django-werewolf Documentation
Release 0.3

Artur Barseghyan <artur.barseghyan@gmail.com>

November 29, 2013

Contents

django-werewolf Documentation, Release 0.3

django-werewolf

Contents 1

django-werewolf Documentation, Release 0.3

2 Contents

CHAPTER 1

Description

Item publishing workflow for Django (fully integrated into Django admin).

django-werewolf Documentation, Release 0.3

4 Chapter 1. Description

CHAPTER 2

Prerequisites

e Django 1.5.+
e Python 2.7.+, 3.3.+

django-werewolf Documentation, Release 0.3

6 Chapter 2. Prerequisites

CHAPTER 3

Installation

1. Install django-werewolf into your virtual environment:
$ pip install django-werewolf
2. Add werewolf to your INSTALLED_APPS.

That’s all. See the Usage and examples section for more.

django-werewolf Documentation, Release 0.3

8 Chapter 3. Installation

CHAPTER 4

Usage and examples

It’s all about item publishing in a workflow. We have various intermediate statuses (work in-progress) and a final status
which means that the item is actually published. Some users should be able to set the item status to published, some
others not. This app allows you (and gives you a good working example with pre-configured Django environment) to
write a custom workflow for publishing your items with minimal efforts.

For a complete example of a working django-werewolf app see the (https://github.com/barseghyanartur/django-
werewolf/tree/stable/example) and read the readme.rst of the news app.

4.1 Imaginary app concept

There are three user groups. All of them should be able to log into Django admin.
* Writers
* Editors
e Chief Editors

In short, our imaginary app would work as follows.

¢ Chief Editor creates a News item and chooses a Writer and an Editor. The status of a new News item is then set
to new.

* Once a News item with status new has been created, both Writer and the Editor assigned do get an e-mail
notification about the fact that a News item has been assigned to them.

» Writer is supposed to fill the assigned News item with content and once the News item is ready, change its’
status to ready.

» The assigned Editor would get an e-mail notification about the fact that the News item has been changed to
ready.

* The assigned Editor is supposed to check the News item with status ready and if it’s acceptable, change the
News item status to reviewed.

* Once a News item status has been set to reviewed, the assigned Writer can no longer access it in the Django
admin.

¢ The assigned Chief Editor would get an e-mail notification about the fact that the News item has been changed
to reviewed.

https://github.com/barseghyanartur/django-werewolf/tree/stable/example
https://github.com/barseghyanartur/django-werewolf/tree/stable/example

django-werewolf Documentation, Release 0.3

* The assigned Chief Editor is supposed to check the News item with status reviewed and if it acceptable, change
the News item status to published.

* Once a News item status has been set to published, the assigned Editor can no longer access it in the Django
admin.

* Once a News item status has been changed to published, all Chief Editors in the system, as well as the assigned
Writer and Editor get an e-mail notification about the fact that the News item has been published.

4.2 Demo

In order to be able to quickly evaluate the django-werewolf, a demo app (with a quick installer) has been created
(Debian only). Follow the instructions below for having the demo running within a minute.

Grab the latest django-werewolf-example-app-install.sh

$ wget https://raw.github.com/barseghyanartur/django-werewolf/stable/django-werewolf-example-app-
install.sh

Create a new- or switch to existing- virtual environement, assign execute rights to the installer and run the django-
werewolf-example-app-install.sh.

$ chmod +x django-werewolf-example-app-install.sh
$./django-werewolf-example-app-install.sh
Go to the backend and test the app.

e URL: http://127.0.0.1:8000/admin/news/newsitem/

* Admin username: admin

* Admin password: test

¢ Chief Editor username: chief_editor

e Chief Editor password: test

 Editor username: editor

 Editor password: test

e Writer username: writer

* Writer password: test

Let’s now step-by-step review our imaginary example app.

