

 Navigation

 	
 index

 	
 next |

 	django-versatileimagefield 0.1.1 documentation

Welcome to django-versatileimagefield’s documentation!

[image: Downloads]
 [https://pypi.python.org/pypi/django-versatileimagefield/][image: Latest Version]
 [https://pypi.python.org/pypi/django-versatileimagefield/]

A drop-in replacement for django’s ImageField that provides a flexible,
intuitive and easily-extensible interface for quickly creating new
images from the one assigned to your field.

Release Notes

0.1.5

	Squashed CroppedImage bug that was causing black stripes to appear on crops of images with PPOI values that were to the right and/or bottom of center (greater-than 0.5).

0.1.4

	Overhauled how CroppedImage processes PPOI value when creating cropped images. This new approach yields significantly more accurate results than using the previously utilized ImageOps.fit function, especially when dealing with PPOI values located near the edges of an image or aspect ratios that differ significantly from the original image.

	Improved PPOI validation

	Squashed unset VERSATILEIMAGEFIELD_SETTINGS['global_placeholder_image'] bug.

	Set crop Sizer default resample to PIL.Image.ANTIALIAS

0.1.3

	Added support for auto-rotation during pre-processing as dictated by ‘Orientation’ EXIF data, if available.

	Added release notes to docs

0.1.2

	Removed redundant javascript from ppoi ‘click’ widget (thanks, @skumar [https://github.com/theskumar]!)

0.1.1

	Converted giant README into Sphinx-friendly RST

	Docs added to readthedocs

0.1

	Initial open source release

In A Nutshell

	Creates images anywhere you need them: not just in templates.

	Non-destructive: Your original image is never modified.

	Sizer and Filter framework: enables you to quickly add new – or modify existing – ways to create new images:

	Sizers create images with new sizes and/or aspect ratios

	Filters change the appearance of an image

	Sizers can be chained onto Filters: Use case: give me a black-and-white, 400px by 400px square crop of this image.

	Primary Point of Interest (PPOI) support: provides a way to specify where the ‘primary point of interest’ of each individual image is – a value which is available to all Sizers and Filters. Use case: sometimes you want the ‘crop centerpoint’ to be somewhere other than the center of an image. Includes a user-friendly formfield/widget for selecting PPOI in the admin (or anywhere else you use ModelForms).

	Works with any storage: Stores the images it creates within the same storage class as your field (just like django’s FileField & ImageField). Works great with a local filesystem or external storage (like Amazon S3).

	Fully interchangeable with ImageField: you can easily remove VersatileImageField from your project’s models whenever you’d like.

	Integrated caching: References to created images are stored in the cache, keeping your application running quickly and efficiently.

Table of Contents

	Installation
	Dependencies

	Settings

	Model Integration

	Specifying a Primary Point of Interest (PPOI)
	The PPOIField
	How PPOI is Stored in the Database

	Setting PPOI
	Via The Shell

	FormField/Admin Integration

	Using Sizers and Filters
	Sizers
	Included Sizers
	thumbnail

	crop

	Filters
	Included Filters
	invert

	Using Sizers with Filters

	How Filtered Image Files are Named/Stored

	Using Sizers / Filters in Templates

	Writing Custom Sizers and Filters
	Writing a Custom Sizer

	Writing a Custom Filter

	What process_image should return

	The Pre-processing API
	Pre-processor Naming Convention

	Registering Sizers and Filters
	Unallowed Sizer & Filter Names

	Overriding an existing Sizer or Filter

TODO for v0.2

	Tests!

	Placeholder docs

	Programmatically delete images created by VersatileImageField
(including clearing their connected cache keys)

	Management command for auto-generating sets of images (and
pre-warming the cache)

	Templatetags for sizing/filtering static images

 Copyright 2014, Jonathan Ellenberger.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-versatileimagefield 0.1.1 documentation

Installation

Installation is easy with pip [https://pypi.python.org/pypi/pip]:

$ pip install django-versatileimagefield

Dependencies

	django>=1.5.0

	Pillow >= 2.4.0

django-versatileimagefield depends on the excellent
Pillow [http://pillow.readthedocs.org] fork of PIL. If you
already have PIL installed, it is recommended you uninstall it prior to
installing django-versatileimagefield:

$ pip uninstall PIL
$ pip install django-versatileimagefield

Note

django-versatileimagefield will not install django.

