
Mastering Django Admin

ChillarAnand

Dec 08, 2021

CONTENTS

1 Preface 1
1.1 Why this book? . 1
1.2 Pre requisites . 1
1.3 Who should read this book? 2
1.4 Acknowledgements 2

2 The Million Dollar Admin 3

3 Better Defaults 5
3.1 Use ModelAdmin . 5
3.2 Use Better Widgets . 7
3.3 Better Defaults For Models 9
3.4 Navigation Menu Bar 10

4 Managing Model Relationships 13
4.1 Autocompletion For Related Fields 13
4.2 Hyperlink Related Fields 14
4.3 Related Fields In Admin List 16

5 Auto Generate Admin Interface 19
5.1 Manual Registration 19
5.2 Auto Registration . 20
5.3 Auto Registration With Fields 22
5.4 Admin Generator . 23

i

6 Filtering In Admin 25
6.1 Search Fields . 25
6.2 List Filters . 26
6.3 Custom List Filters . 27
6.4 Custom Text Filter . 28
6.5 Advanced Filters . 30

7 Custom Admin Actions 33
7.1 Bulk Editing In List View 33
7.2 Custom Actions On Querysets 34
7.3 Custom Actions On Individual Objects 35
7.4 Custom Actions On Change View 37

8 Securing Django Admin 39
8.1 Admin Path . 40
8.2 2 Factor Authentication 41
8.3 Environments . 42
8.4 Miscellaneous . 43

9 Final Words 45

ii

CHAPTER

ONE

PREFACE

1.1 Why this book?

In this data driven world, internal tools are often overlooked parts in
companies. Without efficient tools for analytics and dashboards, cross
department communications & customer communications become a bot-
tleneck as people spend more time everyday to get some data.

There are several tools built specifically for analytics and dashboards.
But if we are already using Django framework, we can just use Django
Admin for most of these tasks.

In this book, we will learn how to customize Django admin for these
tasks.

1.2 Pre requisites

Readers should be familiar with creating a model/view using Django. If
you are new to django, complete the polls tutorial1 provided in the official
Django documentation to get familiar about Django framework.

1 https://docs.djangoproject.com/en/3.0/intro/tutorial01/

1

https://docs.djangoproject.com/en/3.0/intro/tutorial01/

Mastering Django Admin

1.3 Who should read this book?

Anyone who wants to learn how to customize and improve the perfor-
mance of django admin.

1.4 Acknowledgements

2 Chapter 1. Preface

CHAPTER

TWO

THE MILLION DOLLAR ADMIN

Django admin was first released in 2005 and it has gone through a lot of
changes since then. Still the admin interface looks clunky compared to
most modern web interfaces.

Jacob Kaplan-Moss, one of the core-developers of Django estimated that
it will cost 1 million dollars1 to hire a team to rebuild admin interface
from scratch. Until we get 1 million dollars to revamp the admin inter-
face, let’s look into alternate solutions.

1. Use django admin with modern themes/skins. Packages like
django-grappelli2, django-suit3 extend the existing admin interface
and provide new skin,options to customize the UI etc.

2. Use drop-in replacements for django admin. Packages like xad-
min4, django-admin25 are a complete rewrite of django admin.
Even though these packages come with lot of goodies and better
defaults, they are no longer actively maintained.

3. Use seperate django packages per task.

4. Write our own custom admin interface.
1 https://jacobian.org/2016/may/26/so-you-want-a-new-admin/
2 https://pypi.org/project/django-grappelli/
3 https://pypi.org/project/django-suit/
4 https://pypi.org/project/xadmin/
5 https://pypi.org/project/django-admin2/

3

https://jacobian.org/2016/may/26/so-you-want-a-new-admin/
https://pypi.org/project/django-grappelli/
https://pypi.org/project/django-suit/
https://pypi.org/project/xadmin/
https://pypi.org/project/django-admin2/

Mastering Django Admin

We can start default admin interface or use any drop-in replacements for
the admin. Even with this admin interface, we need to write custom
views/reports based on business requirements.

In the next chapter, lets start with customizing admin interface.

