
Tastypie Documentation
Release 0.13.3

Daniel Lindsley & the Tastypie core team

March 08, 2016

Contents

1 Getting Started with Tastypie 3

2 Interacting With The API 9

3 Tastypie Settings 21

4 Using Tastypie With Non-ORM Data Sources 25

5 Tools 29

6 Testing 33

7 Compatibility Notes 43

8 Python 3 Support 45

9 Resources 47

10 Bundles 75

11 Api 77

12 Resource Fields 79

13 Caching 85

14 Validation 89

15 Authentication 91

16 Authorization 95

17 Serialization 99

18 Throttling 107

19 Paginator 111

20 GeoDjango 115

21 ContentTypes and GenericForeignKeys 117

i

22 Namespaces 119

23 Tastypie Cookbook 121

24 Debugging Tastypie 131

25 Sites Using Tastypie 133

26 Contributing 135

27 Release Notes 139

28 Quick Start 149

29 Requirements 151

30 Why Tastypie? 153

31 Reference Material 155

32 Getting Help 157

33 Running The Tests 159

Python Module Index 161

ii

Tastypie Documentation, Release 0.13.3

Tastypie is a webservice API framework for Django. It provides a convenient, yet powerful and highly customizable,
abstraction for creating REST-style interfaces.

Contents 1

Tastypie Documentation, Release 0.13.3

2 Contents

CHAPTER 1

Getting Started with Tastypie

Tastypie is a reusable app (that is, it relies only on its own code and focuses on providing just a REST-style API) and
is suitable for providing an API to any application without having to modify the sources of that app.

Not everyone’s needs are the same, so Tastypie goes out of its way to provide plenty of hooks for overriding or
extending how it works.

Note: If you hit a stumbling block, you can join #tastypie on irc.freenode.net to get help.

This tutorial assumes that you have a basic understanding of Django as well as how proper REST-style APIs ought to
work. We will only explain the portions of the code that are Tastypie-specific in any kind of depth.

For example purposes, we’ll be adding an API to a simple blog application. Here is myapp/models.py:

from tastypie.utils.timezone import now
from django.contrib.auth.models import User
from django.db import models
from django.utils.text import slugify

class Entry(models.Model):
user = models.ForeignKey(User)
pub_date = models.DateTimeField(default=now)
title = models.CharField(max_length=200)
slug = models.SlugField(null=True, blank=True)
body = models.TextField()

def __unicode__(self):
return self.title

def save(self, *args, **kwargs):
For automatic slug generation.
if not self.slug:

self.slug = slugify(self.title)[:50]

return super(Entry, self).save(*args, **kwargs)

With that, we’ll move on to installing and configuring Tastypie.

3

Tastypie Documentation, Release 0.13.3

1.1 Installation

Installing Tastypie is as simple as checking out the source and adding it to your project or PYTHONPATH.

1. Download the dependencies:

• Python 2.7+ or Python 3.4+

• Django 1.7+

• python-mimeparse 0.1.4+ (http://pypi.python.org/pypi/python-mimeparse)

• dateutil (http://labix.org/python-dateutil)

• OPTIONAL - lxml (http://lxml.de/) and defusedxml (https://pypi.python.org/pypi/defusedxml)
if using the XML serializer

• OPTIONAL - pyyaml (http://pyyaml.org/) if using the YAML serializer

2. Either check out tastypie from GitHub or to pull a release off PyPI. Doing sudo pip install
django-tastypie or sudo easy_install django-tastypie is all that should be re-
quired.

3. Either symlink the tastypie directory into your project or copy the directory in. What ever works
best for you.

1.2 Configuration

The only mandatory configuration is adding ’tastypie’ to your INSTALLED_APPS. This isn’t strictly necessary,
as Tastypie has only two non-required models, but may ease usage.

You have the option to set up a number of settings (see Tastypie Settings) but they all have sane defaults and are not
required unless you need to tweak their values.

1.3 Creating Resources

REST-style architecture talks about resources, so unsurprisingly integrating with Tastypie involves creating
Resource classes. For our simple application, we’ll create a file for these in myapp/api.py, though they can
live anywhere in your application:

myapp/api.py
from tastypie.resources import ModelResource
from myapp.models import Entry

class EntryResource(ModelResource):
class Meta:

queryset = Entry.objects.all()
resource_name = 'entry'

This class, by virtue of being a ModelResource subclass, will introspect all non-relational fields on the Entry
model and create its own ApiFields that map to those fields, much like the way Django’s ModelForm class
introspects.

4 Chapter 1. Getting Started with Tastypie

http://pypi.python.org/pypi/python-mimeparse
http://labix.org/python-dateutil
http://lxml.de/
https://pypi.python.org/pypi/defusedxml
http://pyyaml.org/
https://github.com/django-tastypie/django-tastypie
http://pypi.python.org/pypi/django-tastypie

Tastypie Documentation, Release 0.13.3

Note: The resource_name within the Meta class is optional. If not provided, it is automatically generated off the
classname, removing any instances of Resource and lowercasing the string. So EntryResource would become
just entry.

We’ve included the resource_name attribute in this example for clarity, especially when looking at the URLs, but
you should feel free to omit it if you’re comfortable with the automatic behavior.

1.4 Hooking Up The Resource(s)

Now that we have our EntryResource, we can hook it up in our URLconf. To do this, we simply instantiate the
resource in our URLconf and hook up its urls:

urls.py
from django.conf.urls import url, include
from myapp.api import EntryResource

entry_resource = EntryResource()

urlpatterns = [
The normal jazz here...
url(r'^blog/', include('myapp.urls')),
url(r'^api/', include(entry_resource.urls)),

]

Now it’s just a matter of firing up server (./manage.py runserver) and going to
http://127.0.0.1:8000/api/entry/?format=json. You should get back a list of Entry-like objects.

Note: The ?format=json is an override required to make things look decent in the browser (accept headers vary
between browsers). Tastypie properly handles the Accept header. So the following will work properly:

curl -H "Accept: application/json" http://127.0.0.1:8000/api/entry/

But if you’re sure you want something else (or want to test in a browser), Tastypie lets you specify ?format=...
when you really want to force a certain type.

At this point, a bunch of other URLs are also available. Try out any/all of the following (assuming you have at least
three records in the database):

• http://127.0.0.1:8000/api/entry/?format=json

• http://127.0.0.1:8000/api/entry/1/?format=json

• http://127.0.0.1:8000/api/entry/schema/?format=json

• http://127.0.0.1:8000/api/entry/set/1;3/?format=json

However, if you try sending a POST/PUT/DELETE to the resource, you find yourself getting “401 Unautho-
rized” errors. For safety, Tastypie ships with the authorization class (“what are you allowed to do”)
set to ReadOnlyAuthorization. This makes it safe to expose on the web, but prevents us from doing
POST/PUT/DELETE. Let’s enable those:

myapp/api.py
from tastypie.authorization import Authorization
from tastypie.resources import ModelResource
from myapp.models import Entry

1.4. Hooking Up The Resource(s) 5

http://127.0.0.1:8000/api/entry/?format=json
http://127.0.0.1:8000/api/entry/?format=json
http://127.0.0.1:8000/api/entry/1/?format=json
http://127.0.0.1:8000/api/entry/schema/?format=json
http://127.0.0.1:8000/api/entry/set/1;3/?format=json

Tastypie Documentation, Release 0.13.3

class EntryResource(ModelResource):
class Meta:

queryset = Entry.objects.all()
resource_name = 'entry'
authorization = Authorization()

Warning: This is now great for testing in development but VERY INSECURE. You should never put a
Resource like this out on the internet. Please spend some time looking at the authentication/authorization classes
available in Tastypie.

With just nine lines of code, we have a full working REST interface to our Entry model. In addition, full
GET/POST/PUT/DELETE support is already there, so it’s possible to really work with all of the data. Well, almost.

You see, you’ll note that not quite all of our data is there. Markedly absent is the user field, which is a ForeignKey
to Django’s User model. Tastypie does NOT introspect related data because it has no way to know how you want to
represent that data.

And since that relation isn’t there, any attempt to POST/PUT new data will fail, because no user is present, which is
a required field on the model.

This is easy to fix, but we’ll need to flesh out our API a little more.

1.5 Creating More Resources

In order to handle our user relation, we’ll need to create a UserResource and tell the EntryResource to use
it. So we’ll modify myapp/api.py to match the following code:

myapp/api.py
from django.contrib.auth.models import User
from tastypie import fields
from tastypie.resources import ModelResource
from myapp.models import Entry

class UserResource(ModelResource):
class Meta:

queryset = User.objects.all()
resource_name = 'user'

class EntryResource(ModelResource):
user = fields.ForeignKey(UserResource, 'user')

class Meta:
queryset = Entry.objects.all()
resource_name = 'entry'

We simply created a new ModelResource subclass called UserResource. Then we added a field to
EntryResource that specified that the user field points to a UserResource for that data.

Now we should be able to get all of the fields back in our response. But since we have another full, working resource
on our hands, we should hook that up to our API as well. And there’s a better way to do it.

6 Chapter 1. Getting Started with Tastypie

Tastypie Documentation, Release 0.13.3

1.6 Adding To The Api

Tastypie ships with an Api class, which lets you bind multiple Resources together to form a coherent API. Adding
it to the mix is simple.

We’ll go back to our URLconf (urls.py) and change it to match the following:

urls.py
from django.conf.urls import url, include
from tastypie.api import Api
from myapp.api import EntryResource, UserResource

v1_api = Api(api_name='v1')
v1_api.register(UserResource())
v1_api.register(EntryResource())

urlpatterns = [
The normal jazz here...
url(r'^blog/', include('myapp.urls')),
url(r'^api/', include(v1_api.urls)),

]

Note that we’re now creating an Api instance, registering our EntryResource and UserResource instances
with it and that we’ve modified the urls to now point to v1_api.urls.

This makes even more data accessible, so if we start up the runserver again, the following URLs should work:

• http://127.0.0.1:8000/api/v1/?format=json

• http://127.0.0.1:8000/api/v1/user/?format=json

• http://127.0.0.1:8000/api/v1/user/1/?format=json

• http://127.0.0.1:8000/api/v1/user/schema/?format=json

• http://127.0.0.1:8000/api/v1/user/set/1;3/?format=json

• http://127.0.0.1:8000/api/v1/entry/?format=json

• http://127.0.0.1:8000/api/v1/entry/1/?format=json

• http://127.0.0.1:8000/api/v1/entry/schema/?format=json

• http://127.0.0.1:8000/api/v1/entry/set/1;3/?format=json

Additionally, the representations out of EntryResource will now include the user field and point to an endpoint
like /api/v1/users/1/ to access that user’s data. And full POST/PUT delete support should now work.