Settings

After installation completes, add 'versatileimagefield' to
INSTALLED_APPS:

INSTALLED_APPS = (
 # All your other apps here
 'versatileimagefield',
)

You can fine-tune how django-versatileimagefield works via the
VERSATILEIMAGEFIELD_SETTINGS setting:

VERSATILEIMAGEFIELD_SETTINGS = {
 # The amount of time, in seconds, that references to created images
 # should be stored in the cache. Defaults to `2592000` (30 days)
 'cache_length': 2592000,
 # The name of the cache you'd like `django-versatileimagefield` to use.
 # Defaults to 'versatileimagefield_cache'. If no cache exists with the name
 # provided, the 'default' cache will be used instead.
 'cache_name': 'versatileimagefield_cache',
 # The save quality of modified JPEG images. More info here:
 # http://pillow.readthedocs.org/en/latest/handbook/image-file-formats.html#jpeg
 # Defaults to 70
 'jpeg_resize_quality': 70,
 # A path on disc to an image that will be used as a 'placeholder'
 # for non-existant images.
 # If 'global_placeholder_image' is unset, the excellent, free-to-use
 # http://placehold.it service will be used instead.
 'global_placeholder_image': '/path/to/an-image.png',
 # The name of the top-level folder within storage classes to save all
 # sized images. Defaults to '__sized__'
 'sized_directory_name': '__sized__',
 # The name of the directory to save all filtered images within.
 # Defaults to '__filtered__':
 'filtered_directory_name': '__filtered__'
}

 Copyright 2014, Jonathan Ellenberger.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-versatileimagefield 0.1.1 documentation

Model Integration

The centerpiece of django-versatileimagefield is its
VersatileImageField which provides a simple, flexible interface for
creating new images from the image you assign to it.

VersatileImageField extends django’s ImageField and can be used
as a drop-in replacement for it. Here’s a simple example model that
depicts a typical usage of django’s ImageField:

models.py with `ImageField`
from django.db import models

class ImageExampleModel(models.Model):
 name = models.CharField(
 'Name',
 max_length=80
)
 image = models.ImageField(
 'Image',
 upload_to='images/testimagemodel/',
 width_field='width',
 height_field='height'
)
 height = models.PositiveIntegerField(
 'Image Height',
 blank=True,
 null=True
)
 width = models.PositiveIntegerField(
 'Image Width',
 blank=True,
 null=True
)

 class Meta:
 verbose_name = 'Image Example'
 verbose_name_plural = 'Image Examples'

And here’s that same model using VersatileImageField instead (see highlighted section in the code block below):

models.py with `VersatileImageField`
from django.db import models

from versatileimagefield.fields import VersatileImageField

class ImageExampleModel(models.Model):
 name = models.CharField(
 'Name',
 max_length=80
)
 image = VersatileImageField(
 'Image',
 upload_to='images/testimagemodel/',
 width_field='width',
 height_field='height'
)
 height = models.PositiveIntegerField(
 'Image Height',
 blank=True,
 null=True
)
 width = models.PositiveIntegerField(
 'Image Width',
 blank=True,
 null=True
)

 class Meta:
 verbose_name = 'Image Example'
 verbose_name_plural = 'Image Examples'

Note

VersatileImageField is fully interchangable with
django.db.models.ImageField [https://docs.djangoproject.com/en/dev/ref/models/fields/#imagefield]
which means you can revert back to using django’s ImageField
anytime you’d like. It’s fully-compatible with
south [http://south.readthedocs.org/en/latest/index.html] so migrate to your heart’s content!

