
Django Timeline Logger Documentation
Release 1.1.2

Maykin Media

May 30, 2018

Contents

1 Overview 3

2 Requirements 5

3 Contents 7
3.1 Installation . 7
3.2 Usage . 7
3.3 Sending log reports . 10
3.4 Settings . 11
3.5 Contributing . 11
3.6 Changelog . 12

4 License 13

5 Source Code and contributing 15

6 Indices and tables 17

i

ii

Django Timeline Logger Documentation, Release 1.1.2

A reusable Django app to log actions and display them in a timeline.

Contents 1

https://travis-ci.org/maykinmedia/django-timeline-logger
https://codecov.io/gh/maykinmedia/django-timeline-logger
https://badge.fury.io/py/django-timeline-logger

Django Timeline Logger Documentation, Release 1.1.2

2 Contents

CHAPTER 1

Overview

Django Timeline Logger is a simple pluggable application that adds events logging and reporting to your Django
projects.

It easily enables you to generate customized log messages on events, thus providing your backend with a logging
system slightly more advanced and customizable than the builtin “admin logs” generated via LogEntry.

3

Django Timeline Logger Documentation, Release 1.1.2

4 Chapter 1. Overview

CHAPTER 2

Requirements

Django Timeline Logger makes use of Django’s contrib.postgres.JSONField, then your backend will need:

• At least Django-1.11.

• At least PostgreSQL-9.4.

• At least psycopg2-2.5.4.

5

https://docs.djangoproject.com/en/1.11/releases/1.11/
https://www.postgresql.org/docs/9.4/static/release-9-4.html
https://pypi.python.org/pypi/psycopg2/2.5.4

Django Timeline Logger Documentation, Release 1.1.2

6 Chapter 2. Requirements

CHAPTER 3

Contents

3.1 Installation

To install Django Timeline Logger you can use PyPI:

pip install django-timeline-logger

Once installation is complete, you can enable the application in your Django project by adding it to
INSTALLED_APPS in the regular way:

INSTALLED_APPS = [
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
...

'timeline_logger',
]

Then, run the migrations:

python manage.py migrate timeline_logger

You can now start using the application. Go to Usage section for the details.

3.2 Usage

Django Timeline Logger works by using a custom model TimelineLog, which is designed to store:

• A Django model instance (a database object).

• A timestamp.

• A user instance (optional).

7

Django Timeline Logger Documentation, Release 1.1.2

• A path to a template (optional, defaults to timeline_logger/default.txt).

• A context (optional).

Given those details, it’s pretty clear how it works: whenever you want to log an event in your system, you create a
TimelineLog for it, passing the data you consider useful in the context and using a template to render the message.

The context is stored in a django.contrib.postgres.JSONField, which basically accepts a Python dictio-
nary representing JSON data, to be built by you with the data you want to pass to the message template.

3.2.1 Default example

An example of a default usage of the TimelineLog model could be as follows. Imagine you have a “blog” applica-
tion where your users can create posts, stored by using a Django model Post.

Using the default behaviour of TimelineLog, you can create a log each time a user posts a new entry in the blog,
like this:

from timeline_logger.models import TimelineLog

Whatever logic you have before creating the post entry.
...

post = Post.objects.create(
title='New blog entry',
body=post_text

)

log = TimelineLog.objects.create(
content_object=post,
user=my_user

)

There you go. A new timeline entry has been created to record the event that a user posted a new blog entry.

You can then see the default message for such event by calling the TimelineLog.get_message() method:

log.get_message()

That function will return a text string, like this one:

'July 1, 2016, 9:08 a.m. - Anonymous user event on New blog entry\n'

With all this in place, you can now access the view included with the Django Timeline Logger package: http://
localhost:8000/timeline to see a paginated list of your event logs.

3.2.2 Custom messages using templates and context

Of course, you want to have your own custom messages for each different event you want to track, maybe showing in
the log as more data as possible. You can easily do that by using regular Django templates in your TimelineLog
instances.

