

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	django-werewolf 0.4.2 documentation

Package

django-werewolf

Description

Item publishing workflow for Django (fully integrated into Django admin).

Prerequisites

	Django 1.5.+

	Python 2.7.+, 3.3.+

Installation

	Install django-werewolf into your virtual environment:

$ pip install django-werewolf

	Add werewolf to your INSTALLED_APPS.

That’s all. See the Usage and examples section for more.

Usage and examples

It’s all about item publishing in a workflow. We have various intermediate statuses (work in-progress) and a
final status which means that the item is actually published. Some users should be able to set the item status
to published, some others not. This app allows you (and gives you a good working example with pre-configured
Django environment) to write a custom workflow for publishing your items with minimal efforts.

For a complete example of a working django-werewolf app see the
(https://github.com/barseghyanartur/django-werewolf/tree/stable/example) and read the readme.rst of the news
app.

Imaginary app concept

There are three user groups. All of them should be able to log into Django admin.

	Writers

	Editors

	Chief Editors

In short, our imaginary app would work as follows.

	Chief Editor creates a News item and chooses a Writer and an Editor. The status of a new News item is
then set to new.

	Once a News item with status new has been created, both Writer and the Editor assigned do get an e-mail
notification about the fact that a News item has been assigned to them.

	Writer is supposed to fill the assigned News item with content and once the News item is ready, change
its’ status to ready.

	The assigned Editor would get an e-mail notification about the fact that the News item has been changed to
ready.

	The assigned Editor is supposed to check the News item with status ready and if it’s acceptable, change
the News item status to reviewed.

	Once a News item status has been set to reviewed, the assigned Writer can no longer access it in the Django
admin.

	The assigned Chief Editor would get an e-mail notification about the fact that the News item has been changed
to reviewed.

	The assigned Chief Editor is supposed to check the News item with status reviewed and if it acceptable,
change the News item status to published.

	Once a News item status has been set to published, the assigned Editor can no longer access it in the Django
admin.

	Once a News item status has been changed to published, all Chief Editors in the system, as well as the
assigned Writer and Editor get an e-mail notification about the fact that the News item has been published.

Demo

In order to be able to quickly evaluate the django-werewolf, a demo app (with a quick installer) has been created
(Debian only). Follow the instructions below for having the demo running within a minute.

Grab the latest django-werewolf-example-app-install.sh

$ wget https://raw.github.com/barseghyanartur/django-werewolf/stable/django-werewolf-example-app-install.sh

Create a new- or switch to existing- virtual environement, assign execute rights to the installer and run
the django-werewolf-example-app-install.sh.

$ chmod +x django-werewolf-example-app-install.sh

$./django-werewolf-example-app-install.sh

Go to the backend and test the app.

	URL: http://127.0.0.1:8000/admin/news/newsitem/

	Admin username: admin

	Admin password: test

	Chief Editor username: chief_editor

	Chief Editor password: test

	Editor username: editor

	Editor password: test

	Writer username: writer

	Writer password: test

Let’s now step-by-step review our imaginary example app.

settings.py

>>> # Workflow statuses; order is preserved.
>>> WEREWOLF_STATUS_CHOICES = (
>>> ('new', gettext('New')), # New - this is how it's assigned to a writer.
>>> ('draft', gettext('Draft')), # Draft - this is how the writer works on it.
>>> ('ready', gettext('Ready')), # Ready to be reviewed by editor.
>>> ('reviewed', gettext('Reviewed')), # Reviewed by editor (means positive
>>> # and ready to be published).
>>> ('published', gettext('Published')), # Published.
>>>)
>>>
>>> # Published status.
>>> WEREWOLF_STATUS_PUBLISHED = 'published'
>>>
>>> # When set to True, django-reversion is used.
>>> WEREWOLF_USE_DJANGO_REVERSION = True

news/models.py

In the example below we have a basic news item model. We have Chief Editors with full access to news items, we
have editors with less privelleges and Writers with very little privelleges. Chief Editors create articles,
select an Editor and a Writer (both get notified) and let them work on the article. Writers can only set an
article status to new, draft and ready (ready to be checked). Editors review the articles with status
ready and set the status to reviewed. Chief Editors publish articles that are reviewed. Your
implementation can be as custom as you want it. Think in Django user groups (django.contrib.auth.models.Group)
and Django permissions system.

NOTE: See the Permission tuning section.

>>> from django.contrib.auth.models import User
>>>
>>> from werewolf.models import WerewolfBaseModel, WerewolfBaseMeta
>>>
>>> _chief_editors = {'groups__name__iexact': 'Chief editors'}
>>> _editors = {'groups__name__iexact': 'Editors'}
>>> _writers = {'groups__name__iexact': 'Writers'}
>>>
>>> class NewsItem(WerewolfBaseModel): # Important!
>>> title = models.CharField(_("Title"), max_length=100)
>>> body = models.TextField(_("Body"))
>>> date_published = models.DateTimeField(_("Date published"), \
>>> default=datetime.datetime.now())
>>> author = models.ForeignKey(User, verbose_name=_("Author"), \
>>> related_name='authors', \
>>> limit_choices_to=_writers)
>>> editor = models.ForeignKey(User, verbose_name=_("Editor"), \
>>> related_name='editors', \
>>> limit_choices_to=_editors)
>>> chief_editor = models.ForeignKey(User, verbose_name=_("Chief editor"), \
>>> related_name='chief_editors', \
>>> limit_choices_to=_chief_editors)
>>>
>>> class Meta(WerewolfBaseMeta): # Important!
>>> verbose_name = "News item"
>>> verbose_name_plural = "News items"