 Copyright 2014, Jonathan Ellenberger.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-versatileimagefield 0.1.1 documentation

Specifying a Primary Point of Interest (PPOI)

The crop Sizer is super-useful for creating images at a specific
size/aspect-ratio however, sometimes you want the ‘crop centerpoint’ to
be somewhere other than the center of a particular image. In fact, the
initial inspiration for django-versatileimagefield came as a result
of tackling this very problem.

The crop Sizer’s core functionality (located in the versatileimagefield.versatileimagefield.CroppedImage.crop_on_centerpoint method) was inspired by PIL’s
ImageOps.fit [http://pillow.readthedocs.org/en/latest/reference/ImageOps.html#PIL.ImageOps.fit]
function (by Kevin Cazabon [http://www.cazabon.com/]) which takes an optional
keyword argument, centering, that expects a 2-tuple comprised of
floats which are greater than or equal to 0 and less than or equal to 1. These two values
together form a cartesian coordinate system that dictates what percentage of pixels to ‘trim’ off each of the long sides (i.e. left/right or top/bottom, depending on the aspect ratio of the cropped size vs. the original size):

	
	Left
	Center
	Right

	Top
	(0.0, 0.0)
	(0.0, 0.5)
	(0.0, 1.0)

	Middle
	(0.5, 0.0)
	(0.5, 0.5)
	(0.5, 1.0)

	Bottom
	(1.0, 0.0)
	(1.0, 0.5)
	(1.0, 1.0)

The crop Sizer works in a similar way but converts the 2-tuple into an exact (x, y) pixel coordinate which is then used as the ‘centerpoint’ of the crop. This approach gives significantly more accurate results than using ImageOps.fit, especially when dealing with PPOI values located near the edges of an image or aspect ratios that differ significantly from the original image.

Note

Even though the PPOI value is used as a crop ‘centerpoint’, the pixel it corresponds to won’t necessarily be in the center of the cropped image, especially if its near the edges of the original image.

Note

At present, only the crop Sizer changes how it creates images
based on PPOI but a VersatileImageField makes its PPOI value
available to ALL its attached Filters and Sizers. Get creative!

The PPOIField

Each image managed by a VersatileImageField can store its own,
unique PPOI in the database via the easy-to-use PPOIField. Here’s
how to integrate it into our example model (relevant lines highlighted in the code block below):

models.py with `VersatileImageField` & `PPOIField`
from django.db import models

from versatileimagefield.fields import VersatileImageField, \
 PPOIField

class ImageExampleModel(models.Model):
 name = models.CharField(
 'Name',
 max_length=80
)
 image = VersatileImageField(
 'Image',
 upload_to='images/testimagemodel/',
 width_field='width',
 height_field='height',
 ppoi_field='ppoi'
)
 height = models.PositiveIntegerField(
 'Image Height',
 blank=True,
 null=True
)
 width = models.PositiveIntegerField(
 'Image Width',
 blank=True,
 null=True
)
 ppoi = PPOIField(
 'Image PPOI'
)

 class Meta:
 verbose_name = 'Image Example'
 verbose_name_plural = 'Image Examples'

As you can see, you’ll need to add a new PPOIField field to your
model and then include the name of that field in the
VersatileImageField‘s ppoi_field keyword argument. That’s it!

Note

PPOIField is fully-compatible with
south [http://south.readthedocs.org/en/latest/index.html] so
migrate to your heart’s content!

How PPOI is Stored in the Database

The Primary Point of Interest is stored in the database as a string
with the x and y coordinates limited to two decimal places and separated
by an ‘x’ (for instance: '0.5x0.5' or '0.62x0.28').

Setting PPOI

PPOI is set via the ppoi attribute on a VersatileImageField. You
should always set an image’s PPOI here (as opposed to directly on a
PPOIField attribute) since a VersatileImageField will ensure
updated values are passed-down to all its attached Filters & Sizers.

When you save a model instance, VersatileImageField will ensure its
currently-assigned PPOI value is ‘sent’ to the PPOIField associated
with it (if any) prior to writing to the database.