4 Chapter 2. The Million Dollar Admin

CHAPTER

THREE

BETTER DEFAULTS

3.1 Use ModelAdmin

When a model is registered with admin, it just shows the string represen-
tation of the model object in changelist page.

from book.models import Book

admin.site.register(Book)

Django provides ModelAdmin1 class which represents a model in admin.
We can use the following options to make the admin interface informa-
tive and easy to use.

• list_display to display required fields and add custom fields.

• list_filter to add filters data based on a column value.
1 https://docs.djangoproject.com/en/2.2/ref/contrib/admin/#modeladmin-objects

5

https://docs.djangoproject.com/en/2.2/ref/contrib/admin/#modeladmin-objects

Mastering Django Admin

• list_per_page to set how many items to be shown on paginated
page.

• search_fields to search for records based on a field value.

• date_hierarchy to provide date-based drilldown navigation for a
field.

• readonly_fields to make seleted fields readonly in edit view.

• prepopulated_fields to auto generate a value for a column based on
another column.

• save_as to enable save as new in admin change forms.

from book.models import Book
from django.contrib import admin

@admin.register(Book)
class BookAdmin(admin.ModelAdmin):

list_display = ('id', 'name', 'author',
→˓'published_date', 'cover', 'is_available')

list_filter = ('is_available',)
list_per_page = 10
search_fields = ('name',)
date_hierarchy = 'published_date'
readonly_fields = ('created_at', 'updated_at')

In list_display in addition to columns, we can add custom methods which
can be used to show calculated fields. For example, we can change book
color based on its availability.

6 Chapter 3. Better Defaults

Mastering Django Admin

@admin.register(Book)
class BookAdmin(admin.ModelAdmin):

list_display = ('id', 'name_colored', 'author',
→˓'published_date', 'cover', 'is_available')

def name_colored(self, obj):
if obj.is_available:

color_code = '00FF00'
else:

color_code = 'FF0000'
html = '{}

→˓'.format(color_code, obj.name)
return format_html(html)

name_colored.admin_order_field = 'name'
name_colored.short_description = 'name'

3.2 Use Better Widgets

Sometimes widgets provided by Django are not handy to the users. In
such cases it is better to add tailored widgets based on the data.

For images, instead of showing a link, we can show thumbnails of images
so that users can see the picture in the list view itself.

@admin.register(Book)
class BookAdmin(admin.ModelAdmin):

(continues on next page)

3.2. Use Better Widgets 7

Mastering Django Admin

(continued from previous page)

list_display = ('id', 'name_colored', 'thumbnail',
→˓ 'author', 'published_date', 'is_available')

def thumbnail(self, obj):
width, height = 100, 200
html = '<img src="/{url}" width="{width}"

→˓height={height} />'
return format_html(

html.format(url=obj.cover.url, width=width,
→˓height=height)

)

This will show thumbnail for book cover images.

Viewing and editing JSON field in admin interface will be very difficult
in the textbox. Instead, we can use JSON Editor widget provided any
third-party packages like django-json-widget, with which viewing and
editing JSON data becomes much intuitive.

CSV and Excel imports and exports

from django.contrib.postgres import fields
from django_json_widget.widgets import
→˓JSONEditorWidget

(continues on next page)

8 Chapter 3. Better Defaults

Mastering Django Admin

(continued from previous page)

@admin.register(Book)
class BookAdmin(admin.ModelAdmin):

formfield_overrides = {
fields.JSONField: {

'widget': JSONEditorWidget
},

}

With this, all JSONFields will use JSONEditorWidget, which makes it
easy to view and edit json content.

There are a wide variety of third-party packages like django-map-
widgets, django-ckeditor, django-widget-tweaks etc which provide ad-
ditional widgets as well as tweaks to existing widgets.

3.3 Better Defaults For Models

We can set user friendly names instead of default names for django mod-
els in admin. We can override this in model meta options.

class Category(models.Model):
class Meta:

(continues on next page)

3.3. Better Defaults For Models 9

Mastering Django Admin

(continued from previous page)

verbose_name = "Book Category"
verbose_name_plural = "Book Categories"

Model fields has an option to enter help_text which is useful documenta-
tion as well as help text for forms.

class Book(TimeAuditModel):
is_available = models.BooleanField(

help_text='Is the book available to buy?'
)
published_date = models.DateField(

help_text='help_text="Please enter the date
→˓in YYYY-MM-DD format.'