Or if you want to define custom permissions for your model as well, do extend the django-werewolf
permissions as follows:

>>> from werewolf.models import WerewolfBaseModel
>>> from werewolf.utils import extend_werewolf_permissions
>>>
>>> class NewsItem(WerewolfBaseModel):
>>> # Your fields here
>>> class Meta:
>>> verbose_name = "News item"
>>> verbose_name_plural = "News items"
>>>
>>> # Important!
>>> permissions = extend_werewolf_permissions(
>>> ('can_change_author', _("Can change author")),
>>> ('can_change_editor', _("Can change editor")),
>>> ('can_change_chief_editor', _("Can change chief editor"))
>>>)

news/admin.py

Basic admin for the news item model.

NOTE: See the Permission tuning section.

>>> from werewolf.admin import WerewolfBaseAdmin
>>>
>>> from news.models import NewsItem
>>>
>>> class NewsItemAdmin(WerewolfBaseAdmin):
>>> werewolf_protected_fields = (
>>> ('author', 'can_change_author'),
>>> ('editor', 'can_change_editor'),
>>> ('chief_editor', 'can_change_chief_editor')
>>>)
>>>
>>> admin.site.register(NewsItem, NewsItemAdmin)

The werewolf_protected_fields property is a list of fields that are supposed to be protected. Each item in
the list is a tuple of (field_name_to_protect, required_permission). If given, django-werewolf hides
fields listed as protected from users that do not have the permission required. In order to do so, django-werewolf
overrides the Django’s ModelAdmin get_field and get_fieldsets methods. If you happen to override that
method for your own needs, make sure the it also reflects the django-werewolf concepts.

NOTE: If you override the queryset method of your model’s admin class, make sure to see the source code
of werewolf.admin.WerewolfBaseAdmin.queryset and copy the approach from there. Otherwise, your users with
no permission to change the published status will be able to chgange the status of already published items
to non-published statuses.

news/views.py

>>> from news.models import NewsItem
>>>
>>> def browse(request):
>>> news_items = NewsItem._default_manager.published()
>>> # Other code

news/werewolf_triggers.py

In order to perform extra tasks on status change, triggers are used. You simply make a new file in your app
called werewolf_triggers.py and define custom classes that should be called when a status field of your
model changes to a certain value. Each trigger should subclass the werewolf.triggers.WerewolfBaseTrigger
class.

>>> from werewolf.triggers import WerewolfBaseTrigger, registry
>>>
>>> class StatusNewTrigger(WerewolfBaseTrigger):
>>> """
>>> News item status changed to `new`.
>>> """
>>> def process(self):
>>> # Your code
>>>
>>> class StatusReadyTrigger(WerewolfBaseTrigger):
>>> """
>>> News item status changed to `ready` (ready for review).
>>> """
>>> def process(self):
>>> # Your code
>>>
>>> # Triggers status change to `new` for news.newsitem model.
>>> registry.register('news', 'newsitem', 'new', StatusNewTrigger)
>>>
>>> # Triggers status change to `ready` for news.newsitem model.
>>> registry.register('news', 'newsitem', 'ready', StatusReadyTrigger)

urls.py

In order to have triggers autodiscovered, place the following code into your main urls module.

>>> from werewolf import autodiscover as werewolf_autodiscover
>>> werewolf_autodiscover()

Permission tuning

Have in mind our news.models.NewsItem model.

	Create three user groups:

	Chief editors (permissions listed):

	news | News item | Can add News item

	news | News item | Can change author

	news | News item | Can change chief editor

	news | News item | Can change editor

	news | News item | Can change News item

	news | News item | Can change status to draft

	news | News item | Can change status to new

	news | News item | Can change status to published

	news | News item | Can change status to ready

	news | News item | Can change status to reviewed

	news | News item | Can delete News item

	Editors (permissions listed):

	news | News item | Can change News item

	news | News item | Can change author

	news | News item | Can change status to draft

	news | News item | Can change status to new

	news | News item | Can change status to ready

	news | News item | Can change status to reviewed

	Writers (permissions listed):

	news | News item | Can change News item

	news | News item | Can change status to draft

	news | News item | Can change status to new

	news | News item | Can change status to ready

	Create three users:

	chief editor: Belongs to group Chief editors.

	editor: Belongs to group Editors.

	writer: Belongs to group Writers.

	Now log into the admin with different user and see your admin for the News item (created items with
chiefeditor account, then view them with editor and writer.

