

Welcome to Mastering Django Admin Book!

	Preface
	Why this book?

	Pre requisites

	Who should read this book?

	Acknowledgements

	The Million Dollar Admin

	Better Defaults
	Use ModelAdmin

	Use Better Widgets

	Better Defaults For Models

	Navigation Menu Bar

	Managing Model Relationships
	Autocompletion For Related Fields

	Hyperlink Related Fields

	Related Fields In Admin List

	Auto Generate Admin Interface
	Manual Registration

	Auto Registration

	Auto Registration With Fields

	Admin Generator

	Filtering In Admin
	Search Fields

	List Filters

	Custom List Filters

	Custom Text Filter

	Advanced Filters

	Custom Admin Actions
	Bulk Editing In List View

	Custom Actions On Querysets

	Custom Actions On Individual Objects

	Custom Actions On Change View

	Securing Django Admin
	Admin Path

	2 Factor Authentication

	Environments

	Miscellaneous

	Final Words

Preface

Why this book?

In this data driven world, internal tools are often overlooked parts in companies. Without efficient tools for analytics and dashboards, cross department communications & customer communications become a bottleneck as people spend more time everyday to get some data.

There are several tools built specifically for analytics and dashboards. But if we are already using Django framework, we can just use Django Admin for most of these tasks.

In this book, we will learn how to customize Django admin for these tasks.

Pre requisites

Readers should be familiar with creating a model/view using Django. If you are new to django, complete the polls tutorial 1 provided in the official Django documentation to get familiar about Django framework.

Who should read this book?

Anyone who wants to learn how to customize and improve the performance of django admin.

Acknowledgements

	1

	https://docs.djangoproject.com/en/3.0/intro/tutorial01/

The Million Dollar Admin

Django admin was first released in 2005 and it has gone through a lot of changes since then. Still the admin interface looks clunky compared to most modern web interfaces.

Jacob Kaplan-Moss, one of the core-developers of Django estimated that it will cost 1 million dollars 1 to hire a team to rebuild admin interface from scratch. Until we get 1 million dollars to revamp the admin interface, let’s look into alternate solutions.

	Use django admin with modern themes/skins. Packages like django-grappelli 2, django-suit 3 extend the existing admin interface and provide new skin,options to customize the UI etc.

	Use drop-in replacements for django admin. Packages like xadmin 4, django-admin2 5 are a complete rewrite of django admin. Even though these packages come with lot of goodies and better defaults, they are no longer actively maintained.

	Use seperate django packages per task.

	Write our own custom admin interface.

We can start default admin interface or use any drop-in replacements for the admin. Even with this admin interface, we need to write custom views/reports based on business requirements.

In the next chapter, lets start with customizing admin interface.

	1

	https://jacobian.org/2016/may/26/so-you-want-a-new-admin/

	2

	https://pypi.org/project/django-grappelli/

	3

	https://pypi.org/project/django-suit/

	4

	https://pypi.org/project/xadmin/

	5

	https://pypi.org/project/django-admin2/

Better Defaults

Use ModelAdmin

When a model is registered with admin, it just shows the string representation of the model object in changelist page.

from book.models import Book

admin.site.register(Book)

[image: _images/admin-defaults-list.png]
Django provides ModelAdmin 1 class which represents a model in admin. We can use the following options to make the admin interface informative and easy to use.

	list_display to display required fields and add custom fields.

	list_filter to add filters data based on a column value.

	list_per_page to set how many items to be shown on paginated page.

	search_fields to search for records based on a field value.

	date_hierarchy to provide date-based drilldown navigation for a field.

	readonly_fields to make seleted fields readonly in edit view.

	prepopulated_fields to auto generate a value for a column based on another column.

	save_as to enable save as new in admin change forms.

from book.models import Book
from django.contrib import admin

@admin.register(Book)
class BookAdmin(admin.ModelAdmin):
 list_display = ('id', 'name', 'author', 'published_date', 'cover', 'is_available')
 list_filter = ('is_available',)
 list_per_page = 10
 search_fields = ('name',)
 date_hierarchy = 'published_date'
 readonly_fields = ('created_at', 'updated_at')

[image: _images/admin-defaults-list2.png]
In list_display in addition to columns, we can add custom methods which can be used to show calculated fields. For example, we can change book color based on its availability.

@admin.register(Book)
class BookAdmin(admin.ModelAdmin):
 list_display = ('id', 'name_colored', 'author', 'published_date', 'cover', 'is_available')

 def name_colored(self, obj):
 if obj.is_available:
 color_code = '00FF00'
 else:
 color_code = 'FF0000'
 html = '{}'.format(color_code, obj.name)
 return format_html(html)

 name_colored.admin_order_field = 'name'
 name_colored.short_description = 'name'

[image: _images/admin-defaults-list3.png]

Use Better Widgets

Sometimes widgets provided by Django are not handy to the users. In such cases it is better to add tailored widgets based on the data.

For images, instead of showing a link, we can show thumbnails of images so that users can see the picture in the list view itself.

@admin.register(Book)
class BookAdmin(admin.ModelAdmin):
 list_display = ('id', 'name_colored', 'thumbnail', 'author', 'published_date', 'is_available')

 def thumbnail(self, obj):
 width, height = 100, 200
 html = ''
 return format_html(
 html.format(url=obj.cover.url, width=width, height=height)
)

This will show thumbnail for book cover images.

[image: _images/defaults-widget1.png]
Viewing and editing JSON field in admin interface will be very difficult in the textbox. Instead, we can use JSON Editor widget provided any third-party packages like django-json-widget, with which viewing and editing JSON data becomes much intuitive.

CSV and Excel imports and exports

from django.contrib.postgres import fields
from django_json_widget.widgets import JSONEditorWidget

@admin.register(Book)
class BookAdmin(admin.ModelAdmin):
 formfield_overrides = {
 fields.JSONField: {
 'widget': JSONEditorWidget
 },
 }

With this, all JSONFields will use JSONEditorWidget, which makes it easy to view and edit json content.

[image: _images/defaults-widget3.png]
There are a wide variety of third-party packages like django-map-widgets, django-ckeditor, django-widget-tweaks etc which provide additional widgets as well as tweaks to existing widgets.

