django-treebeard Documentation
Release 4.7

Gustavo Picon

Jun 26, 2023

Contents

1 Overview
1.1 Installation e e e e e e e e e
1.2 Tutorial e e e e e
1.3 Known Caveats e e e e e e e e e
1.4 Changelog e e e e e e
2 Reference
2.1 APL . . e
2.2 Materialized Path trees e e e e e
2.3 Nested SEtSIIEES v v i v e e e e e e e e e e e e e e
2.4 Adjacency LAStII€ES v v v i e e e e e e e e e e e e e e e
2.5 EXCEPUONS . . . v v v it e e e e e e e e e e e e e e e e e
3 Additional features
3.1 AdmMIN . . L L e e e e e e e e e
32 FOrms e e e e e e e
4 Development
4.1 Runningthe Test Suite o o e e e e e e e
5 Indices and tables
Python Module Index
Index

NN W W

13

23
27
29
30

31
31
33

35
35

37

39

41

django-treebeard Documentation, Release 4.7

django-treebeard is a library that implements efficient tree implementations for the Django Web Framework 1.8+,
written by Gustavo Picon and licensed under the Apache License 2.0.

django-treebeardis:
¢ Flexible: Includes 3 different tree implementations with the same API:
1. Adjacency List
2. Materialized Path
3. Nested Sets
 Fast: Optimized non-naive tree operations
* Easy: Uses Django’s Model inheritance with Abstract base classes. to define your own models.

¢ Clean: Testable and well tested code base. Code/branch test coverage is above 96%.

Contents 1

https://tabo.pe/projects/django-treebeard/
http://www.djangoproject.com/
https://tabo.pe
https://docs.djangoproject.com/en/stable/topics/db/models/#model-inheritance
https://docs.djangoproject.com/en/stable/topics/db/models/#abstract-base-classes

django-treebeard Documentation, Release 4.7

2 Contents

CHAPTER 1

Overview

1.1 Installation

1.1.1 Prerequisites

django-treebeard needs at least Python 3.6 to run, and Django 2.2 or later.

1.1.2 Installing

You have several ways to install django—treebeard. If you're not sure, just use pip

pip (or easy_install)

You can install the release versions from django-treebeard’s PyPI page using pip:

’$ pip install django-treebeard

or if for some reason you can’t use pip, you can try easy_install, (at your own risk):

’$ easy_install --always-unzip django-treebeard

setup.py

Download a release from the treebeard download page and unpack it, then run:

$ python setup.py install

http://guide.python-distribute.org/pip.html
https://pypi.org/project/django-treebeard/
https://github.com/django-treebeard/django-treebeard/releases

django-treebeard Documentation, Release 4.7

.deb packages

Both Debian and Ubuntu include d jango-treebeard as a package, so you can just use:

’$ apt—-get install python-django-treebeard

or:

’$ aptitude install python-django-treebeard

Remember that the packages included in linux distributions are usually not the most recent versions.

1.1.3 Configuration

Add 'treebeard' tothe INSTALLED_APPS section in your django settings file.

Note: If you are going to use the TreeAdmin class, you need to add the path to treebeard’s templates
in TEMPLATE_DIRS. Also you need to add django.template.context_processors.request to
TEMPLATES['OPTIONS'] ['context_processors'] setting in your django settings file (see https://docs.

djangoproject.com/en/1.11/ref/templates/upgrading/ for how to define this setting within the TEMPLATES settings).
For more recent versions of Django, use django.core.context_processors.request instead.

1.2 Tutorial

Create a basic model for your tree. In this example we’ll use a Materialized Path tree:

from django.db import models
from treebeard.mp_tree import MP_Node

class Category (MP_Node) :
name = models.CharField(max_length=30)

node_order_by = ['name']

def _ str_ (self):
return 'Category: '.format (self.name)

Create and apply migrations:

$ python manage.py makemigrations
$ python manage.py migrate

Let’s create some nodes:

>>> from treebeard tutorial.models import Category

>>> get = lambda node_id: Category.objects.get (pk=node_id)
>>> root = Category.add_root (name='Computer Hardware')

>>> node = get (root.pk).add_child(name="Memory")

>>> get (node.pk) .add_sibling (name="'Hard Drives')
<Category: Category: Hard Drives>

>>> get (node.pk) .add_sibling (name="'SSD")

(continues on next page)

4 Chapter 1. Overview

https://docs.djangoproject.com/en/stable/ref/settings/#std-setting-INSTALLED_APPS
https://docs.djangoproject.com/en/1.11/ref/templates/upgrading/
https://docs.djangoproject.com/en/1.11/ref/templates/upgrading/

django-treebeard Documentation, Release 4.7

(continued from previous page)

<Category: Category: SSD>

>>> get (node.pk) .add_child (name="'Desktop Memory')
<Category: Category: Desktop Memory>

>>> get (node.pk) .add_child (name="'Laptop Memory")
<Category: Category: Laptop Memory>

>>> get (node.pk) .add_child (name="'Server Memory')
<Category: Category: Server Memory>

Note: Why retrieving every node again after the first operation? Because d jango-treebeard uses raw queries
for most write operations, and raw queries don’t update the django objects of the db entries they modify. See: Known
Caveats.

We just created this tree:

Computer Hardware

Desktop Memory Laptop Memory

You can see the tree structure with code:

Server Memory

>>> Category.dump_bulk ()

[{'id': 1, 'data': {'name': u'Computer Hardware'},
'children': [
{'id': 3, 'data': {'name': u'Hard Drives'}},
{'id': 2, 'data': {'name': u'Memory'},
'children': [

{'id': 5, 'data': {'name': u'Desktop Memory'}},
{'id': 6, 'data': {'name': u'Laptop Memory'}},
{'id': 7, 'data': {'name': u'Server Memory'}}1l},

{'id': 4, 'data': {'name': u'SSD'}}]}]

>>> Category.get_annotated_list ()
[(<Category: Category: Computer Hardware>,

{'close': [], 'level': 0, 'open': True}),
(<Category: Category: Hard Drives>,
{'close': [], 'level': 1, 'open': True}),
(<Category: Category: Memory>,

{'close': [], 'level': 1, 'open': False}),

(continues on next page)

1.2. Tutorial 5

django-treebeard Documentation, Release 4.7

(continued from previous page)

(<Category: Category: Desktop Memory>,

{'close': [], 'level': 2, 'open': True}),
(<Category: Category: Laptop Memory>,

{'close': [], '"level': 2, 'open': False}),
(<Category: Category: Server Memory>,

{'close': [0], 'level': 2, 'open': False}),
(<Category: Category: SSD>,

{'close': [0, 1], 'level': 1, 'open': False})]

>>> Category.get_annotated_list_gs (Category.objects.filter (name__icontains='Hardware
"))
[(<Category: Category: Computer Hardware>, {'open': True, 'close': [], 'level': 0})]

Read the t reebeard.models . Node API reference for detailed info.

1.3 Known Caveats

1.3.1 Raw Queries
django-treebeard uses Django raw SQL queries for some write operations, and raw queries don’t update the
objects in the ORM since it’s being bypassed.

Because of this, if you have a node in memory and plan to use it after a tree modification (adding/removing/moving
nodes), you need to reload it.

1.3.2 Overriding the default manager
One of the most common source of bug reports in django-treebeard is the overriding of the default managers in
the subclasses.

django-treebeard relies on the default manager for correctness and internal maintenance. If you override the
default manager, by overriding the ob ject s member in your subclass, you WILL have errors and inconsistencies in
your tree.