That’s it. If somehow you don’t see the new permissions (Can change status to draft,
Can change status to new, etc) run a management command syncww:

$./manage.py syncww

Running the example project

A working example of a django-werewolf app is available here:
https://github.com/barseghyanartur/django-werewolf/tree/stable/example

	Go to example/example directory

$ cd example/example

	Install requirements (in your virtual environment)

$ pip install -r ../requirements.txt

	Copy local_settings.example to local_settings.py

$ cp local_settings.example local_settings.py

	Create the database

$./manage.py syncdb

	Insert example test groups and users

$./manage.py news_create_groups_and_test_users

	Run the project

$./manage.py runserver

Documentation

Contents:

	werewolf Package
	werewolf Package

	admin Module

	helpers Module

	triggers Module

	utils Module

	Subpackages
	management Package
	Subpackages
	commands Package
	syncww Module

	models Package
	models Package

	managers Module

Indices and tables

	Index

	Module Index

	Search Page

License

GPL 2.0/LGPL 2.1

Support

For any issues contact me at the e-mail given in the Author section.

Author

Artur Barseghyan <artur.barseghyan@gmail.com>

 Copyright 2013, Artur Barseghyan <artur.barseghyan@gmail.com>.
 Created using Sphinx 1.2b1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-werewolf 0.4.2 documentation

werewolf Package

werewolf Package

	
werewolf.__init__.autodiscover()[source]

	Autodiscovers the werewolf triggers in project apps. Each trigger file which should be found by werewolf,
should be named “werewolf_triggers.py”.

admin Module

	
class werewolf.admin.WerewolfBaseAdmin(*args, **kwargs)[source]

	Bases: reversion.admin.VersionAdmin

Base werewolf admin model.

	Property list werewolf_protected_fields:

		List of fields to protect in form of the following
tuple (field_name, required_permission).

	
formfield_for_dbfield(db_field, **kwargs)[source]

	Here we replace the choices based on the user permissions.

	
get_changelist_formset(request, **kwargs)[source]

	Removes protected fields from the list_editiable field list.

	
get_fieldsets(request, obj=None)[source]

	Hiding fields that non-authorised users should not have access to. It’s done based on the
werewolf_protected_fields of your ModelAdmin. But if happen to override that method
for your own needs, make sure the it also reflects the django-werewolf concepts.

	
get_form(request, obj=None, **kwargs)[source]

	Hiding fields that non-authorised users should not have access to. It’s done based on the
werewolf_protected_fields of your ModelAdmin. But if happen to override that method
for your own needs, make sure the it also reflects the django-werewolf concepts.

	
media

	

	
queryset(request)[source]

	Make sure users with no rights to edit an object with status, don’t even see it.

	
save_model(request, obj, form, change)[source]

	

	
status_change_trigger(request, obj, form, change)[source]

	Status change trigger. Executes appropriate registered trigger if applicable.

	Parameters:	
	request (django.http.HttpRequest) –

	obj (django.db.models.Model) – Subclass of django.db.models.Model.

	form –

	change (bool) –

	
werewolf_protected_fields = []

	

helpers Module

	
werewolf.helpers.admin_edit_url(app_label, module_name, object_id, url_title=None)[source]

	Gets an admin edit URL for the object given.

	Parameters:	
	app_label (str) –

	module_name (str) –

	object_id (int) –

	url_title (str) – If given, an HTML a tag is returned with url_title as the tag title. If left to None
just the URL string is returned.

	Return str:	

	
werewolf.helpers.admin_edit_url_for_object(obj, url_title=None)[source]

	Gets an admin edit URL for the object given.

	Parameters:	
	obj (django.db.models.Model) – Django model subclass.

	url_title (str) – If given, an HTML a tag is returned with url_title as the tag title. If left to None
just the URL string is returned.

	Return str:	

triggers Module

	
class werewolf.triggers.WerewolfBaseTrigger(obj, request)[source]

	Bases: object

Werewolf base trigger.

utils Module

	
werewolf.utils.permission_key(status, choice_key)[source]

	Gets the permission key from choice_key given.

	Parameters:	
	status (str) –

	choice_key (str) –

	Return str:	

	
werewolf.utils.permissions_for_base_model(permissions=[])[source]

	Gets/extends permissions for the base model based on the STATUS_CHOICES defined.

	Parameters:	permissions (list|tuple) – Permissions you want to have in your model. Those permissions would be
extended by werewolf permissions.

	Return list:	

	
werewolf.utils.status_choices_for_user(user, app_label)[source]

	Gets available status choices for the user given.

	Parameters:	
	user (django.contrib.auth.models.User) – User for who the permissions are checked.

	module_name (str) – app_label of the model to check permissions to.

	Return list:	List of choices in a same form as werewolf.defaults.STATUS_CHOICES but then limited
to actual choices that user has permissions to.

	
werewolf.utils.extend_werewolf_permissions(*args)[source]

	Extends model permissions with werewolf permissions.

