

Welcome to Ussd Airflow’s documentation!

Ussd Airflow is a platform used to create ussd application by defining ussd
screens in a yaml file

Getting Started

Getting started with ussd airflow.
This assumes you know how ussd works, to learn more how ussd works
How ussd works

	Setup

	Creating ussd screens
	1. Initial screen (type -> initial_screen)

	2. Input screen (type -> input_screen)

	3. Menu screen (type -> menu_screen)

	4. Quit screen (type -> quit_screen)

	5. Http screen (type -> http_screen)

	6. Router screen (type -> router_screen)

	7. Update session screen (type -> update_session_screen)

	8. Custom screen (type -> custom_screen)

How ussd works

	How ussd works

	Why Ussd Airflow
	Example Menu-Driven USSD Application

	How ussd airflow comes in

Internal Architecture

Comming soon

Setup

	Run the following command to install

pip install ussd_airflow

	Add ussd_airflow in Installed application

INSTALLED_APPS = [
'ussd.apps.UssdConfig',
]

	Change session serializer to pickle serializer

SESSION_SERIALIZER = 'django.contrib.sessions.serializers.PickleSerializer'

	
	Add ussd view to handle ussd request.

	
	To use an existing ussd view that is implemented to handle
AfricasTalking ussd gateway

from ussd.views import AfricasTalkingUssdGateway

urlpatterns = [
 url(r'^africastalking_gateway',
 AfricasTalkingUssdGateway.as_view(),
 name='africastalking_url')
]

To use the existing Africastalking ussd gateway and your own ussd
screen. Create a yaml file. On the yaml create your ussd screen.
Learn more on how to create ussd screen here Creating ussd screens.
For quick start copy the below yaml

initial_screen: enter_name

enter_name:
 type: input_screen
 text: Enter your name
 input_identifier: name
 next_screen: enter_age

enter_age:
 type: input_screen
 text: Enter your age
 input_identifier: age
 next_screen: show_details

show_details:
 type: quit_screen
 text: You have entered name as {{name}} and age as {{age}}

Next step add this to your settings. For ussd airflow to know where your
ussd screens files are located.

DEFAULT_USSD_SCREEN_JOURNEY = "/file/path/of/the/screen"

To validate your ussd screen file. Run this command

python validate_ussd_journey /file/path

To test the ussd view do this curl request.

curl -X POST -H "Content-Type: application/json"
-H "Cache-Control: no-cache"
-H "Postman-Token: 3e3f3fb9-99b9-b47d-a358-618900d486c6"
-d '{"phoneNumber": "400","sessionId": "105","text":"1",
"serviceCode": "312"}'
"http://{your_host}/{you_path}/africastalking_gateway"

	
	To create your own Ussd View.

	
	
class ussd.core.UssdView(**kwargs)

	
	To create Ussd View requires the following things:

	
	
	Inherit from UssdView (Mandatory)

	from ussd.core import UssdView

	
	Define Http method either get or post (Mandatory)

	The http method should return Ussd Request

	
class UssdRequest(session_id, phone_number, ussd_input, language, default_language=None, use_built_in_session_management=False, expiry=180, **kwargs)

	

	Parameters:	
	session_id – used to get session or create session if does not
exits.

If session is less than 8 we add s to make the session
equal to 8

	phone_number – This the user identifier

	input – This ussd input the user has entered.

	language – Language to use to display ussd

	kwargs – Extra arguments.
All the extra arguments will be set to the self attribute

For instance:

from ussd.core import UssdRequest

ussdRequest = UssdRequest(
 '12345678', '702729654', '1', 'en',
 name='mwas'
)

accessing kwarg argument
ussdRequest.name

	
	define this varialbe customer_journey_conf

	This is the path of the file that has ussd screens
If you want your file to be dynamic implement the
following method get_customer_journey_conf it
will be called by request object

	
	define this variable customer_journey_namespace

	Ussd_airflow uses this namespace to save the
customer journey content in memory. If you want
customer_journey_namespace to be dynamic implement
this method get_customer_journey_namespace it
will be called with request object

	
	override HttpResponse

	In ussd airflow the http method return UssdRequest object
not Http response. Then ussd view gets UssdResponse object
and convert it to HttpResponse. The default HttpResponse
returned is a normal HttpResponse with body being ussd text

To override HttpResponse returned define this method.
ussd_response_handler it will be called with
UssdResponse object.

	
class ussd.core.UssdResponse(text, status=True, session=None)

	

	Parameters:	
	text – This is the ussd text to display to the user

	status – This shows the status of ussd session.