Let’s see an example of usage. Imagine you have a web shop and you want to log user purchases of certain items,
whatever the item is. In this scenario, you could have a view to handle a user form submission representing a purchase.
You should be able to log each purchase with any details you want by doing something like this:

8 Chapter 3. Contents

http://localhost:8000/timeline
http://localhost:8000/timeline

Django Timeline Logger Documentation, Release 1.1.2

from django.views.generic import CreateView

from timeline_logger.models import TimelineLog

from my_app.models import Invoice, Item

class PurchaseView(CreateView):
""" Manages a client purchase and creates the invoice """
model = Invoice
...

def post(self, request, *args, **kwargs):
response = super(PurchaseView, self).post(request, *args, **kwargs)

The sold item.
item = Item.objects.get(pk=kwargs['item'])

Add some extra data to the log message.
extra_data = {'invoice': self.object}

Log the purchase event.
TimelineLog.objects.create(

content_object=item,
user=request.user,
template='timeline_logger/purchase.txt',
extra_data=**extra_data

)

return response

You logged there the “purchase event”, passing the request object, using a custom template to render your own mes-
sage and some context for it. A simple template you can write in your my_app/templates/timeline_logger
directory could look like this:

{% load i18n %}
{% blocktrans trimmed with timestamp=log.timestamp user=log.user|default:_('Anonymous
→˓user') object=log.content_object extra=log.exta_data|safe %}

{{ timestamp }} - {{ user }} purchased item "{{ object }}", using payment method "{
→˓{ extra.invoice.method }}", for a total price of {{ extra.invoice.total }} C.
{% endblocktrans %}

So, in your http://localhost:8000/timeline view, this log entry will appear more or less as follows:

July 4, 2016, 8:13 a.m. - John Doe purchased item “Nescafé Dolce Gusto”, using payment method
“PayPal”, for a total price of 35 C.

3.2.3 Log from requests

Probably you’ll better like to log events based on user requests, like for example a user comment in a blog post, a form
submission, a click in a “like” button or a purchase in your web shop.

You can easily do so by using the TimelineLog.log_from_request method, which accepts a Django
HTTPRequest object (accessible in all Django views via the request parameter or the self.request view
class attribute) and a Django model instance, plus an optional template and its context.

In our previous example, we can substitute the TimelineLog.objects.create(... part by this:

3.2. Usage 9

http://localhost:8000/timeline

Django Timeline Logger Documentation, Release 1.1.2

TimelineLog.log_from_request(
request,
item,
'timeline_logger/purchase.txt',

**extra_data
)

And the resulting log instance and message will be the same.

3.2.4 Django-import-export integration

Django-timeline-logger ships with a ModelResource:

from timeline_logger.resources import TimelineLogResource

...

It's not enabled in the default admin, as django-import-export is an
optional dependency.

3.3 Sending log reports

Timeline Logger includes a Django management command that you can add to a cronjob, or trigger manually when
you want, to send reports via email about your site usage to those people you want.

3.3.1 Report mailing

The management command can be called like this in “default” mode:

python manage.py report_mailing

In this mode, only those Django system users marked as “staff” member and “superuser” will be notified via email.
You can change this default behaviour by using some command arguments and Django project Settings.

Options

The command options are:

• --all: Send notification emails to all users registered in the system.

• --staff: Send notification emails only to the system users marked as is_staff=True.

• --recipients_from_setting: Send notification emails to those email addresses listed in
TIMELINE_DIGEST_EMAIL_RECIPIENTS setting.

Custom email notifications

In case you don’t like the default look and feel of the HTML notification email, you can design your own template and
place it in your project templates/timeline_logger/ directory using the name notifications.html.

10 Chapter 3. Contents

Django Timeline Logger Documentation, Release 1.1.2

3.4 Settings

Timeline Logger default behaviour can also be customized by using the next application settings in your project:

• TIMELINE_DEFAULT_TEMPLATE: defines the Django template used for the standard logs message. Defaults
to timeline_logger/default.txt.