	Example :	

>>> from werewolf.models import WerewolfBaseModel
>>> from werewolf.utils import extend_werewolf_permissions
>>> class NewsItem(WerewolfBaseModel):
>>> # Some fields here
>>>
>>> class Meta:
>>> verbose_name = _("News item")
>>> verbose_name_plural = _("News items")
>>>
>>> permissions = extend_werewolf_permissions(
>>> ('can_change_author', _("Can change author")),
>>> ('can_change_editor', _("Can change editor")),
>>> ('can_change_chief_editor', _("Can change chief editor"))
>>>)

Subpackages

	management Package
	Subpackages
	commands Package
	syncww Module

	models Package
	models Package

	managers Module

 Copyright 2013, Artur Barseghyan <artur.barseghyan@gmail.com>.
 Created using Sphinx 1.2b1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-werewolf 0.4.2 documentation

 	werewolf Package

management Package

Subpackages

	commands Package
	syncww Module

 Copyright 2013, Artur Barseghyan <artur.barseghyan@gmail.com>.
 Created using Sphinx 1.2b1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-werewolf 0.4.2 documentation

 	werewolf Package

 	management Package

commands Package

syncww Module

	
class werewolf.management.commands.syncww.Command[source]

	Bases: django.core.management.base.BaseCommand

	
args = '<app app ...>'

	

	
handle(*args, **options)[source]

	

	
help = 'reloads permissions for specified apps, or all apps if no args are specified'

	

 Copyright 2013, Artur Barseghyan <artur.barseghyan@gmail.com>.
 Created using Sphinx 1.2b1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	django-werewolf 0.4.2 documentation

 	werewolf Package

models Package

models Package

	
class werewolf.models.WerewolfBaseMeta[source]

	Bases: object

Base Meta class of the WerewolfBaseModel. Every subclass of the WerewolfBaseModel
shall extend it.

	
class werewolf.models.WerewolfBaseModel(*args, **kwargs)[source]

	Bases: django.db.models.base.Model

Base Werewolf model. If you want to have a workflow in your model (for statuses like new, draft,
published, etc) you should extend this model.

managers Module

	
class werewolf.models.managers.WerewolfBaseManager[source]

	Bases: django.db.models.manager.Manager

Werewolf base manager.

 Copyright 2013, Artur Barseghyan <artur.barseghyan@gmail.com>.
 Created using Sphinx 1.2b1.

 Navigation

 	
 index

 	
 modules |

 	django-werewolf 0.4.2 documentation

 Python Module Index

 w

 			

 		
 w	

 	[image: -]
 	
 werewolf	

 	
 	
 werewolf.__init__	

 	
 	
 werewolf.admin	

 	
 	
 werewolf.helpers	

 	
 	
 werewolf.management.commands.syncww	

 	
 	
 werewolf.models	

 	
 	
 werewolf.models.managers	

 	
 	
 werewolf.triggers	

 	
 	
 werewolf.utils	

 Copyright 2013, Artur Barseghyan <artur.barseghyan@gmail.com>.
 Created using Sphinx 1.2b1.

 Navigation

 	
 index

 	
 modules |

 	django-werewolf 0.4.2 documentation

Index

 A
 | C
 | E
 | F
 | G
 | H
 | M
 | P
 | Q
 | S
 | W

A

 	

 	admin_edit_url() (in module werewolf.helpers)

 	admin_edit_url_for_object() (in module werewolf.helpers)

 	

 	args (werewolf.management.commands.syncww.Command attribute)

 	autodiscover() (in module werewolf.__init__)

C

 	

 	Command (class in werewolf.management.commands.syncww)

E

 	

 	extend_werewolf_permissions() (in module werewolf.utils)

F

 	

 	formfield_for_dbfield() (werewolf.admin.WerewolfBaseAdmin method)

G

 	

 	get_changelist_formset() (werewolf.admin.WerewolfBaseAdmin method)

 	get_fieldsets() (werewolf.admin.WerewolfBaseAdmin method)

 	

 	get_form() (werewolf.admin.WerewolfBaseAdmin method)

H

 	

 	handle() (werewolf.management.commands.syncww.Command method)

 	

 	help (werewolf.management.commands.syncww.Command attribute)

M

 	

 	media (werewolf.admin.WerewolfBaseAdmin attribute)

P

 	

 	permission_key() (in module werewolf.utils)

 	

 	permissions_for_base_model() (in module werewolf.utils)

Q

 	

 	queryset() (werewolf.admin.WerewolfBaseAdmin method)

S

 	

 	save_model() (werewolf.admin.WerewolfBaseAdmin method)

 	status_change_trigger() (werewolf.admin.WerewolfBaseAdmin method)

 	

 	status_choices_for_user() (in module werewolf.utils)

W

 	

 	werewolf.__init__ (module)

 	werewolf.admin (module)

 	werewolf.helpers (module)

 	werewolf.management.commands.syncww (module)

 	werewolf.models (module)

 	werewolf.models.managers (module)

 	werewolf.triggers (module)

 	

 	werewolf.utils (module)

 	werewolf_protected_fields (werewolf.admin.WerewolfBaseAdmin attribute)

 	WerewolfBaseAdmin (class in werewolf.admin)

 	WerewolfBaseManager (class in werewolf.models.managers)

 	WerewolfBaseMeta (class in werewolf.models)

 	WerewolfBaseModel (class in werewolf.models)

 	WerewolfBaseTrigger (class in werewolf.triggers)

 Copyright 2013, Artur Barseghyan <artur.barseghyan@gmail.com>.
 Created using Sphinx 1.2b1.