To avoid this problem, if you need to override the default manager, you’ll NEED to subclass the manager from the
base manager class for the tree you are using.

Read the documentation in each tree type for details.

1.3.3 Custom Managers

Related to the previous caveat, if you need to create custom managers, you NEED to subclass the manager from the
base manager class for the tree you are using.

Read the documentation in each tree type for details.

1.3.4 Copying model instances

Starting in version 4.5, we made a change to support custom names in primary fields that exposed a bug in Django’s
documentation. This has been fixed in the dev version of Django (3.2 as of writing this), but even when using older
versions, the new instructions apply.

6 Chapter 1. Overview

https://docs.djangoproject.com/en/3.2/topics/db/queries/#copying-model-instances

django-treebeard Documentation, Release 4.7

1.4 Changelog

1.4.1 Release 4.7 (Apr 7, 2023)

* Drop support for Django 4.0.
¢ Add support for Django 4.2.

1.4.2 Release 4.6.1 (Feb 5, 2023)

* Fix unescaped string representation of AL_Node models in the Django admin. Thanks to goodguyandy for
reporting the issue.

* Optimise MP_Node.get_descendants to avoid database queries when called on a leaf node.

1.4.3 Release 4.6 (Jan 2, 2023)

* Drop support for Django 3.1 and lower.

* Add support for Django 4.0 and 4.1.

* Drop support for Python 3.7 and lower.

¢ Add support for Python 3.10 and Python 3.11.

* Change the return value of delete() for all node classes to be consistent with Django, and return a tuple of the
number of objects deleted and a dictionary with the number of deletions per object type.

» Change the delete() methods for all node classes to accept arbitrary positional and keyword arguments which
are passed to the parent method.

e Set alters_data and queryset_only attributes on the delete() methods for all node classes to prevent them being
used in an unwanted context (e.g., in Django templates).

* Drop dependency on jQuery Ul in the admin.

1.4.4 Release 4.5.1 (Feb 22, 2021)

* Removed unnecessary default in MP’s depth field.

1.4.5 Release 4.5 (Feb 17, 2021)

* Add support for custom primary key fields with custom names.
* Add support for Python 3.9.

* Add support for MSSQL 2019.

* Add Code of conduct

* Removed outdated Sqlite workaround code

¢ Remove last remains of Python 2.7 code

» Use Pytest-django and fixtures for testing

1.4. Changelog 7

django-treebeard Documentation, Release 4.7

1.4.6 Release 4.4 (Jan 13, 2021)

* Implement a non-destructive path-fixing algorithm for MP_Node.fix_tree.

* Ensure post_save is triggered after the parent node is updated in MP_AddChildHandler.

» Fix static URL generation to use static template tag instead of constructing the URL manually.
* Declare support for Django 2.2, 3.0 and 3.1.

* Drop support for Django 2.1 and lower.

* Drop support for Python 2.7 and Python 3.5.

¢ Increase performance for MoveNodeForm when using large trees.

1.4.7 Release 4.3.1 (Dec 25, 2019)

* Added check to avoid unnecessary database query for MP_Node.get_ancestors() if the node is a root node.
* Drop support for Python-3.4.

 Play more nicely with other form classes, that implement __init__(self, *args, **kwargs), e.g. django-parler’s
TranslatableModelForm, where kwargs.get(‘instance’) is None when called from here.

 Sorting on path on necessary queries, fixes some issues and stabilizes the whole MP section.

¢ Add German translation strings.

1.4.8 Release 4.3 (Apr 16, 2018)

* Support for Django-2.0

1.4.9 Release 4.2.2 (Mar 11, 2018)

* Bugfix issues #97: UnboundLocalError raised on treebeard admin

1.4.10 Release 4.2.1 (Mar 9, 2018)

* Bugfix issues #90: admin change list view and jsil8n load for Django-1.11

1.4.11 Release 4.2.0 (Dec 8, 2017)

* Support for Django-2.0

1.4.12 Release 4.1.2 (Jun 22, 2017)

» Fixed MANIFEST.in for Debian packaging.

8 Chapter 1. Overview

django-treebeard Documentation, Release 4.7

1.4.13 Release 4.1.1 (May 24, 2017)

* Removed deprecated templatetag inclusion
¢ Added support for Python-3.6
* Added support for MS-SQL

1.4.14 Release 4.1.0 (Nov 24, 2016)

* Add support for Django-1.10

* Drop support for Django-1.7

* Moved Repository from Bitbucket to GitHub

* Moved documentation to https://django-treebeard.readthedocs.io/

* Moved continuous integration to https://travis-ci.org/django-treebeard/django-treebeard

1.4.15 Release 4.0.1 (May 1, 2016)

* Escape input in forms (Martin Koistinen / Divio)

¢ Clarification on model detail pages (Michael Huang)

1.4.16 Release 4.0 (Dec 28, 2015)

* Added support for 3.5 and Django 1.7, 1.8 and 1.9

* Django 1.6 is no longer supported.

* Remove deprecated backports needed for now unsupported Django versions
* Fixed a bug with queryset deletion not handling inheritance correctly.

¢ Assorted documentation fixes

1.4.17 Release 3.0 (Jan 18, 2015)

* Limited tests (and hence support) to Python 2.7+/3.4+ and Django 1.6+
* Removed usage of deprecated Django functions.

¢ Fixed documentation issues.

* Fixed issues in MoveNodeForm

* Added get_annotated_list_qgs and max_depth for get_annotated_list

1.4.18 Release 2.0 (April 2, 2014)

¢ Stable release.

1.4. Changelog 9

https://django-treebeard.readthedocs.io/
https://travis-ci.org/django-treebeard/django-treebeard

django-treebeard Documentation, Release 4.7

1.4.19 Release 2.0rc2 (March, 2014)

Support models that use multi-table inheritance (Matt Wescott)

Tree methods called on proxy models should consistently return instances of that proxy model (Matt Wescott)

1.4.20 Release 2.0rc1 (February, 2014)

Fixed unicode related issue in the template tags.
Major documentation cleanup.
More warnings on the use of managers.

Faster MP’s is_root() method.

1.4.21 Release 2.0b2 (December, 2013)

Dropped support for Python 2.5

1.4.22 Release 2.0b1 (May 29, 2013)

This is a beta release.

Added support for Django 1.5 and Python 3.X
Updated docs: the library supports python 2.5+ and Django 1.4+. Dropped support for older versions

Revamped admin interface for MP and NS trees, supporting drag&drop to reorder nodes. Work on this patch
was sponsored by the Oregon Center for Applied Science, inspired by FeinCMS developed by Jesus del Carpio
with tests from Fernando Gutierrez. Thanks ORCAS!

Updated setup.py to use distribute/setuptools instead of distutils
Now using pytest for testing

Small optimization to ns_tree.is_root

Moved treebeard.tests to it’s own directory (instead of tests.py)
Added the runtests.py test runner

Added tox support

Fixed drag&drop bug in the admin

Fixed a bug when moving MP_Nodes

Using .pk instead of .id when accessing nodes.

Removed the Benchmark (tbbench) and example (tbexample) apps.
Fixed url parts join issues in the admin.

Fixed: Now installing the static resources

Fixed ManyToMany form field save handling

In the admin, the node is now saved when moving so it can trigger handlers and/or signals.

Improved translation files, including javascript.