Better Defaults For Models

We can set user friendly names instead of default names for django models in admin. We can override this in model meta options.

class Category(models.Model):
 class Meta:
 verbose_name = "Book Category"
 verbose_name_plural = "Book Categories"

Model fields has an option to enter help_text which is useful documentation as well as help text for forms.

class Book(TimeAuditModel):
 is_available = models.BooleanField(
 help_text='Is the book available to buy?'
)
 published_date = models.DateField(
 help_text='help_text="Please enter the date in YYYY-MM-DD format.'
)

This will be shown in admin as shown below.

[image: _images/admin-defaults-list4.png]

Navigation Menu Bar

When user visits a specific model from the admin page, to switch to a different model user has to go back to home page and then move to the required model. This is inconvinient if user has to switch between models frequently.

To avoid this, a navigation menu bar can be added at the top as shown below, so that users can switch between models with just 1 click.

[image: _images/5.png]
For this, we need to override base_site.html template with the navigation menu bar. Django provides app_list in the template context which has information about all apps and their models which can be used to render menu bar.

 {% for app in app_list %}
 {{ app.name }}

 {% for model in app.models %}
 {{ model.name }}
 {% endfor %}

 {% endfor %}

	1

	https://docs.djangoproject.com/en/2.2/ref/contrib/admin/#modeladmin-objects

Managing Model Relationships

Autocompletion For Related Fields

Lets us go to BookAdmin and try to add a new book.

from book.models import Book

class BookAdmin(admin.ModelAdmin):
 list_display = ('id', 'name', 'author')

admin.site.register(Book, BookAdmin)

By default, this will show a select box with entire authors list. Navigating this select list and finding the required author is difficult.

[image: _images/model-relations1.png]
To make this easier, we can provide autocomplete option for author field so that users can search and select the required author.

from book.models import Book

class AuthorAdmin(admin.ModelAdmin):
 search_fields = ('name',)

class BookAdmin(admin.ModelAdmin):
 list_display = ('id', 'name', 'author')
 autocomplete_fields = ('author',)

admin.site.register(Book, BookAdmin)

For this, ModelAdmin provides autocomplete_fields option to change to select2 autocomplete input. We should also define search_fields on the related admin so that search is performed on these fields.

[image: _images/model-relations2.png]

Hyperlink Related Fields

Lets browse through, BookAdmin and look at some of the books.

from django.contrib import admin

from .models import Book

class BookAdmin(admin.ModelAdmin):
 list_display = ('id', 'name', 'author')

admin.site.register(Book, BookAdmin)

Here, book name field is liked to book change view. But author field is shown as plain text. If we notice some typo or if we have to modify author details, we have to go back to authors admin page, search for relevant author and then change name.

This becomes tedious if users spend lot of time in admin for tasks like this. Instead, if author field is hyperlinked to author change view, we can directly go to that page and change the name.

Django provides an option to access admin views by its URL reversing system. For example, we can get change view of author model in book app using reverse(“admin:book_author_change”, args=id). Now we can use this url to hyperlink author field in book admin.

from django.contrib import admin
from django.utils.safestring import mark_safe

class BookAdmin(admin.ModelAdmin):
 list_display = ('name', 'author_link',)

 def author_link(self, book):
 url = reverse("admin:book_author_change", args=[book.author.id])
 link = '%s' % (url, book.author.name)
 return mark_safe(link)
 author_link.short_description = 'Author'

Now in the book admin view, author field will be hyperlinked to its change view and we can visit just by clicking it.

Depending on requirements, we can link any field in django to other fields or add custom fields to improve productivity of users in admin.

Custom hyper links

https://docs.djangoproject.com/en/dev/ref/models/instances/#get-absolute-url

Related Fields In Admin List

Django admin has ModelAdmin class which provides options and functionality for the models in admin interface. It has options like list_display, list_filter, search_fields to specify fields for corresponding actions.

search_fields, list_filter and other options allow to include a ForeignKey or ManyToMany field with lookup API follow notation. For example, to search by book name in Bestselleradmin, we can specify book__name in search fields.

from django.contrib import admin

from book.models import BestSeller

class BestSellerAdmin(RelatedFieldAdmin):
 search_fields = ('book__name',)
 list_display = ('id', 'year', 'rank', 'book')

admin.site.register(Bestseller, BestsellerAdmin)

However Django doesn’t allow the same follow notation in list_display. To include ForeignKey field or ManyToMany field in the list display, we have to write a custom method and add this method in list display.

from django.contrib import admin

from book.models import BestSeller

class BestSellerAdmin(RelatedFieldAdmin):
 list_display = ('id', 'rank', 'year', 'book', 'author')
 search_fields = ('book__name',)

 def author(self, obj):
 return obj.book.author
 author.description = 'Author'

admin.site.register(Bestseller, BestsellerAdmin)

This way of adding foreignkeys in list_display becomes tedious when there are lots of models with foreignkey fields.

We can write a custom admin class to dynamically set the methods as attributes so that we can use the ForeignKey fields in list_display.

def get_related_field(name, admin_order_field=None, short_description=None):
 related_names = name.split('__')

 def dynamic_attribute(obj):
 for related_name in related_names:
 obj = getattr(obj, related_name)
 return obj

 dynamic_attribute.admin_order_field = admin_order_field or name
 dynamic_attribute.short_description = short_description or related_names[-1].title().replace('_', ' ')
 return dynamic_attribute

class RelatedFieldAdmin(admin.ModelAdmin):
 def __getattr__(self, attr):
 if '__' in attr:
 return get_related_field(attr)

 # not dynamic lookup, default behaviour
 return self.__getattribute__(attr)

class BestSellerAdmin(RelatedFieldAdmin):
 list_display = ('id', 'rank', 'year', 'book', 'book__author')

By sublcassing RelatedFieldAdmin, we can directly use foreignkey fields in list display.

However, this will lead to N+1 problem. We will discuss more about this and how to fix this in orm optimizations chapter.

Auto Generate Admin Interface

Manual Registration

Inbuilt admin interface is one the most powerful & popular feature of Django. Once we create the models, we need to register them with admin, so that it can read schema and populate interface for it.