But there’s several new problems. One is that our new UserResource leaks too much data, including fields like
email, password, is_active and is_staff. Another is that we may not want to allow end users to alter
User data. Both of these problems are easily fixed as well.

1.7 Limiting Data And Access

Cutting out the email, password, is_active and is_staff fields is easy to do. We simply modify our
UserResource code to match the following:

class UserResource(ModelResource):
class Meta:

queryset = User.objects.all()

1.6. Adding To The Api 7

http://127.0.0.1:8000/api/v1/?format=json
http://127.0.0.1:8000/api/v1/user/?format=json
http://127.0.0.1:8000/api/v1/user/1/?format=json
http://127.0.0.1:8000/api/v1/user/schema/?format=json
http://127.0.0.1:8000/api/v1/user/set/1;3/?format=json
http://127.0.0.1:8000/api/v1/entry/?format=json
http://127.0.0.1:8000/api/v1/entry/1/?format=json
http://127.0.0.1:8000/api/v1/entry/schema/?format=json
http://127.0.0.1:8000/api/v1/entry/set/1;3/?format=json

Tastypie Documentation, Release 0.13.3

resource_name = 'user'
excludes = ['email', 'password', 'is_active', 'is_staff', 'is_superuser']

The excludes directive tells UserResource which fields not to include in the output. If you’d rather whitelist
fields, you could do:

class UserResource(ModelResource):
class Meta:

queryset = User.objects.all()
resource_name = 'user'
fields = ['username', 'first_name', 'last_name', 'last_login']

Now that the undesirable fields are no longer included, we can look at limiting access. This is also easy and involves
making our UserResource look like:

class UserResource(ModelResource):
class Meta:

queryset = User.objects.all()
resource_name = 'user'
excludes = ['email', 'password', 'is_active', 'is_staff', 'is_superuser']
allowed_methods = ['get']

Now only HTTP GET requests will be allowed on /api/v1/user/ endpoints. If you require more granular control,
both list_allowed_methods and detail_allowed_methods options are supported.

1.8 Beyond The Basics

We now have a full working API for our application. But Tastypie supports many more features, like:

• Authentication

• Authorization

• Caching

• Throttling

• Resources (filtering & sorting)

• Serialization

Tastypie is also very easy to override and extend. For some common patterns and approaches, you should refer to the
Tastypie Cookbook documentation.

8 Chapter 1. Getting Started with Tastypie

CHAPTER 2

Interacting With The API

Now that you’ve got a shiny new REST-style API in place, let’s demonstrate how to interact with it. We’ll assume that
you have cURL installed on your system (generally available on most modern Mac & Linux machines), but any tool
that allows you to control headers & bodies on requests will do.

We’ll assume that we’re interacting with the following Tastypie code:

myapp/api/resources.py
from django.contrib.auth.models import User
from tastypie.authorization import Authorization
from tastypie import fields
from tastypie.resources import ModelResource, ALL, ALL_WITH_RELATIONS
from myapp.models import Entry

class UserResource(ModelResource):
class Meta:

queryset = User.objects.all()
resource_name = 'user'
excludes = ['email', 'password', 'is_active', 'is_staff', 'is_superuser']
filtering = {

'username': ALL,
}

class EntryResource(ModelResource):
user = fields.ForeignKey(UserResource, 'user')

class Meta:
queryset = Entry.objects.all()
resource_name = 'entry'
authorization = Authorization()
filtering = {

'user': ALL_WITH_RELATIONS,
'pub_date': ['exact', 'lt', 'lte', 'gte', 'gt'],

}

urls.py
from django.conf.urls import url, include
from tastypie.api import Api
from myapp.api.resources import EntryResource, UserResource

v1_api = Api(api_name='v1')

9

http://curl.haxx.se/

Tastypie Documentation, Release 0.13.3

v1_api.register(UserResource())
v1_api.register(EntryResource())

urlpatterns = [
The normal jazz here...
url(r'^blog/', include('myapp.urls')),
url(r'^api/', include(v1_api.urls)),

]

Let’s fire up a shell & start exploring the API!

2.1 Front Matter

Tastypie tries to treat all clients & all serialization types as equally as possible. It also tries to be a good ‘Net citizen &
respects the HTTP method used as well as the Accepts headers sent. Between these two, you control all interactions
with Tastypie through relatively few endpoints.

Warning: Should you try these URLs in your browser, be warned you WILL need to append ?format=json
(or xml or yaml) to the URL. Your browser requests application/xml before application/json, so
you’ll always get back XML if you don’t specify it.
That’s also why it’s recommended that you explore via curl, because you avoid your browser’s opinionated requests
& get something closer to what any programmatic clients will get.

2.2 Fetching Data

Since reading data out of an API is a very common activity (and the easiest type of request to make), we’ll start there.
Tastypie tries to expose various parts of the API & interlink things within the API (HATEOAS).

2.2.1 Api-Wide

We’ll start at the highest level:

curl http://localhost:8000/api/v1/

You’ll get back something like:

{
"entry": {

"list_endpoint": "/api/v1/entry/",
"schema": "/api/v1/entry/schema/"

},
"user": {

"list_endpoint": "/api/v1/user/",
"schema": "/api/v1/user/schema/"

}
}

This lists out all the different Resource classes you registered in your URLconf with the API. Each one is listed by
the resource_name you gave it and provides the list_endpoint & the schema for the resource.

Note that these links try to direct you to other parts of the API, to make exploration/discovery easier. We’ll use these
URLs in the next several sections.

10 Chapter 2. Interacting With The API

Tastypie Documentation, Release 0.13.3

To demonstrate another format, you could run the following to get the XML variant of the same information:

curl -H "Accept: application/xml" http://localhost:8000/api/v1/

To which you’d receive:

<?xml version="1.0" encoding="utf-8"?>
<response>

<entry type="hash">
<list_endpoint>/api/v1/entry/</list_endpoint>
<schema>/api/v1/entry/schema/</schema>

</entry>
<user type="hash">
<list_endpoint>/api/v1/user/</list_endpoint>
<schema>/api/v1/user/schema/</schema>

</user>
</response>

We’ll stick to JSON for the rest of this document, but using XML should be OK to do at any time.

It’s also possible to get all schemas (Inspecting The Resource’s Schema) in a single request:

curl http://localhost:8000/api/v1/?fullschema=true

You’ll get back something like:

{
"entry": {

"list_endpoint": "/api/v1/entry/",
"schema": {

"default_format": "application/json",
"fields": {

"body": {
"help_text": "Unicode string data. Ex: \"Hello World\"",
"nullable": false,
"readonly": false,
"type": "string"

},
...

},
"filtering": {

"pub_date": ["exact", "lt", "lte", "gte", "gt"],
"user": 2

}
}

},
}

2.2.2 Inspecting The Resource’s Schema

Since the api-wide view gave us a schema URL, let’s inspect that next. We’ll use the entry resource. Again, a
simple GET request by curl:

curl http://localhost:8000/api/v1/entry/schema/

This time, we get back a lot more data:

{
"default_format": "application/json",

2.2. Fetching Data 11

Tastypie Documentation, Release 0.13.3

"fields": {
"body": {

"help_text": "Unicode string data. Ex: \"Hello World\"",
"nullable": false,
"readonly": false,
"type": "string"

},
"id": {

"help_text": "Unicode string data. Ex: \"Hello World\"",
"nullable": false,
"readonly": false,
"type": "string"

},
"pub_date": {

"help_text": "A date & time as a string. Ex: \"2010-11-10T03:07:43\"",
"nullable": false,
"readonly": false,
"type": "datetime"

},
"resource_uri": {

"help_text": "Unicode string data. Ex: \"Hello World\"",
"nullable": false,
"readonly": true,
"type": "string"

},
"slug": {

"help_text": "Unicode string data. Ex: \"Hello World\"",
"nullable": false,
"readonly": false,
"type": "string"

},
"title": {

"help_text": "Unicode string data. Ex: \"Hello World\"",
"nullable": false,
"readonly": false,
"type": "string"

},
"user": {

"help_text": "A single related resource. Can be either a URI or set of nested resource data.",
"nullable": false,
"readonly": false,
"type": "related"
"related_type": "to_one"
"related_schema": "/api/v1/user/schema/"

}
},
"filtering": {

"pub_date": ["exact", "lt", "lte", "gte", "gt"],
"user": 2

}
}

This lists out the default_format this resource responds with, the fields on the resource & the filtering
options available. This information can be used to prepare the other aspects of the code for the data it can obtain &
ways to filter the resources.

12 Chapter 2. Interacting With The API

Tastypie Documentation, Release 0.13.3

2.2.3 Getting A Collection Of Resources

Let’s get down to fetching live data. From the api-wide view, we’ll hit the list_endpoint for entry:

curl http://localhost:8000/api/v1/entry/

We get back data that looks like:

{
"meta": {

"limit": 20,
"next": null,
"offset": 0,
"previous": null,
"total_count": 3

},
"objects": [{

"body": "Welcome to my blog!",
"id": "1",
"pub_date": "2011-05-20T00:46:38",
"resource_uri": "/api/v1/entry/1/",
"slug": "first-post",
"title": "First Post",
"user": "/api/v1/user/1/"

},
{

"body": "Well, it's been awhile and I still haven't updated. ",
"id": "2",
"pub_date": "2011-05-21T00:46:58",
"resource_uri": "/api/v1/entry/2/",
"slug": "second-post",
"title": "Second Post",
"user": "/api/v1/user/1/"

},
{

"body": "I'm really excited to get started with this new blog. It's gonna be great!",
"id": "3",
"pub_date": "2011-05-20T00:47:30",
"resource_uri": "/api/v1/entry/3/",
"slug": "my-blog",
"title": "My Blog",
"user": "/api/v1/user/2/"

}]
}

Some things to note:

• By default, you get a paginated set of objects (20 per page is the default).

• In the meta, you get a previous & next. If available, these are URIs to the previous & next pages.

• You get a list of resources/objects under the objects key.

• Each resources/object has a resource_uri field that points to the detail view for that object.

• The foreign key to User is represented as a URI by default. If you’re looking for the full UserResource to
be embedded in this view, you’ll need to add full=True to the fields.ToOneField.

If you want to skip paginating, simply run:

2.2. Fetching Data 13

Tastypie Documentation, Release 0.13.3

curl http://localhost:8000/api/v1/entry/?limit=0

Be warned this will return all objects, so it may be a CPU/IO-heavy operation on large datasets.