4.3 settings.py

>>> # Workflow statuses; order is preserved.
>>> WEREWOLF_STATUS_CHOICES = (

>>> ("new’, gettext ('New’)), # New — this is how it’s assigned to a writer.
>>> ("draft’, gettext('Draft’)), # Draft - this is how the writer works on it.
>>> ("ready’, gettext ('Ready’)), # Ready to be reviewed by editor.

>>> ("reviewed’, gettext (’Reviewed’)), # Reviewed by editor (means positive
>>> # and ready to be published).

>>> ("published’, gettext (’Published’)), # Published.

>>>)

>>>

10 Chapter 4. Usage and examples

https://raw.github.com/barseghyanartur/django-werewolf/stable/django-werewolf-example-app-install.sh
https://raw.github.com/barseghyanartur/django-werewolf/stable/django-werewolf-example-app-install.sh
http://127.0.0.1:8000/admin/news/newsitem/

django-werewolf Documentation, Release 0.3

>>> # Published status.

>>> WEREWOLF_STATUS_PUBLISHED = ’published’

>>>

>>> # When set to True, django-reversion 1s used.
>>> WEREWOLF_USE_DJANGO_REVERSION = True

4.4 news/models.py

In the example below we have a basic news item model. We have Chief Editors with full access to news items, we
have editors with less privelleges and Writers with very little privelleges. Chief Editors create articles, select an Editor
and a Writer (both get notified) and let them work on the article. Writers can only set an article status to new, draft and
ready (ready to be checked). Editors review the articles with status ready and set the status to reviewed. Chief Editors
publish articles that are reviewed. Your implementation can be as custom as you want it. Think in Django user groups
(django.contrib.auth.models.Group) and Django permissions system.

NOTE: See the Permission tuning section.

>>> from django.contrib.auth.models import User

>>>

>>> from werewolf.models import WerewolfBaseModel, WerewolfBaseMeta
>>>

>>> _chief_editors = {’groups__name__iexact’: 'Chief editors’}

>>> _editors = {’groups__name__iexact’: ’"Editors’}

>>> _writers = {’groups__name__iexact’: "Writers’}

>>>

>>> class NewsItem (WerewolfBaseModel): # Important!

>>> title = models.CharField(_("Title"), max_length=100)

>>> body = models.TextField(_("Body"))

>>> date_published = models.DateTimeField(_("Date published"), \

>>> default=datetime.datetime.now())
>>> author = models.ForeignKey (User, verbose_name=_ ("Author"), \

>>> related_name=’authors’, \

>>> limit_choices_to=_writers)

>>> editor = models.ForeignKey (User, verbose_name=_("Editor"), \

>>> related_name=’'editors’, \

>>> limit_choices_to=_editors)

>>> chief_editor = models.ForeignKey (User, verbose_name=_ ("Chief editor"), \
>>> related_name=’chief editors’, \
>>> limit_choices_to=_chief_editors)
>>>

>>> class Meta (WerewolfBaseMeta): # Important!

>>> verbose_name = "News item"

>>> verbose_name_plural = "News items"

Or if you want to define custom permissions for your model as well, do extend the django-werewolf permissions as
follows:

>>> from werewolf.models import WerewolfBaseModel
>>> from werewolf.utils import extend werewolf_ permissions

>>>
>>> class NewsItem (WerewolfBaseModel) :

>>> # Your fields here

>>> class Meta:

>>> verbose_name = "News item"

>>> verbose_name_plural = "News items"
>>>

4.4. news/models.py 11

django-werewolf Documentation, Release 0.3

>>> # Important!

>>> permissions = extend_werewolf_ permissions (

>>> (" can_change_author’, _("Can change author")),

>>> (" can_change_editor’, _("Can change editor")),

>>> (" can_change_chief_editor’, _("Can change chief editor"))
>>>)

4.5 news/admin.py

Basic admin for the news item model.
NOTE: See the Permission tuning section.