True -> to continue with the session

False -> to end the session

	session – This is the session object of the ussd session

Example of Ussd view

from ussd.core import UssdView, UssdRequest

class SampleOne(UssdView):

 def get(self, req):
 return UssdRequest(
 phone_number=req.data['phoneNumber'].strip('+'),
 session_id=req.data['sessionId'],
 ussd_input=text,
 service_code=req.data['serviceCode'],
 language=req.data.get('language', 'en')
)

Example of Ussd View that defines its own HttpResponse.

from ussd.core import UssdView, UssdRequest

class SampleOne(UssdView):

 def get(self, req):
 return UssdRequest(
 phone_number=req.data['phoneNumber'].strip('+'),
 session_id=req.data['sessionId'],
 ussd_input=text,
 service_code=req.data['serviceCode'],
 language=req.data.get('language', 'en')
)

 def ussd_response_handler(self, ussd_response):
 if ussd_response.status:
 res = 'CON' + ' ' + str(ussd_response)
 response = HttpResponse(res)
 else:
 res = 'END' + ' ' + str(ussd_response)
 response = HttpResponse(res)
 return response

Creating ussd screens

This document is a whirlwind tour of how to create ussd screen.

Strong feature of ussd airflow is to create ussd screen via yaml and not code.
This make it easier to give the product owners to design ussd without
knowing how to code

In ussd airflow customer journey is created via yaml.
Each section in a yaml defines a ussd screen.
There different types of ussd and each type has its own rule on how
to write ussd application

Common rule in creating any kind of screen
Each screen has field called “type” apart from initial_screen

The following are types of ussd and the rules to write them.

1. Initial screen (type -> initial_screen)

	
class ussd.screens.initial_screen.InitialScreen(ussd_request: ussd.core.UssdRequest, handler: str, screen_content: dict, initial_screen: dict, logger=None)

	This screen is mandatory in any customer journey.
It is the screen all new ussd session go to.

example of one

initial_screen: enter_height

first_screen:
type: quit
text: This is the first screen

Its is also used to define variable file if you have one.
Example when defining variable file

initial_screen:
 screen: screen_one
 variables:
 file: /path/of/your/variable/file.yml
 namespace: used_to_save_the_variable

Sometimes you want to send ussd session to some 3rd party application when
the session has been terminated.

We can easily do that at end of session i.e quit screen, But for those
scenarios where session is terminated by user or mno we don’t know that
unless the mno send us a request.

Most mnos don’t send notifier 3rd party application about the session being
dropped. The work around we use is schedule celery task to run after
15 minutes (by that time we know there is no active session)

Below is an example of how to schedule a ussd report session after 15min

example:

initial_screen:
 type: initial_screen
 next_screen: screen_one
 ussd_report_session:
 session_key: reported
 retry_mechanism:
 max_retries: 3
 validate_response:
 - expression: "{{reported.status_code}} == 200"
 request_conf:
 url: localhost:8006/api
 method: post
 data:
 ussd_interaction: "{{ussd_interaction}}"
 session_id: "{{session_id}}"
 async_parameters:
 queue: report_session
 countdown: 900

	Lets explain the variables in ussd_report_session

	
	
	session_key (Mandatory)

	response of ussd report session would be saved under that key
in session store

	
	request_conf (Mandatory)

	Those are the parameters to be used to make request to
report ussd session

	
	validate_response (Mandatory)

	After making ussd report request the framework will evaluate
your options and if one of them is valid it would
mark session as posted (This is used to avoid double ussd
submission)

	
	retry_mechanism (Optional)

	After validating your response and all of them fail
we will go ahead and retry if this field is active.

	
	async_parameters (Optional)

	This is are the parameters used to make ussd request

2. Input screen (type -> input_screen)

	
class ussd.screens.input_screen.InputScreen(*args, **kwargs)

	This screen prompts the user to enter an input

	Fields required:

	
	text: this the text to display to the user.

	
	input_identifier: input amount entered by users will be saved

	with this key. To access this in the input
anywhere {{ input_identifier }}

	
	next_screen: The next screen to go after the user enters

	input

	
	validators:

	
	text: This is the message to display when the validation fails
regex: regex used to validate ussd input. Its mutually exclusive
with expression

	expression: if regex is not enough you can use a jinja expression

	will be called ussd request object

	text: This the message thats going to be displayed if expression
returns False

	
	options (This field is optional):

	This is a list of options to display to the user
each option is a key value pair of option text to display
and next_screen to redirect if option is selected.
Example of option:

options:
 - text: option one
 next_screen: screen_one
 - text: option two
 next_screen: screen_two