Let’s try filtering on the resource. Since we know we can filter on the user, we’ll fetch all posts by the daniel user
with:

curl http://localhost:8000/api/v1/entry/?user__username=daniel

We get back what we asked for:

{
"meta": {

"limit": 20,
"next": null,
"offset": 0,
"previous": null,
"total_count": 2

},
"objects": [{

"body": "Welcome to my blog!",
"id": "1",
"pub_date": "2011-05-20T00:46:38",
"resource_uri": "/api/v1/entry/1/",
"slug": "first-post",
"title": "First Post",
"user": "/api/v1/user/1/"

},
{

"body": "Well, it's been awhile and I still haven't updated. ",
"id": "2",
"pub_date": "2011-05-21T00:46:58",
"resource_uri": "/api/v1/entry/2/",
"slug": "second-post",
"title": "Second Post",
"user": "/api/v1/user/1/"

}]
}

Where there were three posts before, now there are only two.

2.2.4 Getting A Detail Resource

Since each resource/object in the list view had a resource_uri, let’s explore what’s there:

curl http://localhost:8000/api/v1/entry/1/

We get back a similar set of data that we received from the list view:

{
"body": "Welcome to my blog!",
"id": "1",
"pub_date": "2011-05-20T00:46:38",
"resource_uri": "/api/v1/entry/1/",
"slug": "first-post",
"title": "First Post",
"user": "/api/v1/user/1/"

}

14 Chapter 2. Interacting With The API

Tastypie Documentation, Release 0.13.3

Where this proves useful (for example) is present in the data we got back. We know the URI of the User associated
with this blog entry. Let’s run:

curl http://localhost:8000/api/v1/user/1/

Without ever seeing any aspect of the UserResource & just following the URI given, we get back:

{
"date_joined": "2011-05-20T00:42:14.990617",
"first_name": "",
"id": "1",
"last_login": "2011-05-20T00:44:57.510066",
"last_name": "",
"resource_uri": "/api/v1/user/1/",
"username": "daniel"

}

You can do a similar fetch using the following Javascript/jQuery (though be wary of same-domain policy):

$.ajax({
url: 'http://localhost:8000/api/v1/user/1/',
type: 'GET',
accepts: 'application/json',
dataType: 'json'

})

2.2.5 Selecting A Subset Of Resources

Sometimes you may want back more than one record, but not an entire list view nor do you want to do multiple
requests. Tastypie includes a “set” view, which lets you cherry-pick the objects you want. For example, if we just want
the first & third Entry resources, we’d run:

curl "http://localhost:8000/api/v1/entry/set/1;3/"

Note: Quotes are needed in this case because of the semicolon delimiter between primary keys. Without the quotes,
bash tries to split it into two statements. No extraordinary quoting will be necessary in your application (unless your
API client is written in bash :D).

And we get back just those two objects:

{
"objects": [{

"body": "Welcome to my blog!",
"id": "1",
"pub_date": "2011-05-20T00:46:38",
"resource_uri": "/api/v1/entry/1/",
"slug": "first-post",
"title": "First Post",
"user": "/api/v1/user/1/"

},
{

"body": "I'm really excited to get started with this new blog. It's gonna be great!",
"id": "3",
"pub_date": "2011-05-20T00:47:30",
"resource_uri": "/api/v1/entry/3/",
"slug": "my-blog",

2.2. Fetching Data 15

Tastypie Documentation, Release 0.13.3

"title": "My Blog",
"user": "/api/v1/user/2/"

}]
}

Note that, like the list view, you get back a list of objects. Unlike the list view, there is NO pagination applied to
these objects. You asked for them, you’re going to get them all.

2.3 Sending Data

Tastypie also gives you full write capabilities in the API. Since the EntryResource has the no-limits
Authentication & Authorization on it, we can freely write data.

Warning: Note that this is a huge security hole as well. Don’t put unauthorized write-enabled resources on the
Internet, because someone will trash your data.
This is why ReadOnlyAuthorization is the default in Tastypie & why you must override to provide more
access.

The good news is that there are no new URLs to learn. The “list” & “detail” URLs we’ve been using to fetch data
ALSO support the POST/PUT/DELETE HTTP methods.

2.3.1 Creating A New Resource (POST)

Let’s add a new entry. To create new data, we’ll switch from GET requests to the familiar POST request.

Note: Tastypie encourages “round-trippable” data, which means the data you can GET should be able to be
POST/PUT’d back to recreate the same object.

If you’re ever in question about what you should send, do a GET on another object & see what Tastypie thinks it
should look like.

To create new resources/objects, you will POST to the list endpoint of a resource. Trying to POST to a detail endpoint
has a different meaning in the REST mindset (meaning to add a resource as a child of a resource of the same type).

As with all Tastypie requests, the headers we request are important. Since we’ve been using primarily JSON through-
out, let’s send a new entry in JSON format:

curl --dump-header - -H "Content-Type: application/json" -X POST --data '{"body": "This will prbbly be my lst post.", "pub_date": "2011-05-22T00:46:38", "slug": "another-post", "title": "Another Post", "user": "/api/v1/user/1/"}' http://localhost:8000/api/v1/entry/

The Content-Type header here informs Tastypie that we’re sending it JSON. We send the data as a JSON-serialized
body (NOT as form-data in the form of URL parameters). What we get back is the following response:

HTTP/1.0 201 CREATED
Date: Fri, 20 May 2011 06:48:36 GMT
Server: WSGIServer/0.1 Python/2.7
Content-Type: text/html; charset=utf-8
Location: http://localhost:8000/api/v1/entry/4/

You’ll also note that we get a correct HTTP status code back (201) & a Location header, which gives us the URI to
our newly created resource.

Passing --dump-header - is important, because it gives you all the headers as well as the status code. When
things go wrong, this will be useful information to help with debugging. For instance, if we send a request without a
user:

16 Chapter 2. Interacting With The API

Tastypie Documentation, Release 0.13.3

curl --dump-header - -H "Content-Type: application/json" -X POST --data '{"body": "This will prbbly be my lst post.", "pub_date": "2011-05-22T00:46:38", "slug": "another-post", "title": "Another Post"}' http://localhost:8000/api/v1/entry/

We get back:

HTTP/1.0 400 BAD REQUEST
Date: Fri, 20 May 2011 06:53:02 GMT
Server: WSGIServer/0.1 Python/2.7
Content-Type: text/html; charset=utf-8

The 'user' field has no data and doesn't allow a default or null value.

You can do a similar POST using the following Javascript/jQuery (though be wary of same-domain policy):

This may require the ``json2.js`` library for older browsers.
var data = JSON.stringify({

"body": "This will prbbly be my lst post.",
"pub_date": "2011-05-22T00:46:38",
"slug": "another-post",
"title": "Another Post"

});

$.ajax({
url: 'http://localhost:8000/api/v1/entry/',
type: 'POST',
contentType: 'application/json',
data: data,
dataType: 'json',
processData: false

})

2.3.2 Updating An Existing Resource (PUT)

You might have noticed that we made some typos when we submitted the POST request. We can fix this using a PUT
request to the detail endpoint (modify this instance of a resource).:

curl --dump-header - -H "Content-Type: application/json" -X PUT --data '{"body": "This will probably be my last post.", "pub_date": "2011-05-22T00:46:38", "slug": "another-post", "title": "Another Post", "user": "/api/v1/user/1/"}' http://localhost:8000/api/v1/entry/4/

After fixing up the body, we get back:

HTTP/1.0 204 NO CONTENT
Date: Fri, 20 May 2011 07:13:21 GMT
Server: WSGIServer/0.1 Python/2.7
Content-Length: 0
Content-Type: text/html; charset=utf-8

We get a 204 status code, meaning our update was successful. We don’t get a Location header back because we did
the PUT on a detail URL, which presumably did not change.

Note: A PUT request requires that the entire resource representation be enclosed. Missing fields may cause errors, or
be filled in by default values.

2.3.3 Partially Updating An Existing Resource (PATCH)

In some cases, you may not want to send the entire resource when updating. To update just a subset of the fields, we
can send a PATCH request to the detail endpoint.:

2.3. Sending Data 17

Tastypie Documentation, Release 0.13.3

curl --dump-header - -H "Content-Type: application/json" -X PATCH --data '{"body": "This actually is my last post."}' http://localhost:8000/api/v1/entry/4/

To which we should get back:

HTTP/1.0 202 ACCEPTED
Date: Fri, 20 May 2011 07:13:21 GMT
Server: WSGIServer/0.1 Python/2.7
Content-Length: 0
Content-Type: text/html; charset=utf-8

2.3.4 Updating A Whole Collection Of Resources (PUT)

You can also, in rare circumstances, update an entire collection of objects. By sending a PUT request to the list view
of a resource, you can replace the entire collection.

Warning: This deletes all of the objects first, then creates the objects afresh. This is done because determining
which objects are the same is actually difficult to get correct in the general case for all people.

Send a request like:

curl --dump-header - -H "Content-Type: application/json" -X PUT --data '{"objects": [{"body": "Welcome to my blog!","id": "1","pub_date": "2011-05-20T00:46:38","resource_uri": "/api/v1/entry/1/","slug": "first-post","title": "First Post","user": "/api/v1/user/1/"},{"body": "I'm really excited to get started with this new blog. It's gonna be great!","id": "3","pub_date": "2011-05-20T00:47:30","resource_uri": "/api/v1/entry/3/","slug": "my-blog","title": "My Blog","user": "/api/v1/user/2/"}]}' http://localhost:8000/api/v1/entry/

And you’ll get back a response like:

HTTP/1.0 204 NO CONTENT
Date: Fri, 20 May 2011 07:13:21 GMT
Server: WSGIServer/0.1 Python/2.7
Content-Length: 0
Content-Type: text/html; charset=utf-8

2.4 Deleting Data

No CRUD setup would be complete without the ability to delete resources/objects. Deleting also requires significantly
less complicated requests than POST/PUT.