 _modules/werewolf/helpers.html

 Navigation

 		
 index

 		
 modules |

 		django-werewolf 0.4.2 documentation »

 		Module code »

 Source code for werewolf.helpers

__title__ = 'werewolf.helpers'
__version__ = '0.4'
__build__ = 0x000004
__author__ = 'Artur Barseghyan <artur.barseghyan@gmail.com>'
__all__ = ('admin_edit_url', 'admin_edit_url_for_object')

from django.core.urlresolvers import reverse

[docs]def admin_edit_url(app_label, module_name, object_id, url_title=None):
 """
 Gets an admin edit URL for the object given.

 :param str app_label:
 :param str module_name:
 :param int object_id:
 :param str url_title: If given, an HTML a tag is returned with `url_title` as the tag title. If left to None
 just the URL string is returned.
 :return str:
 """
 try:
 url = reverse('admin:%s_%s_change' %(app_label, module_name), args=[object_id])
 if url_title:
 return u'%s' %(url, url_title)
 else:
 return url
 except:
 return None

[docs]def admin_edit_url_for_object(obj, url_title=None):
 """
 Gets an admin edit URL for the object given.

 :param django.db.models.Model obj: Django model subclass.
 :param str url_title: If given, an HTML a tag is returned with `url_title` as the tag title. If left to None
 just the URL string is returned.
 :return str:
 """
 return admin_edit_url(obj._meta.app_label, obj._meta.module_name, obj.id, url_title)

 © Copyright 2013, Artur Barseghyan <artur.barseghyan@gmail.com>.
 Created using Sphinx 1.2b1.

_static/minus.png

_static/comment-bright.png

_modules/werewolf/__init__.html

 Navigation

 		
 index

 		
 modules |

 		django-werewolf 0.4.2 documentation »

 		Module code »

 Source code for werewolf.__init__

__title__ = 'werewolf.__init__'
__version__ = '0.4'
__build__ = 0x000004
__author__ = 'Artur Barseghyan <artur.barseghyan@gmail.com>'
__all__ = ('autodiscover',)

import imp

[docs]def autodiscover():
 """
 Autodiscovers the werewolf triggers in project apps. Each trigger file which should be found by werewolf,
 should be named "werewolf_triggers.py".
 """
 from django.conf import settings

 WEREWOLF_TRIGGERS_MODULE_NAME = 'werewolf_triggers'

 for app in settings.INSTALLED_APPS:
 try:
 app_path = __import__(app, {}, {}, [app.split('.')[-1]]).__path__
 except AttributeError:
 continue

 try:
 imp.find_module(WEREWOLF_TRIGGERS_MODULE_NAME, app_path)
 except ImportError:
 continue
 __import__('%s.%s' % (app, WEREWOLF_TRIGGERS_MODULE_NAME))

 © Copyright 2013, Artur Barseghyan <artur.barseghyan@gmail.com>.
 Created using Sphinx 1.2b1.

search.html

 Navigation

 		
 index

 		
 modules |

 		django-werewolf 0.4.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Artur Barseghyan <artur.barseghyan@gmail.com>.
 Created using Sphinx 1.2b1.

_modules/werewolf/utils.html

 Navigation

 		
 index

 		
 modules |

 		django-werewolf 0.4.2 documentation »

 		Module code »

 Source code for werewolf.utils

__title__ = 'werewolf.utils'
__version__ = '0.4'
__build__ = 0x000004
__author__ = 'Artur Barseghyan <artur.barseghyan@gmail.com>'
__all__ = ('permission_key', 'permissions_for_base_model', 'status_choices_for_user', \
 'extend_werewolf_permissions')

from django.utils.translation import ugettext_lazy as _

from werewolf.settings import STATUS_CHOICES
from werewolf.constants import CHANGE_STATUS_TO #, CAN_VIEW_STATUS

CHOICES = dict(STATUS_CHOICES)

CHOICES_KEYS = [choice[0] for choice in STATUS_CHOICES]

[docs]def permission_key(status, choice_key):
 """
 Gets the permission key from ``choice_key`` given.

 :param str status:
 :param str choice_key:
 :return str:
 """
 return '%s_%s' % (status, choice_key)

[docs]def permissions_for_base_model(permissions=[]):
 """
 Gets/extends permissions for the base model based on the ``STATUS_CHOICES`` defined.

 :param list|tuple permissions: Permissions you want to have in your model. Those permissions would be
 extended by werewolf permissions.
 :return list:
 """
 werewolf_permissions = []
 for choice_key in CHOICES_KEYS:
 werewolf_permissions.append(
 (permission_key(CHANGE_STATUS_TO, choice_key), _("Can change status to %s") % choice_key)
)
 # Not sure if this shall be taken out. This allows viewsing the status. Leave out for now.
 #permissions.append((permission_key(CAN_VIEW_STATUS, choice_key), _("Can view status %s") % choice_key))

 if isinstance(permissions, list):
 werewolf_permissions.extend(permissions)
 elif isinstance(permissions, tuple):
 permissions = list(permissions)
 werewolf_permissions.extend(permissions)

 return werewolf_permissions

[docs]def extend_werewolf_permissions(*args):
 """
 Extends model permissions with werewolf permissions.