	Example:

	initial_screen:
 type: initial_screen
 next_screen: enter_height
 default_language: en

enter_height:
 type: input_screen
 text:
 en: |
 Enter your height
 sw: |
 Weka ukubwa lako
 input_identifier: height
 default_next_screen: enter_age
 next_screen:
 - condition: input|int == 60
 next_screen: height_above_60
 - condition: input|int == 30
 next_screen: height_below_30
 validators:
 - regex: ^[0-9]{1,7}$
 text:
 en: |
 Enter number between 1 and 7
 sw: |
 Weka namba kutoka 1 hadi 7

enter_age:
 type: input_screen
 text:
 en: |
 Enter your age
 sw: |
 Weka miaka yako
 input_identifier: age
 next_screen: show_information
 options:
 - text:
 en: back
 sw: rudi
 next_screen: enter_height
 validators:
 - regex: ^[0-9]{1,7}$
 text:
 en: |
 Only nubers are allowed
 sw: |
 Nambari pekee ndio zimekubalishwa
 default: en
 - expression: ussd_request.input|int < 100
 text:
 en: |
 Number over 100 is not allowed
 sw: |
 Nambari juu ya 100 haikubalishwi

show_information:
 text:
 en: |
 Your age is {{ age }} and your height is {{ height }}.
 Enter anything to go back to the first screen
 sw: |
 Miaka yako in {{ age }} na ukubwa wako in {{ height }}.
 Weka kitu ingine yoyote unende kwenye screen ya kwanza
 type: input_screen
 input_identifier: foo
 next_screen: enter_height

height_above_60:
 type: quit_screen
 text: We are not interested with height above 60

height_below_30:
 type: quit_screen
 text: We are not interested with height below 30

3. Menu screen (type -> menu_screen)

	
class ussd.screens.menu_screen.MenuScreen(*args, **kwargs)

	This is the screen used to display options to select:

	
	text:

	This is the text to display to the user.

	
	options:

	This is a list of options to display to the user
each option is a key value pair of option text to display
and next_screen to redirect if option is selected.
Example of option:

options:
 - text: option one
 next_screen: screen_one
 - text: option two
 next_screen: screen_two

	
	items:

	Unlike options where each option has its own screen to redirect
in items we have a list of items to display and regardless of
the input user will be redirected to one screen.

Example of items

menu_screen_with_item_example:
 type: menu_screen
 text: choose one item
 items:
 text: "{{key}} for {{value}}"
 value: "{{item}}"
 next_screen: display_option
 session_key: testing
 with_dict:
 a: apple
 b: boy
 c: cat

In the above example if will display the following text

Choose one item
 1. apple
 2. boy
 3. cat

If the user selects “2”, that would be translated by the value
key, it will result to “b”, then “b” will be saved with session_key
provided and the user will be directed to the next screen which
is display_option.

To reference the selected item, use {{your_session_key}}

	
	error_message: (optional)

	This is message to display if the user enter the wrong value.

defaults to “Please enter a valid choice.”

	option and items are mutual exclusive.

	Example:

	initial_screen:
 type: initial_screen
 next_screen: choose_meal
 pagination_config:
 ussd_text_limit: 90
 more_option:
 en: More
 back_option:
 en: Back

choose_meal:
 type: menu_screen
 text: Choose your favourite meal
 error_message: |
 You have selected invalid option try again
 options:
 - text: food
 next_screen: types_of_food
 - text: fruits
 next_screen: types_of_fruit
 - text: drinks
 next_screen: types_of_drinks
 - text: vegetables
 next_screen: types_of_vegetables
 - text: test pagination
 next_screen: test_text_prompt_pagination

types_of_food:
 type: menu_screen
 text: Choose your favourite food
 options:
 - text: rice
 next_screen: rice_chosen
 - text: back
 next_screen: choose_meal
 - text: test next screen routing
 next_screen:
 - condition: phone_number == '200'
 next_screen: test_next_screen_routing_one
 - condition: phone_number == '201'
 next_screen: test_next_screen_routing_two

types_of_fruit:
 type: menu_screen
 text: No fruits available choose * to go back
 options:
 - text: back
 next_screen: choose_meal
 input_value: '*'

types_of_drinks:
 type: menu_screen
 text: No drinks available choose 0 to go back
 options:
 - text: back
 next_screen: choose_meal
 input_display: "0 "
 input_value: '0'

rice_chosen:
 type: menu_screen
 text: Your rice will be delivered shortly. Choose 1 to go back
 options:
 - text: back
 next_screen: choose_meal

types_of_vegetables:
 type: menu_screen
 text: Choose one of the following vegetables
 items:
 text: Vege {{ item }}
 value: "{{ item }}"
 with_items: "{{vegetables_list}}"
 session_key: selected_vegetable
 next_screen: choose_quantity

choose_quantity:
 type: menu_screen
 text: Choose vegetable size
 items:
 text: "{{ key }} at Ksh {{ value }}"
 value: "{{ key }}"
 with_dict: "{{ vegetable_quantity }}"
 session_key: selected_quantity
 next_screen: selected_vegetable
 options:
 - text: back
 next_screen: choose_meal