Via The Shell

Importing our example Model
>>> from someapp.models import ImageExampleModel
Retrieving a model instance
>>> example = ImageExampleModel.objects.all()[0]
Retrieving the current PPOI value associated with the image field
A `VersatileImageField`'s PPOI value is ALWAYS associated with the `ppoi`
attribute, irregardless of what you named the `PPOIField` attribute on your model
>>> example.image.ppoi
(0.5, 0.5)
Creating a cropped image
>>> example.image.crop['400x400'].url
u'/media/__sized__/images/testimagemodel/test-image-crop-c0-5__0-5-400x400.jpg'
Changing the PPOI value
>>> example.image.ppoi = (1, 1)
Creating a new cropped image with the new PPOI value
>>> example.image.crop['400x400'].url
u'/media/__sized__/images/testimagemodel/test-image-crop-c1__1-400x400.jpg'
PPOI values can be set as either a tuple or a string
>>> example.image.ppoi = '0.1x0.55'
>>> example.image.ppoi
(0.1, 0.55)
>>> example.image.ppoi = (0.75, 0.25)
>>> example.image.crop['400x400'].url
u'/media/__sized__/images/testimagemodel/test-image-crop-c0-75__0-25-400x400.jpg'
u'0.75x0.25' is written to the database in the 'ppoi' column associated with
our example model
>>> example.save()

As you can see, changing an image’s PPOI changes the filename of the
cropped image. This ensures updates to a VersatileImageField‘s PPOI
value will result in unique cache entries for each unique image it
creates.

Note

Each time a field’s PPOI is set, its attached Filters & Sizers will
be immediately updated with the new value.

FormField/Admin Integration

It’s pretty hard to accurately set a particular image’s PPOI when
working in the Python shell so django-versatileimagefield ships with
an admin-ready formfield. Simply add an image, click ‘Save and continue
editing’, click where you’d like the PPOI to be and then save your model
instance again. A helpful translucent red square will indicate where the
PPOI value is currently set to on the image:

[image: django-versatileimagefield PPOI admin widget example]
django-versatileimagefield PPOI admin widget example

 Copyright 2014, Jonathan Ellenberger.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-versatileimagefield 0.1.1 documentation

Using Sizers and Filters

Where VersatileImageField shines is in its ability to create new
images on the fly via its Sizer & Filter framework.

Sizers

Sizers provide a way to create new images of differing
sizes from the one assigned to the field. VersatileImageField ships
with two Sizers, thumbnail and crop.

Each Sizer registered to the Sizer registry is available as an attribute
on each VersatileImageField. Sizers are dict subclasses that
only accept precisely formatted keys comprised of two integers –
representing width and height, respectively – separated by an ‘x’ (i.e.
['400x400']). If you send a malformed/invalid key to a Sizer, a
MalformedSizedImageKey exception will raise.

Included Sizers

thumbnail

Here’s how you would create a thumbnail image that would be constrained
to fit within a 400px by 400px area:

Importing our example Model
>>> from someapp.models import ImageExampleModel
Retrieving a model instance
>>> example = ImageExampleModel.objects.all()[0]
Displaying the path-on-storage of the image currently assigned to the field
>>> example.image.name
u'images/testimagemodel/test-image.jpg'
Retrieving the path on the field's storage class to a 400px wide
by 400px tall constrained thumbnail of the image.
>>> example.image.thumbnail['400x400'].name
u'__sized__/images/testimagemodel/test-image-thumbnail-400x400.jpg'
Retrieving the URL to the 400px wide by 400px tall thumbnail
>>> example.image.thumbnail['400x400'].url
u'/media/__sized__/images/testimagemodel/test-image-thumbnail-400x400.jpg'

Note

Images are created on-demand. If no image had yet existed at the location required – by either the path (.name) or URL (.url) shown in the highlighted lines above – one would have been created directly before returning them.