>>> from werewolf.admin import WerewolfBaseAdmin
>>>
>>> from news.models import NewsItem

>>>

>>> class NewsItemAdmin (WerewolfBaseAdmin) :

>>> werewolf_ protected_fields = (

>>> ("author’, ’can_change_author’),

>>> ("editor’, ’can_change_editor’),

>>> ("chief_editor’, ’'can_change_chief_editor’)
>>>)

>>>

>>> admin.site.register (NewsItem, NewsItemAdmin)

The werewolf_ protected_fields property is a list of fields that are supposed to be protected. Each item in the
listis atuple of (field_name_to_protect, required_permission). If given, django-werewolf hides fields
listed as protected from users that do not have the permission required. In order to do so, django-werewolf overrides
the Django’s ModelAdmin get_field and get_fieldsets methods. If you happen to override that method for
your own needs, make sure the it also reflects the django-werewolf concepts.

NOTE: If you override the queryset method of your model’s admin class, make sure to see the source code of
werewolf.admin. WerewolfBaseAdmin.queryset and copy the approach from there. Otherwise, your users with no per-
mission to change the published status will be able to chgange the status of already published items to non-published
statuses.

4.6 news/views.py

>>> from news.models import NewsItem

>>>

>>> def browse (request) :

>>> news_items = NewsItem._default_manager.published()
>>> # Other code

4.7 news/werewolf_triggers.py

In order to perform extra tasks on status change, triggers are used. You simply make a new file in your app called
werewolf_triggers.py and define custom classes that should be called when a status field of your model changes to
a certain value. Each trigger should subclass the werewolf.triggers.WerewolfBaseTrigger class.

12 Chapter 4. Usage and examples

django-werewolf Documentation, Release 0.3

>>> from werewolf.triggers import WerewolfBaseTrigger, registry
>>>
>>> class StatusNewTrigger (WerewolfBaseTrigger) :

>>> mirnm

>>> News item status changed to ‘new’
>>> mmn

>>> def process(self):

>>> # Your code

>>>

>>> class StatusReadyTrigger (WerewolfBaseTrigger) :

>>> mimn

>>> News item status changed to ‘ready‘' (ready for review).
>>> mirnm

>>> def process(self):

>>> # Your code

>>>

\ v

>>> # Triggers status change to ‘new' for news.newsitem model.
>>> registry.register('news’, ’‘newsitem’, ’‘new’, StatusNewTrigger)
>>>

>>> # Triggers status change to ‘ready' for news.newsitem model.

>>> registry.register ('news’, ’'newsitem’, ’ready’, StatusReadyTrigger)

4.8 urls.py

In order to have triggers autodiscovered, place the following code into your main urls module.

>>> from werewolf import autodiscover as werewolf_autodiscover
>>> werewolf autodiscover ()

4.9 Permission tuning

Have in mind our news .models.NewsItem model.
1. Create three user groups:
(a) Chief editors (permissions listed):

e news | News item | Can add News item
* news | News item | Can change author
* news | News item | Can change chief editor
* news | News item | Can change editor
* news | News item | Can change News item
* news | News item | Can change status to draft
* news | News item | Can change status to new
* news | News item | Can change status to published
* news | News item | Can change status to ready
* news | News item | Can change status to reviewed

¢ news | News item | Can delete News item

4.8. urls.py

13

django-werewolf Documentation, Release 0.3

(a) Editors (permissions listed):
* news | News item | Can change News item
* news | News item | Can change author
* news | News item | Can change status to draft
* news | News item | Can change status to new
* news | News item | Can change status to ready
* news | News item | Can change status to reviewed
(a) Writers (permissions listed):
* news | News item | Can change News item
* news | News item | Can change status to draft
* news | News item | Can change status to new
* news | News item | Can change status to ready
3. Create three users:
* chief editor: Belongs to group Chief editors.
* editor: Belongs to group Editors.
e writer: Belongs to group Writers.