selected_vegetable:
 type: menu_screen
 text: >
 You have selected this {{selected_vegetable}}
 and this quantity {{selected_quantity}} at
 {{vegetable_quantity[selected_quantity]}}
 options:
 - text: test_list
 next_screen: test_list_with_native_loop

test_list_with_native_loop:
 type: menu_screen
 text: ""
 items:
 text: "{{item}}"
 value: "{{item}}"
 next_screen: test_explicit_dict_loop
 session_key: alphabet
 with_items:
 - a
 - b
 - c
 - d

test_explicit_dict_loop:
 type: menu_screen
 text: ""
 items:
 text: "{{key}} for {{value}}"
 value: "{{item}}"
 next_screen: test_invalid_jija_variable
 session_key: testing
 with_dict:
 a: apple
 b: boy
 c: cat

we only support {{ }} jinja variables the otheres will be ingnored
for now
test_invalid_jija_variable:
 type: menu_screen
 text: Choose one of the following vegetables
 items:
 text: Vege {{ item }}
 value: "{{ item }}"
 with_items: "{%vegetables_list%}"
 session_key: selected_vegetable
 next_screen: choose_quantity

The screens below are testing pagination
test_text_prompt_pagination:
 type: menu_screen
 text: |
 Ussd airflow should be able to wrap anytext that is larger than the one
 specified into two screens.
 options:
 - text: next
 next_screen: test_pagination_in_menu_options

test_pagination_in_menu_options:
 type: menu_screen
 text: |
 An example of screen with multiple options that need to be paginated
 options:
 - text: screen_with_both_text_and_menu_options_pagination
 next_screen: test_pagination_in_both_text_and_options
 - text: screen_with_both_text_item_options_pagination
 next_screen: test_pagination_in_both_text_options_items

test_pagination_in_both_text_and_options:
 type: menu_screen
 text: |
 This screen has both large text and options that exceed the limit required
 so both the prompt and options will be paginated.
 options:
 - text: go back to the previous screen
 next_screen: test_pagination_in_menu_options
 - text: quit this session
 next_screen: last_screen
 - text: this options will be showed in the next_screen
 next_screen: test_pagination_in_both_text_options_items

test_pagination_in_both_text_options_items:
 type: menu_screen
 text: |
 This screen has both large text, options, items that exceed ussd text limit
 part of this text would be displayed in the next screen
 items:
 text: "{{item}}"
 value: "{{item}}"
 next_screen: last_screen
 session_key: testing
 with_items:
 - apple
 - boy
 - cat
 - dog
 - egg
 - frog
 - girl
 - house
 - ice
 - joyce
 - kettle
 - lamp
 - mum
 - nurse
 - ostrich
 - pigeon
 - queen
 - river
 - sweet
 - tiger
 - umbrella
 - van
 - water
 options:
 - text: quit_session
 next_screen: last_screen

last_screen:
 type: quit_screen
 text: end of session {{testing}}

test_next_screen_routing_one:
 type: quit_screen
 text: screen_one

test_next_screen_routing_two:
 type: quit_screen
 text: screen_two

4. Quit screen (type -> quit_screen)

	
class ussd.screens.quit_screen.QuitScreen(ussd_request: ussd.core.UssdRequest, handler: str, screen_content: dict, initial_screen: dict, logger=None)

	This is the last screen to be shown in a ussd session.

Its the easiest screen to create. It requires only text

Example of quit screen:

initial_screen: example_of_quit_screen

example_of_quit_screen:
 type: quit_screen
 text: "Test getting variable from os environmen. {{TEST_VARIABLE}}"

5. Http screen (type -> http_screen)

	
class ussd.screens.http_screen.HttpScreen(ussd_request: ussd.core.UssdRequest, handler: str, screen_content: dict, initial_screen: dict, logger=None)

	This screen is invisible to the user. Its used if you want to make an
api call. Its very if you want to make a api call so that you can show
the user the results in the next screen.

For instance you can make call for balance check using this screen.
And display the balance in the next screen.