Here’s how you’d open the thumbnail image we just created as an image file
directly in the shell:

>>> thumbnail_image = example.image.field.storage.open(
... example.image.thumbnail['400x400'].name
...)

crop

To create images cropped to a specific size, use the crop Sizer:

Retrieving the URL to a 400px wide by 400px tall crop of the image
>>> example.image.crop['400x400'].url
u'/media/__sized__/images/testimagemodel/test-image-crop-c0-5__0-5-400x400.jpg'

The crop Sizer will first scale an image down to its longest side
and then crop/trim inwards, centered on the Primary Point of
Interest (PPOI, for short). For more info about what PPOI is and how
it’s used see the Specifying a Primary Point of Interest
(PPOI) section.

How Sized Image Files are Named/Stored

All Sizers subclass from
versatileimagefield.datastructures.sizedimage.SizedImage which uses
a unique-to-size-specified string – provided via its
get_filename_key() method – that is included in the filename of each
image it creates.

Note

The thumbnail Sizer simply combines 'thumbnail' with the
size key passed (i.e. '400x400') while the crop Sizer
combines 'crop', the field’s PPOI value (as a string) and the
size key passed; all Sizer ‘filename keys’ begin and end with dashes
'-' for readability.

All images created by a Sizer are stored within the field’s storage
class in a top-level folder named '__sized__', maintaining the same
descendant folder structure as the original image. If you’d like to
change the name of this folder to something other than '__sized__',
adjust the value of
VERSATILEIMAGEFIELD_SETTINGS['sized_directory_name'] within your
settings file.

Sizers are quick and easy to write, for more information about how it’s
done, see the Writing a Custom Sizer
section.

Filters

Filters create new images that are the same size and aspect ratio as the
original image.

Included Filters

invert

The invert filter will invert the color palette of an image:

Importing our example Model
>>> from someapp.models import ImageExampleModel
Retrieving a model instance
>>> example = ImageExampleModel.objects.all()[0]
Returning the path-on-storage to the image currently assigned to the field
>>> example.image.name
u'images/testimagemodel/test-image.jpg'
Displaying the path (within the field's storage class) to an image
with an inverted color pallete from that of the original image
>>> example.image.filters.invert.name
u'images/testimagemodel/__filtered__/test-image__invert__.jpg'
Displaying the URL to the inverted image
>>> example.image.filters.invert.url
u'/media/images/testimagemodel/__filtered__/test-image__invert__.jpg'

As you can see, there’s a filters attribute available on each
VersatileImageField which contains all filters currently registered
to the Filter registry.

Using Sizers with Filters

What makes Filters extra-useful is that they have access to all
registered Sizers:

Creating a thumbnail of a filtered image
>>> example.image.filters.invert.thumbnail['400x400'].url
u'/media/__sized__/images/testimagemodel/__filtered__/test-image__invert__-thumbnail-400x400.jpg'
Creating a crop from a filtered image
>>> example.image.filters.invert.crop['400x400'].url
u'/media/__sized__/images/testimagemodel/__filtered__/test-image__invert__-c0-5__0-5-400x400.jpg'

Note

Filtered images are created the first time they are directly
accessed (by either evaluating their name/url attributes or
by accessing a Sizer attached to it). Once created, a reference is
stored in the cache for each created image which makes for speedy
subsequent retrievals.

How Filtered Image Files are Named/Stored

All Filters subclass from
versatileimagefield.datastructures.filteredimage.FilteredImage which
provides a get_filename_key() method that returns a
unique-to-filter-specified string – surrounded by double underscores,
i.e. '__invert__' – which is appended to the filename of each image
it creates.

All images created by a Filter are stored within a folder named
__filtered__ that sits in the same directory as the original image.
If you’d like to change the name of this folder to something other than
‘filtered‘, adjust the value of
VERSATILEIMAGEFIELD_SETTINGS['filtered_directory_name'] within your
settings file.

Filters are quick and easy to write, for more information about creating
your own, see the Writing a Custom Filter
section.