4. Now log into the admin with different user and see your admin for the News item (created items with chiefeditor
account, then view them with editor and writer.

That’s it. If somehow you don’t see the new permissions (Can change status to draft, Can change status to new, etc)
run a management command syncww:

$./manage.py syncww

14 Chapter 4. Usage and examples

CHAPTER 5

Running the example project

A working example of a django-werewolf app is available here: https://github.com/barseghyanartur/django-
werewolf/tree/stable/example

1. Go to example/example directory
$ cd example/example
2. Install requirements (in your virtual environment)
$ pip install -r ../requirements.txt
3. Copy local_settings.example to local_settings.py
$ cp local_settings.example local_settings.py
4. Create the database
$ /manage.py syncdb
5. Run the project

$./manage.py runserver

15

https://github.com/barseghyanartur/django-werewolf/tree/stable/example
https://github.com/barseghyanartur/django-werewolf/tree/stable/example

django-werewolf Documentation, Release 0.3

16 Chapter 5. Running the example project

CHAPTER 6

Documentation

Contents:

6.1 werewolf Package

6.1.1 werewolf Package

werewolf._init_ .autodiscover ()
Autodiscovers the werewolf in project apps. Each report file which should be found by werewolf, should be
named “werewolf_triggers.py”.

6.1.2 admin Module

class werewolf.admin.WerewolfBaseAdmin (*args, **kwargs)
Bases: reversion.admin.VersionAdmin

Base werewolf admin model.

Property list werewolf_protected_fields List of fields to protect in form of the following tuple
(field_name, required_permission).

formfield_for_ dbfield (db_field, **kwargs)
Here we replace the choices based on the user permissions.

get_fieldsets (request, obj=None)
Hiding fields that non-authorised users should not have access to. It’s done based on the
werewolf_protected_fields of your ModelAdmin. But if happen to override that method for
your own needs, make sure the it also reflects the django-werewolf concepts.

get_ form (request, obj=None, **kwargs)
Hiding fields that non-authorised users should not have access to. It’s done based on the
werewolf_protected_fields of your ModelAdmin. But if happen to override that method for
your own needs, make sure the it also reflects the django-werewolf concepts.

media

queryset (request)
Make sure users with no rights to edit an object with status, don’t even see it.

17

django-werewolf Documentation, Release 0.3

save_model (request, obj, form, change)

status_change_trigger (request, obj, form, change)
Status change trigger. Executes appropriate registered trigger if applicable.

Parameters
* request (django.http.HttpRequest) —
* obj (django.db.models.Model) — Subclass of django.db.models.Model.
e form -
 change (bool) —
werewolf protected fields =[]

6.1.3 helpers Module
werewolf.helpers.admin_edit_url (app_label, module_name, object_id, url_title=None)
Gets an admin edit URL for the object given.
Parameters
* app_label (str) —
e module_name (str) —
* object_id (int) —

 url_title (szr) — If given, an HTML a tag is returned with url_title as the tag title. If left to
None just the URL string is returned.

Return str

werewolf.helpers.admin_edit_url_for_object (obj, url_title=None)
Gets an admin edit URL for the object given.

Parameters
* obj (django.db.models.Model) — Django model subclass.

o url_title (str) — If given, an HTML a tag is returned with url_title as the tag title. If left to
None just the URL string is returned.

Return str

6.1.4 triggers Module
class werewolf.triggers.WerewolfBaseTrigger (obj, request)
Bases: object

Werewolf base trigger.

6.1.5 utils Module
werewolf.utils.permission_key (status, choice_key)
Gets the permission key from choice_key given.

Parameters

e status (str) —

18 Chapter 6. Documentation

django-werewolf Documentation, Release 0.3

¢ choice_key (str) —
Return str

werewolf.utils.permissions_for_base_model (permissions= [])
Gets/extends permissions for the base model based on the STATUS_CHOICES defined.

Parameters permissions (/istltuple) — Permissions you want to have in your model. Those permis-
sions would be extended by werewolf permissions.