10

Chapter 1. Overview

http://www.orcasinc.com/
http://www.feincms.org
http://www.isgeek.net
http://xbito.pe

django-treebeard Documentation, Release 4.7

* Renamed Node.get_database_engine() to Node.get_database_vendor(). As the name implies, it returns the
database vendor instead of the engine used. Treebeard will get the value from Django, but you can subclass
the method if needed.

1.4.23 Release 1.61 (Jul 24, 2010)

¢ Added admin i18n. Included translations: es, ru

* Fixed a bug when trying to introspect the database engine used in Django 1.2+ while using new style db settings
(DATABASES). Added Node.get_database_engine to deal with this.

1.4.24 Release 1.60 (Apr 18, 2010)

* Added get_annotated_list

e Complete revamp of the documentation. It’s now divided in sections for easier reading, and the package includes
.1st files instead of the html build.

* Added raw id fields support in the admin

* Fixed setup.py to make it work in 2.4 again

* The correct ordering in NS/MP trees is now enforced in the queryset.

* Cleaned up code, removed some unnecessary statements.

* Tests refactoring, to make it easier to spot the model being tested.

* Fixed support of trees using proxied models. It was broken due to a bug in Django.
* Fixed a bug in add_child when adding nodes to a non-leaf in sorted MP.

* There are now 648 unit tests. Test coverage is 96%

 This will be the last version compatible with Django 1.0. There will be a a 1.6.X branch maintained for urgent
bug fixes, but the main development will focus on recent Django versions.

1.4.25 Release 1.52 (Dec 18, 2009)

* Really fixed the installation of templates.

1.4.26 Release 1.51 (Dec 16, 2009)

* Forgot to include treebeard/tempates/*.html in MANIFEST.in

1.4.27 Release 1.5 (Dec 15, 2009)

New features added

* Forms

— Added MoveNodeForm
* Django Admin

— Added TreeAdmin

1.4. Changelog 11

django-treebeard Documentation, Release 4.7

e MP_Node
— Added 2 new checks in MP_Node.find_problems():
4. alist of ids of nodes with the wrong depth value for their path
5. alist of ids nodes that report a wrong number of children
— Added a new (safer and faster but less comprehensive) MP_Node.fix_tree() approach.

¢ Documentation

— Added warnings in the documentation when subclassing MP_Node or NS_Node and adding a new Meta.
— HTML documentation is now included in the package.
— CHANGES file and section in the docs.
* Other changes:
— script to build documentation

— updated numconv.py

Bugs fixed

¢ Added table quoting to all the sql queries that bypass the ORM. Solves bug in postgres when the table isn’t
created by syncdb.

* Removing unused method NS_Node._find_next_node

» Fixed MP_Node.get_tree to include the given parent when given a leaf node

1.4.28 Release 1.1 (Nov 20, 2008)
Bugs fixed

¢ Added exceptions.py

1.4.29 Release 1.0 (Nov 19, 2008)

* First public release.

12 Chapter 1. Overview

CHAPTER 2

Reference

2.1 API

django.db.models.base.Model treebeard.models.Node

class treebeard.models.Node (*args, **kwargs)
Bases: django.db.models.base.Model

Node class

This is the base class that defines the API of all tree models in this library:
* treebeard.mp_tree.MP_Node (materialized path)
e treebeard.ns_tree.NS_Node (nested sets)

* treebeard.al_tree.AL Node (adjacency list)

Warning: Please be aware of the Known Caveats when using this library.

classmethod add_root (**kwargs)
Adds a root node to the tree. The new root node will be the new rightmost root node. If you want to insert
a root node at a specific position, use add_sibling () in an already existing root node instead.

Parameters

* xxkwargs — object creation data that will be passed to the inherited Node model

13

django-treebeard Documentation, Release 4.7

* instance - Instead of passing object creation data, you can pass an already-constructed
(but not yet saved) model instance to be inserted into the tree.

Returns the created node object. It will be save()d by this method.
Raises NodeAlreadySaved — when the passed instance already exists in the database

Example:

MyNode.add_root (numval=1, strval='abcd'")

Or, to pass in an existing instance:

new_node = MyNode (numval=1, strval='abcd'")
MyNode.add_root (instance=new_node)

add_child (**kwargs)
Adds a child to the node. The new node will be the new rightmost child. If you want to insert a node at a
specific position, use the add_sibling () method of an already existing child node instead.

Parameters
* xxkwargs — Object creation data that will be passed to the inherited Node model

* instance - Instead of passing object creation data, you can pass an already-constructed
(but not yet saved) model instance to be inserted into the tree.

Returns The created node object. It will be save()d by this method.
Raises NodeAlreadySaved — when the passed instance already exists in the database

Example:

node.add_child (numval=1, strval='abcd')

Or, to pass in an existing instance:

new_node = MyNode (numval=1, strval='abcd'")
node.add_child(instance=new_node)

add_sibling (pos=None, **kwargs)
Adds a new node as a sibling to the current node object.

Parameters

* pos — The position, relative to the current node object, where the new node will be in-
serted, can be one of:

— first-sibling: the new node will be the new leftmost sibling

— left: the new node will take the node’s place, which will be moved to the right 1
position

— right: the new node will be inserted at the right of the node
— last-sibling: the new node will be the new rightmost sibling

— sorted-sibling: the new node will be at the right position according to the value
of node_order_by

* xxkwargs — Object creation data that will be passed to the inherited Node model

* instance — Instead of passing object creation data, you can pass an already-constructed
(but not yet saved) model instance to be inserted into the tree.

14 Chapter 2. Reference

django-treebeard Documentation, Release 4.7

Returns The created node object. It will be saved by this method.
Raises
* InvalidPosition — when passing an invalid pos parm

e InvalidPosition — when node_order_by is enabled and the pos parm wasn’t
sorted-sibling

* MissingNodeOrderBy - when passing sorted-sibling as pos and the
node_order_by attribute is missing

* NodeAlreadySaved — when the passed instance already exists in the database

Examples:

node.add_sibling('sorted-sibling', numval=1l, strval='abc')

Or, to pass in an existing instance:

new_node = MyNode (numval=1, strval='abc')
node.add_sibling('sorted-sibling', instance=new_node)

delete (*args, **kwargs)
Removes a node and all it’s descendants.

Note: Call our queryset’s delete to handle children removal. Subclasses will handle extra maintenance.

classmethod get_tree (parent=None)

Returns A list of nodes ordered as DFS, including the parent. If no parent is given, the entire
tree is returned.

get_depth ()
Returns the depth (level) of the node

Example:

node.get_depth ()

get_ancestors ()

Returns A queryset containing the current node object’s ancestors, starting by the root node and
descending to the parent. (some subclasses may return a list)

Example:

node.get_ancestors ()

get_children()
Returns A queryset of all the node’s children

Example:

node.get_children ()

get_children_count ()

Returns The number of the node’s children

2.1. API 15

django-treebeard Documentation, Release 4.7

Example:

node.get_children_count ()

get_descendants ()

Returns A queryset of all the node’s descendants, doesn’t include the node itself (some sub-
classes may return a list).

Example:

node.get_descendants ()

get_descendant_count ()
Returns the number of descendants of a node.

Example:

node.get_descendant_count ()

get_first child()
Returns The leftmost node’s child, or None if it has no children.

Example:

node.get_first_child()

get_last_child()
Returns The rightmost node’s child, or None if it has no children.