Using Sizers / Filters in Templates

Template usage is straight forward and easy since both attributes and
dictionary keys can be accessed via dot-notation; no crufty templatetags
necessary:

<!-- Sizers -->

<!-- Filters -->

<!-- Filters + Sizers -->

Note

Using the url attribute on Sizers is optional in templates. Why?
All Sizers return an instance of
versatileimagefield.datastructures.sizedimage.SizedImageInstance
which provides the sized image’s URL via the __unicode__()
method (which django’s templating engine looks for when asked
to render class instances directly).

 Copyright 2014, Jonathan Ellenberger.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	django-versatileimagefield 0.1.1 documentation

Writing Custom Sizers and Filters

It’s quick and easy to create new Sizers and Filters for use on your
project’s VersatileImageField fields or modify already-registered
Sizers and Filters.

Both Sizers and Filters subclass from
versatileimagefield.datastructures.base.ProcessedImage which
provides a preprocessing API as well as all
the business logic necessary to retrieve and save images.

The ‘meat’ of each Sizer & Filter – a.k.a what actually modifies the
original image – takes place within the process_image method which
all subclasses must define (not doing so will raise a
NotImplementedError). Sizers and Filters expect slightly different
keyword arguments (Sizers required width and height, for
example) see below for specifics:

Writing a Custom Sizer

All Sizers should subclass
versatileimagefield.datastructures.sizedimage.SizedImage and, at a
minimum, MUST do two things:

	Define either the filename_key attribute or override the
get_filename_key() method which is necessary for creating
unique-to-Sizer-and-size-specified filenames. If neither of the
aforementioned is done a NotImplementedError exception will be
raised.

	Define a process_image method that accepts the following
arguments:
	image: a PIL Image instance

	image_format: A valid image mime type (e.g. ‘image/jpeg’).
This is provided by the create_resized_image method (which
calls process_image).

	save_kwargs: A dict of any keyword arguments needed by
PIL’s Image.save method (initially provided by the
pre-processing API).

	width: An integer representing the width specified by the user
in the size key.

	height: An integer representing the height specified by the
user in the size key.

For an example, let’s take a look at the thumbnail Sizer (versatileimagefield.versatileimagefield.ThumbnailImage):

import StringIO

from PIL import Image

from .datastructures import SizedImage

class ThumbnailImage(SizedImage):
 """
 Sizes an image down to fit within a bounding box

 See the `process_image()` method for more information
 """

 filename_key = 'thumbnail'

 def process_image(self, image, image_format, save_kwargs,
 width, height):
 """
 Returns a StringIO instance of `image` that will fit
 within a bounding box as specified by `width`x`height`
 """
 imagefile = StringIO.StringIO()
 image.thumbnail(
 (width, height),
 Image.ANTIALIAS
)
 image.save(
 imagefile,
 **save_kwargs
)
 return imagefile

Important

process_image should always return a StringIO instance. See What process_image should return for more information.

Writing a Custom Filter

All Filters should subclass
versatileimagefield.datastructures.filteredimage.FilteredImage and
only need to define a process_filter method with following
arguments:

	image: a PIL Image instance

	image_format: A valid image mime type (e.g. ‘image/jpeg’). This
is provided by the create_resized_image() method (which calls
process_image).

	save_kwargs: A dict of any keyword arguments needed by PIL’s
Image.save method (initially provided by the pre-processing API).

For an example, let’s take a look at the invert Filter
(versatileimagefield.versatileimagefield.InvertImage):

import StringIO

from PIL import ImageOps

from .datastructures import FilteredImage

class InvertImage(FilteredImage):
 """
 Inverts the colors of an image.

 See the `process_image()` for more specifics
 """

 def process_image(self, image, image_format, save_kwargs={}):
 """
 Returns a StringIO instance of `image` with inverted colors
 """
 imagefile = StringIO.StringIO()
 inv_image = ImageOps.invert(image)
 inv_image.save(
 imagefile,
 **save_kwargs
)
 return imagefile

Important

process_image should always return a StringIO instance. See What process_image should return for more information.