)

This will be shown in admin as shown below.

3.4 Navigation Menu Bar

When user visits a specific model from the admin page, to switch to a
different model user has to go back to home page and then move to the
required model. This is inconvinient if user has to switch between models
frequently.

To avoid this, a navigation menu bar can be added at the top as shown
below, so that users can switch between models with just 1 click.

10 Chapter 3. Better Defaults

Mastering Django Admin

For this, we need to override base_site.html template with the navigation
menu bar. Django provides app_list in the template context which has
information about all apps and their models which can be used to render
menu bar.

{% for app in app_list %}
{{ app.name }}</

→˓a>

{% for model in app.models %}

→˓{{ model.name }}
{% endfor %}

{% endfor %}

3.4. Navigation Menu Bar 11

Mastering Django Admin

12 Chapter 3. Better Defaults

CHAPTER

FOUR

MANAGING MODEL RELATIONSHIPS

4.1 Autocompletion For Related Fields

Lets us go to BookAdmin and try to add a new book.

from book.models import Book

class BookAdmin(admin.ModelAdmin):
list_display = ('id', 'name', 'author')

admin.site.register(Book, BookAdmin)

By default, this will show a select box with entire authors list. Navigating
this select list and finding the required author is difficult.

To make this easier, we can provide autocomplete option for author field

13

Mastering Django Admin

so that users can search and select the required author.

from book.models import Book

class AuthorAdmin(admin.ModelAdmin):
search_fields = ('name',)

class BookAdmin(admin.ModelAdmin):
list_display = ('id', 'name', 'author')
autocomplete_fields = ('author',)

admin.site.register(Book, BookAdmin)

For this, ModelAdmin provides autocomplete_fields option to change to
select2 autocomplete input. We should also define search_fields on the
related admin so that search is performed on these fields.

4.2 Hyperlink Related Fields

Lets browse through, BookAdmin and look at some of the books.

from django.contrib import admin

from .models import Book

(continues on next page)

14 Chapter 4. Managing Model Relationships

Mastering Django Admin

(continued from previous page)

class BookAdmin(admin.ModelAdmin):
list_display = ('id', 'name', 'author')

admin.site.register(Book, BookAdmin)

Here, book name field is liked to book change view. But author field
is shown as plain text. If we notice some typo or if we have to modify
author details, we have to go back to authors admin page, search for
relevant author and then change name.

This becomes tedious if users spend lot of time in admin for tasks like
this. Instead, if author field is hyperlinked to author change view, we can
directly go to that page and change the name.

Django provides an option to access admin views by its URL reversing
system. For example, we can get change view of author model in book
app using reverse(“admin:book_author_change”, args=id). Now we can
use this url to hyperlink author field in book admin.

from django.contrib import admin
from django.utils.safestring import mark_safe

class BookAdmin(admin.ModelAdmin):
list_display = ('name', 'author_link',)

def author_link(self, book):
url = reverse("admin:book_author_change",

→˓args=[book.author.id])
link = '%s' % (url, book.

→˓author.name)
return mark_safe(link)

author_link.short_description = 'Author'

Now in the book admin view, author field will be hyperlinked to its
change view and we can visit just by clicking it.

Depending on requirements, we can link any field in django to other

4.2. Hyperlink Related Fields 15

Mastering Django Admin

fields or add custom fields to improve productivity of users in admin.

Custom hyper links

https://docs.djangoproject.com/en/dev/ref/models/instances/
#get-absolute-url

4.3 Related Fields In Admin List

Django admin has ModelAdmin class which provides options and
functionality for the models in admin interface. It has options like
list_display, list_filter, search_fields to specify fields for corresponding
actions.

search_fields, list_filter and other options allow to include a ForeignKey
or ManyToMany field with lookup API follow notation. For example, to
search by book name in Bestselleradmin, we can specify book__name in
search fields.

from django.contrib import admin

from book.models import BestSeller

class BestSellerAdmin(RelatedFieldAdmin):
search_fields = ('book__name',)
list_display = ('id', 'year', 'rank', 'book')

admin.site.register(Bestseller, BestsellerAdmin)