Example:

node.get_last_child()

get_first sibling()
Returns The leftmost node’s sibling, can return the node itself if it was the leftmost sibling.

Example:

node.get_first_sibling()

get_last_sibling()
Returns The rightmost node’s sibling, can return the node itself if it was the rightmost sibling.

Example:

node.get_last_sibling()

get_prev_sibling ()
Returns The previous node’s sibling, or None if it was the leftmost sibling.

Example:

node.get_prev_sibling()

get_next_sibling()

Returns The next node’s sibling, or None if it was the rightmost sibling.

16 Chapter 2. Reference

django-treebeard Documentation, Release 4.7

Example:

node.get_next_sibling()

get_parent (update=False)

Returns the parent node of the current node object. Caches the result in the object itself to help
in loops.

Parameters update — Updates the cached value.

Example:

node.get_parent ()

get_root ()
Returns the root node for the current node object.

Example:

node.get_root ()

get_siblings ()
Returns A queryset of all the node’s siblings, including the node itself.

Example:

node.get_siblings ()

is_child_of (node)
Returns True if the node is a child of another node given as an argument, else, returns False
Parameters node — The node that will be checked as a parent

Example:

node.is_child_of (node2)

is_descendant_of (node)

Returns True if the node is a descendant of another node given as an argument, else, returns
False

Parameters node — The node that will be checked as an ancestor

Example:

node.is_descendant_of (node2)

is_sibling_of (node)
Returns True if the node is a sibling of another node given as an argument, else, returns False
Parameters node — The node that will be checked as a sibling

Example:

node.is_sibling_of (node2)

is_root ()

2.1. API 17

django-treebeard Documentation, Release 4.7

Returns True if the node is a root node (else, returns False)

Example:

node.is_root ()

is leaf ()

Returns True if the node is a leaf node (else, returns False)

Example:

node.is_leaf ()

move (target, pos=None)
Moves the current node and all it’s descendants to a new position relative to another node.

Parameters

* target — The node that will be used as a relative child/sibling when moving

* pos — The position, relative to the target node, where the current node object will be
moved to, can be one of:

first—child: the node will be the new leftmost child of the target node
last-child: the node will be the new rightmost child of the target node

sorted-child: the new node will be moved as a child of the target node accord-
ing to the value of node_order_by

first-sibling: the node will be the new leftmost sibling of the target node

left: the node will take the target node’s place, which will be moved to the right 1
position

right: the node will be moved to the right of the target node
last-sibling: the node will be the new rightmost sibling of the target node

sorted-sibling: the new node will be moved as a sibling of the target node
according to the value of node_order_by

Note: If no pos is given the library will use last-sibling, or sorted-sibling
if node_order_Dby is enabled.

Returns None

Raises

InvalidPosition — when passing an invalid pos parm

InvalidPosition — when node_order_by is enabled and the pos parm wasn’t
sorted-siblingor sorted-child

InvalidMoveToDescendant — when trying to move a node to one of it’s own de-
scendants

PathOverflow — when the library can’t make room for the node’s new position

MissingNodeOrderBy — when passing sorted-sibling or sorted-child as
pos and the node_order_by attribute is missing

18

Chapter 2. Reference

django-treebeard Documentation, Release 4.7

Note: The node can be moved under another root node.

Examples:

node.move (node2, 'sorted-child")
node.move (node2, 'prev-sibling')

save (force_insert=False, force_update=False, using=None, update_fields=None)
Save the current instance. Override this in a subclass if you want to control the saving process.

The ‘force_insert’ and ‘force_update’ parameters can be used to insist that the “save” must be an SQL
insert or update (or equivalent for non-SQL backends), respectively. Normally, they should not be set.

classmethod get_first_root_node ()
Returns The first root node in the tree or None if it is empty.

Example:

MyNodeModel .get_first_root_node ()

classmethod get_last_root_node ()
Returns The last root node in the tree or None if it is empty.

Example:

MyNodeModel.get_last_root_node ()

classmethod get_root_nodes ()
Returns A queryset containing the root nodes in the tree.

Example:

MyNodeModel .get_root_nodes ()

classmethod load_bulk (bulk_data, parent=None, keep_ids=False)
Loads a list/dictionary structure to the tree.

Parameters

¢ bulk_data — The data that will be loaded, the structure is a list of dictionaries with 2
keys:

— data: will store arguments that will be passed for object creation, and

— children: alist of dictionaries, each one has it’s own data and children keys (a
recursive structure)

e parent — The node that will receive the structure as children, if not specified the first
level of the structure will be loaded as root nodes

* keep_ids - If enabled, loads the nodes with the same primary keys that are given in the
structure. Will error if there are nodes without primary key info or if the primary keys are
already used.

Returns A list of the added node ids.

Note: Any internal data that you may have stored in your nodes’ data (path, depth) will be ignored.

2.1.

API 19

django-treebeard Documentation, Release 4.7

Note: If your node model has a ForeignKey this method will try to load the related object before loading
the data. If the related object doesn’t exist it won’t load anything and will raise a DoesNotEXxist exception.
This is done because the dump_data method uses integers to dump related objects.

Note: If your node model has node_order_by enabled, it will take precedence over the order in the
structure.

Example:

data = [{'data':{'desc':"'1"}},
{'data':{'desc':'2'}, 'children':[
{'data':{'desc':'21"}},
{'data':{'desc':'22"}},
{'data':{'desc':'23"}, 'children':][
{'data':{'desc':'231"'}},
11,
{'data':{'desc':'24"}},
1t
{'data':{'desc':"'3'}},
{'data':{'desc':'4"}, 'children':[
{'data':{'desc':'41"}},
1},
]
parent = None
MyNodeModel. load_bulk (data, None)

Will create:

classmethod dump_bulk (parent=None, keep_ids=True)
Dumps a tree branch to a python data structure.

20 Chapter 2. Reference

django-treebeard Documentation, Release 4.7

Parameters

* parent — The node whose descendants will be dumped. The node itself will be included
in the dump. If not given, the entire tree will be dumped.

* keep_ids — Stores the pk value (primary key) of every node. Enabled by default.
Returns A python data structure, described with detail in Joad_bulk ()

Example:

tree = MyNodeModel.dump_bulk ()
branch = MyNodeModel .dump_bulk (node_obj)

classmethod find_ problems ()
Checks for problems in the tree structure.

classmethod fix tree()
Solves problems that can appear when transactions are not used and a piece of code breaks, leaving the
tree in an inconsistent state.

classmethod get_descendants_group_count (parent=None)

Helper for a very common case: get a group of siblings and the number of descendants (not only children)
in every sibling.

Parameters parent — The parent of the siblings to return. If no parent is given, the root nodes
will be returned.

Returns A [list (NOT a Queryset) of node objects with an extra attribute: descendants_count.

Example:

get a list of the root nodes
root_nodes = MyModel.get_descendants_group_count ()

for node in root_nodes:
print ' by (replies)' % (node.comment, node.author,
node.descendants_count)

classmethod get_annotated_list (parent=None, max_depth=None)
Gets an annotated list from a tree branch.

Parameters

¢ parent — The node whose descendants will be annotated. The node itself will be included
in the list. If not given, the entire tree will be annotated.

* max_depth — Optionally limit to specified depth

Example:

annotated_list = MyModel.get_annotated_list ()

With data:

2.1.