Let us register Book model in the admin interface.

file: library/book/admin.py

from django.apps import apps

from book.models import Book

class BookAdmin(admin.ModelAdmin):
 list_display = ('id', 'name', 'author')

admin.site.register(Book, BookAdmin)

Now, we can see the book model in admin.

[image: _images/admin-auto-register1.png]
If the django project has too many models to be registered in admin or if it has a legacy database where all tables need to be registered in admin, then adding all those models to admin becomes a tedious task.

Auto Registration

To automate this process, we can programatically fetch all the models in the project and register them with admin. Also, we need to ignore models which are already registered with admin as django doesn’t allow regsitering same model twice.

from django.apps import apps

models = apps.get_models()

for model in models:
 try:
 admin.site.register(model)
 except admin.sites.AlreadyRegistered:
 pass

This code snippet should run after all admin.py files are loaded so that auto registration happends after all manually added models are registered. Django provides AppConfig.ready() to perform any initialization tasks which can be used to hook this code.

file: library/book/apps.py

from django.apps import apps, AppConfig
from django.contrib import admin

class BookAppConfig(AppConfig):

 def ready(self):
 models = apps.get_models()
 for model in models:
 try:
 admin.site.register(model)
 except admin.sites.AlreadyRegistered:
 pass

In the admin, we can see manually registered models and automatically registered models. If we open admin page for any auto registered model, it will show something like this.

[image: _images/admin-auto-register2.png]
This view is not at all useful for the users who want to see the data. It will be more informative if we can show all the fields of the model in admin.

Auto Registration With Fields

To achieve that, we can create an admin class to populate model fields in list_display. While registering, we can use this admin class to register the model.

from django.apps import apps, AppConfig
from django.contrib import admin

class ListModelAdmin(admin.ModelAdmin):
 def __init__(self, model, admin_site):
 self.list_display = [field.name for field in model._meta.fields]
 super().__init__(model, admin_site)

class BookAppConfig(AppConfig):

 def ready(self):
 models = apps.get_models()
 for model in models:
 try:
 admin.site.register(model, ListModelAdmin)
 except admin.sites.AlreadyRegistered:
 pass

Now, if we look at Author admin page, it will be shown with all relevant fields.

[image: _images/admin-auto-register3.png]
Since we have auto registration in place, when a new model is added or columns are altered for existing models, admin interface will update accordingly without any code changes.

Admin Generator

The above methods will be useful to generate a pre-defined admin interface for all the models. If independent customizations are needed for the models, then we use 3rd party packages like django-admin-generator or django-extensions which can generate a fully functional admin interface by introspecting the models. Once the base admin code is ready, we can use the same for futher customizations.

$./manage.py admin_generator books >> books/admin.py

This will generate admin interface for books app.

	1

	https://github.com/WoLpH/django-admin-generator

	2

	https://django-extensions.readthedocs.io/en/latest/admin_generator.html

Filtering In Admin

Search Fields

Django Admin provies search_fields option on ModelAdmin. Setting this will enable a search box in list page to filter items on the model. This can perform lookup on all the fields on the model as well as related model fields.

class BookAdmin(admin.ModelAdmin):
 search_fields = ('name', 'author__name')

[image: _images/filter1.png]
When the number of items in search_fields becomes increases, query becomes quite slow as it does a case-insensitive search of all the search terms against all the search_fields. For example a search for python for data analysis translates to this SQL caluse.

WHERE
(name ILIKE '%python%' OR author.name ILIKE '%python%')
AND (name ILIKE '%for%' OR author.name ILIKE '%for%')
AND (name ILIKE '%data%' OR author.name ILIKE '%data%')
AND (name ILIKE '%analysis%' OR author.name ILIKE '%analysis%')

List Filters

Django also provides list_filter option on ModelAdmin. We can add required fields to list_filter which generate corresponding filters on the right panel of the admin page with all the possible values.

class BookAdminFilter(admin.ModelAdmin):
 list_display = ('id', 'author', 'published_date', 'is_available', 'cover')
 list_filter = ('is_available',)

[image: _images/filter2.png]

Custom List Filters

We can also write custom filters so that we can set calculated fields and add filters on top of them.

class CenturyFilter(admin.SimpleListFilter):
 title = 'century'
 parameter_name = 'published_date'

 def lookups(self, request, model_admin):
 return (
 (21, '21st century'),
 (20, '20th century'),
)

 def queryset(self, request, queryset):
 value = self.value()
 if not value:
 return queryset
 start = (int(value) - 1)* 100
 end = start + 99
 return queryset.filter(published_date__year__gte=start, published_date__year__lte=end)

[image: _images/filter3.png]

Custom Text Filter

Here the number of choices are limited. But in some cases where the choices are hundred or more, it is better to display a text input instead of choices.

Let’s write a custom filter to filter books by published year. Let’s write an input filter

class PublishedYearFilter(admin.SimpleListFilter):
 title = 'published year'
 parameter_name = 'published_date'
 template = 'admin_input_filter.html'

 def lookups(self, request, model_admin):
 return ((None, None),)

 def choices(self, changelist):
 query_params = changelist.get_filters_params()
 query_params.pop(self.parameter_name, None)
 all_choice = next(super().choices(changelist))
 all_choice['query_params'] = query_params
 yield all_choice

 def queryset(self, request, queryset):
 value = self.value()
 if value:
 return queryset.filter(published_date__year=value)

This will show in admin like this.

{% load i18n %}

<h3>{% blocktrans with filter_title=title %} By {{ filter_title }} {% endblocktrans %}</h3>

 {% with choices.0 as all_choice %}
 <form method="GET">
 <input type="text" name="{{ spec.parameter_name }}" value="{{ spec.qvalue|default_if_none:"" }}"/>
 <input class="btn btn-info" type="submit" value="{% trans 'Apply' %}">
 {% if not all_choice.selected %}
 <button type="button" class="btn btn-info">Clear</button>
 {% endif %}
 </form>
 {% endwith %}

[image: _images/filter4.png]
https://stackoverflow.com/a/20588975/2698552

Advanced Filters

All the above methods will be useful only to a certain extent. Beyond that, there are 3rd party packages like django-advanced-filters which advanced filtering abilites.

