
django-throttle-requests
Documentation

Release 0.5.0

Lewis Sobotkiewicz

Nov 18, 2017

Contents

1 Introduction 3

2 Installation 5

3 Configuration 7

4 Indices and tables 9

i

ii

django-throttle-requests Documentation, Release 0.5.0

Contents:

Contents 1

django-throttle-requests Documentation, Release 0.5.0

2 Contents

CHAPTER 1

Introduction

In the context of web applications, limiting the number of requests a host or user makes solves two problems:

• withstanding Denial-of-service attacks (rate-limiting)

• ensuring that a user doesn’t consume too many resources (throttling)

Rate-limiting is often accomplished with firewall rules on a device, iptables, or web server. They are enforced at
the network or transport layer before the request is delivered to the application. For example, a rule such as “An IP
address may make no more than 20 reqs/sec” would queue, or simply drop any requests that exceeded the maximum
rate, and the application will not receive the request.

Throttling can be thought of as application middleware that maintains a count of users’ requests during a specific time
period. If an incoming request exceeds the maximum for the time period, the user receives a response (e.g. HTTP
403) containing a helpful error message.

A good example of throttling is Twitter’s controversial API rate-limiting. Twitter enforces several types of limits
depending on the type of access token used and the API function used. An example of a rule is “a user may make no
more than 150 requests per 15-minute window”.

Note: Although Twitter uses the term rate limiting, I find it helpful to distinguish the concepts of network-layer
rate limiting versus application-specific request limiting (throttling).

3

http://en.wikipedia.org/wiki/Rate_limiting
http://en.wikipedia.org/wiki/HTTP_403
http://en.wikipedia.org/wiki/HTTP_403
https://dev.twitter.com/docs/rate-limiting/1.1

django-throttle-requests Documentation, Release 0.5.0

4 Chapter 1. Introduction

CHAPTER 2

Installation

1. Install the library with pip:

sudo pip install django-throttle-requests

2. Add the directory throttle to your project’s PYTHONPATH.

3. Insert the following configuration into your project’s settings:

THROTTLE_ZONES = {
'default': {

'VARY':'throttle.zones.RemoteIP',
'NUM_BUCKETS':2, # Number of buckets worth of history to keep. Must be

→˓at least 2
'BUCKET_INTERVAL':15 * 60 # Period of time to enforce limits.
'BUCKET_CAPACITY':50, # Maximum number of requests allowed within BUCKET_

→˓INTERVAL
},

}

Where to store request counts.
THROTTLE_BACKEND = 'throttle.backends.cache.CacheBackend'

Force throttling when DEBUG=True
THROTTLE_ENABLED = True

4. Use the @throttle decorator to enforce throttling rules on a view:

from throttle.decorators import throttle

@throttle(zone='default')
def myview(request):

...

5

django-throttle-requests Documentation, Release 0.5.0

6 Chapter 2. Installation

CHAPTER 3

Configuration

django.conf.settings.THROTTLE_ENABLED

Default not settings.DEBUG

Optional boolean value that is used to control whether or not throttling is enforced. To test throttling when
DEBUG is True, you must also explicitly set THROTTLE_ENABLED = True.

django.conf.settings.THROTTLE_BACKEND
The path to the class that implements the backend storage mechanism for per-user request counts.

django.conf.settings.THROTTLE_ZONES
A dictionary that contains definitions of the rate limiting rules for your application.

7

django-throttle-requests Documentation, Release 0.5.0

8 Chapter 3. Configuration

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

9

django-throttle-requests Documentation, Release 0.5.0

10 Chapter 4. Indices and tables

Index

T
THROTTLE_BACKEND (in module

django.conf.settings), 7
THROTTLE_ENABLED (in module

django.conf.settings), 7
THROTTLE_ZONES (in module django.conf.settings), 7

11

	Introduction
	Installation
	Configuration
	Indices and tables