 :example:
 >>> from werewolf.models import WerewolfBaseModel
 >>> from werewolf.utils import extend_werewolf_permissions
 >>> class NewsItem(WerewolfBaseModel):
 >>> # Some fields here
 >>>
 >>> class Meta:
 >>> verbose_name = _("News item")
 >>> verbose_name_plural = _("News items")
 >>>
 >>> permissions = extend_werewolf_permissions(
 >>> ('can_change_author', _("Can change author")),
 >>> ('can_change_editor', _("Can change editor")),
 >>> ('can_change_chief_editor', _("Can change chief editor"))
 >>>)
 """
 return permissions_for_base_model(args)

[docs]def status_choices_for_user(user, app_label):
 """
 Gets available status choices for the user given.

 :param django.contrib.auth.models.User user: User for who the permissions are checked.
 :param str module_name: `app_label` of the model to check permissions to.
 :return list: List of choices in a same form as ``werewolf.defaults.STATUS_CHOICES`` but then limited
 to actual choices that user has permissions to.
 """
 statuses = []
 for choice_key in CHOICES_KEYS:
 if user.has_perm('%s.%s' % (app_label, permission_key(CHANGE_STATUS_TO, choice_key))):
 statuses.append((choice_key, CHOICES[choice_key]))

 return statuses

 © Copyright 2013, Artur Barseghyan <artur.barseghyan@gmail.com>.
 Created using Sphinx 1.2b1.

_static/comment-close.png

_static/up-pressed.png

_modules/werewolf/models.html

 Navigation

 		
 index

 		
 modules |

 		django-werewolf 0.4.2 documentation »

 		Module code »

 Source code for werewolf.models

Note, presence of ``WerewolfBaseModel`` and ``WerewolfBaseMeta`` is important!
#
>>> from werewolf.models import WerewolfBaseModel, WerewolfBaseMeta
>>> class NewsItem(WerewolfBaseModel):
>>> title = models.CharField(_("Title"), max_length=255)
>>> body = models.TextField(_("Body"))
>>>
>>> class Meta(WerewolfBaseMeta):
>>> verbose_name = "News item"
>>> verbose_name_plural = "News items"
#
Alternatively you can add the ``permissions`` attribute:
#
>>> from werewolf.utils import extend_werewolf_permissions
>>> class NewsItem(WerewolfBaseModel):
>>> title = models.CharField(_("Title"), max_length=255)
>>> body = models.TextField(_("Body"))
>>>
>>> class Meta:
>>> verbose_name = "News item"
>>> verbose_name_plural = "News items"
>>> permissions = extend_werewolf_permissions(
>>> ('can_change_author', _("Can change author")),
>>> ('can_change_editor', _("Can change editor")),
>>>)

__title__ = 'werewolf.models.__init__'
__version__ = '0.4'
__build__ = 0x000004
__author__ = 'Artur Barseghyan <artur.barseghyan@gmail.com>'
__all__ = ('WerewolfBaseMeta', 'WerewolfBaseModel')

from django.db import models
from django.utils.translation import ugettext_lazy as _

from werewolf.models.managers import WerewolfBaseManager
from werewolf.utils import extend_werewolf_permissions
from werewolf.conf import get_setting

STATUS_CHOICES = get_setting('STATUS_CHOICES')
DEFAULT_STATUS = get_setting('DEFAULT_STATUS')
STATUS_MAX_LENGTH = get_setting('STATUS_MAX_LENGTH')

[docs]class WerewolfBaseMeta(object):
 """
 Base Meta class of the ``WerewolfBaseModel``. Every subclass of the ``WerewolfBaseModel``
 shall extend it.
 """
 permissions = extend_werewolf_permissions()

[docs]class WerewolfBaseModel(models.Model):
 """
 Base Werewolf model. If you want to have a workflow in your model (for statuses like new, draft,
 published, etc) you should extend this model.
 """
 status = models.CharField(_("Status"), max_length=STATUS_MAX_LENGTH, choices=STATUS_CHOICES, \
 default=DEFAULT_STATUS)

 objects = WerewolfBaseManager()

 class Meta(WerewolfBaseMeta):
 abstract = True

 © Copyright 2013, Artur Barseghyan <artur.barseghyan@gmail.com>.
 Created using Sphinx 1.2b1.

_static/up.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		django-werewolf 0.4.2 documentation »

 All modules for which code is available

		werewolf.__init__

		werewolf.admin

		werewolf.helpers

		werewolf.management.commands.syncww

		werewolf.models

		werewolf.models.managers

		werewolf.triggers

		werewolf.utils

 © Copyright 2013, Artur Barseghyan <artur.barseghyan@gmail.com>.
 Created using Sphinx 1.2b1.

_modules/werewolf/models/managers.html

 Navigation

 		
 index

 		
 modules |

 		django-werewolf 0.4.2 documentation »

 		Module code »

 		werewolf.models »

 Source code for werewolf.models.managers

__title__ = 'werewolf.models.managers'
__version__ = '0.4'
__build__ = 0x000004
__author__ = 'Artur Barseghyan <artur.barseghyan@gmail.com>'
__all__ = ('WerewolfBaseManager',)

from django.db import models

from werewolf.settings import STATUS_PUBLISHED

[docs]class WerewolfBaseManager(models.Manager):
 """
 Werewolf base manager.
 """
 def published(self):
 return self.filter(status__exact=STATUS_PUBLISHED)

 © Copyright 2013, Artur Barseghyan <artur.barseghyan@gmail.com>.
 Created using Sphinx 1.2b1.