API 21

django-treebeard Documentation, Release 4.7

Will return:

[
(a, {'open':True, 'close': [
(ab, {'open' :True, 'close': [
(aba, {'open':True, 'close': [
(abb, {'open':False, 'close':][
(abc, {'open':False, 'close':[
(ac, {'open':False, 'close':[

1

O O e e
LN N N NN

~

This can be used with a template like:

{% for item, info in annotated_list
{% if info.open %}
<1li>
else 3}
<1i>
endif %)

-
oo

~
oo

{{ item }}

o
~—

for close in info.close

{% endfor %}
{% endfor %}

-
o\o

Note: This method was contributed originally by Alexey Kinyov, using an idea borrowed from django-

mptt.

New in version 1.55.

classmethod get_annotated_list_gs (gs)

22

Chapter 2. Reference

mailto:rudi@05bit.com
https://github.com/django-mptt/django-mptt/
https://github.com/django-mptt/django-mptt/

django-treebeard Documentation, Release 4.7

Gets an annotated list from a queryset.

classmethod get_database_vendor (action)
returns the supported database vendor used by a treebeard model when performing read (select) or write
(update, insert, delete) operations.

Parameters action — read or write
Returns postgresql, mysql or sqlite

Example:

’ MyNodeModel .get_database_vendor ("write™)

New in version 1.61.

2.2 Materialized Path trees

This is an efficient implementation of Materialized Path trees for Django, as described by Vadim Tropashko in SQL
Design Patterns. Materialized Path is probably the fastest way of working with trees in SQL without the need of extra
work in the database, like Oracle’s CONNECT BY or sprocs and triggers for nested intervals.

In a materialized path approach, every node in the tree will have a path attribute, where the full path from the root
to the node will be stored. This has the advantage of needing very simple and fast queries, at the risk of inconsistency
because of the denormalization of parent/child foreign keys. This can be prevented with transactions.

django-treebeard uses a particular approach: every step in the path has a fixed width and has no separators.
This makes queries predictable and faster at the cost of using more characters to store a step. To address this problem,
every step number is encoded.

Also, two extra fields are stored in every node: depth and numchi 1d. This makes the read operations faster, at the
cost of a little more maintenance on tree updates/inserts/deletes. Don’t worry, even with these extra steps, materialized
path is more efficient than other approaches.

Warning: As with all tree implementations, please be aware of the Known Caveats.

Note: The materialized path approach makes heavy use of LIKE in your database, with clauses like WHERE path
LIKE '002003%"'. If you think that LIKE is too slow, you’re right, but in this case the path field is indexed in
the database, and all LIKE clauses that don’t start with a $ character will use the index. This is what makes the
materialized path approach so fast.

django.db.models.base.Model H treebeard.models.Node H treebeard.mp_tree.MP_Node

class treebeard.mp_tree.MP_Node (*args, **kwargs)
Bases: treebeard.models.Node

Abstract model to create your own Materialized Path Trees.

2.2. Materialized Path trees 23

http://vadimtropashko.wordpress.com/
http://www.rampant-books.com/book_2006_1_sql_coding_styles.htm
http://www.rampant-books.com/book_2006_1_sql_coding_styles.htm

django-treebeard Documentation, Release 4.7

Warning: Do not change the values of path, depth or numchild directly: use one of the included
methods instead. Consider these values read-only.

Warning: Do not change the values of the steplen, alphabet or node_order by after saving your
first object. Doing so will corrupt the tree.

Warning: If you need to define your own Manager class, you’ll need to subclass MP_NodeManager.

Also, if in your manager you need to change the default queryset handler, you’ll need to subclass
MP_NodeQuerySet.

Example:

class SortedNode (MP_Node) :
node_order_by = ['numval', 'strval']

numval = models.IntegerField()
strval = models.CharField(max_length=255)

Read the API reference of t reebeard.models. Node for info on methods available in this class, or read
the following section for methods with particular arguments or exceptions.

steplen
Attribute that defines the length of each step in the path of a node. The default value of 4 allows a
maximum of /679615 children per node. Increase this value if you plan to store large trees (a steplen
of 5 allows more than 60M children per node). Note that increasing this value, while increasing the
number of children per node, will decrease the max depth of the tree (by default: 63). To increase the
max depth, increase the max_length attribute of the path field in your model.

alphabet
Attribute: the alphabet that will be used in base conversions when encoding the path steps into strings. The
default value, 0123456789ABCDEFGHI JKLMNOPQRSTUVWXYZ is the most optimal possible value
that is portable between the supported databases (which means: their default collation will order the path
field correctly).

Note: In case you know what you are doing, there is a test that is disabled by default that
can tell you the optimal default alphabet in your enviroment. To run the test you must enable the
TREEBEARD_TEST_ALPHABET enviroment variable:

$ TREEBEARD_TEST ALPHABET=1 py.test -k test_alphabet

In OS X Mavericks, good readable values for the three supported databases in their default configuration:

Database Optimal Alphabet | Base
MySQL 5.6.17 0-9A-Z 36
PostgreSQL 9.3.4 | 0-9A-Za-z 62
Sqlite3 0-9A-Za-z 62

The default value is MySQL’s since it will work in all DBs, but when working with a better database,
changing the alphabet value is recommended in order to increase the density of the paths.

24

Chapter 2. Reference

https://docs.djangoproject.com/en/stable/topics/db/managers/#django.db.models.Manager

django-treebeard Documentation, Release 4.7

For an even better approach, change the collation of the pat h column in the database to handle raw ASCII,
and use the printable ASCII characters (0x20 to Ox7E) as the aIphabet.

node_order_by

Attribute: a list of model fields that will be used for node ordering. When enabled, all tree operations will
assume this ordering.

Example:

node_order_by = ['fieldl', 'field2', 'field3']

path

CharField, stores the full materialized path for each node. The default value of it’s max_length, 255,
is the max efficient and portable value for a varchar. Increase it to allow deeper trees (max depth by
default: 63)

Note: django-treebeard uses Django’s abstract model inheritance, so to change the max_length value
of the path in your model, you have to redeclare the path field in your model:

class MyNodeModel (MP_Node) :
path = models.CharField (max_length=1024, unique=True)

Note: For performance, and if your database allows it, you can safely define the path column as ASCII
(not utf-8/unicode/iso8859-1/etc) to keep the index smaller (and faster). Also note that some databases
(mysql) have a small index size limit. InnoDB for instance has a limit of 765 bytes per index, so that
would be the limit if your path is ASCII encoded. If your path column in InnoDB is using unicode, the
index limit will be 255 characters since in MySQL’s indexes, unicode means 3 bytes per character.

Note: django-treebeard uses numconv for path encoding.

depth

PositiveIntegerField, depth of a node in the tree. A root node has a depth of /.

numchild

PositivelIntegerField, the number of children of the node.

classmethod add_root (**kwargs)

Adds a root node to the tree.
This method saves the node in database. The object is populated as if via:
obj = cls(xxkwargs)
Raises PathOverflow — when no more root objects can be added

See: treebeard.models.Node.add root ()

add_child (**kwargs)

Adds a child to the node.
This method saves the node in database. The object is populated as if via:
obj = self.__class__ (xxkwargs)

Raises PathOverflow — when no more child nodes can be added

2.2,

Materialized Path trees 25

https://tabo.pe/projects/numconv/

django-treebeard Documentation, Release 4.7

See: treebeard.models.Node.add _child()

add_sibling (pos=None, **kwargs)
Adds a new node as a sibling to the current node object.