2.4.1 Deleting A Single Resource

We’ve decided that we don’t like the entry we added & edited earlier. Let’s delete it (but leave the other objects alone):

curl --dump-header - -H "Content-Type: application/json" -X DELETE http://localhost:8000/api/v1/entry/4/

Once again, we get back the “Accepted” response of a 204:

HTTP/1.0 204 NO CONTENT
Date: Fri, 20 May 2011 07:28:01 GMT
Server: WSGIServer/0.1 Python/2.7
Content-Length: 0
Content-Type: text/html; charset=utf-8

If we request that resource, we get a 410 to show it’s no longer there:

18 Chapter 2. Interacting With The API

Tastypie Documentation, Release 0.13.3

curl --dump-header - http://localhost:8000/api/v1/entry/4/

HTTP/1.0 410 GONE
Date: Fri, 20 May 2011 07:29:02 GMT
Server: WSGIServer/0.1 Python/2.7
Content-Type: text/html; charset=utf-8

Additionally, if we try to run the DELETE again (using the same original command), we get the “Gone” response
again:

HTTP/1.0 410 GONE
Date: Fri, 20 May 2011 07:30:00 GMT
Server: WSGIServer/0.1 Python/2.7
Content-Type: text/html; charset=utf-8

2.4.2 Deleting A Whole Collection Of Resources

Finally, it’s possible to remove an entire collection of resources. This is as destructive as it sounds. Once again, we
use the DELETE method, this time on the entire list endpoint:

curl --dump-header - -H "Content-Type: application/json" -X DELETE http://localhost:8000/api/v1/entry/

As a response, we get:

HTTP/1.0 204 NO CONTENT
Date: Fri, 20 May 2011 07:32:51 GMT
Server: WSGIServer/0.1 Python/2.7
Content-Length: 0
Content-Type: text/html; charset=utf-8

Hitting the list view:

curl --dump-header - http://localhost:8000/api/v1/entry/

Gives us a 200 but no objects:

{
"meta": {

"limit": 20,
"next": null,
"offset": 0,
"previous": null,
"total_count": 0

},
"objects": []

}

2.5 Bulk Operations

As an optimization, it is possible to do many creations, updates, and deletions to a collection in a single request by
sending a PATCH to the list endpoint.:

curl --dump-header - -H "Content-Type: application/json" -X PATCH --data '{"objects": [{"body": "Surprise! Another post!.", "pub_date": "2012-02-16T00:46:38", "slug": "yet-another-post", "title": "Yet Another Post"}], "deleted_objects": ["http://localhost:8000/api/v1/entry/4/"]}' http://localhost:8000/api/v1/entry/

We should get back:

2.5. Bulk Operations 19

Tastypie Documentation, Release 0.13.3

HTTP/1.0 202 ACCEPTED
Date: Fri, 16 Feb 2012 00:46:38 GMT
Server: WSGIServer/0.1 Python/2.7
Content-Length: 0
Content-Type: text/html; charset=utf-8

The Accepted response means the server has accepted the request, but gives no details on the result. In order to see
any created resources, we would need to do a get GET on the list endpoint.

For detailed information on the format of a bulk request, see patch_list.

2.6 You Did It!

That’s a whirlwind tour of interacting with a Tastypie API. There’s additional functionality present, such as:

• POST/PUT the other supported content-types

• More filtering/order_by/limit/offset tricks

• Using overridden URLconfs to support complex or non-PK lookups

• Authentication

But this grounds you in the basics & hopefully clarifies usage/debugging better.

20 Chapter 2. Interacting With The API

CHAPTER 3

Tastypie Settings

This is a comprehensive list of the settings Tastypie recognizes.

3.1 API_LIMIT_PER_PAGE

Optional

This setting controls the default number of records Tastypie will show in a list view.

This is only used when a user does not specify a limit GET parameter and the Resource subclass has not overrid-
den the number to be shown.

An example:

API_LIMIT_PER_PAGE = 50

If you don’t want to limit the number of records by default, you can set this setting to 0:

API_LIMIT_PER_PAGE = 0

Defaults to 20.

3.2 TASTYPIE_FULL_DEBUG

Optional

This setting controls what the behavior is when an unhandled exception occurs.

If set to True and settings.DEBUG = True, the standard Django technical 500 is displayed.

If not set or set to False, Tastypie will return a serialized response. If settings.DEBUG is True, you’ll get the
actual exception message plus a traceback. If settings.DEBUG is False, Tastypie will call mail_admins()
and provide a canned error message (which you can override with TASTYPIE_CANNED_ERROR) in the response.

An example:

TASTYPIE_FULL_DEBUG = True

Defaults to False.

21

Tastypie Documentation, Release 0.13.3

3.3 TASTYPIE_CANNED_ERROR

Optional

This setting allows you to override the canned error response when an unhandled exception is raised and
settings.DEBUG is False.

An example:

TASTYPIE_CANNED_ERROR = "Oops, we broke it!"

Defaults to "Sorry, this request could not be processed. Please try again later.".

3.4 TASTYPIE_ALLOW_MISSING_SLASH

Optional

This setting allows your URLs to be missing the final slash. Useful for integrating with other systems.

You must also have settings.APPEND_SLASH = False so that Django does not emit HTTP 302 redirects.

An example:

TASTYPIE_ALLOW_MISSING_SLASH = True

Defaults to False.

3.5 TASTYPIE_DATETIME_FORMATTING

Optional

This setting allows you to globally choose what format your datetime/date/time data will be formatted in. Valid options
are iso-8601, iso-8601-strict & rfc-2822.

An example:

TASTYPIE_DATETIME_FORMATTING = 'rfc-2822'

Defaults to iso-8601. iso-8601 includes microseconds if available, use iso-8601-strict to strip them.

3.6 TASTYPIE_DEFAULT_FORMATS

Optional

This setting allows you to globally configure the list of allowed serialization formats for your entire site.

An example:

TASTYPIE_DEFAULT_FORMATS = ['json', 'xml']

Defaults to [’json’, ’xml’, ’yaml’, ’plist’].

22 Chapter 3. Tastypie Settings

Tastypie Documentation, Release 0.13.3

3.7 TASTYPIE_ABSTRACT_APIKEY

Optional

This setting makes the ApiKey model an abstract base class. This may be useful in multi-database setups where
many databases each have their own table for user data and ApiKeyAuthentication is not used. Without this
setting, the tastypie_apikey table would have to be created on each database containing user account data (such
as Django’s built-in auth_user table generated by django.contrib.auth.models.User). Valid options
are True & False.

An example:

TASTYPIE_ABSTRACT_APIKEY = True

Defaults to False.

3.7. TASTYPIE_ABSTRACT_APIKEY 23

https://docs.djangoproject.com/en/dev/topics/db/models/#abstract-base-classes

Tastypie Documentation, Release 0.13.3

24 Chapter 3. Tastypie Settings

CHAPTER 4

Using Tastypie With Non-ORM Data Sources

Much of this documentation demonstrates the use of Tastypie with Django’s ORM. You might think that Tastypie
depended on the ORM, when in fact, it was purpose-built to handle non-ORM data. This documentation should help
you get started providing APIs using other data sources.

Virtually all of the code that makes Tastypie actually process requests & return data is within the Resource class.
ModelResource is actually a light wrapper around Resource that provides ORM-specific access. The methods
that ModelResource overrides are the same ones you’ll need to override when hooking up your data source.

4.1 Approach

When working with Resource, many things are handled for you. All the authentica-
tion/authorization/caching/serialization/throttling bits should work as normal and Tastypie can support all the
REST-style methods. Schemas & discovery views all work the same as well.

What you don’t get out of the box are the fields you’re choosing to expose & the lowest level data access methods. If
you want a full read-write API, there are nine methods you need to implement. They are:

• detail_uri_kwargs

• get_object_list

• obj_get_list

• obj_get

• obj_create

• obj_update

• obj_delete_list

• obj_delete

• rollback

If read-only is all you’re exposing, you can cut that down to four methods to override.

4.2 Using Riak for MessageResource

As an example, we’ll take integrating with Riak (a Dynamo-like NoSQL store) since it has both a simple API and
demonstrate what hooking up to a non-relational datastore looks like:

25

https://pypi.python.org/pypi/riak

Tastypie Documentation, Release 0.13.3

import riak

from tastypie import fields
from tastypie.authorization import Authorization
from tastypie.resources import Resource

We need a generic object to shove data in/get data from.
Riak generally just tosses around dictionaries, so we'll lightly
wrap that.
class RiakObject(object):

def __init__(self, initial=None):
self.__dict__['_data'] = {}

if hasattr(initial, 'items'):
self.__dict__['_data'] = initial

def __getattr__(self, name):
return self._data.get(name, None)

def __setattr__(self, name, value):
self.__dict__['_data'][name] = value

def to_dict(self):
return self._data

class MessageResource(Resource):
Just like a Django ``Form`` or ``Model``, we're defining all the
fields we're going to handle with the API here.
uuid = fields.CharField(attribute='uuid')
user_uuid = fields.CharField(attribute='user_uuid')
message = fields.CharField(attribute='message')
created = fields.IntegerField(attribute='created')

class Meta:
resource_name = 'riak'
object_class = RiakObject
authorization = Authorization()

Specific to this resource, just to get the needed Riak bits.
def _client(self):

return riak.RiakClient()

def _bucket(self):
client = self._client()
Note that we're hard-coding the bucket to use. Fine for
example purposes, but you'll want to abstract this.
return client.bucket('messages')

The following methods will need overriding regardless of your
data source.
def detail_uri_kwargs(self, bundle_or_obj):

kwargs = {}

if isinstance(bundle_or_obj, Bundle):
kwargs['pk'] = bundle_or_obj.obj.uuid

else:
kwargs['pk'] = bundle_or_obj.uuid

26 Chapter 4. Using Tastypie With Non-ORM Data Sources

Tastypie Documentation, Release 0.13.3

return kwargs

def get_object_list(self, request):
query = self._client().add('messages')
query.map("function(v) { var data = JSON.parse(v.values[0].data); return [[v.key, data]]; }")
results = []

for result in query.run():
new_obj = RiakObject(initial=result[1])
new_obj.uuid = result[0]
results.append(new_obj)

return results

def obj_get_list(self, bundle, **kwargs):
Filtering disabled for brevity...
return self.get_object_list(bundle.request)

def obj_get(self, bundle, **kwargs):
bucket = self._bucket()
message = bucket.get(kwargs['pk'])
return RiakObject(initial=message.get_data())

def obj_create(self, bundle, **kwargs):
bundle.obj = RiakObject(initial=kwargs)
bundle = self.full_hydrate(bundle)
bucket = self._bucket()
new_message = bucket.new(bundle.obj.uuid, data=bundle.obj.to_dict())
new_message.store()
return bundle

def obj_update(self, bundle, **kwargs):
return self.obj_create(bundle, **kwargs)

def obj_delete_list(self, bundle, **kwargs):
bucket = self._bucket()

for key in bucket.get_keys():
obj = bucket.get(key)
obj.delete()

def obj_delete(self, bundle, **kwargs):
bucket = self._bucket()
obj = bucket.get(kwargs['pk'])
obj.delete()

def rollback(self, bundles):
pass

This represents a full, working, Riak-powered API endpoint. All REST-style actions (GET/POST/PUT/DELETE) all
work correctly. The only shortcut taken in this example was skipping filter-abilty, as adding in the MapReduce bits
would have decreased readability.

All said and done, just nine methods needed overriding, eight of which were highly specific to how data access is
done.