However Django doesn’t allow the same follow notation in list_display.
To include ForeignKey field or ManyToMany field in the list display, we
have to write a custom method and add this method in list display.

from django.contrib import admin

(continues on next page)

16 Chapter 4. Managing Model Relationships

https://docs.djangoproject.com/en/dev/ref/models/instances/#get-absolute-url
https://docs.djangoproject.com/en/dev/ref/models/instances/#get-absolute-url

Mastering Django Admin

(continued from previous page)

from book.models import BestSeller

class BestSellerAdmin(RelatedFieldAdmin):
list_display = ('id', 'rank', 'year', 'book',

→˓'author')
search_fields = ('book__name',)

def author(self, obj):
return obj.book.author

author.description = 'Author'

admin.site.register(Bestseller, BestsellerAdmin)

This way of adding foreignkeys in list_display becomes tedious when
there are lots of models with foreignkey fields.

We can write a custom admin class to dynamically set the methods as
attributes so that we can use the ForeignKey fields in list_display.

def get_related_field(name, admin_order_field=None,
→˓short_description=None):

related_names = name.split('__')

def dynamic_attribute(obj):
for related_name in related_names:

obj = getattr(obj, related_name)
return obj

dynamic_attribute.admin_order_field = admin_
→˓order_field or name

dynamic_attribute.short_description = short_
→˓description or related_names[-1].title().replace(
→˓'_', ' ')

return dynamic_attribute

(continues on next page)

4.3. Related Fields In Admin List 17

Mastering Django Admin

(continued from previous page)

class RelatedFieldAdmin(admin.ModelAdmin):
def __getattr__(self, attr):

if '__' in attr:
return get_related_field(attr)

not dynamic lookup, default behaviour
return self.__getattribute__(attr)

class BestSellerAdmin(RelatedFieldAdmin):
list_display = ('id', 'rank', 'year', 'book',

→˓'book__author')

By sublcassing RelatedFieldAdmin, we can directly use foreignkey fields
in list display.

However, this will lead to N+1 problem. We will discuss more about this
and how to fix this in orm optimizations chapter.

18 Chapter 4. Managing Model Relationships

CHAPTER

FIVE

AUTO GENERATE ADMIN INTERFACE

5.1 Manual Registration

Inbuilt admin interface is one the most powerful & popular feature of
Django. Once we create the models, we need to register them with ad-
min, so that it can read schema and populate interface for it.

Let us register Book model in the admin interface.

file: library/book/admin.py

from django.apps import apps

from book.models import Book

class BookAdmin(admin.ModelAdmin):
list_display = ('id', 'name', 'author')

admin.site.register(Book, BookAdmin)

Now, we can see the book model in admin.

19

Mastering Django Admin

If the django project has too many models to be registered in admin or if
it has a legacy database where all tables need to be registered in admin,
then adding all those models to admin becomes a tedious task.

5.2 Auto Registration

To automate this process, we can programatically fetch all the models
in the project and register them with admin. Also, we need to ignore
models which are already registered with admin as django doesn’t allow
regsitering same model twice.

from django.apps import apps

models = apps.get_models()

for model in models:
try:

admin.site.register(model)
except admin.sites.AlreadyRegistered:

pass

This code snippet should run after all admin.py files are loaded so that
auto registration happends after all manually added models are regis-
tered. Django provides AppConfig.ready() to perform any initialization
tasks which can be used to hook this code.

20 Chapter 5. Auto Generate Admin Interface

Mastering Django Admin

file: library/book/apps.py

from django.apps import apps, AppConfig
from django.contrib import admin

class BookAppConfig(AppConfig):

def ready(self):
models = apps.get_models()
for model in models:

try:
admin.site.register(model)

except admin.sites.AlreadyRegistered:
pass

In the admin, we can see manually registered models and automatically
registered models. If we open admin page for any auto registered model,
it will show something like this.

This view is not at all useful for the users who want to see the data. It
will be more informative if we can show all the fields of the model in
admin.