This method saves the node in database. The object is populated as if via:
obj = self.__class__ (xxkwargs)
Raises PathOverflow — when the library can’t make room for the node’s new position
See: treebeard.models.Node.add sibling()

move (target, pos=None)
Moves the current node and all it’s descendants to a new position relative to another node.

Raises PathOverflow — when the library can’t make room for the node’s new position
See: treebeard.models.Node.move ()
classmethod get_tree (parent=None)

Returns A queryset of nodes ordered as DFS, including the parent. If no parent is given, the
entire tree is returned.

See: treebeard.models.Node.get_tree ()

Note: This metod returns a queryset.

classmethod find problems ()
Checks for problems in the tree structure, problems can occur when:

1. your code breaks and you get incomplete transactions (always use transactions!)

2. changing the steplen value in a model (you must dump_bulk () first, change steplen and then
load_bulk ()
Returns

A tuple of five lists:

—

a list of ids of nodes with characters not found in the alphabet
a list of ids of nodes when a wrong path length according to steplen
a list of ids of orphaned nodes

a list of ids of nodes with the wrong depth value for their path

A

a list of ids nodes that report a wrong number of children

Note: A node won’t appear in more than one list, even when it exhibits more than one problem. This
method stops checking a node when it finds a problem and continues to the next node.

Note: Problems 1, 2 and 3 can’t be solved automatically.

Example:

26 Chapter 2. Reference

django-treebeard Documentation, Release 4.7

MyNodeModel. find_problems ()

classmethod fix_tree (destructive=False, fix_paths=False)

Solves some problems that can appear when transactions are not used and a piece of code breaks, leaving

the tree in an inconsistent state.

The problems this method solves are:

1. Nodes with an incorrect depth or numchild values due to incorrect code and lack of database

transactions.

2. “Holes” in the tree. This is normal if you move/delete nodes a lot. Holes in a tree don’t affect

performance,

3. Incorrect ordering of nodes when node_order_Jy is enabled. Ordering is enforced on node inser-
tion, so if an attribute in node_order_ly is modified after the node is inserted, the tree ordering

will be inconsistent.

Parameters

e fix_paths — A boolean value. If True, a slower, more complex fix_tree method will
be attempted. If False (the default), it will use a safe (and fast!) fix approach, but it will
only solve the depth and numchild nodes, it won’t fix the tree holes or broken path
ordering.

* destructive — Deprecated; alias for fix_paths.

Example:

MyNodeModel.fix_tree ()

class treebeard.mp_tree.MP_NodeManager
Bases: django.db.models.manager.Manager

Custom manager for nodes in a Materialized Path tree.

class treebeard.mp_tree.MP_NodeQuerySet (model=None, query=None, using=None,

hints=None)
Bases: django.db.models.query.QuerySet

Custom queryset for the tree node manager.

Needed only for the custom delete method.

2.3 Nested Sets trees

An implementation of Nested Sets trees for Django, as described by Joe Celko in Trees and Hierarchies in SQL for

Smarties.

Nested sets have very efficient reads at the cost of high maintenance on write/delete operations.

Warning: As with all tree implementations, please be aware of the Known Caveats.

2.3. Nested Sets trees

27

https://docs.djangoproject.com/en/stable/ref/models/querysets/#django.db.models.query.QuerySet
http://en.wikipedia.org/wiki/Joe_Celko
https://shop.elsevier.com/books/joe-celkos-trees-and-hierarchies-in-sql-for-smarties/celko/978-0-12-387733-8
https://shop.elsevier.com/books/joe-celkos-trees-and-hierarchies-in-sql-for-smarties/celko/978-0-12-387733-8

django-treebeard Documentation, Release 4.7

django.db.models.base.Model H treebeard.models.Node H treebeard.ns_tree.NS_Node

class treebeard.ns_tree.NS_Node (*args, **kwargs)
Bases: treebeard.models.Node

Abstract model to create your own Nested Sets Trees.

Warning: If you need to define your own Manager class, you’ll need to subclass NS_NodeManager.

Also, if in your manager you need to change the default queryset handler, you’ll need to subclass
NS_NodeQuerySet.

node_order_by
Attribute: a list of model fields that will be used for node ordering. When enabled, all tree operations will
assume this ordering.

Example:

node_order_by = ['fieldl', 'field2', 'field3']

depth
PositiveIntegerField, depth of a node in the tree. A root node has a depth of /.

1ft
PositiveIntegerField

rgt
PositivelIntegerField

tree_id
PositivelIntegerField

classmethod get_tree (parent=None)

Returns A queryset of nodes ordered as DFS, including the parent. If no parent is given, all
trees are returned.

See: treebeard.models.Node.get_tree ()

Note: This method returns a queryset.

class treebeard.ns_tree.NS_NodeManager
Bases: django.db.models.manager.Manager

Custom manager for nodes in a Nested Sets tree.

class treebeard.ns_tree.NS_NodeQuerySet (model=None, query=None, using=None,

hints=None)
Bases: django.db.models.query.QuerySet

Custom queryset for the tree node manager.

28 Chapter 2. Reference

https://docs.djangoproject.com/en/stable/topics/db/managers/#django.db.models.Manager
https://docs.djangoproject.com/en/stable/ref/models/querysets/#django.db.models.query.QuerySet

django-treebeard Documentation, Release 4.7

Needed only for the customized delete method.

2.4 Adjacency List trees

This is a simple implementation of the traditional Adjacency List Model for storing trees in relational databases.
In the adjacency list model, every node will have a “parent” key, that will be NULL for root nodes.

Since django-treebeard must return trees ordered in a predictable way, the ordering for models without the
node_order._by attribute will have an extra attribute that will store the relative position of a node between it’s
siblings: sib_order.

The adjacency list model has the advantage of fast writes at the cost of slow reads. If you read more than you write,
use MP_ Node instead.

Warning: As with all tree implementations, please be aware of the Known Caveats.

django.db.models.base.Model H treebeard.models.Node ‘H treebeard.al_tree.AL_Node

class treebeard.al_tree.AL_Node (*args, **kwargs)
Bases: t reebeard.models.Node

Abstract model to create your own Adjacency List Trees.

Warning: If you need to define your own Manager class, you’ll need to subclass A, NodeManager.

node_order_by
Attribute: a list of model fields that will be used for node ordering. When enabled, all tree operations will
assume this ordering.

Example:

node_order_by = ['fieldl', 'field2', 'field3']

parent
ForeignKey toitself. This attribute MUST be defined in the subclass (sadly, this isn’t inherited correctly
from the ABC in Django 1.0). Just copy&paste these lines to your model:

parent = models.ForeignKey('self',
related_name='children_set',
null=True,
db_index=True)

sib_order
PositiveIntegerField used to store the relative position of a node between it’s siblings. This

2.4. Adjacency List trees 29

https://docs.djangoproject.com/en/stable/topics/db/managers/#django.db.models.Manager

django-treebeard Documentation, Release 4.7

attribute is mandatory ONLY if you don’t set a node_order._ by field. You can define it copy&pasting

this line in your model:

sib_order = models.PositiveIntegerField()

Examples:

class AL TestNode (AL_Node) :
parent = models.ForeignKey('self',
related_name='children_set',
null=True,
db_index=True)
sib_order = models.PositiveIntegerField()
desc = models.CharField(max_length=255)

class AL TestNodeSorted (AL_Node) :

parent = models.ForeignKey('self',
related_name='children_set',
null=True,
db_index=True)

node_order_by = ['vall', 'val2', 'desc']

vall = models.IntegerField()

val2 = models.IntegerField()

desc = models.CharField(max_length=255)

Read the API reference of t reebeard.models. Node for info on methods available in this class, or read

the following section for methods with particular arguments or exceptions.

get_depth (update=False)

Returns the depth (level) of the node Caches the result in the object itself to help in loops.

