

Welcome to django-usersettings2’s documentation!

Contents:

	django-usersettings2
	Why would you use usersettings?

	Example Usage

	Hooking the ‘usersettings’ to the admin site

	Hooking into the current usersettings from views

	Custom Middleware

	Caching the current UserSettings object

	Install

	Dependencies

	DJANGO-CMS >= 3.0 Toolbar

	Documentation

	Installation
	Dependencies

	Usage
	Hooking the ‘usersettings’ to the admin site

	Hooking into the current usersettings from views

	Custom Middleware

	Caching the current UserSettings object

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	History
	0.1.0 (2014-09-05)

django-usersettings2

[image: http://img.shields.io/travis/mishbahr/django-usersettings2.svg?style=flat-square]
 [https://travis-ci.org/mishbahr/django-usersettings2/][image: Latest Version]
 [https://pypi.python.org/pypi/django-usersettings2/][image: Downloads]
 [https://pypi.python.org/pypi/django-usersettings2/][image: License]
 [https://pypi.python.org/pypi/django-usersettings2/][image: http://img.shields.io/coveralls/mishbahr/django-usersettings2.svg?style=flat-square]
 [https://coveralls.io/r/mishbahr/django-usersettings2?branch=master]A reusable app for django, provides the ability to configure site settings via the admin interface, rather than by editing settings.py

Why would you use usersettings?

This project is the missing extension to the Django “sites” framework, use it to store additional information for your Django-powered sites. The project structure is heavily inspired by django sites app, with a one-to-one relationship to the Site model.

It’s best explained through examples.

Example Usage

For example, suppose you’re developing a multi-site django project i.e. using single Django installation that powers more than one site and you need to differentiate between those sites in some way.

(e.g. Site Title, Physical Location, Contact Details... etc)

Of course, you could hardcode the information in the templates and use different templates
for each site. Alternatively you could configure details in your settings.py for each site.

A better solution would be to use django-usersettings2. This project accomplishes several things quite nicely:

	It lets the site producers edit all settings – for multiple sites – in a single interface (the Django admin).

	It lets the site developers use the same Django views/templates for multiple sites.

To get started, create a class that inherits from usersettings.models.UserSettings. Make sure to import the UserSettings model. Your class should live in one of your apps’ models.py (or module).

Since UserSettings model inherit from django.db.models.Model, you are free to add any field you want.

Here’s a simple example:

from django.db import models
from django.utils.translation import ugettext_lazy as _

from usersettings.models import UserSettings

class SiteSettings(UserSettings):
 site_title = models.CharField(_('Site Title'), max_length=100)
 tag_line = models.CharField(_('Tag Line'), max_length=150, blank=True)
 site_description = models.TextField(_('Site Description'), blank=True)

 ...

 class Meta:
 verbose_name = 'Site Settings'
 verbose_name_plural = 'Site Settings'

If you followed the Django tutorial, this shouldn’t look too new to you.
The only difference to normal models is that you subclass usersettings.models.UserSettings rather than django.db.models.base.Model.

Hooking the ‘usersettings’ to the admin site

To make your new model editable in the admin interface, you must first create an admin class that subclasses usersettings.admin.SettingsAdmin. Continuing with the example model above, here’s a simple corresponding SiteSettingsAdmin class:

from django.contrib import admin
from django.utils.translation import ugettext_lazy as _

from usersettings.admin import SettingsAdmin

from .models import SiteSettings

class SiteSettingsAdmin(SettingsAdmin):

 fieldsets = (
 (_('Site Title / Tag Line'), {
 'description': '...',
 'fields': ('site_title', 'tag_line',)
 }),
 ...
)

 ...

admin.site.register(SiteSettings, SiteSettingsAdmin)

Since SettingsAdmin inherits from ModelAdmin, you’ll be able to use the normal
set of Django ModelAdmin properties, as appropriate to your circumstance.

Once you’ve registered your admin class, a new model will appear in the top-level admin list.

Hooking into the current usersettings from views

You can use the usersettings in your Django views to do particular things based on the usersettings for the site.

Here’s an example of what the a view looks like:

from usersettings.shortcuts import get_current_usersettings

def home(request):
 ...

 current_usersetting = get_current_usersettings()

 context = {
 'title': current_usersetting.site_title,
 }

 ...

Custom Middleware

To avoid the repetitions of having to import current_usersetting for every view. Add usersettings.middleware.CurrentUserSettingsMiddleware to MIDDLEWARE_CLASSES
The middleware sets the usersettings attribute on every request object, so you can use request.usersettings to get the current usersettings:

MIDDLEWARE_CLASSES=(
 ...
 'usersettings.middleware.CurrentUserSettingsMiddleware',
 ...
)

Caching the current UserSettings object

As the usersettings are stored in the database, each call to UserSettings.objects.get_current() could result in a database query.