Fields used to create this screen:

	
	http_request

	This field contains all the fields used to make http request.
It contains the following fields:

	
	method

	
	This is the request method to use.

	either: get, post, put, delete

	
	url

	This is the url to be used to make the api call

	And all the parameters python request module would accept

you will example below

	
	session_key

	In this screen the api call is expected to return json body.
The json body is saved in session using this session_key

	synchronous (optional defaults to true)
This defines the nature of the api call. If its asynchronous the
request will be made later in celery task.

	
	next_screen

	After the api call has been made or been scheduled to celery task
ussd request is forwarded to this next_screen

Examples of router screens:

initial_screen: http_get_example

http_get_example:
 type: http_screen
 next_screen: http_get_url_query
 session_key: get_response
 http_request:
 method: get
 url: http://localhost:8000/mock/balance
 params:
 phone_number: "{{ phone_number }}"
 session_id: "{{ session_id }}"
 verify: false
 headers:
 content-type: "application/json"
 user-agent: 'my-app/0.0.1'

http_get_url_query:
 type: http_screen
 next_screen: http_post_example
 session_key: get_url_query
 http_request:
 method: get
 url: "http://localhost:8000/mock/balance/{{phone_number}}/"

http_post_example:
 type: http_screen
 next_screen: http_async_example
 session_key: http_post_response
 http_request:
 method: post
 url: http://localhost:8000/mock/balance
 params:
 phone_numbers:
 - 200
 - 201
 - 202
 session_id: "{{ session_id }}"
 verify: true
 timeout: 30
 headers:
 content-type: "application/json"

http_async_example:
 type: http_screen
 synchronous: True
 next_screen: end_of_http_example
 session_key: http_async_response
 http_request:
 method: get
 url: https://localhost:8000/mock/submission
 params:
 phone_number: "{{ phone_number }}"
 session_id: "{{ session_id }}"

end_of_http_example:
 type: quit_screen
 text: >
 Testing response is being saved in session status code is
 {{http_post_response.status_code}} and balance is
 {{http_post_response.balance}} and full content {{http_post_response.content}}.

6. Router screen (type -> router_screen)

	
class ussd.screens.router_screen.RouterScreen(ussd_request: ussd.core.UssdRequest, handler: str, screen_content: dict, initial_screen: dict, logger=None)

	This screen is invisible to the user. Sometimes you would like to
direct user to different screens depending on some status.

For instance you want to show different screen to users who are not
registered and a different screen to users who have already registered.
This is the screen to create.

	Fields used to create this screen:

	
	
	router_options

	This is a list of router option.
Each router option has the following fields

	
	expression

	This is a jinja expression that’s is evaluating to boolean
It can reference anything in the session and parameters
in ussd_request

	
	next_screen

	This is the screen to direct to if the above expression
is true

	
	default_next_screen (optional)

	This is the screen to direct to if all expression in router_options
failed.

	
	with_items (optional)

	Sometimes you want to loop over something until an item
passes the expression. In this case use with_items.
When using with_items you can use variable item in the
expression.

see in the example below for more explanation

Examples of router screens

initial_screen: router_exa_1

router_exa_1:
 type: router_screen
 default_next_screen: default_screen
 router_options:
 - expression: "{{ phone_number == 200|string }}"
 next_screen: 200_phone_number
 - expression: "{{ phone_number == 202| string }}"
 next_screen: 202_phone_number
 - expression: "{{ phone_number in [203|string, 204|string, 205|string] }}"
 next_screen: sample_router_screen_with_loop
 - expression: "{{ phone_number in [206|string, 207|string] }}"
 next_screen: sample_router_screen_with_dict_loop

200_phone_number:
 type: quit_screen
 text: This number is 200

202_phone_number:
 type: quit_screen
 text: This number is 202

default_screen:
 type: quit_screen
 text: This is the default screen

sample_router_screen_with_loop:
 type: router_screen
 default_next_screen: default_screen
 with_items: "{{ phone_numbers[phone_number]}}"
 router_options:
 - expression: "{{ item == 'registered' }}"
 next_screen: registred_screen
 - expression: "{{ item == 'not_registered'}}"
 next_screen: not_registered

registred_screen:
 type: quit_screen
 text: You are registered user

not_registered:
 type: quit_screen
 text: You are not registered user

sample_router_screen_with_dict_loop:
 type: router_screen
 default_next_screen: default_screen
 with_items:
 phone_number: '207'
 router_options:
 - expression: '{{ key == "phone_number" and value == phone_number}}'
 next_screen: 207_screen

207_screen:
 type: quit_screen
 text: >
 This screen has been routed here because the
 phone number is {{phone_number}}

7. Update session screen (type -> update_session_screen)

	
class ussd.screens.update_session_screen.UpdateSessionScreen(ussd_request: ussd.core.UssdRequest, handler: str, screen_content: dict, initial_screen: dict, logger=None)

	This screen is invisible to the user. Sometimes you may want to save
something to the session to use later in other screens.

	Fields used to create this screen:

	
	
	next_screen

	The screen to go after the session has been saved

	
	values_to_update

	This section defines the session to be saved.