Parameters update — Updates the cached value.
See: treebeard.models.Node.get_depth ()

class treebeard.al_tree.AL_NodeManager
Bases: django.db.models.manager.Manager

Custom manager for nodes in an Adjacency List tree.

2.5 Exceptions

exception treebeard.exceptions.InvalidPosition
Raised when passing an invalid pos value

exception treebeard.exceptions.InvalidMoveToDescendant
Raised when attempting to move a node to one of it’s descendants.

exception treebeard.exceptions.NodeAlreadySaved
Raised when attempting to add a node which is already saved to the database.

exception treebeard.exceptions.PathOverflow

Raised when trying to add or move a node to a position where no more nodes can be added (see path and

alphabet for more info)

exception treebeard.exceptions.MissingNodeOrderBy
Raised when an operation needs a missing node_order_Dby attribute

30

Chapter 2. Reference

CHAPTER 3

Additional features

3.1 Admin

3.1.1 API

class treebeard.admin.TreeAdmin (model, admin_site)
Bases: django.contrib.admin.options.ModelAdmin

Django Admin class for treebeard.

Example:

from django.contrib import admin

from treebeard.admin import TreeAdmin

from treebeard.forms import movenodeform_factory
from myproject.models import MyNode

class MyAdmin (TreeAdmin) :
form = movenodeform_factory (MyNode)

admin.site.register (MyNode, MyAdmin)

treebeard.admin.admin_factory (form_class)
Dynamically build a TreeAdmin subclass for the given form class.

Parameters form class —
Returns A TreeAdmin subclass.

3.1.2 Interface

The features of the admin interface will depend on the tree type.

31

django-treebeard Documentation, Release 4.7

Advanced Interface

Materialized Path and Nested Sets trees have an AJAX interface based on FeinCMS, that includes features like
drag&drop and an attractive interface.

Django administration Welcome, tabo. Change password / Log out

Home » Thexample » Materialized Path Tree Posts

& Moved node "MP_Post 737: lorem ipsum! 6886852687" as sibling of "MP_Post 795: lorem ipsum! 3483703209"

Select Materialized Path Tree Post to change

Action: | R jl Go | 0 of 100 selected

+ Materialized Path Tree Post
++ = MP_Post 688: lorem ipsum! 1830813506

O + @ MP_Post 693: lorem ipsum! 1575336851
O = MP_Post 709: lorem ipsum! 9880090656
O + =2 MP_Post 704: lorem ipsum! 4848672109

O G 4 & MP_Post 737: lorem ipsum! 6886852687 As Sibling

a MP_Post 755: lorem ipsum! 3705716124

= MP_Post 737: lorem ipsum! 6886852687

MP_Post B16: lorem ipsum! 1512494377

o
&
O MP_Post 785: lorem ipsum! 4817744940
&
3 MP_Post 795: lorem ipsum! 3483703209
&

MP_Post 797: lorem ipsum! 6111966411

Basic Interface

Adjacency List trees have a basic admin interface.

32 Chapter 3. Additional features

http://www.feincms.org

django-treebeard Documentation, Release 4.7

DjangO adminiStration Welcome, tabo. Change password / Log out

Home » Thexample » Adjacenty List Tree Posts

Select Adjacenty List Tree Post to change

Action: | —eme————— ||| Go | 0 of 100 selected
| |

= [JAL_Post 1: lorem ipsum! 2686284781
= [JAL_Post 9: lorem ipsum! 2263287025
= [JAL_Post 200 lorem ipsum! 7209750086
" [CJAL_Post 73: lorem ipsum! 6028972707
= [JAL_Post 130: lorem ipsum! 5369952211
= [JAL Post 132: lorem ipsum! 4593614702
= [JAL_Post 79: lorem ipsum! 6016253415
= [CJAL_Post 101: lorem ipsum! 6686868072
= [CJAL_Post 80: lorem ipsum! 5314276079
= [JAL Post 106: lorem ipsum! 2336138735
= [CJAL_Post 10: lorem ipsum! 5324800064
= [JAL_Post 16 lorem ipsum! 8498322067
" [CJAL_Post 62: lorem ipsum! 5004145404
" [CJAL_Post 63: lorem ipsum! 8924713679
= [JAL_Post 67: lorem ipsum! 4493577843
= [JAL_Post 70: lorem ipsum! 6115585967
= [JAL_Post 114: lorem ipsum! 6365616158

Model Detail Pages

If a model’s field values are modified, then it is necessary to add the fields ‘_position’ and ‘_ref_node_id’. Otherwise,
it is not possible to create instances of the model.

Example:

class MyAdmin (TreeAdmin) :

list_display = ('title', 'body', 'is_edited', 'timestamp', '_position',
—'_ref_node_id"',)

form = movenodeform_factory (MyNode)

admin.site.register (MyNode, MyAdmin)

3.2 Forms

class treebeard.forms.MoveNodeForm (data=None, files=None, auto_id="id_%s’, pre-
fix=None, initial=None, error_class=<class
"django.forms.utils.ErrorList’>, label_suffix=":",

empty_permitted=False, instance=None, **kwargs)
Bases: django.forms.models.ModelForm

Form to handle moving a node in a tree.
Handles sorted/unsorted trees.
It adds two fields to the form:

¢ Relative to: The target node where the current node will be moved to.

3.2. Forms 33

django-treebeard Documentation, Release 4.7

* Position: The position relative to the target node that will be used to move the node. These can be:
— For sorted trees: Child of and Sibling of

— For unsorted trees: First child of,Before and After

Warning: Subclassing MoveNodeForm directly is discouraged, since special care is needed to handle
excluded fields, and these change depending on the tree type.

It is recommended that the movenodeform factory () function is used instead.

treebeard. forms.movenodeform_ factory (model, form=<class 'tree-
beard.forms.MoveNodeForm’>, fields=None,
exclude=None, formfield_callback=None, wid-
gets=None)

Dynamically build a MoveNodeForm subclass with the proper Meta.
Parameters
* model (Node) — The subclass of Node that will be handled by the form.

* form — The form class that will be used as a base. By default, MoveNodeForm will be
used.

Returns A MoveNodeForm subclass
For a full reference of this function, please read modelform_factory ()

Example, MyNode is a subclass of t reebeard.al_tree.AL Node:

MyNodeForm = movenodeform_factory (MyNode)

is equivalent to:

class MyNodeForm (MoveNodeForm) :
class Meta:
model = models.MyNode
exclude = ('sib_order', 'parent')

34 Chapter 3. Additional features

https://docs.djangoproject.com/en/stable/ref/forms/models/#django.forms.models.modelform_factory

CHAPTER 4

Development

4.1 Running the Test Suite

django-treebeard includes a comprehensive test suite. It is highly recommended that you run and update the
test suite when you send patches.

4.1.1 pytest

You will need pytest to run the test suite:

’s pip install pytest

Then just run the test suite:

’$ pytest

You can use all the features and plugins of pytest this way.