But just like the Django sites framework, on the first request the current usersettings is cached, and any subsequent call returns the cached data instead of hitting the database.

If for any reason you want to force a database query, you can tell Django to clear the cache using UserSettings.objects.clear_cache():

from usersettings.shortcuts import get_usersettings_model

UserSettings = get_usersettings_model()

First call; current usersettings fetched from database.
current_usersetting = UserSettings.objects.get_current()

Second call; current usersettings fetched from cache.
current_usersetting = UserSettings.objects.get_current()

Force a database query for the third call.
UserSettings.objects.clear_cache()
current_usersetting = UserSettings.objects.get_current()

Install

	Install django-usersettings:

pip install django-usersettings2

	Add usersettings to INSTALLED_APPS:

INSTALLED_APPS = (
 ...
 'usersettings',
 ...
)

	Specify the custom UserSettings model as the default usersettings model for your project using the USERSETTINGS_MODEL setting in your settings.py (required):

USERSETTINGS_MODEL='config.SiteSettings'

	Add usersettings.middleware.CurrentUserSettingsMiddleware to MIDDLEWARE_CLASSES (optional).

The middleware sets the usersettings attribute on every request object, so you can use request.usersettings to get the current usersettings:

MIDDLEWARE_CLASSES=(
 ...
 'usersettings.middleware.CurrentUserSettingsMiddleware',
 ...
)

6. The current usersettings are made available in the template context when your
TEMPLATE_CONTEXT_PROCESSORS setting contains usersettings.context_processors.usersettings:

TEMPLATE_CONTEXT_PROCESSORS = (
 ...
 'usersettings.context_processors.usersettings',
 ...
)

Dependencies

django-usersettings2 requires The “sites” [https://docs.djangoproject.com/en/dev/ref/contrib/sites/]
framework to be installed.

To enable the sites framework, follow these steps:

	Add django.contrib.sites to your INSTALLED_APPS setting:

INSTALLED_APPS = (
 ...
 'django.contrib.sites'
 ...
)

	Define a SITE_ID setting:

SITE_ID = 1

	Run migrate.

DJANGO-CMS >= 3.0 Toolbar

djangocms-usersettings2 [https://github.com/mishbahr/djangocms-usersettings2] integrates django-usersettings2 with django-cms>=3.0 [https://github.com/divio/django-cms/]

This allows a site editor to add/modify all usersettings in the frontend editing mode of django CMS and provide your users with a streamlined editing experience.

Documentation

The full documentation is at https://django-usersettings2.readthedocs.org.

Installation

	Install django-usersettings:

pip install django-usersettings2

	Add usersettings to INSTALLED_APPS:

INSTALLED_APPS = (
 ...
 'usersettings',
 ...
)

	Specify the custom UserSettings model as the default usersettings model for your project using the USERSETTINGS_MODEL setting in your settings.py (required):

USERSETTINGS_MODEL='config.SiteSettings'

	Add usersettings.middleware.CurrentUserSettingsMiddleware to MIDDLEWARE_CLASSES (optional).

The middleware sets the usersettings attribute on every request object, so you can use request.usersettings to get the current usersettings:

MIDDLEWARE_CLASSES=(
 ...
 'usersettings.middleware.CurrentUserSettingsMiddleware',
 ...
),

6. The current usersettings are made available in the template context when your
TEMPLATE_CONTEXT_PROCESSORS setting contains usersettings.context_processors.usersettings:

TEMPLATE_CONTEXT_PROCESSORS = (
 ...
 'usersettings.context_processors.usersettings',
 ...
)

Dependencies

django-usersettings2 requires The “sites” [https://docs.djangoproject.com/en/dev/ref/contrib/sites/]
framework to be installed.

To enable the sites framework, follow these steps:

	Add django.contrib.sites to your INSTALLED_APPS setting:

INSTALLED_APPS = (
 ...
 'django.contrib.sites'
 ...
)

	Define a SITE_ID setting:

SITE_ID = 1

	Run migrate.

Usage

For example, suppose you’re developing a multi-site django project i.e. using single Django installation that powers more than one site and you need to differentiate between those sites in some way.

(e.g. Site Title, Physical Location, Contact Details... etc)

Of course, you could hardcode the information in the templates and use different templates
for each site. Alternatively you could configure details in your settings.py for each site.

A better solution would be to use django-usersettings2. This project accomplishes several things quite nicely:

	It lets the site producers edit all settings – for multiple sites – in a single interface (the Django admin).

	It lets the site developers use the same Django views/templates for multiple sites.

To get started, create a class that inherits from usersettings.models.UserSettings. Make sure to import the UserSettings model. Your class should live in one of your apps’ models.py (or module).

Since UserSettings model inherit from django.db.models.Model, you are free to add any field you want.