To setup the package

	Install the package with pip install django-advanced-filters.

	Add advanced_filters to INSTALLED_APPS.

	Add url(r’^advanced_filters/’, include(‘advanced_filters.urls’)) to project urlconf.

	Run python manage.py migrate.

Once the setup is completed, we can add ``

from advanced_filters.admin import AdminAdvancedFiltersMixin

class BookAdAdminFilter(AdminAdvancedFiltersMixin, admin.ModelAdmin):
 list_display = ('id', 'name', 'author', 'published_date', 'is_available', 'name')
 advanced_filter_fields = ('name', 'published_date', 'author', 'is_available')

In the admin page, a popup like this will be shown to apply advanced filers.

[image: _images/filter5.png]
A simple filter can be created to filter all the books that were published between 1980 to 1990 which have a rating more than 3.75 and number of pages is not more than 100. This filter can be named and saved for later use.

Custom Admin Actions

Bulk Editing In List View

For data cleanup and heavy content updates, bulk editing on a model makes workflow easier. Django provides list_editable option to make selected fields editable in the list view itself.

class BestSellerAdmin(RelatedFieldAdmin):
 list_display = ('id', 'book', 'year', 'rank')
 list_editable = ('book', 'year', 'rank')

This allows to edit the above mentioned fields as shown.

[image: _images/1.png]

Custom Actions On Querysets

Django provides admin actions which work on a queryset level. By default, django provides delete action in the admin.

In our books admin, we can select a bunch of books and delete them.

[image: _images/51.png]
Django provides an option to hook user defined actions to run additional actions on selected items. Let us write write a custom admin action to mark selected books as available.

class BookAdmin(admin.ModelAdmin):
 actions = ('make_books_available',)
 list_display = ('id', 'name', 'author')

 def make_books_available(self, modeladmin, request, queryset):
 queryset.update(is_available=True)
 make_books_available.short_description = "Mark selected books as available"

[image: _images/admin-custom-actions2.png]
Instead of having custom actions in the drop down, we can put dedicated butons for most frequently used actions to reduce number of clicks needed to perform an action.

https://github.com/crccheck/django-object-actions

Custom Actions On Individual Objects

Custom admin actions are inefficient when taking action on an individual object. For example, to delete a single user, we need to follow these steps.

	Select the checkbox of the object.

	Click on the action dropdown.

	Select “Delete selected” action.

	Click on Go button.

	Confirm that the objects needs to be deleted.

Just to delete a single record, we have to perform 5 clicks. That’s too many clicks for a single action.

To simplify the process, we can have delete button at row level. This can be achieved by writing a function which will insert delete button for every record.

ModelAdmin instance provides a set of named URLs for CRUD operations. To get object url for a page, URL name will be {{ app_label }}_{{ model_name }}_{{ page }}.

For example, to get delete URL of a book object, we can call reverse(“admin:book_book_delete”, args=[book_id]). We can add a delete button with this link and add it to list_display so that delete button is available for individual objects.

from django.contrib import admin
from django.utils.html import format_html

from book.models import Book

class BookAdmin(admin.ModelAdmin):
 list_display = ('id', 'name', 'author', 'is_available', 'delete')

 def delete(self, obj):
 view_name = "admin:{}_{}_delete".format(obj._meta.app_label, obj._meta.model_name)
 link = reverse(view_name, args=[book.pk])
 html = '<input type="button" onclick="location.href=\'{}\'" value="Delete" />'.format(link)
 return format_html(html)

Now in the admin interface, we have delete button for individual objects.

[image: _images/admin-custom-actions3.png]
To delete an object, just click on delete button and then confirm to delete it. Now, we are deleting objects with just 2 clicks.

In the above example, we have used an inbuilt model admin delete view. We can also write custom view and link those views for custom actions on individual objects. For example, we can add a button which will mark the book status to available.

Custom Actions On Change View

When users want to conditionaly perform a custom action when an object gets modified, custom action buttons can be provided on the change view. For example, when a best seller is updated, notify the author of the best seller via an email.

We can override change_form.html to include a button for custom action.

{% extends 'admin/change_form.html' %}

{% block submit_buttons_bottom %}
 {{ block.super }}
 <div class="submit-row">
 <input type="submit" value="Notify Author" name="notify-author">
 </div>
{% endblock %}

In the admin view, we have to override response_change to handle the submit button press.

class BestSellerAdmin(admin.ModelAdmin):
 change_form_template = "bestseller_changeform.html"

 def response_change(self, request, obj):
 if "notify-author" in request.POST:
 send_best_seller_email(obj)
 self.message_user(request, "Notified author abouthe the best seller")
 return HttpResponseRedirect(request.path_info)
 return super().response_change(request, obj)

This will show a button on the change form as shown below.

[image: _images/3.png]
Add confirmation page for potentialy dangerous actions.

There is a 3rd party package django-admin-row-actions, which provides a mixin to create custom admin actions.

https://github.com/DjangoAdminHackers/django-admin-row-actions

In this chapter, we have seen how to write custom admin actions which work on single item as well as bulk items.

Securing Django Admin

Once the Django Admin is up and running with required functionality, it is necessary to ensure that it doesn’t not have unattended access.

First, the server infrastrucutre needs to be secured. This is topic itself can be written as a seperate book. How to secure a linux server 1 guide provides detailed instructions on how to secure a server.

Next, we need to ensure our Django application is secure. Django provides documentation 2 on how to secure a django powered site.

Django provides system check to inspect entire code base and report common issues. We can run this command with –deploy which activates additional checks for deployment.

$ python manage.py check --deploy

In this chapter let us focus at Admin related security measures to make it secure.