5.2. Auto Registration 21

Mastering Django Admin

5.3 Auto Registration With Fields

To achieve that, we can create an admin class to populate model fields
in list_display. While registering, we can use this admin class to register
the model.

from django.apps import apps, AppConfig
from django.contrib import admin

class ListModelAdmin(admin.ModelAdmin):
def __init__(self, model, admin_site):

self.list_display = [field.name for field
→˓in model._meta.fields]

super().__init__(model, admin_site)

class BookAppConfig(AppConfig):

def ready(self):
models = apps.get_models()
for model in models:

try:
admin.site.register(model,

→˓ListModelAdmin)
except admin.sites.AlreadyRegistered:

pass

Now, if we look at Author admin page, it will be shown with all relevant
fields.

22 Chapter 5. Auto Generate Admin Interface

Mastering Django Admin

Since we have auto registration in place, when a new model is added
or columns are altered for existing models, admin interface will update
accordingly without any code changes.

5.4 Admin Generator

The above methods will be useful to generate a pre-defined admin inter-
face for all the models. If independent customizations are needed for the
models, then we use 3rd party packages like django-admin-generator or
django-extensions which can generate a fully functional admin interface
by introspecting the models. Once the base admin code is ready, we can
use the same for futher customizations.

$./manage.py admin_generator books >> books/admin.
→˓py

This will generate admin interface for books app.

5.4. Admin Generator 23

Mastering Django Admin

24 Chapter 5. Auto Generate Admin Interface

CHAPTER

SIX

FILTERING IN ADMIN

6.1 Search Fields

Django Admin provies search_fields option on ModelAdmin. Setting this
will enable a search box in list page to filter items on the model. This can
perform lookup on all the fields on the model as well as related model
fields.

class BookAdmin(admin.ModelAdmin):
search_fields = ('name', 'author__name')

When the number of items in search_fields becomes increases, query
becomes quite slow as it does a case-insensitive search of all the search

25

Mastering Django Admin

terms against all the search_fields. For example a search for python for
data analysis translates to this SQL caluse.

WHERE
(name ILIKE '%python%' OR author.name ILIKE '%python
→˓%')
AND (name ILIKE '%for%' OR author.name ILIKE '%for%
→˓')
AND (name ILIKE '%data%' OR author.name ILIKE '%data
→˓%')
AND (name ILIKE '%analysis%' OR author.name ILIKE '
→˓%analysis%')

6.2 List Filters

Django also provides list_filter option on ModelAdmin. We can add
required fields to list_filter which generate corresponding filters on the
right panel of the admin page with all the possible values.

class BookAdminFilter(admin.ModelAdmin):
list_display = ('id', 'author', 'published_date

→˓', 'is_available', 'cover')
list_filter = ('is_available',)

26 Chapter 6. Filtering In Admin

Mastering Django Admin

6.3 Custom List Filters

We can also write custom filters so that we can set calculated fields and
add filters on top of them.

class CenturyFilter(admin.SimpleListFilter):
title = 'century'
parameter_name = 'published_date'

def lookups(self, request, model_admin):
return (

(21, '21st century'),
(20, '20th century'),

)

def queryset(self, request, queryset):
value = self.value()
if not value:

return queryset
start = (int(value) - 1)* 100
end = start + 99

(continues on next page)

6.3. Custom List Filters 27

Mastering Django Admin

(continued from previous page)

return queryset.filter(published_date__year_
→˓_gte=start, published_date__year__lte=end)

6.4 Custom Text Filter

Here the number of choices are limited. But in some cases where the
choices are hundred or more, it is better to display a text input instead of
choices.

Let’s write a custom filter to filter books by published year. Let’s write
an input filter

class PublishedYearFilter(admin.SimpleListFilter):
title = 'published year'
parameter_name = 'published_date'
template = 'admin_input_filter.html'

def lookups(self, request, model_admin):
return ((None, None),)

(continues on next page)

28 Chapter 6. Filtering In Admin

Mastering Django Admin

(continued from previous page)

def choices(self, changelist):
query_params = changelist.get_filters_

→˓params()
query_params.pop(self.parameter_name, None)
all_choice = next(super().

→˓choices(changelist))
all_choice['query_params'] = query_params
yield all_choice

def queryset(self, request, queryset):
value = self.value()
if value:

return queryset.filter(published_date__
→˓year=value)

This will show in admin like this.