What process_image should return

Any process_image method you write should always return a
StringIO instance comprised of raw image data. The actual image file
will be written to your field’s storage class via the save_image
method. Note how save_kwargs is passed into PIL’s Image.save
method in the examples above, this ensures PIL knows how to write this
data (based on mime type or any other per-filetype specific options
provided by the preprocessing API).

The Pre-processing API

Both Sizers and Filters have access to a pre-processing API that provides
hooks for doing any per-mime-type processing. This allows your Sizers
and Filters to do one thing for JPEGs and another for GIFs, for
instance. One example of this is in how Sizers ‘know’ how to preserve
transparency for GIFs or save JPEGs as RGB (at the user-defined
quality):

versatileimagefield/datastructures/sizedimage.py
class SizedImage(ProcessedImage, dict):
 "<a bunch of ommited code here>"

 def preprocess_GIF(self, image, **kwargs):
 """
 Receives a PIL Image instance of a GIF and returns 2-tuple:
 * [0]: Original Image instance (passed to `image`)
 * [1]: Dict with a transparency key (to GIF transparency layer)
 """
 return (image, {'transparency': image.info['transparency']})

 def preprocess_JPEG(self, image, **kwargs):
 """
 Receives a PIL Image instance of a JPEG and returns 2-tuple:
 * [0]: Image instance, converted to RGB
 * [1]: Dict with a quality key (mapped to the value of `QUAL` as
 defined by the `VERSATILEIMAGEFIELD_JPEG_RESIZE_QUALITY`
 setting)
 """
 if image.mode != 'RGB':
 image = image.convert('RGB')
 return (image, {'quality': QUAL})

All pre-processors should accept one required argument image (A PIL
Image instance) and **kwargs (for easy extension by subclasses) and
return a 2-tuple of the image and a dict of any additional keyword
arguments to pass along to PIL’s Image.save method.

Pre-processor Naming Convention

In order for preprocessor methods to run, they need to be named
correctly via this simple naming convention: preprocess_FILETYPE.
Here’s a list of all currently-supported file types:

	BMP

	DCX

	EPS

	GIF

	JPEG

	PCD

	PCX

	PDF

	PNG

	PPM

	PSD

	TIFF

	XBM

	XPM

So, if you’d want to write a PNG-specific preprocessor, your Sizer or
Filter would need to define a method named preprocess_PNG.

Note

I’ve only tested VersatileImageField with PNG, GIF and JPEG
files; the list above is what PIL supports, for more information
about per filetype support in PIL visit
here [https://infohost.nmt.edu/tcc/help/pubs/pil/formats.html].

Registering Sizers and Filters

Registering Sizers and Filters is easy and straight-forward; if you’ve
ever registered a model with django’s admin you’ll feel right at
home.

django-versatileimagefield finds Sizers & Filters within modules named
versatileimagefield – (i.e. versatileimagefield.py)
that are available at the ‘top level’ of each app on INSTALLED_APPS.

Here’s an example:

somedjangoapp/
 __init__.py
 models.py # Models
 admin.py # Admin config
 versatilimagefield.py # Custom Sizers and Filters here

After defining your Sizers and Filters you’ll need to register them with
the versatileimagefield_registry. Here’s how the ThumbnailSizer
is registered (see the highlighted lines in the following code block for the relevant bits):

versatileimagefield/versatileimagefield.py
import StringIO

from PIL import Image

from .datastructures import SizedImage
from .registry import versatileimagefield_registry

class ThumbnailImage(SizedImage):
 """
 Sizes an image down to fit within a bounding box

 See the `process_image()` method for more information
 """

 filename_key = 'thumbnail'

 def process_image(self, image, image_format, save_kwargs,
 width, height):
 """
 Returns a StringIO instance of `image` that will fit
 within a bounding box as specified by `width`x`height`
 """
 imagefile = StringIO.StringIO()
 image.thumbnail(
 (width, height),
 Image.ANTIALIAS
)
 image.save(
 imagefile,
 **save_kwargs
)
 return imagefile

Registering the ThumbnailSizer to be available on VersatileImageField
via the `thumbnail` attribute
versatileimagefield_registry.register_sizer('thumbnail', ThumbnailImage)]

All Sizers are registered via the versatileimagefield_registry.register_sizer method. The first
argument is the attribute you want to make the Sizer available at and
the second is the SizedImage subclass.