Inside this section should define the following fields

	
	key

	the key to be used to save

	
	value

	the value to store with the key above

	
	expression

	sometimes you want a condition before you can save data in
section

	Example:

	initial_screen: screen_one

screen_one:
 type: update_session_screen
 next_screen: screen_two
 values_to_update:
 - expression: "{{phone_number == 200|string}}"
 key: customer_status
 value: registered
 - expression: "{{phone_number == 404|string}}"
 key: customer_status
 value: not_registered
 - key: aged_24
 value: "{{[]}}"
 - key: height_54
 value: "{{[]}}"

screen_two:
 type: update_session_screen
 next_screen: show_saved_status
 with_items:
 - name: Francis Mwangi
 age: 24
 height: 5.4
 - name: Isaac Karanja
 age: 22
 height: 5.4
 - name: Stephen Gitigi
 age: 20
 height: 5.5
 - name: Wambui
 age: 24
 height: 5.4
 values_to_update:
 - expression: "{{item.age == 24}}"
 key: aged_24
 value: "{{aged_24|append(item)}}"
 - expression: "{{item.height == 5.4}}"
 key: "height_54"
 value: "{{height_54|append(item)}}"

show_saved_status:
 type: quit_screen
 text: |
 The customer status is {{customer_status}}.
 People aged 24 {{aged_24}}
 People with height 5.4 {{height_54}}

8. Custom screen (type -> custom_screen)

	
class ussd.screens.custom_screen.CustomScreen(ussd_request: ussd.core.UssdRequest, handler: str, screen_content: dict, initial_screen: dict, logger=None)

	If you have a particular user case that’s not yet covered by
our existing screens, this is the screen to use.

This screen allows us to define our own ussd screen.

	To create it you need the following fields.

	
	
	screen_object

	This is the path to be used to import the class

	
	serializer (optional)

	This if you want to be validating your screen with
specific fields

	
	You can define any field that you feel

	your custom screen might need.

	EXAMPLE:

	
	examples of custom screen

	class SampleCustomHandler1(UssdHandlerAbstract):
 abstract = True # don't register custom classes
 @staticmethod
 def show_ussd_content(): # This method doesn't have to be static
 # Do anything custom here.
 return UssdResponse("This is a custom Handler1")

 def handle_ussd_input(self, ussd_input):
 # Do anything custom here
 print(ussd_input) # pep 8 for the sake of using it.
 return self.ussd_request.forward('custom_screen_2')

class SampleSerializer(UssdBaseSerializer, NextUssdScreenSerializer):
 input_identifier = serializers.CharField(max_length=100)

class SampleCustomHandlerWithSerializer(UssdHandlerAbstract):
 abstract = True # don't register custom classes
 serializer = SampleSerializer

 @staticmethod
 def show_ussd_content(): # This method doesn't have to be static
 return "Enter a digit and it will be doubled on your behalf"

 def handle_ussd_input(self, ussd_input):
 self.ussd_request.session[
 self.screen_content['input_identifier']
] = int(ussd_input) * 2

 return self.ussd_request.forward(
 self.screen_content['next_screen']
)

example of defining a yaml

initial_screen:
 type: initial_screen
 next_screen: choose_meal
 pagination_config:
 ussd_text_limit: 90
 more_option:
 en: More
 back_option:
 en: Back

choose_meal:
 type: menu_screen
 text: Choose your favourite meal
 error_message: |
 You have selected invalid option try again
 options:
 - text: food
 next_screen: types_of_food
 - text: fruits
 next_screen: types_of_fruit
 - text: drinks
 next_screen: types_of_drinks
 - text: vegetables
 next_screen: types_of_vegetables
 - text: test pagination
 next_screen: test_text_prompt_pagination

types_of_food:
 type: menu_screen
 text: Choose your favourite food
 options:
 - text: rice
 next_screen: rice_chosen
 - text: back
 next_screen: choose_meal
 - text: test next screen routing
 next_screen:
 - condition: phone_number == '200'
 next_screen: test_next_screen_routing_one
 - condition: phone_number == '201'
 next_screen: test_next_screen_routing_two

types_of_fruit:
 type: menu_screen
 text: No fruits available choose * to go back
 options:
 - text: back
 next_screen: choose_meal
 input_value: '*'

types_of_drinks:
 type: menu_screen
 text: No drinks available choose 0 to go back
 options:
 - text: back
 next_screen: choose_meal
 input_display: "0 "
 input_value: '0'

rice_chosen:
 type: menu_screen
 text: Your rice will be delivered shortly. Choose 1 to go back
 options:
 - text: back
 next_screen: choose_meal

types_of_vegetables:
 type: menu_screen
 text: Choose one of the following vegetables
 items:
 text: Vege {{ item }}
 value: "{{ item }}"
 with_items: "{{vegetables_list}}"
 session_key: selected_vegetable
 next_screen: choose_quantity