By default the test suite will run using a sqlite3 database in RAM, but you can change this setting environment
variables:

DATABASE_ USER
DATABASE_PASSWORD
DATABASE_HOST
DATABASE_USER POSTGRES
DATABASE_PORT_POSTGRES
DATABASE USER_ MYSQL

DATABASE_PORT_MYSOQL
Sets the database settings to be used by the test suite. Useful if you want to test the same database engine/version
you use in production.

35

http://pytest.org/

django-treebeard Documentation, Release 4.7

4.1.2 tox

django-treebeard uses tox to run the test suite in all the supported environments - permutations of:
e Python 3.8 - 3.11
* Django 3.2,4.1 and 4.2
 Sqlite, MySQL, PostgreSQL and MSSQL

This means that there are a lot of permutations, which takes a long time. If you want to test only one or a few
environments, use the -e option in tox, like:

$ tox —e py39-dj32-postgres

36 Chapter 4. Development

https://tox.readthedocs.io/en/latest/index.html
https://tox.readthedocs.io/en/latest/index.html

CHAPTER B

Indices and tables

* genindex
* modindex

e search

37

django-treebeard Documentation, Release 4.7

38 Chapter 5. Indices and tables

Python Module Index

t

treebeard

treebeard.
.exceptions, 30

treebeard

treebeard.
treebeard.
.mp_tree, 23
.ns_tree, 27

treebeard
treebeard

.admin, 31

al_tree, 29

forms, 33
models, 13

39

django-treebeard Documentation, Release 4.7

40 Python Module Index

Index

A

add_child () (treebeard.models.Node method), 14

add_child () (treebeard.mp_tree. MP_Node method),
25

add_root () (treebeard.models.Node class method), 13

add_root () (treebeard.mp_tree.MP_Node class
method), 25

add_sibling () (treebeard.models.Node method), 14

add_sibling() (treebeard.mp_tree. MP_Node
method), 26

admin_factory () (in module treebeard.admin), 31

AL_Node (class in treebeard.al_tree), 29

AL_NodeManager (class in treebeard.al_tree), 30

alphabet (treebeard.mp_tree. MP_Node attribute), 24

C

command line option
DATABASE_HOST, 35
DATABASE_PASSWORD, 35
DATABASE_PORT_MYSQL, 35
DATABASE_PORT_POSTGRES, 35
DATABASE_USER, 35
DATABASE_USER_MYSQL, 35
DATABASE_USER_POSTGRES, 35

D

DATABASE_HOST

command line option, 35
DATABASE_PASSWORD

command line option, 35
DATABASE_PORT_MYSQL

command line option, 35
DATABASE_PORT_POSTGRES

command line option, 35
DATABASE_USER

command line option, 35
DATABASE_USER_MYSQL

command line option, 35
DATABASE_USER_POSTGRES

command line option, 35
delete () (treebeard.models.Node method), 15
depth (treebeard.mp_tree. MP_Node attribute), 25
depth (treebeard.ns_tree.NS_Node attribute), 28
dump_bulk () (treebeard.models.Node class method),
20

E

environment variable
TREEBEARD_TEST_ALPHABET, 24

F

find_problems ()
method), 21

find_problems ()
class method), 26

fix_tree () (treebeard.models.Node class method), 21

fix_tree() (treebeard.mp_tree. MP_Node class
method), 27

(treebeard.models.Node class

(treebeard.mp_tree. MP_Node

G

get_ancestors () (treebeard.models.Node method),
15

get_annotated_list () (treebeard.models.Node
class method), 21
get_annotated_list_gs () (tree-

beard.models.Node class method), 22
get_children () (treebeard.models.Node method),

15

get_children_count () (treebeard.models.Node
method), 15

get_database_vendor () (treebeard.models.Node

class method), 23
get_depth () (treebeard.al_tree.AL_Node method), 30
get_depth () (treebeard.models.Node method), 15
get_descendant_count () (treebeard.models.Node
method), 16
get_descendants ()
method), 16

(treebeard.models.Node

41

django-treebeard Documentation, Release 4.7

get_descendants_group_count () (tree-
beard.models.Node class method), 21
get_first_child() (treebeard.models.Node
method), 16
get_first_root_node ()
class method), 19
get_first_sibling()
method), 16
get_last_child()
method), 16
get_last_root_node ()
class method), 19
get_last_sibling()
method), 16
get_next_sibling()
method), 16
get_parent () (treebeard.models.Node method), 17
get_prev_sibling() (treebeard.models.Node
method), 16
get_root () (treebeard.models.Node method), 17
get_root_nodes () (treebeard.models.Node class
method), 19
get_siblings ()
17
get_tree () (treebeard.models.Node class method), 15

(treebeard.models.Node
(treebeard.models.Node
(treebeard.models.Node
(treebeard.models.Node
(treebeard.models.Node

(treebeard.models.Node

(treebeard.models.Node method),

get_tree () (treebeard.mp_tree. MP_Node class
method), 26

get_tree () (treebeard.ns_tree.NS_Node class
method), 28

InvalidMoveToDescendant, 30

InvalidPosition, 30

is_child_of () (treebeard.models.Node method), 17

is_descendant_of () (treebeard.models.Node
method), 17

is_leaf () (treebeard.models.Node method), 18

is_root () (treebeard.models.Node method), 17

is_sibling_of () (treebeard.models.Node method),
17

L

1ft (treebeard.ns_tree.NS_Node attribute), 28
load_bulk () (treebeard.models.Node class method),
19

M

MissingNodeOrderBy, 30

move () (treebeard.models.Node method), 18

move () (treebeard.mp_tree. MP_Node method), 26

MoveNodeForm (class in treebeard.forms), 33

movenodeform_factory () (in module
beard.forms), 34

MP_Node (class in treebeard.mp_tree), 23

tree-

MP_NodeManager (class in treebeard.mp_tree), 277
MP_NodeQuerySet (class in treebeard.mp_tree), 27

N

Node (class in treebeard.models), 13

node_order_by (treebeard.al_tree.AL_Node at-
tribute), 29

node_order_by (treebeard.mp_tree. MP_Node at-
tribute), 25

node_order_by (treebeard.ns_tree.NS_Node at-

tribute), 28
NodeAlreadySaved, 30
NS_Node (class in treebeard.ns_tree), 28
NS_NodeManager (class in treebeard.ns_tree), 28
NS_NodeQuerySet (class in treebeard.ns_tree), 28
numchild (treebeard.mp_tree. MP_Node attribute), 25

P

parent (treebeard.al_tree.AL_Node attribute), 29
path (treebeard.mp_tree. MP_Node attribute), 25
PathOverflow, 30

R

rgt (treebeard.ns_tree.NS_Node attribute), 28

S

save () (treebeard.models.Node method), 19
sib_order (treebeard.al_tree.AL_Node attribute), 29
steplen (treebeard.mp_tree. MP_Node attribute), 24

T

tree_id (treebeard.ns_tree.NS_Node attribute), 28
TreeAdmin (class in treebeard.admin), 31
treebeard.admin (module), 31
treebeard.al_tree (module), 29
treebeard.exceptions (module), 30
treebeard. forms (module), 33
treebeard.models (module), 13
treebeard.mp_tree (module), 23
treebeard.ns_tree (module), 27
TREEBEARD_TEST_ALPHABET, 24

42

Index

	Overview
	Installation
	Tutorial
	Known Caveats
	Changelog

	Reference
	API
	Materialized Path trees
	Nested Sets trees
	Adjacency List trees
	Exceptions

	Additional features
	Admin
	Forms

	Development
	Running the Test Suite

	Indices and tables
	Python Module Index
	Index