{% load i18n %}

<h3>{% blocktrans with filter_title=title %} By {{
→˓filter_title }} {% endblocktrans %}</h3>

{% with choices.0 as all_choice %}

<form method="GET">
<input type="text" name="{{ spec.

→˓parameter_name }}" value="{{ spec.qvalue|default_
→˓if_none:"" }}"/>

<input class="btn btn-info" type=
→˓"submit" value="{% trans 'Apply' %}">

{% if not all_choice.selected %}
<button type="button" class=

→˓"btn btn-info"><a href="{{ all_choice.query_
→˓string }}">Clear</button>

{% endif %}
</form>

{% endwith %}
(continues on next page)

6.4. Custom Text Filter 29

Mastering Django Admin

(continued from previous page)

https://stackoverflow.com/a/20588975/2698552

6.5 Advanced Filters

All the above methods will be useful only to a certain extent. Beyond
that, there are 3rd party packages like django-advanced-filters which ad-
vanced filtering abilites.

To setup the package

• Install the package with pip install django-advanced-filters.

• Add advanced_filters to INSTALLED_APPS.

• Add url(r’^advanced_filters/’, include(‘advanced_filters.urls’)) to
project urlconf.

• Run python manage.py migrate.

Once the setup is completed, we can add ``

30 Chapter 6. Filtering In Admin

https://stackoverflow.com/a/20588975/2698552

Mastering Django Admin

from advanced_filters.admin import
→˓AdminAdvancedFiltersMixin

class BookAdAdminFilter(AdminAdvancedFiltersMixin,
→˓admin.ModelAdmin):

list_display = ('id', 'name', 'author',
→˓'published_date', 'is_available', 'name')

advanced_filter_fields = ('name', 'published_
→˓date', 'author', 'is_available')

In the admin page, a popup like this will be shown to apply advanced
filers.

A simple filter can be created to filter all the books that were published
between 1980 to 1990 which have a rating more than 3.75 and number of
pages is not more than 100. This filter can be named and saved for later
use.

6.5. Advanced Filters 31

Mastering Django Admin

32 Chapter 6. Filtering In Admin

CHAPTER

SEVEN

CUSTOM ADMIN ACTIONS

7.1 Bulk Editing In List View

For data cleanup and heavy content updates, bulk editing on a model
makes workflow easier. Django provides list_editable option to make
selected fields editable in the list view itself.

class BestSellerAdmin(RelatedFieldAdmin):
list_display = ('id', 'book', 'year', 'rank')
list_editable = ('book', 'year', 'rank')

This allows to edit the above mentioned fields as shown.

33

Mastering Django Admin

7.2 Custom Actions On Querysets

Django provides admin actions which work on a queryset level. By de-
fault, django provides delete action in the admin.

In our books admin, we can select a bunch of books and delete them.

Django provides an option to hook user defined actions to run additional
actions on selected items. Let us write write a custom admin action to
mark selected books as available.

class BookAdmin(admin.ModelAdmin):
actions = ('make_books_available',)
list_display = ('id', 'name', 'author')

def make_books_available(self, modeladmin,
→˓request, queryset):

queryset.update(is_available=True)
make_books_available.short_description = "Mark

→˓selected books as available"

34 Chapter 7. Custom Admin Actions

Mastering Django Admin

Instead of having custom actions in the drop down, we can put dedi-
cated butons for most frequently used actions to reduce number of clicks
needed to perform an action.

https://github.com/crccheck/django-object-actions

7.3 Custom Actions On Individual Objects

Custom admin actions are inefficient when taking action on an individual
object. For example, to delete a single user, we need to follow these steps.

1. Select the checkbox of the object.

2. Click on the action dropdown.

3. Select “Delete selected” action.

4. Click on Go button.

5. Confirm that the objects needs to be deleted.

Just to delete a single record, we have to perform 5 clicks. That’s too
many clicks for a single action.

To simplify the process, we can have delete button at row level. This
can be achieved by writing a function which will insert delete button for
every record.

ModelAdmin instance provides a set of named URLs for CRUD opera-
tions. To get object url for a page, URL name will be {{ app_label }}_{{

7.3. Custom Actions On Individual Objects 35

https://github.com/crccheck/django-object-actions

Mastering Django Admin

model_name }}_{{ page }}.