• TIMELINE_DIGEST_EMAIL_RECIPIENTS: defines a fixed list of email addresses that must be notified
when running the report_mailing command, without any else being notified at all. Could be system
registered users or not. Defaults to None.

• TIMELINE_DIGEST_EMAIL_SUBJECT: a string defining a subject for the notification email. Defaults to
“Events timeline”.

• TIMELINE_DIGEST_FROM_EMAIL: the “sender” email that will be used to send the notifications. Defaults
to None, and then if it’s not set it will use Django’s DEFAULT_FROM_EMAIL setting “webmaster@localhost”.

• TIMELINE_PAGINATE_BY: the number of log entries that will be shown for each page in your http:
//localhost:8000/timeline view. Defaults to 25.

• TIMELINE_USER_EMAIL_FIELD: in case you are using a custom Django User model with the user email
stored in a specific field, it allows you to specify such field. Defaults to 'email'.

3.5 Contributing

To get up and running quickly, fork the github repository and make all your changes in your local clone.

Git-flow is prefered as git workflow, but as long as you make pull requests against the develop branch, all should be
well. Pull requests should always have tests, and if relevant, documentation updates.

Feel free to create unfinished pull-requests to get the tests to build and get work going, someone else might always
want to pick up the tests and/or documentation.

3.5.1 Testing

Django’s testcases are used to run the tests.

To run the tests in your (virtual) environment, simple execute

python setup.py test

This will run the tests with the current python version and Django version installed in your virtual environment.

To run the tests on all supported python/Django versions, use tox.

pip install tox
tox

If you want to speed this up, you can also use detox. This library will run as much in parallel as possible.

3.5.2 Documentation

The documentation is built with Sphinx. Run make to build the documentation:

cd docs/
make html

3.4. Settings 11

mailto:webmaster@localhost
http://localhost:8000/timeline
http://localhost:8000/timeline
https://tox.readthedocs.io/en/latest/
https://pypi.python.org/pypi/detox/

Django Timeline Logger Documentation, Release 1.1.2

You can now open _build/index.html.

3.5.3 Coding style

Please stick to PEP8, and use pylint or similar tools to check the code style. Also sort your imports, you may use
isort for this. In general, we adhere to Django’s coding style.

3.6 Changelog

3.6.1 1.1.2 (2018-05-30)

Fixed packaging mistake - Dutch translations are now included.

3.6.2 1.1.1 (2018-05-04)

Added Dutch translations (PR#14, thanks @josvromans)

3.6.3 1.1 (2018-04-17)

• Added django-import-export support

• Added a demo project to showcase the usage/integrations.

3.6.4 1.0 (2018-03-15)

Breaking changes

• Changed the GFK object_id field to a text field, so that non-integer primary keys are supported. This may come
at a (small) performance hit. Depending on the data you’re storing, the backwards migration may break.

• Dropped Django 1.10 support, per Django’s version support policy. If you’re still on Django 1.10, you should
upgrade, but other than that the app probably still works.

New features

• You can now create log entries without referring to a specific object (thanks @tsiaGeorge).

• Support non-integer PKs for objects (see #7, thanks for the feedback @holms)

Other

• first pass at better supporting internationalization

• cleaned up package a bit, added isort etc.

3.6.5 Pre 1.0

Best guess is looking at the git log, sorry.

12 Chapter 3. Contents

CHAPTER 4

License

Licensed under the MIT License.

13

https://opensource.org/licenses/MIT

Django Timeline Logger Documentation, Release 1.1.2

14 Chapter 4. License

CHAPTER 5

Source Code and contributing

The source code can be found on Github.

Bugs can also be reported on the Github repository, and pull requests are welcome. See Contributing for more details.

15

https://github.com/maykinmedia/django-timeline-logger
https://github.com/maykinmedia/django-timeline-logger

Django Timeline Logger Documentation, Release 1.1.2

16 Chapter 5. Source Code and contributing

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

17

	Overview
	Requirements
	Contents
	Installation
	Usage
	Sending log reports
	Settings
	Contributing
	Changelog

	License
	Source Code and contributing
	Indices and tables