Here’s a simple example:

from django.db import models
from django.utils.translation import ugettext_lazy as _

from usersettings.models import UserSettings

class SiteSettings(UserSettings):
 site_title = models.CharField(_('Site Title'), max_length=100)
 tag_line = models.CharField(_('Tag Line'), max_length=150, blank=True)
 site_description = models.TextField(_('Site Description'), blank=True)

 ...

 class Meta:
 verbose_name = 'Site Settings'
 verbose_name_plural = 'Site Settings'

If you followed the Django tutorial, this shouldn’t look too new to you.
The only difference to normal models is that you subclass usersettings.models.UserSettings rather than django.db.models.base.Model.

Hooking the ‘usersettings’ to the admin site

To make your new model editable in the admin interface, you must first create an admin class that subclasses usersettings.admin.SettingsAdmin. Continuing with the example model above, here’s a simple corresponding SiteSettingsAdmin class:

from django.contrib import admin
from django.utils.translation import ugettext_lazy as _

from usersettings.admin import SettingsAdmin

from .models import SiteSettings

class SiteSettingsAdmin(SettingsAdmin):

 fieldsets = (
 (_('Site Title / Tag Line'), {
 'description': '...',
 'fields': ('site_title', 'tag_line',)
 }),
 ...
)

 ...

admin.site.register(SiteSettings, SiteSettingsAdmin)

Since SettingsAdmin inherits from ModelAdmin, you’ll be able to use the normal
set of Django ModelAdmin properties, as appropriate to your circumstance.

Once you’ve registered your admin class, a new model will appear in the top-level admin list.

Hooking into the current usersettings from views

You can use the usersettings in your Django views to do particular things based on the usersettings for the site.

Here’s an example of what the a view looks like:

from usersettings.shortcuts import get_current_usersettings

def home(request):
 ...

 current_usersetting = get_current_usersettings()

 context = {
 'title': current_usersetting.site_title,
 }

 ...

Custom Middleware

To avoid the repetitions of having to import current_usersetting for every view. Add usersettings.middleware.CurrentUserSettingsMiddleware to MIDDLEWARE_CLASSES
The middleware sets the usersettings attribute on every request object, so you can use request.usersettings to get the current usersettings:

MIDDLEWARE_CLASSES=(
 ...
 'usersettings.middleware.CurrentUserSettingsMiddleware',
 ...
)

Caching the current UserSettings object

As the usersettings are stored in the database, each call to UserSettings.objects.get_current() could result in a database query.

But just like the Django sites framework, on the first request the current usersettings is cached, and any subsequent call returns the cached data instead of hitting the database.

If for any reason you want to force a database query, you can tell Django to clear the cache using UserSettings.objects.clear_cache():

First call; current usersettings fetched from database.
current_usersetting = UserSettings.objects.get_current()
...

Second call; current usersettings fetched from cache.
current_usersetting = UserSettings.objects.get_current()
...

Force a database query for the third call.
UserSettings.objects.clear_cache()
current_usersetting = UserSettings.objects.get_current()

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/mishbahr/django-usersettings2/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

django-usersettings2 could always use more documentation, whether as part of the
official django-usersettings2 docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/mishbahr/django-usersettings2/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up django-usersettings2 for local development.

	Fork the django-usersettings2 repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/django-usersettings2.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv django-usersettings2
$ cd django-usersettings2/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 usersettings tests
$ python setup.py test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, and 3.3, and for PyPy. Check
https://travis-ci.org/mishbahr/django-usersettings2/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest tests.test_usersettings

Credits

Development Lead

	Mishbah Razzaque <mishbahx@gmail.com>

Contributors

	Basil Shubin <basil.shubin@gmail.com>

History

0.1.0 (2014-09-05)

	First release on PyPI.

Index

 _static/plus.png

nav.xhtml

 Table of Contents

 		Welcome to django-usersettings2's documentation!

 		django-usersettings2

 		Why would you use usersettings?

 		Example Usage

 		Hooking the 'usersettings' to the admin site

 		Hooking into the current usersettings from views

 		Custom Middleware

 		Caching the current UserSettings object

 		Install

 		Dependencies

 		DJANGO-CMS >= 3.0 Toolbar

 		Documentation

 		Installation

 		Dependencies

 		Usage

 		Hooking the 'usersettings' to the admin site

 		Hooking into the current usersettings from views

 		Custom Middleware

 		Caching the current UserSettings object

 		Contributing

 		Types of Contributions

 		Report Bugs

 		Fix Bugs

 		Implement Features

 		Write Documentation

 		Submit Feedback

 		Get Started!

 		Pull Request Guidelines

 		Tips

 		Credits

 		Development Lead

 		Contributors

 		History

 		0.1.0 (2014-09-05)

_static/ajax-loader.gif

_static/up.png

_static/comment-bright.png

_static/file.png

_static/comment-close.png

_static/down.png

_static/down-pressed.png

_static/comment.png

_static/minus.png

_static/up-pressed.png