For example, to get delete URL of a book object, we can call re-
verse(“admin:book_book_delete”, args=[book_id]). We can add a
delete button with this link and add it to list_display so that delete button
is available for individual objects.

from django.contrib import admin
from django.utils.html import format_html

from book.models import Book

class BookAdmin(admin.ModelAdmin):
list_display = ('id', 'name', 'author', 'is_

→˓available', 'delete')

def delete(self, obj):
view_name = "admin:{}_{}_delete".format(obj.

→˓_meta.app_label, obj._meta.model_name)
link = reverse(view_name, args=[book.pk])
html = '<input type="button" onclick=

→˓"location.href=\'{}\'" value="Delete" />'.
→˓format(link)

return format_html(html)

Now in the admin interface, we have delete button for individual objects.

To delete an object, just click on delete button and then confirm to delete

36 Chapter 7. Custom Admin Actions

Mastering Django Admin

it. Now, we are deleting objects with just 2 clicks.

In the above example, we have used an inbuilt model admin delete view.
We can also write custom view and link those views for custom actions
on individual objects. For example, we can add a button which will mark
the book status to available.

7.4 Custom Actions On Change View

When users want to conditionaly perform a custom action when an object
gets modified, custom action buttons can be provided on the change view.
For example, when a best seller is updated, notify the author of the best
seller via an email.

We can override change_form.html to include a button for custom action.

{% extends 'admin/change_form.html' %}

{% block submit_buttons_bottom %}
{{ block.super }}
<div class="submit-row">

<input type="submit" value="Notify
→˓Author" name="notify-author">

</div>
{% endblock %}

In the admin view, we have to override response_change to handle the
submit button press.

class BestSellerAdmin(admin.ModelAdmin):
change_form_template = "bestseller_changeform.

→˓html"

def response_change(self, request, obj):
if "notify-author" in request.POST:

send_best_seller_email(obj)
self.message_user(request, "Notified

→˓author abouthe the best seller") (continues on next page)

7.4. Custom Actions On Change View 37

Mastering Django Admin

(continued from previous page)

return HttpResponseRedirect(request.
→˓path_info)

return super().response_change(request, obj)

This will show a button on the change form as shown below.

Add confirmation page for potentialy dangerous actions.

There is a 3rd party package django-admin-row-actions, which provides
a mixin to create custom admin actions.

https://github.com/DjangoAdminHackers/django-admin-row-actions

In this chapter, we have seen how to write custom admin actions which
work on single item as well as bulk items.

38 Chapter 7. Custom Admin Actions

https://github.com/DjangoAdminHackers/django-admin-row-actions

CHAPTER

EIGHT

SECURING DJANGO ADMIN

Once the Django Admin is up and running with required functionality, it
is necessary to ensure that it doesn’t not have unattended access.

First, the server infrastrucutre needs to be secured. This is topic itself
can be written as a seperate book. How to secure a linux server1 guide
provides detailed instructions on how to secure a server.

Next, we need to ensure our Django application is secure. Django pro-
vides documentation2 on how to secure a django powered site.

Django provides system check to inspect entire code base and report
common issues. We can run this command with –deploy which activates
additional checks for deployment.

$ python manage.py check --deploy

In this chapter let us focus at Admin related security measures to make it
secure.

1 https://github.com/imthenachoman/How-To-Secure-A-Linux-Server
2 https://docs.djangoproject.com/en/3.0/topics/security/

39

https://github.com/imthenachoman/How-To-Secure-A-Linux-Server
https://docs.djangoproject.com/en/3.0/topics/security/

Mastering Django Admin

8.1 Admin Path

Most of the django sites use /admin/ as the default path for admin inter-
face. This needs to be changed to a different path.

url(r'^secret-path/', admin.site.urls)

We can write a system check to check if /admin/ path is used and raise
an error.

from django.conf import settings
from django.core.checks import Error, Tags, register
from django.urls import resolve