choose_quantity:
 type: menu_screen
 text: Choose vegetable size
 items:
 text: "{{ key }} at Ksh {{ value }}"
 value: "{{ key }}"
 with_dict: "{{ vegetable_quantity }}"
 session_key: selected_quantity
 next_screen: selected_vegetable
 options:
 - text: back
 next_screen: choose_meal

selected_vegetable:
 type: menu_screen
 text: >
 You have selected this {{selected_vegetable}}
 and this quantity {{selected_quantity}} at
 {{vegetable_quantity[selected_quantity]}}
 options:
 - text: test_list
 next_screen: test_list_with_native_loop

test_list_with_native_loop:
 type: menu_screen
 text: ""
 items:
 text: "{{item}}"
 value: "{{item}}"
 next_screen: test_explicit_dict_loop
 session_key: alphabet
 with_items:
 - a
 - b
 - c
 - d

test_explicit_dict_loop:
 type: menu_screen
 text: ""
 items:
 text: "{{key}} for {{value}}"
 value: "{{item}}"
 next_screen: test_invalid_jija_variable
 session_key: testing
 with_dict:
 a: apple
 b: boy
 c: cat

we only support {{ }} jinja variables the otheres will be ingnored
for now
test_invalid_jija_variable:
 type: menu_screen
 text: Choose one of the following vegetables
 items:
 text: Vege {{ item }}
 value: "{{ item }}"
 with_items: "{%vegetables_list%}"
 session_key: selected_vegetable
 next_screen: choose_quantity

The screens below are testing pagination
test_text_prompt_pagination:
 type: menu_screen
 text: |
 Ussd airflow should be able to wrap anytext that is larger than the one
 specified into two screens.
 options:
 - text: next
 next_screen: test_pagination_in_menu_options

test_pagination_in_menu_options:
 type: menu_screen
 text: |
 An example of screen with multiple options that need to be paginated
 options:
 - text: screen_with_both_text_and_menu_options_pagination
 next_screen: test_pagination_in_both_text_and_options
 - text: screen_with_both_text_item_options_pagination
 next_screen: test_pagination_in_both_text_options_items

test_pagination_in_both_text_and_options:
 type: menu_screen
 text: |
 This screen has both large text and options that exceed the limit required
 so both the prompt and options will be paginated.
 options:
 - text: go back to the previous screen
 next_screen: test_pagination_in_menu_options
 - text: quit this session
 next_screen: last_screen
 - text: this options will be showed in the next_screen
 next_screen: test_pagination_in_both_text_options_items

test_pagination_in_both_text_options_items:
 type: menu_screen
 text: |
 This screen has both large text, options, items that exceed ussd text limit
 part of this text would be displayed in the next screen
 items:
 text: "{{item}}"
 value: "{{item}}"
 next_screen: last_screen
 session_key: testing
 with_items:
 - apple
 - boy
 - cat
 - dog
 - egg
 - frog
 - girl
 - house
 - ice
 - joyce
 - kettle
 - lamp
 - mum
 - nurse
 - ostrich
 - pigeon
 - queen
 - river
 - sweet
 - tiger
 - umbrella
 - van
 - water
 options:
 - text: quit_session
 next_screen: last_screen

last_screen:
 type: quit_screen
 text: end of session {{testing}}

test_next_screen_routing_one:
 type: quit_screen
 text: screen_one

test_next_screen_routing_two:
 type: quit_screen
 text: screen_two

*Once you have created your ussd screens run the following code to validate
them:*

python manage.py validate_ussd_journey /path/to/your/ussd/file.yaml

How ussd works

Unstructured Supplementary Service Data (USSD) is a protocol used by GSM cellphones to
communicate with their service provider’s computers.
USSD can be used for WAP browsing, prepaid callback service,
mobile money services, location-based content services,
menu-based information services, or even as part of configuring the phone on the network.

[image: _images/how_ussd_works.jpg]
From the diagram above, a request is sent from a mobile phone to a telecom network
such Vodafone.

The Ussd Gateway (telecom) then sends the request to your ussd application
(i.e where we have the business logic which determines the menu to serve the use on
receiving user’s request.)

Your ussd application then responds to the request, and Ussd gateway goes ahead and
displays your content to the user

Below is a another diagram to help understand the concept

[image: _images/another_example_how_ussd_works.gif]

Why Ussd Airflow

Before I explain why we need Ussd Airflow lets
first look at one example of ussd user case

Example Menu-Driven USSD Application

One could decide to develop a mobile-initiated “Balance Enquiry and
Top Up” application using USSD signaling, enabling a mobile user to
interact with an application via the user’s handset, in order to
view his/her current mobile account balance and top up as needed.

An example of such an application could be as follows:

	A mobile user initiates the “Balance Enquiry and Top Up” service by dialing the USSD string defined by the service provider; for example, *#123#.