4.2. Using Riak for MessageResource 27

Tastypie Documentation, Release 0.13.3

28 Chapter 4. Using Tastypie With Non-ORM Data Sources

CHAPTER 5

Tools

Here are some tools that might help in interacting with the API that Tastypie provides:

5.1 Browser

5.1.1 JSONView

• Firefox - https://addons.mozilla.org/en-US/firefox/addon/jsonview/

• Chrome - https://chrome.google.com/webstore/detail/chklaanhfefbnpoihckbnefhakgolnmc

A plugin (actually two different ones that closely mirror each other) that nicely reformats JSON data in the browser.

5.1.2 Postman - Rest Client

• Chrome - https://chrome.google.com/webstore/detail/fdmmgilgnpjigdojojpjoooidkmcomcm

A feature rich Chrome extension with JSON and XML support

5.2 Extensions

5.2.1 Tastypie-msgpack

https://github.com/stephenmcd/tastypie-msgpack

Adds MsgPack support to Tastypie’s serializer.

5.3 Python

5.3.1 Slumber

http://slumber.in/

Slumber is a small Python library that makes it easy to access & work with APIs. It works for many others, but works
especially well with Tastypie.

29

https://addons.mozilla.org/en-US/firefox/addon/jsonview/
https://chrome.google.com/webstore/detail/chklaanhfefbnpoihckbnefhakgolnmc
https://chrome.google.com/webstore/detail/fdmmgilgnpjigdojojpjoooidkmcomcm
https://github.com/stephenmcd/tastypie-msgpack
http://msgpack.org/
http://slumber.in/

Tastypie Documentation, Release 0.13.3

5.3.2 Hammock

https://github.com/kadirpekel/hammock

Hammock is a fun module lets you deal with rest APIs by converting them into dead simple programmatic APIs. It
uses popular requests module in backyard to provide full-fledged rest experience.

Here is what it looks like:

>>> import hammock
>>> api = hammock.Hammock('http://localhost:8000')
>>> api.users('foo').posts('bar').comments.GET()
<Response [200]>

5.3.3 drest

http://drest.rtfd.org/

drest is another small Python library. It focuses on extensibility & can also work with many different API, with an
emphasis on Tastypie.

5.3.4 httpie

https://github.com/jkbr/httpie

HTTPie is a command line HTTP client written in Python. Its goal is to make command-line interaction with web
services as human-friendly as possible and allows much conciser statements compared with curl.

For example for POSTing a JSON object you simply call:

$ http localhost:8000/api/v1/entry/ title=”Foo” body=”Bar” user=”/api/v1/user/1/”

Now compare this with curl:

$ curl –dump-header - -H “Content-Type: application/json” -X POST –data ‘{“title”: “Foo”, “body”:
“Bar”, “user”: “/api/v1/user/1/”}’ http://localhost:8000/api/v1/entry/

5.3.5 json.tool

Included with Python, this tool makes reformatting JSON easy. For example:

$ curl http://localhost:8000/api/v1/note/ | python -m json.tool

Will return nicely reformatted data like:

{
"meta": {

"total_count": 1
},
"objects": [

{
"content": "Hello world!",
"user": "/api/v1/user/1/"

}
]

}

30 Chapter 5. Tools

https://github.com/kadirpekel/hammock
http://drest.rtfd.org/
https://github.com/jkbr/httpie
http://localhost:8000/api/v1/entry/

Tastypie Documentation, Release 0.13.3

5.3.6 django-permissionsx

https://github.com/thinkingpotato/django-permissionsx

This package allows using one set of rules both for Django class-based views] and Tastypie authorization. For example:

articles/permissions.py:

class StaffPermissions(Permissions):
permissions = P(profile__is_editor=True) | P(profile__is_administrator=True)

articles/views.py:

class ArticleDeleteView(PermissionsViewMixin, DeleteView):
model = Article
success_url = reverse_lazy('article_list')
permissions = StaffPermissions

articles/api.py:

class StaffOnlyAuthorization(TastypieAuthorization):
permissions_class = StaffPermissions

5.3.7 django-superbulk

https://github.com/thelonecabbage/django-superbulk

This app adds bulk operation support to any Django view-based app, allowing for better transactional behavior.

5.4 Javascript

5.4.1 backbone-tastypie

https://github.com/PaulUithol/backbone-tastypie

A small layer that makes Backbone & Tastypie plan nicely together.

5.4.2 backbone-relational

https://github.com/PaulUithol/Backbone-relational/

Allows Backbone to work with relational data, like the kind of data Tastypie provides.

5.4. Javascript 31

https://github.com/thinkingpotato/django-permissionsx
https://github.com/thelonecabbage/django-superbulk
https://github.com/PaulUithol/backbone-tastypie
https://github.com/PaulUithol/Backbone-relational/

Tastypie Documentation, Release 0.13.3

32 Chapter 5. Tools

CHAPTER 6

Testing

Having integrated unit tests that cover your API’s behavior is important, as it helps provide verification that your API
code is still valid & working correctly with the rest of your application.

Tastypie provides some basic facilities that build on top of Django’s testing support, in the form of a specialized
TestApiClient & ResourceTestCaseMixin.

The ResourceTestCaseMixin can be used along with Django’s TestCase or other Django test classes. It
provides quite a few extra assertion methods that are specific to APIs. Under the hood, it uses the TestApiClient
to perform requests properly.

The TestApiClient builds on & exposes an interface similar to that of Django’s Client. However, under the
hood, it hands all the setup needed to construct a proper request.

6.1 Example Usage

The typical use case will primarily consist of adding the ResourceTestCaseMixin class to an ordinary Django
test class & using the built-in assertions to ensure your API is behaving correctly. For the purposes of this example,
we’ll assume the resource in question looks like:

from tastypie.authentication import BasicAuthentication
from tastypie.resources import ModelResource
from entries.models import Entry

class EntryResource(ModelResource):
class Meta:

queryset = Entry.objects.all()
authentication = BasicAuthentication()

An example usage might look like:

import datetime
from django.contrib.auth.models import User
from django.test import TestCase
from tastypie.test import ResourceTestCaseMixin
from entries.models import Entry

class EntryResourceTest(ResourceTestCaseMixin, TestCase):
Use ``fixtures`` & ``urls`` as normal. See Django's ``TestCase``
documentation for the gory details.

33

https://docs.djangoproject.com/en/dev/topics/testing/

Tastypie Documentation, Release 0.13.3

fixtures = ['test_entries.json']

def setUp(self):
super(EntryResourceTest, self).setUp()

Create a user.
self.username = 'daniel'
self.password = 'pass'
self.user = User.objects.create_user(self.username, 'daniel@example.com', self.password)

Fetch the ``Entry`` object we'll use in testing.
Note that we aren't using PKs because they can change depending
on what other tests are running.
self.entry_1 = Entry.objects.get(slug='first-post')

We also build a detail URI, since we will be using it all over.
DRY, baby. DRY.
self.detail_url = '/api/v1/entry/{0}/'.format(self.entry_1.pk)

The data we'll send on POST requests. Again, because we'll use it
frequently (enough).
self.post_data = {

'user': '/api/v1/user/{0}/'.format(self.user.pk),
'title': 'Second Post!',
'slug': 'second-post',
'created': '2012-05-01T22:05:12'

}

def get_credentials(self):
return self.create_basic(username=self.username, password=self.password)

def test_get_list_unauthenticated(self):
self.assertHttpUnauthorized(self.api_client.get('/api/v1/entries/', format='json'))

def test_get_list_json(self):
resp = self.api_client.get('/api/v1/entries/', format='json', authentication=self.get_credentials())
self.assertValidJSONResponse(resp)

Scope out the data for correctness.
self.assertEqual(len(self.deserialize(resp)['objects']), 12)
Here, we're checking an entire structure for the expected data.
self.assertEqual(self.deserialize(resp)['objects'][0], {

'pk': str(self.entry_1.pk),
'user': '/api/v1/user/{0}/'.format(self.user.pk),
'title': 'First post',
'slug': 'first-post',
'created': '2012-05-01T19:13:42',
'resource_uri': '/api/v1/entry/{0}/'.format(self.entry_1.pk)

})

def test_get_list_xml(self):
self.assertValidXMLResponse(self.api_client.get('/api/v1/entries/', format='xml', authentication=self.get_credentials()))

def test_get_detail_unauthenticated(self):
self.assertHttpUnauthorized(self.api_client.get(self.detail_url, format='json'))

def test_get_detail_json(self):
resp = self.api_client.get(self.detail_url, format='json', authentication=self.get_credentials())

34 Chapter 6. Testing

Tastypie Documentation, Release 0.13.3

self.assertValidJSONResponse(resp)

We use ``assertKeys`` here to just verify the keys, not all the data.
self.assertKeys(self.deserialize(resp), ['created', 'slug', 'title', 'user'])
self.assertEqual(self.deserialize(resp)['name'], 'First post')

def test_get_detail_xml(self):
self.assertValidXMLResponse(self.api_client.get(self.detail_url, format='xml', authentication=self.get_credentials()))

def test_post_list_unauthenticated(self):
self.assertHttpUnauthorized(self.api_client.post('/api/v1/entries/', format='json', data=self.post_data))

def test_post_list(self):
Check how many are there first.
self.assertEqual(Entry.objects.count(), 5)
self.assertHttpCreated(self.api_client.post('/api/v1/entries/', format='json', data=self.post_data, authentication=self.get_credentials()))
Verify a new one has been added.
self.assertEqual(Entry.objects.count(), 6)

def test_put_detail_unauthenticated(self):
self.assertHttpUnauthorized(self.api_client.put(self.detail_url, format='json', data={}))

def test_put_detail(self):
Grab the current data & modify it slightly.
original_data = self.deserialize(self.api_client.get(self.detail_url, format='json', authentication=self.get_credentials()))
new_data = original_data.copy()
new_data['title'] = 'Updated: First Post'
new_data['created'] = '2012-05-01T20:06:12'

self.assertEqual(Entry.objects.count(), 5)
self.assertHttpAccepted(self.api_client.put(self.detail_url, format='json', data=new_data, authentication=self.get_credentials()))
Make sure the count hasn't changed & we did an update.
self.assertEqual(Entry.objects.count(), 5)
Check for updated data.
self.assertEqual(Entry.objects.get(pk=25).title, 'Updated: First Post')
self.assertEqual(Entry.objects.get(pk=25).slug, 'first-post')
self.assertEqual(Entry.objects.get(pk=25).created, datetime.datetime(2012, 3, 1, 13, 6, 12))

def test_delete_detail_unauthenticated(self):
self.assertHttpUnauthorized(self.api_client.delete(self.detail_url, format='json'))

def test_delete_detail(self):
self.assertEqual(Entry.objects.count(), 5)
self.assertHttpAccepted(self.api_client.delete(self.detail_url, format='json', authentication=self.get_credentials()))
self.assertEqual(Entry.objects.count(), 4)

Note that this example doesn’t cover other cases, such as filtering, PUT to a list endpoint, DELETE to a list endpoint,
PATCH support, etc.