@register(Tags.security, deploy=True)
def check_admin_path(app_configs, **kwargs):

errors = []
try:

default_admin = resolve('/admin/')
except Resolver404:

default_admin = None
if default_admin:

msg = 'Found admin in default "/admin/" path'
hint = 'Route admin via different url'
errors.append(Error(msg, hint))

return errors

Instead of removing admin, We can also setup a honeypot at the de-
fault path which will serve a fake login page. To install honeypot3, run
pip install django-admin-honeypot with pip, add admin_honeypot to IN-
STALLED_APPS and set default path to honeypot path in urls.

url(r'^admin/', include('admin_honeypot.urls',
→˓namespace='admin_honeypot'))

3 https://github.com/dmpayton/django-admin-honeypot

40 Chapter 8. Securing Django Admin

https://github.com/dmpayton/django-admin-honeypot

Mastering Django Admin

Now, we can track all the login attempts on the honeypot admin from the
admin page.

8.2 2 Factor Authentication

To make Admin more secure, we can enable 2 step verification where
user has to provide 2 different authentication factors, one is password
and the other is OTP generated from user mobile.

For this, we can use django-otp4 package and create a custom admin
config to replace default admin site.

Install the package with pip install django-otp, add django_otp,
django_otp.plugins.otp_totp to installed apps and run ./manage.py mi-
grate.

In the admin page, under OTP_TOTP section add new device so that we
can generate OTP for the admin page.

Create 2 files admin.py & apps.py in the project package to create custom
admin config for OTPAdminSite and set it as default.

from django_otp.admin import OTPAdminSite

(continues on next page)

4 https://pypi.org/project/django-otp/

8.2. 2 Factor Authentication 41

https://pypi.org/project/django-otp/

Mastering Django Admin

(continued from previous page)

class LibraryOTPAdminSite(OTPAdminSite):
pass

from django.contrib.admin.apps import AdminConfig

class LibraryAdminConfig(AdminConfig):
default_site = 'library.admin.

→˓LibraryOTPAdminSite'

In the INSTALLED_APPS, replace admin with custom config.

INSTALLED_APPS = [
'django.contrib.admin',
'library.apps.LibraryAdminConfig',

]

Now the admin login page will show OTP login form.

8.3 Environments

When the django app is deployed in multiple environments, it is impor-
tant to distinguish those environments visually so that admin users acci-
dentally don’t modify data in production environments. For this we can
ovveride the base template with a custom template.

42 Chapter 8. Securing Django Admin

Mastering Django Admin

https://github.com/dizballanze/django-admin-env-notice

8.4 Miscellaneous

If you have user groups and permissions, it is important to set permis-
sions on object level.

When using ModelAdmin.get_urls() to extend urls, Django by default
doesn’t do any permission checks and the view is accessible to public.
Ensure that these views are secure by wrapping them with admin_view.

class BookAdmin(admin.ModelAdmin):
def get_urls(self):

urls = super().get_urls()
book_urls = [

path('book_char_data/', self.admin_site.
→˓admin_view(self.chart_data))

]
return book_urls + urls

8.4. Miscellaneous 43

https://github.com/dizballanze/django-admin-env-notice

Mastering Django Admin

44 Chapter 8. Securing Django Admin

CHAPTER

NINE

FINAL WORDS

This short book is written to customize admin interface so that custom
views, reports, analytics are generated in the admin itself.

To provide feedback about this book, please write to
chillar@avilpage.com.

45

	Preface
	Why this book?
	Pre requisites
	Who should read this book?
	Acknowledgements

	The Million Dollar Admin
	Better Defaults
	Use ModelAdmin
	Use Better Widgets
	Better Defaults For Models
	Navigation Menu Bar

	Managing Model Relationships
	Autocompletion For Related Fields
	Hyperlink Related Fields
	Related Fields In Admin List

	Auto Generate Admin Interface
	Manual Registration
	Auto Registration
	Auto Registration With Fields
	Admin Generator

	Filtering In Admin
	Search Fields
	List Filters
	Custom List Filters
	Custom Text Filter
	Advanced Filters

	Custom Admin Actions
	Bulk Editing In List View
	Custom Actions On Querysets
	Custom Actions On Individual Objects
	Custom Actions On Change View

	Securing Django Admin
	Admin Path
	2 Factor Authentication
	Environments
	Miscellaneous

	Final Words