Filters are just as easy. Here’s how the InvertImage filter is registered (see the highlighted lines in the following code block for the relevant bits):

import StringIO

from PIL import ImageOps

from .datastructures import FilteredImage
from .registry import versatileimagefield_registry

class InvertImage(FilteredImage):
 """
 Inverts the colors of an image.

 See the `process_image()` for more specifics
 """

 def process_image(self, image, image_format, save_kwargs={}):
 """
 Returns a StringIO instance of `image` with inverted colors
 """
 imagefile = StringIO.StringIO()
 inv_image = ImageOps.invert(image)
 inv_image.save(
 imagefile,
 **save_kwargs
)
 return imagefile

versatileimagefield_registry.register_filter('invert', InvertImage)

All Filters are registered via the
versatileimagefield_registry.register_filter method. The first
argument is the attribute you want to make the Filter available at and
the second is the FilteredImage subclass.

Unallowed Sizer & Filter Names

Sizer and Filter names cannot begin with an underscore as it would
prevent them from being accessible within the template layer.
Additionally, since Sizers are available for use directly on a
VersatileImageField, there are some Sizer names that are unallowed;
trying to register a Sizer with one of the following names will result
in a UnallowedSizerName exception:

	build_filters_and_sizers

	chunks

	close

	closed

	delete

	encoding

	field

	file

	fileno

	filters

	flush

	height

	instance

	isatty

	multiple_chunks

	name

	newlines

	open

	path

	ppoi

	read

	readinto

	readline

	readlines

	save

	seek

	size

	softspace

	storage

	tell

	truncate

	url

	validate_ppoi

	width

	write

	writelines

	xreadlines

Overriding an existing Sizer or Filter

If you try to register a Sizer or Filter with an attribute name that’s
already in use (like crop or thumbnail or invert), an
AlreadyRegistered exception will raise.

Caution

A Sizer can have the same name as a Filter (since names are only
required to be unique per type) however it’s not recommended.

If you’d like to override an already-registered Sizer or Filter just use
either the unregister_sizer or unregister_filter methods of
versatileimagefield_registry. Here’s how you could ‘override’ the
crop Sizer:

from versatileimagefield.registry import versatileimagefield_registry

Unregistering the 'crop' Sizer
versatileimagefield_registry.unregister_sizer('crop')
Registering a custom 'crop' Sizer
versatileimagefield_registry.register_sizer('crop', SomeCustomSizedImageCls)

The order that Sizers and Filters register corresponds to their
containing app’s position on INSTALLED_APPS. This means that if you
want to override one of the default Sizers or Filters your app needs to
be included after 'versatileimagefield':

settings.py
INSTALLED_APPS = (
 'versatileimagefield',
 'yourcustomapp' # This app can override the default Sizers and Filters
)

 Copyright 2014, Jonathan Ellenberger.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	django-versatileimagefield 0.1.1 documentation

Index

 Copyright 2014, Jonathan Ellenberger.
 Created using Sphinx 1.2.2.

 _static/comment.png

_static/file.png

_static/minus.png

_static/up.png

_static/plus.png

_static/ajax-loader.gif

_static/down.png

_static/comment-close.png

search.html

 Navigation

 		
 index

 		django-versatileimagefield 0.1.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Jonathan Ellenberger.
 Created using Sphinx 1.2.2.

_static/comment-bright.png

_static/up-pressed.png

_static/images/ppoi-admin-example.png
Image: Currently: images testimagemodel da-s4-ivy-slide-08_copy.jpg

Clear

et 2N

Change: Choose File | No file chosen

_images/ppoi-admin-example.png
Image: Currently: images testimagemodel da-s4-ivy-slide-08_copy.jpg

Clear

et 2N

Change: Choose File | No file chosen

_static/down-pressed.png