	1

	https://github.com/imthenachoman/How-To-Secure-A-Linux-Server

	2

	https://docs.djangoproject.com/en/3.0/topics/security/

Admin Path

Most of the django sites use /admin/ as the default path for admin interface. This needs to be changed to a different path.

url(r'^secret-path/', admin.site.urls)

We can write a system check to check if /admin/ path is used and raise an error.

from django.conf import settings
from django.core.checks import Error, Tags, register
from django.urls import resolve

@register(Tags.security, deploy=True)
def check_admin_path(app_configs, **kwargs):
 errors = []
 try:
 default_admin = resolve('/admin/')
 except Resolver404:
 default_admin = None
 if default_admin:
 msg = 'Found admin in default "/admin/" path'
 hint = 'Route admin via different url'
 errors.append(Error(msg, hint))

 return errors

Instead of removing admin, We can also setup a honeypot at the default path which will serve a fake login page. To install honeypot 3, run pip install django-admin-honeypot with pip, add admin_honeypot to INSTALLED_APPS and set default path to honeypot path in urls.

url(r'^admin/', include('admin_honeypot.urls', namespace='admin_honeypot'))

Now, we can track all the login attempts on the honeypot admin from the admin page.

[image: _images/secure1.png]

	3

	https://github.com/dmpayton/django-admin-honeypot

2 Factor Authentication

To make Admin more secure, we can enable 2 step verification where user has to provide 2 different authentication factors, one is password and the other is OTP generated from user mobile.

For this, we can use django-otp 4 package and create a custom admin config to replace default admin site.

	4

	https://pypi.org/project/django-otp/

Install the package with pip install django-otp, add django_otp, django_otp.plugins.otp_totp to installed apps and run ./manage.py migrate.

In the admin page, under OTP_TOTP section add new device so that we can generate OTP for the admin page.

Create 2 files admin.py & apps.py in the project package to create custom admin config for OTPAdminSite and set it as default.

from django_otp.admin import OTPAdminSite

class LibraryOTPAdminSite(OTPAdminSite):
 pass

from django.contrib.admin.apps import AdminConfig

class LibraryAdminConfig(AdminConfig):
 default_site = 'library.admin.LibraryOTPAdminSite'

In the INSTALLED_APPS, replace admin with custom config.

INSTALLED_APPS = [
 # 'django.contrib.admin',
 'library.apps.LibraryAdminConfig',
]

Now the admin login page will show OTP login form.

[image: _images/secure3.png]

Environments

When the django app is deployed in multiple environments, it is important to distinguish those environments visually so that admin users accidentally don’t modify data in production environments. For this we can ovveride the base template with a custom template.

https://github.com/dizballanze/django-admin-env-notice

Miscellaneous

If you have user groups and permissions, it is important to set permissions on object level.

When using ModelAdmin.get_urls() to extend urls, Django by default doesn’t do any permission checks and the view is accessible to public. Ensure that these views are secure by wrapping them with admin_view.

class BookAdmin(admin.ModelAdmin):
 def get_urls(self):
 urls = super().get_urls()
 book_urls = [
 path('book_char_data/', self.admin_site.admin_view(self.chart_data))
]
 return book_urls + urls

Final Words

This short book is written to customize admin interface so that custom views, reports, analytics are generated in the admin itself.

To provide feedback about this book, please write to chillar@avilpage.com.

Index

Dashboards

Charts

Often times, a simple chart conveys information better than a large table. However django doesn’t have builtin support for charts. Let us create a new admin view to display a chart which shows the number of books that are borrowed in the last 2 weeks days.

Create a proxy model for BorrowedBooks and register it in the admin so that we can create additional view for that model.

class BorrowedBookDashboard(BorrowedBook):
 class Meta:
 proxy = True

class BorrowedBookDashboardAdmin(admin.ModelAdmin):
 pass

ChangeList view is shown by default when a particular model is opened in admin. We can override this view to show a chart instead of listing all items in a table.

The ModelAdmin class has a method called changelist_view. This method is responsible for rendering the ChangeList page. By overriding this method we can pass chart data to the template.

class BorrowedBookDashboardAdmin(admin.ModelAdmin):

 def changelist_view(self, request, extra_context=None):
 qs = BorrowedBook.objects.annotate(date=TruncDay("updated_at")).values("date").annotate(
 count=Count("id")).values_list('date', 'count').order_by('-date')
 qs = qs.extra(select={'datestr': "to_char(date, 'YYYY-MM-DD')"})
 extra_context = {
 'chart_labels': list(chart_data.keys()),
 'chart_data': list(chart_data.values()),
 }
 return super().changelist_view(request, extra_context=extra_context)

Dashboards

We can create simple dashboards as above without any 3rd party packages. To add more complex dashboards, there are lot of 3rd party packages.

https://github.com/sshwsfc/xadmin

Doesn’t have documentation in english.

https://github.com/byashimov/django-controlcenter

https://github.com/geex-arts/django-jet

ORM Gotchas

N+1 Queries

Caching

Eager evaluation

Lazy evaluation

book.author.id
book.author_id

qs.exist()

.iterator()

bulk operations

	bulk update wont call save or signals
	Runpython wont call these

get only what you need

values_list()

enable query logging

Disable full count

show_full_result_count = False

Fetch only required fields

When a model is registered in admin, django tries to fetch all the fields of the table in the query. If there are any joins involved, it fetch fields of the joined tables also. This will slow down the query when the table size is big or number of results per page is more.

To make queries faster, we can limit the queryset to fetch only required fields.

class BookAdmin(admin.ModelAdmin):
 def get_queryset(self, request):
 qs = super().get_queryset(request)
 qs = qs.only('id', 'name')
 return qs

admin.site.register(Book, BookAdmin)

Appendix A

Shell

zsh/fish

aliases

auto completion

Developers and hackers prefer using terminal and spend a lot of time on it. Instead of typing long commands over and over, they can be aliased to shortnames. The shell builtin alias allows users to set aliases.

One of the most used command while setting up development environment is pip install -r requirements.txt This can be aliased to pir.

alias pir=’pip install -r requirements.txt
Now to install requirements, type pir and pressing enter. Here are some other aliases related to python which will be useful on a daily basis.

alias py=’python’
alias ipy=’ipython’
alias py3=’python3’
alias ipy3=’ipython3’

alias jn=’jupyter notebook’

alias wo=’workon’
alias pf=’pip freeze | sort’
alias pi=’pip install’
alias pun=’pip uninstall’

alias dj=”python manage.py”
alias drs=”python manage.py runserver”
alias drp=”python manage.py runserverplus”
alias dsh=”python manage.py shell”
alias dsp=”python manage.py shell_plus”
alias dsm=”python manage.py schemamigration”
alias dm=”python manage.py migrate”
alias dmm=”python manage.py makemigrations”
alias ddd=”python manage.py dumpdata”
alias dld=”python manage.py loaddata”
alias dt=”python manage.py test”
Just add the above aliases to your ~/.bashrc or ~/.zshrc. That’s it. Hpy alsng!

iPython

init file

auto reload

Form with multiple submit buttons

submit1

submit2

Dealing With CSRF Token Outside Of Django

Ajax

When making ajax calls from browser, we need to set CSRF token.