6.1.1 ResourceTestCaseMixin API Reference

The ResourceTestCaseMixin exposes the following methods for use. Most are enhanced assertions or provide
API-specific behaviors.

6.1. Example Usage 35

Tastypie Documentation, Release 0.13.3

get_credentials

ResourceTestCaseMixin.get_credentials(self)

A convenience method for the user as a way to shorten up the often repetitious calls to create the same authentication.

Raises NotImplementedError by default.

Usage:

class MyResourceTestCase(ResourceTestCaseMixin, TestCase):
def get_credentials(self):

return self.create_basic('daniel', 'pass')

Then the usual tests...

create_basic

ResourceTestCaseMixin.create_basic(self, username, password)

Creates & returns the HTTP Authorization header for use with BASIC Auth.

create_apikey

ResourceTestCaseMixin.create_apikey(self, username, api_key)

Creates & returns the HTTP Authorization header for use with ApiKeyAuthentication.

create_digest

ResourceTestCaseMixin.create_digest(self, username, api_key, method, uri)

Creates & returns the HTTP Authorization header for use with Digest Auth.

create_oauth

ResourceTestCaseMixin.create_oauth(self, user)

Creates & returns the HTTP Authorization header for use with Oauth.

assertHttpOK

ResourceTestCaseMixin.assertHttpOK(self, resp)

Ensures the response is returning a HTTP 200.

assertHttpCreated

ResourceTestCaseMixin.assertHttpCreated(self, resp)

Ensures the response is returning a HTTP 201.

36 Chapter 6. Testing

Tastypie Documentation, Release 0.13.3

assertHttpAccepted

ResourceTestCaseMixin.assertHttpAccepted(self, resp)

Ensures the response is returning either a HTTP 202 or a HTTP 204.

assertHttpMultipleChoices

ResourceTestCaseMixin.assertHttpMultipleChoices(self, resp)

Ensures the response is returning a HTTP 300.

assertHttpSeeOther

ResourceTestCaseMixin.assertHttpSeeOther(self, resp)

Ensures the response is returning a HTTP 303.

assertHttpNotModified

ResourceTestCaseMixin.assertHttpNotModified(self, resp)

Ensures the response is returning a HTTP 304.

assertHttpBadRequest

ResourceTestCaseMixin.assertHttpBadRequest(self, resp)

Ensures the response is returning a HTTP 400.

assertHttpUnauthorized

ResourceTestCaseMixin.assertHttpUnauthorized(self, resp)

Ensures the response is returning a HTTP 401.

assertHttpForbidden

ResourceTestCaseMixin.assertHttpForbidden(self, resp)

Ensures the response is returning a HTTP 403.

assertHttpNotFound

ResourceTestCaseMixin.assertHttpNotFound(self, resp)

Ensures the response is returning a HTTP 404.

assertHttpMethodNotAllowed

ResourceTestCaseMixin.assertHttpMethodNotAllowed(self, resp)

Ensures the response is returning a HTTP 405.

6.1. Example Usage 37

Tastypie Documentation, Release 0.13.3

assertHttpConflict

ResourceTestCaseMixin.assertHttpConflict(self, resp)

Ensures the response is returning a HTTP 409.

assertHttpGone

ResourceTestCaseMixin.assertHttpGone(self, resp)

Ensures the response is returning a HTTP 410.

assertHttpTooManyRequests

ResourceTestCaseMixin.assertHttpTooManyRequests(self, resp)

Ensures the response is returning a HTTP 429.

assertHttpApplicationError

ResourceTestCaseMixin.assertHttpApplicationError(self, resp)

Ensures the response is returning a HTTP 500.

assertHttpNotImplemented

ResourceTestCaseMixin.assertHttpNotImplemented(self, resp)

Ensures the response is returning a HTTP 501.

assertValidJSON

ResourceTestCaseMixin.assertValidJSON(self, data)

Given the provided data as a string, ensures that it is valid JSON & can be loaded properly.

assertValidXML

ResourceTestCaseMixin.assertValidXML(self, data)

Given the provided data as a string, ensures that it is valid XML & can be loaded properly.

assertValidYAML

ResourceTestCaseMixin.assertValidYAML(self, data)

Given the provided data as a string, ensures that it is valid YAML & can be loaded properly.

assertValidPlist

ResourceTestCaseMixin.assertValidPlist(self, data)

Given the provided data as a string, ensures that it is valid binary plist & can be loaded properly.

38 Chapter 6. Testing

Tastypie Documentation, Release 0.13.3

assertValidJSONResponse

ResourceTestCaseMixin.assertValidJSONResponse(self, resp)

Given a HttpResponse coming back from using the client, assert that you get back:

• An HTTP 200

• The correct content-type (application/json)

• The content is valid JSON

assertValidXMLResponse

ResourceTestCaseMixin.assertValidXMLResponse(self, resp)

Given a HttpResponse coming back from using the client, assert that you get back:

• An HTTP 200

• The correct content-type (application/xml)

• The content is valid XML

assertValidYAMLResponse

ResourceTestCaseMixin.assertValidYAMLResponse(self, resp)

Given a HttpResponse coming back from using the client, assert that you get back:

• An HTTP 200

• The correct content-type (text/yaml)

• The content is valid YAML

assertValidPlistResponse

ResourceTestCaseMixin.assertValidPlistResponse(self, resp)

Given a HttpResponse coming back from using the client, assert that you get back:

• An HTTP 200

• The correct content-type (application/x-plist)

• The content is valid binary plist data

deserialize

ResourceTestCaseMixin.deserialize(self, resp)

Given a HttpResponse coming back from using the client, this method checks the Content-Type header &
attempts to deserialize the data based on that.

It returns a Python datastructure (typically a dict) of the serialized data.

6.1. Example Usage 39

Tastypie Documentation, Release 0.13.3

serialize

ResourceTestCaseMixin.serialize(self, data, format=’application/json’)

Given a Python datastructure (typically a dict) & a desired content-type, this method will return a serialized string
of that data.

assertKeys

ResourceTestCaseMixin.assertKeys(self, data, expected)

This method ensures that the keys of the data match up to the keys of expected.

It covers the (extremely) common case where you want to make sure the keys of a response match up to what is
expected. This is typically less fragile than testing the full structure, which can be prone to data changes.

6.1.2 ResourceTestCase API Reference

ResourceTestCase is deprecated and will be removed by v1.0.0.

class MyTest(ResourceTestCase) is equivalent to class MyTest(ResourceTestCaseMixin,
TestCase).

6.1.3 TestApiClient API Reference

The TestApiClient simulates a HTTP client making calls to the API. It’s important to note that it uses Django’s
testing infrastructure, so it’s not making actual calls against a webserver.

__init__

TestApiClient.__init__(self, serializer=None)

Sets up a fresh TestApiClient instance.

If you are employing a custom serializer, you can pass the class to the serializer= kwarg.

get_content_type

TestApiClient.get_content_type(self, short_format)

Given a short name (such as json or xml), returns the full content-type for it (application/json or
application/xml in this case).

get

TestApiClient.get(self, uri, format=’json’, data=None, authentication=None, **kwargs)

Performs a simulated GET request to the provided URI.

Optionally accepts a data kwarg, which in the case of GET, lets you send along GET parameters. This is useful when
testing filtering or other things that read off the GET params. Example:

40 Chapter 6. Testing

Tastypie Documentation, Release 0.13.3

from tastypie.test import TestApiClient
client = TestApiClient()

response = client.get('/api/v1/entry/1/', data={'format': 'json', 'title__startswith': 'a', 'limit': 20, 'offset': 60})

Optionally accepts an authentication kwarg, which should be an HTTP header with the correct authentication
data already setup.

All other **kwargs passed in get passed through to the Django TestClient. See
https://docs.djangoproject.com/en/dev/topics/testing/#module-django.test.client for details.

post

TestApiClient.post(self, uri, format=’json’, data=None, authentication=None, **kwargs)

Performs a simulated POST request to the provided URI.

Optionally accepts a data kwarg. Unlike GET, in POST the data gets serialized & sent as the body instead of
becoming part of the URI. Example:

from tastypie.test import TestApiClient
client = TestApiClient()

response = client.post('/api/v1/entry/', data={
'created': '2012-05-01T20:02:36',
'slug': 'another-post',
'title': 'Another Post',
'user': '/api/v1/user/1/',

})

Optionally accepts an authentication kwarg, which should be an HTTP header with the correct authentication
data already setup.

All other **kwargs passed in get passed through to the Django TestClient. See
https://docs.djangoproject.com/en/dev/topics/testing/#module-django.test.client for details.

put

TestApiClient.put(self, uri, format=’json’, data=None, authentication=None, **kwargs)

Performs a simulated PUT request to the provided URI.

Optionally accepts a data kwarg. Unlike GET, in PUT the data gets serialized & sent as the body instead of
becoming part of the URI. Example:

from tastypie.test import TestApiClient
client = TestApiClient()

response = client.put('/api/v1/entry/1/', data={
'created': '2012-05-01T20:02:36',
'slug': 'another-post',
'title': 'Another Post',
'user': '/api/v1/user/1/',

})

Optionally accepts an authentication kwarg, which should be an HTTP header with the correct authentication
data already setup.

6.1. Example Usage 41

https://docs.djangoproject.com/en/dev/topics/testing/#module-django.test.client
https://docs.djangoproject.com/en/dev/topics/testing/#module-django.test.client

Tastypie Documentation, Release 0.13.3

All other **kwargs passed in get passed through to the Django TestClient. See
https://docs.djangoproject.com/en/dev/topics/testing/#module-django.test.client for details.

patch

TestApiClient.patch(self, uri, format=’json’, data=None, authentication=None, **kwargs)

Performs a simulated PATCH request to the provided URI.

Optionally accepts a data kwarg. Unlike GET, in PATCH the data gets serialized & sent as the body instead of
becoming part of the URI. Example:

from tastypie.test import TestApiClient
client = TestApiClient()

response = client.patch('/api/v1/entry/1/', data={
'created': '2012-05-01T20:02:36',
'slug': 'another-post',
'title': 'Another Post',
'user': '/api/v1/user/1/',

})

Optionally accepts an authentication kwarg, which should be an HTTP header with the correct authentication
data already setup.