Return list

werewolf.utils.status_choices_for_user (user, app_label)
Gets available status choices for the user given.

Parameters
* user (django.contrib.auth.models.User) — User for who the permissions are checked.
* module_name (str) — app_label of the model to check permissions to.

Return list List of choices in a same form as werewolf.defaults.STATUS_CHOICES but
then limited to actual choices that user has permissions to.

werewolf.utils.extend werewolf permissions (*args)
Extends model permissions with werewolf permissions.

Example

>>> from werewolf.models import WerewolfBaseModel
>>> from werewolf.utils import extend_werewolf_ permissions
>>> class NewsItem (WerewolfBaseModel) :

>>> # Some fields here

>>>

>>> class Meta:

>>> verbose_name = _ ("News item")

>>> verbose_name_plural = _ ("News items")

>>>

>>> permissions = extend_werewolf_ permissions (

>>> (" can_change_author’, _ ("Can change author")),
>>> (' can_change_editor’, _("Can change editor")),
>>> (' can_change_chief_editor’, _("Can change chief editor"))
>>>)

6.1.6 Subpackages
management Package

Subpackages

commands Package

syncww Module
class werewolf .management .commands.syncww.Command
Bases: django.core.management .base.BaseCommand

args = ‘<app app ...>’

handle (*args, **options)

6.1. werewolf Package 19

django-werewolf Documentation, Release 0.3

help = ‘reloads permissions for specified apps, or all apps if no args are specified’

models Package

models Package

class werewolf .models.WerewolfBaseMeta
Bases: object

Base Meta class of the WerewolfBaseModel. Every subclass of the WerewolfBaseModel shall extend
it:

>>> from werewolf.models import WerewolfBaseModel, WerewolfBaseMeta

>>> class NewsItem (WerewolfBaseModel): # Important!
>>> # Your fields here

>>> class Meta (WerewolfBaseMeta): # Important!
>>> verbose_name = "News item"

>>> verbose_name_plural = "News items"

Alternatively you can add the permissions attribute:

>>> from werewolf.utils import extend _werewolf_ permissions
>>> class NewsItem (WerewolfBaseModel) :

>>> # Your fields here

>>> class Meta:

>>> verbose_name = "News item"

>>> verbose_name_plural = "News items"

>>> permissions = extend_werewolf_ permissions (

>>> (' can_change_author’, _("Can change author")),
>>> (’ can_change_editor’, _("Can change editor")),
>>>)

class werewolf.models.WerewolfBaseModel (*args, **kwargs)
Bases: django.db.models.base.Model

Base Werewolf model. If you want to have a workflow in your model (for statuses like new, draft, published,
etc) you should extend this model.

managers Module

class werewolf .models.managers.WerewolfBaseManager
Bases: django.db.models.manager.Manager

Werewolf base manager.

20 Chapter 6. Documentation

CHAPTER 7

Indices and tables

* genindex
* modindex

e search

21

django-werewolf Documentation, Release 0.3

22 Chapter 7. Indices and tables

CHAPTER 8

License

GPL 2.0/LGPL 2.1

23

django-werewolf Documentation, Release 0.3

24 Chapter 8. License

CHAPTER 9

Support

For any issues contact me at the e-mail given in the Author section.

25

django-werewolf Documentation, Release 0.3

26 Chapter 9. Support

cHAPTER 10

Author

Artur Barseghyan <artur.barseghyan @ gmail.com>

27

mailto:artur.barseghyan@gmail.com

django-werewolf Documentation, Release 0.3

28 Chapter 10. Author

Python Module Index

w

werewolf.
werewolf.
werewolf.
werewolf.
werewolf.
werewolf.
werewolf.
werewolf.

__init_ ,?7?

admin, ??

helpers, ??
management . commands
models, ??
models.managers, ??
triggers, ??

utils, ??

.syncww, ??

29