Postman

Django has inbuilt CSRF protection mechanism for requests via unsafe methods to prevent Cross Site Request Forgeries. When CSRF protection is enabled on AJAX POST methods, X-CSRFToken header should be sent in the request.

Postman is one of the widely used tool for testing APIs. In this article, we will see how to set csrf token and update it automatically in Postman.
CSRF Token In Postman

Django sets csrftoken cookie on login. After logging in, we can see the csrf token from cookies in the Postman.

We can grab this token and set it in headers manually.

But this token has to be manually changed when it expires. This process becomes tedious to do it on an expiration basis.

Instead, we can use Postman scripting feature to extract token from cookie and set it to an environment variable. In Test section of postman, add these lines.

var xsrfCookie = postman.getResponseCookie(“csrftoken”);
postman.setEnvironmentVariable(‘csrftoken’, xsrfCookie.value);

This extracts csrf token and sets it to an evironment variable called csrftoken in the current environment.

Now in our requests, we can use this variable to set the header.

When the token expires, we just need to login again and csrf token gets updated automatically.
Conclusion

In this article we have seen how to set and renew csrftoken automatically in Postman. We can follow similar techniques on other API clients like CURL or httpie to set csrf token.

Shell

HTTPie is an alternative to curl for interacting with web services from CLI. It provides a simple and intuitive interface and it is handy to send arbitrary HTTP requests while testing/debugging APIs.

When working with web applications that require authentication, using httpie is difficult as authentication mechanism will be different for different applications. httpie has in built support for basic & digest authentication.

To authenticate with Django apps, a user needs to make a GET request to login page. Django sends login form with a CSRF token. User can submit this form with valid credentials and a session will be initiated.

Establish session manually is boring and it gets tedious when working with multiple apps in multiple environments(development, staging, production).

I have written a plugin called httpie-django-auth which automates django authentication. It can be installed with pip

pip install httpie-django-auth

By default, it uses /admin/login to login. If you need to use some other URL for logging, set HTTPIE_DJANGO_AUTH_URL environment variable.

export HTTPIE_DJANGO_AUTH_URL=’/accounts/login/’

Now you can send authenticated requests to any URL as

http :8000/profile -A=django –auth=’username:password’

 paas

iaas

ec2

home

Laziness & Caching

Dynamic Initial Values In Forms

Django form fields accept initial argument. So You can set a default value for a field.

In [1]: from django import forms

In [2]: class SampleForm(forms.Form):
 ...: name = forms.CharField(max_length=10, initial='avil page')
 ...:

In [3]: f = SampleForm()

In [4]: f.as_p()
Out[4]: u'<p>Name: <input maxlength="10" name="name" type="text" value="avil page" /></p>'

Sometimes it is required to override init method in forms and set field initial arguments.

In [11]: from django import forms

In [12]: class AdvancedForm(forms.Form):
 :
 : def __init__(self, *args, **kwargs):
 : super().__init__(*args, **kwargs)
 : self.fields['name'].initial = 'override'
 :
 : name=forms.CharField(max_length=10)
 :

In [13]: f2 = AdvancedForm()

In [14]: f2.as_p()
Out[14]: '<p>Name: <input maxlength="10" name="name" type="text" value="override" /></p>'

Now let’s pass some initial data to form and see what happens.

In [11]: from django import forms

In [12]: class AdvancedForm(forms.Form):
 :
 : def __init__(self, *args, **kwargs):
 : super().__init__(*args, **kwargs)
 : self.fields['name'].initial = 'override' # don't try this at home
 :
 : name=forms.CharField(max_length=10)
 :

In [19]: f3 = AdvancedForm(initial={'name': 'precedence'})

In [20]: f3.as_p()
Out[20]: '<p>Name: <input maxlength="10" name="name" type="text" value="precedence" /></p>'

If You look at the value of input field, it’s is NOT the overrided. It still has form initial value!

If You look into source code of django forms to find what is happening, You will find this.

data = self.field.bound_data(
 self.data,
 self.form.initial.get(self.name, self.field.initial) # precedence matters!!!!
)

So form’s initial value has precedence over fields initial values.

So You have to override form’s initial value instead of fields’s initial value to make it work as expected.

In [21]: from django import forms

In [22]: class AdvancedForm(forms.Form):
 :
 : def __init__(self, *args, **kwargs):
 : super().__init__(*args, **kwargs)
 : self.initial['name'] = 'override' # aha!!!!
 :
 : name=forms.CharField(max_length=10)
 :

In [23]: f4 = AdvancedForm(initial={'name': 'precedence'})

In [24]: f4.as_p()
Out[24]: '<p>Name: <input maxlength="10" name="name" type="text" value="override" /></p>'

Management command
intial value

models initial value
dict={}

Management commands

ram
.iterator()

cpu
cron job
frequent restarts

Profiling & Optimizing Dango

What to Optimize?

When optimizing performance of web application, a common mistake is to start with optimizing the slowest page(or API) or going after micro optimizations which are not worth the effort.

In addition to considering response time, we should also consider the traffic it is receving to priorotize the order of optimization.

Metrics

Let us profile our library django application and find performance bottlenecks.

pip install django-silk

Add silk to installed apps and include silk middleware in django settings.

MIDDLEWARE = [
 ...
 'silk.middleware.SilkyMiddleware',
 ...
]

INSTALLED_APPS = (
 ...
 'silk'
)

Run migrations so that Silk can create required database tables to store profile data.

$ python manage.py makemigrations
$ python manage.py migrate
$ python manage.py collectstatic

Include silk urls in root urlconf to view the profile data.

urlpatterns += [url(r'^silk/', include('silk.urls', namespace='silk'))]

On silk requests page(http://host/silk/requests/), we can see all requests and sort them by overall time or time spent in database.