All other **kwargs passed in get passed through to the Django TestClient. See
https://docs.djangoproject.com/en/dev/topics/testing/#module-django.test.client for details.

delete

TestApiClient.delete(self, uri, format=’json’, data=None, authentication=None, **kwargs)

Performs a simulated DELETE request to the provided URI.

Optionally accepts a data kwarg, which in the case of DELETE, lets you send along DELETE parameters. This is
useful when testing filtering or other things that read off the DELETE params. Example:

from tastypie.test import TestApiClient
client = TestApiClient()

response = client.delete('/api/v1/entry/1/', data={'format': 'json'})

Optionally accepts an authentication kwarg, which should be an HTTP header with the correct authentication
data already setup.

All other **kwargs passed in get passed through to the Django TestClient. See
https://docs.djangoproject.com/en/dev/topics/testing/#module-django.test.client for details.

42 Chapter 6. Testing

https://docs.djangoproject.com/en/dev/topics/testing/#module-django.test.client
https://docs.djangoproject.com/en/dev/topics/testing/#module-django.test.client
https://docs.djangoproject.com/en/dev/topics/testing/#module-django.test.client

CHAPTER 7

Compatibility Notes

Tastypie does its best to be a good third-party app, trying to interoperate with the widest range of Django environments
it can. However, there are times where certain things aren’t possible. We’ll do our best to document them here.

7.1 ApiKey Database Index

When the ApiKey model was added to Tastypie, an index was lacking on the key field. This was the case until the
v0.9.12 release. The model was updated & a migration was added (0002_add_apikey_index.py). However,
due to the way MySQL works & the way Django generates index names, this migration would fail miserably on many
MySQL installs.

If you are using MySQL & the ApiKey authentication class, you may need to manually add an index for the the
ApiKey.key field. Something to the effect of:

BEGIN; -- LOLMySQL
CREATE INDEX tastypie_apikey_key_index ON tastypie_apikey (`key`);
COMMIT;

43

Tastypie Documentation, Release 0.13.3

44 Chapter 7. Compatibility Notes

CHAPTER 8

Python 3 Support

As of Tastypie v0.10.0, it has been ported to support both Python 2 & Python 3 within the same codebase. This builds
on top of what six & Django provide.

No changes are required for anyone running an existing Tastypie installation. The API is completely backward-
compatible, so you should be able to run your existing software without modification.

All tests pass under both Python 2 & 3.

8.1 Incompatibilities

8.1.1 Oauth Is Unsupported

Tastypie was depending on several Oauth libraries for that authentication mechanism. Unfortunately, none of them
have been ported to Python 3. They’re still usable from Python 2, but that will be blocked until the underlying libraries
port (or an alternative can be found).

8.1.2 Changed Requirements

Several requirements have changed under Python 3 (mostly due to unofficial ports). They are:

• python3-digest instead of python-digest

• python-mimeparse instead of mimeparse

8.2 Notes

8.2.1 Request/Response Bodies

For explicitness, Django on Python 3 reads request bodies & sends response bodies as binary data. This requires an
explicit .decode(’utf-8’) that was not required (but works fine) under Python 2. If you’re sending or reading
the bodies from Python, you’ll need to keep this in mind.

8.2.2 Testing

If you were testing things such as the XML/JSON generated by a given response, under Python 3.3.2+, hash random-
ization is in effect, which means that the ordering of dictionaries is no longer consistent, even on the same platform.

45

http://pythonhosted.org/six/
https://docs.djangoproject.com/en/dev/topics/python3/#str-and-unicode-methods
http://docs.python.org/3/whatsnew/3.3.html#builtin-functions-and-types
http://docs.python.org/3/whatsnew/3.3.html#builtin-functions-and-types

Tastypie Documentation, Release 0.13.3

To mitigate this, Tastypie now tries to ensure that serialized data is sorted alphabetically. So if you were making string
assertions, you’ll need to update them for the new payloads.

46 Chapter 8. Python 3 Support

CHAPTER 9

Resources

In terms of a REST-style architecture, a “resource” is a collection of similar data. This data could be a table of a
database, a collection of other resources or a similar form of data storage. In Tastypie, these resources are generally
intermediaries between the end user & objects, usually Django models. As such, Resource (and its model-specific
twin ModelResource) form the heart of Tastypie’s functionality.

9.1 Quick Start

A sample resource definition might look something like:

from django.contrib.auth.models import User
from tastypie import fields
from tastypie.authorization import DjangoAuthorization
from tastypie.resources import ModelResource, ALL, ALL_WITH_RELATIONS
from myapp.models import Entry

class UserResource(ModelResource):
class Meta:

queryset = User.objects.all()
resource_name = 'auth/user'
excludes = ['email', 'password', 'is_superuser']

class EntryResource(ModelResource):
user = fields.ForeignKey(UserResource, 'user')

class Meta:
queryset = Entry.objects.all()
list_allowed_methods = ['get', 'post']
detail_allowed_methods = ['get', 'post', 'put', 'delete']
resource_name = 'myapp/entry'
authorization = DjangoAuthorization()
filtering = {

'slug': ALL,
'user': ALL_WITH_RELATIONS,
'created': ['exact', 'range', 'gt', 'gte', 'lt', 'lte'],

}

47

Tastypie Documentation, Release 0.13.3

9.2 Why Class-Based?

Using class-based resources make it easier to extend/modify the code to meet your needs. APIs are rarely a one-size-
fits-all problem space, so Tastypie tries to get the fundamentals right and provide you with enough hooks to customize
things to work your way.

As is standard, this raises potential problems for thread-safety. Tastypie has been designed to minimize the possibility
of data “leaking” between threads. This does however sometimes introduce some small complexities & you should be
careful not to store state on the instances if you’re going to be using the code in a threaded environment.

9.3 Why Resource vs. ModelResource?

Make no mistake that Django models are far and away the most popular source of data. However, in practice, there
are many times where the ORM isn’t the data source. Hooking up things like a NoSQL store (see Using Tastypie With
Non-ORM Data Sources), a search solution like Haystack or even managed filesystem data are all good use cases for
Resource knowing nothing about the ORM.

9.4 Flow Through The Request/Response Cycle

Tastypie can be thought of as a set of class-based views that provide the API functionality. As such, many part of the
request/response cycle are standard Django behaviors. For instance, all routing/middleware/response-handling aspects
are the same as a typical Django app. Where it differs is in the view itself.

As an example, we’ll walk through what a GET request to a list endpoint (say /api/v1/user/?format=json)
looks like:

• The Resource.urls are checked by Django’s url resolvers.

• On a match for the list view, Resource.wrap_view(’dispatch_list’) is called. wrap_view pro-
vides basic error handling & allows for returning serialized errors.

• Because dispatch_list was passed to wrap_view, Resource.dispatch_list is called next. This
is a thin wrapper around Resource.dispatch.

• dispatch does a bunch of heavy lifting. It ensures:

– the requested HTTP method is in allowed_methods (method_check),

– the class has a method that can handle the request (get_list),

– the user is authenticated (is_authenticated),

– & the user has not exceeded their throttle (throttle_check).

At this point, dispatch actually calls the requested method (get_list).

• get_list does the actual work of the API. It does:

– A fetch of the available objects via Resource.obj_get_list. In the case of ModelResource, this
builds the ORM filters to apply (ModelResource.build_filters). It then gets the QuerySet via
ModelResource.get_object_list (which performs Resource.authorized_read_list
to possibly limit the set the user can work with) and applies the built filters to it.

– It then sorts the objects based on user input (ModelResource.apply_sorting).

– Then it paginates the results using the supplied Paginator & pulls out the data to be serialized.

48 Chapter 9. Resources

Tastypie Documentation, Release 0.13.3

– The objects in the page have full_dehydrate applied to each of them, causing Tastypie to translate
the raw object data into the fields the endpoint supports.

– Finally, it calls Resource.create_response.

• create_response is a shortcut method that:

– Determines the desired response format (Resource.determine_format),

– Serializes the data given to it in the proper format,

– And returns a Django HttpResponse (200 OK) with the serialized data.

• We bubble back up the call stack to dispatch. The last thing dispatch does is potentially store that
a request occurred for future throttling (Resource.log_throttled_access) then either returns the
HttpResponse or wraps whatever data came back in a response (so Django doesn’t freak out).

Processing on other endpoints or using the other HTTP methods results in a similar cycle, usually differing only in
what “actual work” method gets called (which follows the format of “<http_method>_<list_or_detail>”).
In the case of POST/PUT, the hydrate cycle additionally takes place and is used to take the user data & convert it
to raw data for storage.

9.5 Why Resource URIs?

Resource URIs play a heavy role in how Tastypie delivers data. This can seem very different from other solutions
which simply inline related data. Though Tastypie can inline data like that (using full=True on the field with the
relation), the default is to provide URIs.

URIs are useful because it results in smaller payloads, letting you fetch only the data that is important to you. You can
imagine an instance where an object has thousands of related items that you may not be interested in.

URIs are also very cache-able, because the data at each endpoint is less likely to frequently change.

And URIs encourage proper use of each endpoint to display the data that endpoint covers.

Ideology aside, you should use whatever suits you. If you prefer fewer requests & fewer endpoints, use of full=True
is available, but be aware of the consequences of each approach.

9.6 Accessing The Current Request

Being able to change behavior based on the current request is a very commmon need. Virtually anywhere within
Resource/ModelResource, if a bundle is available, you can access it using bundle.request. This is
useful for altering querysets, ensuring headers are present, etc.

Most methods you may need to override/extend should get a bundle passed to them.

If you’re using the Resource/ModelResource directly, with no request available, an empty Requestwill be
supplied instead. If this is a common pattern/usage in your code, you’ll want to accommodate for data that potentially
isn’t there.

9.7 Advanced Data Preparation

Not all data can be easily pulled off an object/model attribute. And sometimes, you (or the client) may need to send
data that doesn’t neatly fit back into the data model on the server side. For this, Tastypie has the “dehydrate/hydrate”
cycle.

9.5. Why Resource URIs? 49

Tastypie Documentation, Release 0.13.3

9.7.1 The Dehydrate Cycle

Tastypie uses a “dehydrate” cycle to prepare data for serialization, which is to say that it takes the raw, potentially
complicated data model & turns it into a (generally simpler) processed data structure for client consumption. This
usually means taking a complex data object & turning it into a dictionary of simple data types.

Broadly speaking, this takes the bundle.obj instance & builds bundle.data, which is what is actually serialized.

The cycle looks like:

• Put the data model into a Bundle instance, which is then passed through the various methods.

• Run through all fields on the Resource, letting each field perform its own dehydrate method on the
bundle.