_static/plus.png

_static/down.png

_static/comment.png

_modules/werewolf/triggers.html

 Navigation

 		
 index

 		
 modules |

 		django-werewolf 0.4.2 documentation »

 		Module code »

 Source code for werewolf.triggers

__title__ = 'werewolf.triggers'
__version__ = '0.4'
__build__ = 0x000004
__author__ = 'Artur Barseghyan <artur.barseghyan@gmail.com>'
__all__ = ('WerewolfBaseTrigger', 'registry')

[docs]class WerewolfBaseTrigger(object):
 """
 Werewolf base trigger.
 """
 def __init__(self, obj, request):
 self.obj = obj
 self.request = request

 def process(self):
 raise NotImplementedError("You should define a ``process`` method in your trigger class!")

class WerewolfRegistry(object):
 """
 Trigger registry.

 Register all your werewolf triggers subclassed from ``werewolf.triggers.WerewolfBaseTrigger`` as follows:
 >>> from werewolf.triggers import WerewolfBaseTrigger, registry
 >>>
 >>> # Our trigger
 >>> class StatusExampleTrigger(WerewolfBaseTrigger):
 >>> def process(self):
 >>> print 'status triggered'
 >>>
 >>> registry.register('your-app-label', 'your-module-name', 'status-to-catch', StatusExampleTrigger)
 """
 def __init__(self):
 self._registry = {}

 def __make_key(self, app_label, module_name, status):
 return '%s.%s:%status' % (app_label, module_name, status)

 def register(self, app_label, module_name, status, trigger_class):
 """
 Registers the trigger into the global registry.

 :param str app_label:
 :param str module_name:
 :param str status:
 :param str werewolf.triggers.WerewolfBaseTrigger: Subclass of ``werewolf.triggers.WerewolfBaseTrigger``.
 """
 self._registry[self.__make_key(app_label, module_name, status)] = trigger_class

 def register_for_model(self, model, status, trigger_class):
 self._registry[self.__make_key(model._metal.app_label, model._meta.module_name, status)] = trigger_class

 def get(self, app_label, module_name, status):
 """
 Gets the trigger from global trigger registry.

 :param str app_label:
 :param str module_name:
 :param str status:
 :return werewolf.triggers.WerewolfBaseTrigger: Subclass of ``werewolf.triggers.WerewolfBaseTrigger``.
 """
 key = self.__make_key(app_label, module_name, status)
 if key in self._registry:
 return self._registry[key]

 def get_for_model(self, model, status):
 return self.get(model._meta.app_label, model._meta.module_name, status)

Register triggers by calling registry.register()
registry = WerewolfRegistry()

 © Copyright 2013, Artur Barseghyan <artur.barseghyan@gmail.com>.
 Created using Sphinx 1.2b1.

_static/ajax-loader.gif

_modules/werewolf/management/commands/syncww.html

 Navigation

 		
 index

 		
 modules |

 		django-werewolf 0.4.2 documentation »

 		Module code »

 Source code for werewolf.management.commands.syncww

__title__ = 'werewolf.management.commands.syncww'
__version__ = '0.4'
__build__ = 0x000004
__author__ = 'Artur Barseghyan <artur.barseghyan@gmail.com>'
__all__ = ('Command',)

from django.core.management.base import BaseCommand
from django.db.models import get_models, get_app
from django.contrib.auth.management import create_permissions

[docs]class Command(BaseCommand):
 args = '<app app ...>'
 help = 'reloads permissions for specified apps, or all apps if no args are specified'

[docs] def handle(self, *args, **options):
 if not args:
 apps = []
 for model in get_models():
 apps.append(get_app(model._meta.app_label))
 else:
 apps = []
 for arg in args:
 apps.append(get_app(arg))

 for app in apps:
 create_permissions(app, get_models(), options.get('verbosity', 0))

 © Copyright 2013, Artur Barseghyan <artur.barseghyan@gmail.com>.
 Created using Sphinx 1.2b1.

_static/file.png

_modules/werewolf/admin.html

 Navigation

 		
 index

 		
 modules |

 		django-werewolf 0.4.2 documentation »

 		Module code »

 Source code for werewolf.admin

__title__ = 'werewolf.admin'
__version__ = '0.4'
__build__ = 0x000004
__author__ = 'Artur Barseghyan <artur.barseghyan@gmail.com>'
__all__ = ('WerewolfBaseAdmin',)

from functools import partial

from django.contrib import admin
from django import forms
from django.forms.models import modelform_factory
from django.contrib.admin.util import flatten_fieldsets

from werewolf.utils import status_choices_for_user
from werewolf.triggers import registry
from werewolf.settings import USE_DJANGO_REVERSION, DEFAULT_STATUS

if USE_DJANGO_REVERSION:
 from reversion.admin import VersionAdmin
 AdminParentClass = VersionAdmin
else:
 AdminParentClass = admin.ModelAdmin

[docs]class WerewolfBaseAdmin(AdminParentClass):
 """
 Base werewolf admin model.