Silk creates silk_request table which contains information about the requests processed by django.

In this article, we learnt how to profile django webapp and identify bottlenecks to improve performance. In the next article, we wil learn how to optimize these bottlenecks by taking an in-depth look at them.

Aggregration

Silk doesn’t have support for aggregration of metrics and showing show overall picture of the collected data on a dashboard.

We can write an admin view to show a dashboard of the metrics.

Profiling

./manage.py runcprofileserver

Optimizing For Performance

 admin.site.site_header = "library admin"
admin.site.site_title = "library admin portal"
admin.site.index_title = "Welcome to library admin portal"

Sorting Models By Frequency

https://github.com/mishbahr/django-modeladmin-reorder

Customize Header/Title

 admin.site.site_header = ‘My administration’

	show filtered page first
	def get_default_filters(self, request):

https://docs.djangoproject.com/en/2.1/ref/contrib/admin/#django.contrib.admin.ModelAdmin.readonly_fields

Log SQL Queries To Console

Django ORM makes easy to interact with database. To understand what is happening behing the scenes or to see SQL performance, we can log all the SQL queries that be being executed. In this article, we will see various ways to achieve this.

Using debug-toolbar

Django debug toolbar provides panels to show debug information about requests. It has SQL panel which shows all executed SQL queries and time taken for them.

When building REST APIs or micro services where django templating engine is not used, this method won’t work. In these situations, we have to log SQL queries to console.

Using django-extensions

Django-extensions provides lot of utilities for productive development. For runserver_plus and shell_plus commands, it accepts and optional –print-sql argument, which prints all the SQL queries that are being executed.

./manage.py runserver_plus –print-sql
./manage.py shell_plus –print-sql
Whenever an SQL query gets executed, it prints the query and time taken for it in console.

In [42]: User.objects.filter(is_staff=True)
Out[42]: SELECT “auth_user”.”id”,

“auth_user”.”password”,
“auth_user”.”last_login”,
“auth_user”.”is_superuser”,
“auth_user”.”username”,
“auth_user”.”first_name”,
“auth_user”.”last_name”,
“auth_user”.”email”,
“auth_user”.”is_staff”,
“auth_user”.”is_active”,
“auth_user”.”date_joined”

FROM “auth_user”

WHERE “auth_user”.”is_staff” = true
LIMIT 21

Execution time: 0.002107s [Database: default]

<QuerySet [<User: anand>, <User: chillar>]>
Using django-querycount
Django-querycount provides a middleware to show SQL query count and show duplicate queries on console.

------	———–	----------	———-	----------	————
Type	Database	Reads	Writes	Totals	Duplicates
------	———–	----------	———-	----------	————
RESP	default	3	0	3	1
------	———–	----------	———-	----------	————
Total queries: 3 in 1.7738s

Repeated 1 times.
SELECT “django_session”.”session_key”,
“django_session”.”session_data”, “django_session”.”expire_date” FROM
“django_session” WHERE (“django_session”.”session_key” =
‘dummy_key AND “django_session”.”expire_date”
> ‘2018-05-31T09:38:56.369469+00:00’::timestamptz)
This package provides additional settings to customize output.

Django logging
Instead of using any 3rd party package, we can use django.db.backends logger to print all the SQL queries.

Add django.db.backends to loggers list and set log level and handlers.

	‘loggers’: {
	
	‘django.db.backends’: {
	‘level’: ‘DEBUG’,
‘handlers’: [‘console’,],

},

In runserver console, we can see all SQL queries that are being executed.

(0.001) SELECT “django_admin_log”.”id”, “django_admin_log”.”action_time”, “django_admin_log”.”user_id”, “django_admin_log”.”content_type_id”, “django_admin_log”.”object_id”, “django_admin_log”.”object_repr”, “django_admin_log”.”action_flag”, “django_admin_log”.”change_message”, “auth_user”.”id”, “auth_user”.”password”, “auth_user”.”last_login”, “auth_user”.”is_superuser”, “auth_user”.”username”, “auth_user”.”first_name”, “auth_user”.”last_name”, “auth_user”.”email”, “auth_user”.”is_staff”, “auth_user”.”is_active”, “auth_user”.”date_joined”, “django_content_type”.”id”, “django_content_type”.”app_label”, “django_content_type”.”model” FROM “django_admin_log” INNER JOIN “auth_user” ON (“django_admin_log”.”user_id” = “auth_user”.”id”) LEFT OUTER JOIN “django_content_type” ON (“django_admin_log”.”content_type_id” = “django_content_type”.”id”) WHERE “django_admin_log”.”user_id” = 4 ORDER BY “django_admin_log”.”action_time” DESC LIMIT 10; args=(4,)
[2018/06/03 15:06:59] HTTP GET /admin/ 200 [1.69, 127.0.0.1:47734]
These are few ways to log all SQL queries to console. We can also write a custom middleware for better logging of these queries and get some insights.

Django Migrations

Safe/Unsafe Migrations

test

Schema/Data Migrations

Mixing schema and data migrations

set constrainsts

split migrations

preface

mental models

Revamp

reduce cost of maintainance and development

people come to django becase of admin

more visual and responsive

relations

https://github.com/theatlantic/django-nested-admin

raw_id_fields

inline actions

nested admin

Tabular and stacked inlines

Filter horizontal and filter vertical

Collapsing sections

Maps

filters

https://github.com/modlinltd/django-advanced-filters

date hierarchy

https://github.com/silentsokolov/django-admin-rangefilter

https://github.com/farhan0581/django-admin-autocomplete-filter

 _static/minus.png

_static/plus.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to Mastering Django Admin Book!

 		
 Preface

 		
 Why this book?

 		
 Pre requisites

 		
 Who should read this book?