	TheUSSD application receives the service request from the user and responds by sending the user a menu of options.

	The user responds by selecting a “current balance” option.

	The USSD application sends back details of the mobile user’s current account balance and also gives the option to top up the balance.

	The user selects to top up his/her account.

	The application responds by asking how much credit to add?

	The mobile user responds with the amount to add.

	The USSD application responds by sending an updated balance and ends the session.

The figure below shows an example of the MAP/TCAP
message sequence required to realize the data transfers between
a mobile user’s handset and the USSD application to implement the
“Balance Enquiry and Top Up” service described above.

[image: _images/example_of_menu_driven_ussd_application.png]

How ussd airflow comes in

As you have seen in the previous section your ussd application is responsible for the content
displayed.

Suppose you want to change the wordings in the ussd screen you are displaying
to the user,what is involved in most cases or rather all cases is you
make a change in your code and deploy, that’s peanuts for most developers

The problem is once you start having many ussd screens and multiple ussd application
and many requirements of changing ussd screen,
the task that was peanuts becomes overwhelming and would probably start thinking
of a way the Product owners would change the ussd content without you being involved
and thats where ussd aiflow comes in, providing an interface for users to change
ussd workflows without code change

 Python Module Index

 u

 		 	

 		
 u	

 	[image: -]
 	
 ussd	

 	
 	
 ussd.core	

 	
 	
 ussd.screens.initial_screen	

 	
 	
 ussd.screens.input_screen	

Index

 C
 | H
 | I
 | M
 | Q
 | R
 | U

C

 	
 	CustomScreen (class in ussd.screens.custom_screen)

H

 	
 	HttpScreen (class in ussd.screens.http_screen)

I

 	
 	InitialScreen (class in ussd.screens.initial_screen)

 	
 	InputScreen (class in ussd.screens.input_screen)

M

 	
 	MenuScreen (class in ussd.screens.menu_screen)

Q

 	
 	QuitScreen (class in ussd.screens.quit_screen)

R

 	
 	RouterScreen (class in ussd.screens.router_screen)

U

 	
 	UpdateSessionScreen (class in ussd.screens.update_session_screen)

 	ussd.core (module)

 	ussd.screens.initial_screen (module)

 	
 	ussd.screens.input_screen (module)

 	UssdResponse (class in ussd.core)

 	UssdView (class in ussd.core)

 	UssdView.UssdRequest (class in ussd.core)

 _static/comment-bright.png

_static/logo.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/comment.png

_static/plus.png

_static/ajax-loader.gif

_images/example_of_menu_driven_ussd_application.png
TCAP Begin
invoke

MAP_PROCESS_UNSTRUCTURED_SS_REQUEST

TCAP Continue
invoke
MAP_UNSTRUCTURED_SS_REQUEST

TCAP Continue
return result (last)
MAP_UNSTRUCTURED_SS_REQUEST

TCAP Continue
invoke
MAP_UNSTRUCTURED_SS_REQUEST

TCAP Continue
return result (last)
MAP_UNSTRUCTURED_SS_REQUEST

TCAP Continue
invoke
MAP_UNSTRUCTURED_SS_REQUEST

TCAP Continue
return result (last)
MAP_UNSTRUCTURED_SS_REQUEST

TCAP End
return result (last)

MAP_PROCESS_UNSTRUCTURED_SS_REQUEST

l vl vl vl | I

Figure 2. Mobile-Initiated “Balance Enquiry and Top Up” Service (adapted from Figure 6.2, [3GPP TS 24.090])

_images/how_ussd_works.jpg
Sends: HTTP ‘GET'

USSD Session is
Message to 3rd Party

Initialised by Mobile

User Server Address.
—_—> _—
120 1234 1. 2. -
Channel Third Party
Mobile USSD -
USSD Menus i Expects: XML Wol Based
Displayed on Mobile ateway Response String Application
Handset Containing Menus eic.
—_— —

4. 3.

_images/another_example_how_ussd_works.gif
How it works

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		Welcome to Ussd Airflow's documentation!

 		Setup

 		Creating ussd screens

 		1. Initial screen (type -> initial_screen)

 		2. Input screen (type -> input_screen)

 		3. Menu screen (type -> menu_screen)

 		4. Quit screen (type -> quit_screen)

 		5. Http screen (type -> http_screen)

 		6. Router screen (type -> router_screen)

 		7. Update session screen (type -> update_session_screen)

 		8. Custom screen (type -> custom_screen)

 		How ussd works

 		Why Ussd Airflow

 		Example Menu-Driven USSD Application

 		How ussd airflow comes in

_static/up-pressed.png

_static/down.png

_static/up.png