 :property list werewolf_protected_fields: List of fields to protect in form of the following
 tuple (``field_name``, ``required_permission``).
 """
 werewolf_protected_fields = []

[docs] def formfield_for_dbfield(self, db_field, **kwargs):
 """
 Here we replace the choices based on the user permissions.
 """
 if 'status' == db_field.name:
 status_choices = status_choices_for_user(kwargs['request'].user, self.model._meta.app_label)
 field = forms.ChoiceField(choices=status_choices, required=True, initial=DEFAULT_STATUS)
 return field

 return super(WerewolfBaseAdmin, self).formfield_for_dbfield(db_field, **kwargs)

[docs] def queryset(self, request):
 """
 Make sure users with no rights to edit an object with status, don't even see it.
 """
 status_choices = dict(status_choices_for_user(request.user, self.model._meta.app_label)).keys()
 return super(WerewolfBaseAdmin, self).queryset(request).filter(status__in=status_choices)

[docs] def status_change_trigger(self, request, obj, form, change):
 """
 Status change trigger. Executes appropriate registered trigger if applicable.

 :param django.http.HttpRequest request:
 :param django.db.models.Model obj: Subclass of ``django.db.models.Model``.
 :param form:
 :param bool change:
 """
 # It's important to perform the checks after the
 if 'status' in form.changed_data:
 Trigger = registry.get_for_model(obj, obj.status)
 if Trigger:
 trigger = Trigger(obj=obj, request=request)
 trigger.process()

[docs] def save_model(self, request, obj, form, change):
 super(WerewolfBaseAdmin, self).save_model(request, obj, form, change)

 self.status_change_trigger(request, obj, form, change)

[docs] def get_form(self, request, obj=None, **kwargs):
 """
 Hiding fields that non-authorised users should not have access to. It's done based on the
 ``werewolf_protected_fields`` of your ``ModelAdmin``. But if happen to override that method
 for your own needs, make sure the it also reflects the django-werewolf concepts.
 """
 if not self.werewolf_protected_fields:
 return super(WerewolfBaseAdmin, self).get_form(request=request, obj=obj, **kwargs)

 # Hiding fields that non-authorised users should not have access to.
 if self.declared_fieldsets:
 fields = flatten_fieldsets(self.declared_fieldsets)
 else:
 fields = None
 if self.exclude is None:
 exclude = []
 else:
 exclude = list(self.exclude)
 exclude.extend(self.get_readonly_fields(request, obj))
 if self.exclude is None and hasattr(self.form, '_meta') and self.form._meta.exclude:
 # Take the custom ModelForm's Meta.exclude into account only if the
 # ModelAdmin doesn't define its own.
 exclude.extend(self.form._meta.exclude)
 # if exclude is an empty list we pass None to be consistant with the
 # default on modelform_factory
 exclude = exclude or []

 for field_name, required_permission in self.werewolf_protected_fields:
 if not request.user.has_perm('{0}.{1}'.format(self.model._meta.app_label, required_permission)):
 exclude.append(field_name)

 exclude = exclude or None

 defaults = {
 "form": self.form,
 "fields": fields,
 "exclude": exclude,
 "formfield_callback": partial(self.formfield_for_dbfield, request=request),
 }
 defaults.update(kwargs)
 return modelform_factory(self.model, **defaults)

[docs] def get_changelist_formset(self, request, **kwargs):
 """
 Removes protected fields from the list_editiable field list.
 """
 if self.werewolf_protected_fields:
 self.list_editable = list(self.list_editable) # convert to a list so we can 'remove()'
 for field_name, required_permission in self.werewolf_protected_fields:
 # Remove field from the list_editable list if permissions are not granted.
 if not request.user.has_perm('{0}.{1}'.format(self.model._meta.app_label, required_permission)):
 try:
 self.list_editable.remove(field_name)
 except:
 pass

 return super(WerewolfBaseAdmin, self).get_changelist_formset(request, **kwargs)

[docs] def get_fieldsets(self, request, obj=None):
 """
 Hiding fields that non-authorised users should not have access to. It's done based on the
 ``werewolf_protected_fields`` of your ``ModelAdmin``. But if happen to override that method
 for your own needs, make sure the it also reflects the django-werewolf concepts.
 """
 fieldsets = super(WerewolfBaseAdmin, self).get_fieldsets(request, obj=None)

 if not self.werewolf_protected_fields:
 return fieldsets

 cleaned_fieldsets = []

 for fieldset_label, fieldset in fieldsets:
 fields = list(fieldset['fields'])
 for field_name, required_permission in self.werewolf_protected_fields:
 # Cleaning the field that has been already excluded from form (in ``get_form``).
 if not request.user.has_perm('{0}.{1}'.format(self.model._meta.app_label, required_permission)):
 try:
 fields.remove(field_name)
 except:
 pass

 fieldset_attributes = {
 'fields': fields,
 'classes': fieldset.get('classes', list())
 }
 cleaned_fieldsets.append((fieldset_label, fieldset_attributes))

 return cleaned_fieldsets

 © Copyright 2013, Artur Barseghyan <artur.barseghyan@gmail.com>.
 Created using Sphinx 1.2b1.

_static/down-pressed.png