 		
 Acknowledgements

 		
 The Million Dollar Admin

 		
 Better Defaults

 		
 Use ModelAdmin

 		
 Use Better Widgets

 		
 Better Defaults For Models

 		
 Navigation Menu Bar

 		
 Managing Model Relationships

 		
 Autocompletion For Related Fields

 		
 Hyperlink Related Fields

 		
 Related Fields In Admin List

 		
 Auto Generate Admin Interface

 		
 Manual Registration

 		
 Auto Registration

 		
 Auto Registration With Fields

 		
 Admin Generator

 		
 Filtering In Admin

 		
 Search Fields

 		
 List Filters

 		
 Custom List Filters

 		
 Custom Text Filter

 		
 Advanced Filters

 		
 Custom Admin Actions

 		
 Bulk Editing In List View

 		
 Custom Actions On Querysets

 		
 Custom Actions On Individual Objects

 		
 Custom Actions On Change View

 		
 Securing Django Admin

 		
 Admin Path

 		
 2 Factor Authentication

 		
 Environments

 		
 Miscellaneous

 		
 Final Words

_images/5.png
Dashboard Book «

Authors I
Best sellers

Books

_images/51.png
Select book to change

O b NAME

[128 Python Cookbook
127 test book

(1 126 Animal Farm

1 of 100 selected

AUTHOR
David Beazley
test author

George orwell

PUBLISHED DATE
Feb. 6, 2020
Dec. 23,2019

Jan. 26,2020

_images/1.png
() BOOK

Q6 Fluent Python

o s 1984

M 2 . .
- The Happines Hypothesis

- Modern man in search of soul

4 best sellers

0 of 4 selected

S+ %

S+ %

S+ %

S+ %

YEAR

2000

2018

2019

2020

RANK

Save

_images/3.png
Home > Book » Best sellers » Fluent Python

@ Notified author about the the best seller

Change best eller

Book: ‘ Fluent Python x v ’, + %

Save and add another Save and continue editing SAVE
Notify Author

_images/admin-auto-register1.png
NAME

Fluent Python

Modern man in search of soul
The Happines Hypothesis

1984

j Go | 0of 4 selected

AUTHOR

Luciano Ramalho
C.J. Jung
Jonathan haidt

George orwell

IS AVAILABLE

o 0 o

_images/admin-auto-register2.png
Action: | — v|| Go | 0 of 5 selected

() AUTHOR

() Author object (6)
() Author object (5)
() Author object (4)

() Author object (3)

_images/admin-auto-register3.png
Action:

D

NAME

Luciano Ramalho
C.J. Jung
Jonathan haidt

George orwell

j Go | 0of4 selected

ACTIVE

O © ©

_images/admin-defaults-list.png
0O 0 0 0

O

BOOK

Book object (15)
Book object (14)
Book object (13)

Book object (12)

_images/admin-defaults-list2.png
D a

NAME

1984

The Happines Hypothesis
Modern man in search of soul

Fluent Python

AUTHOR
George orwell
Jonathan haidt
C.J. Jung

Luciano Ramalho

_images/admin-custom-actions2.png
2 of 4 selected

UTHOR IS AVAILABLE
Fluent Python Luciano Ramalho [x]
(7 Modern man in search of soul C.J.Jung (V]

The Happines Hypothesis Jonathan haidt [x]

_images/admin-custom-actions3.png
Action:
O D
o 10
0O 3
M 2

NAME

Fluent Python

Modern man in search of soul

The Happines Hypothesis

j Go | 0of 4selected

AUTHOR

Luciano Ramalho

C. J. Jung

Jonathan haidt

IS AVAILABLE

(<]

(]

(<]

DELETE

Delete

Delete

Delete

_images/defaults-widget1.png
O

D

NAME

1984

The Happines
Hypothesis

a

THUMBNAIL

JONATHAN HAIDT

HAPPINESS
HYPOTHESIS

AUTHOR

George orwell

Jonathan haidt

PUBLISHED DATE

Sept. 13,1984

Sept. 13,2009

IS AVAILABLE

(<]

(]

_images/defaults-widget3.png
Format:

= = M Code~v

"hardcover": "no",|
"paperback": "yes",
-~ "ebook": {
"mobi": "no",
"epub™: "no"
"pdf": "yes”
}

LWoo~NOOUTAWN R

-

_images/admin-defaults-list3.png
Home > Book » Books

Select book to change
Q Search FILTER
By is available
1919 1984 2009 2012 2019 All
. Yes
Action: | R s || Go | 0 of 10 selected
No
[) NAME a AUTHOR PUBLISHED DATE IS AVAILABLE
M 1 1984 George orwell Sept. 13,1984 [x)
- 10 Fluent Python Luciano Ramalho Sept. 13,2012 (V]
[Modern man in search of soul C.J.Jung Sept. 13,1919 V]
0O 2 The Happines Hypothesis Jonathan haidt Sept. 13,2009 [x]

_images/admin-defaults-list4.png
Is available
Is the book available to buy?

Published date: Today | £
Please enter the date in YYYY-MM-DD format.

_images/filter2.png
FILTER

By is available

All
Yes
No

_images/filter3.png
FILTER

By century

All
21st century
20th century

_images/filter1.png
Select book to change

Q |python Search |2 results (115 total)
Action: | =====mmmm 4/l Go | 0of 2selected

O D a NAME AUTHOR

o 10 Fluent Python Luciano Ramalho

M 128 Python Cookbook David Beazley

_images/model-relations1.png
Name: Python Cookbook m

Author: |V s

Jonathan haidt

| George orwell
. C.J. Jung

. Luciano Ramalho
' David Beazley

|

L S S Rt L S L L S S S S gl [

Slug:

Is available

_images/model-relations2.png
Name:

Author:

Slug:

Is available
1s the book available to buv?

Python Cookbook 2=] ’

David Beazley

David Jones

_images/filter4.png
FILTER

By published year

_images/filter5.png
Create advanced filter:

Title: 2020 available books

FIELD OPERATOR

<«

Author Equals

Equals

<«

Published date

Add another filter

Save & Filter Now! [¢=LIeS]

<«

<«

VALUE

NEGATE

DELETE

_images/secure1.png
Home > Admin_Honeypot > Login attempts

Select login attempt to change

Q| [search)

USERNAME IP ADDRESS SESSION TIMESTAMP

admin 127.0.0.1 None Jan. 25,2020, 1:08 a.m.

root 127.0.0.1 None Jan. 25,2020, 1:17 a.m.

_images/secure3.png
Username:

Password:

OTP Token:

