)

You need two settings variables to be able to use the package:

WP_URL = http://your-wordpress-app.com/
BLOG_POSTS_PER_PAGE = <number-of-blogs-to-display-per-page>

Remember to add WP REST API v1 [http://wp-api.org/index-deprecated.html] to http://your-wordpress-app.com/ or this package will be useless.

Add django-wordpress-api

Add django-wordpress-api urls to your URL general configuration:

url(r'^blog/', include('wordpress_api.urls')),

Multilingual support

At version 0.1.8 multilingual support was added. To use it, you need to install WPML [https://wpml.org] and wpml wp rest api adapter plugin by aaltomeri [https://github.com/aaltomeri/wpml-wp-rest-api-adapter] inside your wordpress site and set the following variable inside your settings.

WP_API_ALLOW_LANGUAGE = True

Inside the views, the language is supported using django.utils.translation.get_language. If you are not using django translation, you can use the WPApiConnector.get_posts method directly and pass the language as the lang parameter. You can check how this work at wordpress_api/utils.py

Page cache

At version 0.1.18 cache support was added to all django wordpress api related pages. To activate it, just set the following setting.

WP_API_BLOG_CACHE_TIMEOUT = 60 * 60 * 24

RSS Feed

At version 0.1.23 a RSS Feed was added. You may use it importing LatestEntriesFeed from wordpress_api.feed_views and adding it to your
urls configuration.

url(r'^feed/$', LatestEntriesFeed()),

If you want to modify the title or the description, just create your own class and inherit LatestEntriesFeed.

Usage

To use Django Wordpress API in a project:

import wordpress_api

The django-wordpress-api has two main features:
the WPApiConnector and the Views that uses it.
If you want to use the pre defined views, just add wordpress-api-urls to your project.

The basic django-wordpress-api urls are:

http://localhost:8000/blog/; display the blog list

http://localhost:8000/(?P<slug>[-\w]+)/; displays the detail of a blog identified with the given slug

http://localhost:8000/category/(?P<slug>[-\w]+)/; displays the blogs in the category identified with the given slug

http://localhost:8000/tag/(?P<slug>[-\w]+)/; displays the blogs in the tag identified with the given slug

http://localhost:8000/author/(?P<slug>[-\w]+)/; displays the blogs written by the author identified with the slug

Else, If you want to retrieve the blog posts in your custom views, you can use directly the WPApiConnector and its methods. You can check them at wordpress_api/utils.py

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/swappsco/django-wordpress-api/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

Django Wordpress API could always use more documentation, whether as part of the
official Django Wordpress API docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/swappsco/django-wordpress-api/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up django-wordpress-api for local development.

	Fork the django-wordpress-api repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/django-wordpress-api.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv django-wordpress-api
$ cd django-wordpress-api/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 wordpress_api tests
$ python manage.py test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, and 3.3, and for PyPy. Check
https://travis-ci.org/swappsco/django-wordpress-api/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest tests.test_wordpress_api

Credits

Development Lead

	Swapps <dev@swapps.io>

Contributors

None yet. Why not be the first?

History

0.1.0 (2016-09-02)

	First release on PyPI.

Index

 _static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		Welcome to Django Wordpress API's documentation!

 		Django Wordpress API

 		Documentation

 		Quickstart

 		Features

 		Running Tests

 		Credits

 		Installation

 		Integration

 		Configure django-wordpress_api inside your aplication

 		Add django-wordpress-api

 		Multilingual support

 		Page cache

 		RSS Feed

 		Usage

 		Contributing

 		Types of Contributions

 		Report Bugs

 		Fix Bugs

 		Implement Features

 		Write Documentation

 		Submit Feedback

 		Get Started!

 		Pull Request Guidelines

 		Tips

 		Credits

 		Development Lead

 		Contributors

 		History

 		0.1.0 (2016-09-02)

_static/comment-bright.png