• While processing each field, look for a dehydrate_<fieldname> method on the Resource. If it’s
present, call it with the bundle.

• Finally, after all fields are processed, if the dehydrate method is present on the Resource, it is called &
given the entire bundle.

The goal of this cycle is to populate the bundle.data dictionary with data suitable for serialization. With the
exception of the alter_* methods (as hooks to manipulate the overall structure), this cycle controls what is actually
handed off to be serialized & sent to the client.

Per-field dehydrate

Each field (even custom ApiField subclasses) has its own dehydrate method. If it knows how to access data
(say, given the attribute kwarg), it will attempt to populate values itself.

The return value is put in the bundle.data dictionary (by the Resource) with the fieldname as the key.

dehydrate_FOO

Since not all data may be ready for consumption based on just attribute access (or may require an advanced
lookup/calculation), this hook enables you to fill in data or massage whatever the field generated.

Note: The FOO here is not literal. Instead, it is a placeholder that should be replaced with the fieldname in question.

Defining these methods is especially common when denormalizing related data, providing statistics or filling in unre-
lated data.

A simple example:

class MyResource(ModelResource):
The ``title`` field is already added to the class by ``ModelResource``
and populated off ``Note.title``. But we want allcaps titles...

class Meta:
queryset = Note.objects.all()

def dehydrate_title(self, bundle):
return bundle.data['title'].upper()

A complex example:

50 Chapter 9. Resources

Tastypie Documentation, Release 0.13.3

class MyResource(ModelResource):
As is, this is just an empty field. Without the ``dehydrate_rating``
method, no data would be populated for it.
rating = fields.FloatField(readonly=True)

class Meta:
queryset = Note.objects.all()

def dehydrate_rating(self, bundle):
total_score = 0.0

Make sure we don't have to worry about "divide by zero" errors.
if not bundle.obj.rating_set.count():

return total_score

We'll run over all the ``Rating`` objects & calculate an average.
for rating in bundle.obj.rating_set.all():

total_score += rating.rating

return total_score / bundle.obj.rating_set.count()

The return value is updated in the bundle.data. You should avoid altering bundle.data here if you can help it.

dehydrate

The dehydratemethod takes a now fully-populated bundle.data& make any last alterations to it. This is useful
for when a piece of data might depend on more than one field, if you want to shove in extra data that isn’t worth having
its own field or if you want to dynamically remove things from the data to be returned.

A simple example:

class MyResource(ModelResource):
class Meta:

queryset = Note.objects.all()

def dehydrate(self, bundle):
Include the request IP in the bundle.
bundle.data['request_ip'] = bundle.request.META.get('REMOTE_ADDR')
return bundle

A complex example:

class MyResource(ModelResource):
class Meta:

queryset = User.objects.all()
excludes = ['email', 'password', 'is_staff', 'is_superuser']

def dehydrate(self, bundle):
If they're requesting their own record, add in their email address.
if bundle.request.user.pk == bundle.obj.pk:

Note that there isn't an ``email`` field on the ``Resource``.
By this time, it doesn't matter, as the built data will no
longer be checked against the fields on the ``Resource``.
bundle.data['email'] = bundle.obj.email

return bundle

9.7. Advanced Data Preparation 51

Tastypie Documentation, Release 0.13.3

This method should return a bundle, whether it modifies the existing one or creates a whole new one. You can even
remove any/all data from the bundle.data if you wish.

9.7.2 The Hydrate Cycle

Tastypie uses a “hydrate” cycle to take serializated data from the client and turn it into something the data model can
use. This is the reverse process from the dehydrate cycle. In fact, by default, Tastypie’s serialized data should be
“round-trip-able”, meaning the data that comes out should be able to be fed back in & result in the same original data
model. This usually means taking a dictionary of simple data types & turning it into a complex data object.

Broadly speaking, this takes the recently-deserialized bundle.data dictionary & builds bundle.obj (but does
NOT save it).

The cycle looks like:

• Put the data from the client into a Bundle instance, which is then passed through the various methods.

• If the hydrate method is present on the Resource, it is called & given the entire bundle.

• Then run through all fields on the Resource, look for a hydrate_<fieldname> method on the
Resource. If it’s present, call it with the bundle.

• Finally after all other processing is done, while processing each field, let each field perform its own hydrate
method on the bundle.

The goal of this cycle is to populate the bundle.obj data model with data suitable for saving/persistence. Again,
with the exception of the alter_* methods (as hooks to manipulate the overall structure), this cycle controls how
the data from the client is interpreted & placed on the data model.

hydrate

The hydrate method allows you to make initial changes to the bundle.obj. This includes things like prepopu-
lating fields you don’t expose over the API, recalculating related data or mangling data.

Example:

class MyResource(ModelResource):
The ``title`` field is already added to the class by ``ModelResource``
and populated off ``Note.title``. We'll use that title to build a
``Note.slug`` as well.

class Meta:
queryset = Note.objects.all()

def hydrate(self, bundle):
Don't change existing slugs.
In reality, this would be better implemented at the ``Note.save``
level, but is for demonstration.
if not bundle.obj.pk:

bundle.obj.slug = slugify(bundle.data['title'])

return bundle

This method should return a bundle, whether it modifies the existing one or creates a whole new one. You can even
remove any/all data from the bundle.obj if you wish.

52 Chapter 9. Resources

Tastypie Documentation, Release 0.13.3

hydrate_FOO

Data from the client may not map directly onto the data model or might need augmentation. This hook lets you take
that data & convert it.

Note: The FOO here is not literal. Instead, it is a placeholder that should be replaced with the fieldname in question.

A simple example:

class MyResource(ModelResource):
The ``title`` field is already added to the class by ``ModelResource``
and populated off ``Note.title``. But we want lowercase titles...

class Meta:
queryset = Note.objects.all()

def hydrate_title(self, bundle):
bundle.data['title'] = bundle.data['title'].lower()
return bundle

The return value is the bundle.

Per-field hydrate

Each field (even custom ApiField subclasses) has its own hydrate method. If it knows how to access data (say,
given the attribute kwarg), it will attempt to take data from the bundle.data & assign it on the data model.

The return value is put in the bundle.obj attribute for that fieldname.

9.8 Reverse “Relationships”

Unlike Django’s ORM, Tastypie does not automatically create reverse relations. This is because there is substantial
technical complexity involved, as well as perhaps unintentionally exposing related data in an incorrect way to the end
user of the API.

However, it is still possible to create reverse relations. Instead of handing the ToOneField or ToManyField a
class, pass them a string that represents the full path to the desired class. Implementing a reverse relationship looks
like so:

myapp/api/resources.py
from tastypie import fields
from tastypie.resources import ModelResource
from myapp.models import Note, Comment

class NoteResource(ModelResource):
comments = fields.ToManyField('myapp.api.resources.CommentResource', 'comments')

class Meta:
queryset = Note.objects.all()

class CommentResource(ModelResource):
note = fields.ToOneField(NoteResource, 'notes')

9.8. Reverse “Relationships” 53

Tastypie Documentation, Release 0.13.3

class Meta:
queryset = Comment.objects.all()

Warning: Unlike Django, you can’t use just the class name (i.e. ’CommentResource’), even if it’s in the
same module. Tastypie (intentionally) lacks a construct like the AppCache which makes that sort of thing work
in Django. Sorry.

Tastypie also supports self-referential relations. If you assume we added the appropriate self-referential ForeignKey
to the Note model, implementing a similar relation in Tastypie would look like:

myapp/api/resources.py
from tastypie import fields
from tastypie.resources import ModelResource
from myapp.models import Note

class NoteResource(ModelResource):
sub_notes = fields.ToManyField('self', 'notes')

class Meta:
queryset = Note.objects.all()

9.9 Resource Options (AKA Meta)

The inner Meta class allows for class-level configuration of how the Resource should behave. The following
options are available:

9.9.1 serializer

Controls which serializer class the Resource should use. Default is
tastypie.serializers.Serializer().

9.9.2 authentication

Controls which authentication class the Resource should use. Default is
tastypie.authentication.Authentication().

9.9.3 authorization

Controls which authorization class the Resource should use. Default is
tastypie.authorization.ReadOnlyAuthorization().

9.9.4 validation

Controls which validation class the Resource should use. Default is
tastypie.validation.Validation().

54 Chapter 9. Resources

Tastypie Documentation, Release 0.13.3

9.9.5 paginator_class

Controls which paginator class the Resource should use. Default is
tastypie.paginator.Paginator.

Note: This is different than the other options in that you supply a class rather than an instance. This is done because
the Paginator has some per-request initialization options.

9.9.6 cache

Controls which cache class the Resource should use. Default is tastypie.cache.NoCache().

9.9.7 throttle

Controls which throttle class the Resource should use. Default is
tastypie.throttle.BaseThrottle().

9.9.8 allowed_methods

Controls what list & detail REST methods the Resource should respond to. Default is None, which
means delegate to the more specific list_allowed_methods & detail_allowed_methods
options.

You may specify a list like [’get’, ’post’, ’put’, ’delete’, ’patch’] as a shortcut to
prevent having to specify the other options.

9.9.9 list_allowed_methods

Controls what list REST methods the Resource should respond to. Default is [’get’, ’post’,
’put’, ’delete’, ’patch’]. Set it to an empty list (i.e. []) to disable all methods.

9.9.10 detail_allowed_methods

Controls what detail REST methods the Resource should respond to. Default is [’get’, ’post’,
’put’, ’delete’, ’patch’]. Set it to an empty list (i.e. []) to disable all methods.

9.9.11 limit

Controls how many results the Resource will show at a time. Default is either the
API_LIMIT_PER_PAGE setting (if provided) or 20 if not specified.

9.9.12 max_limit

Controls the maximum number of results the Resourcewill show at a time. If the user-specified limit
is higher than this, it will be capped to this limit. Set to 0 or None to allow unlimited results.

9.9. Resource Options (AKA Meta) 55

Tastypie Documentation, Release 0.13.3

9.9.13 api_name

An override for the Resource to use when generating resource URLs. Default is None.

9.9.14 resource_name

An override for the Resource to use when generating resource URLs. Default is None.

If not provided, the Resource or ModelResourcewill attempt to name itself. This means a lowercase
version of the classname preceding the word Resource if present (i.e. SampleContentResource
would become samplecontent).

9.9.15 default_format

Specifies the default serialization format the Resource should use if one is not requested (usually by
the Accept header or format GET parameter). Default is application/json.

9.9.16 filtering

Specifies the fields that the Resource will accept client filtering on. Default is {}.

Keys should be the fieldnames as strings while values should be a list of accepted filter types.

9.9.17 ordering

Specifies the what fields the Resource should allow ordering on. Default is [].

Values should be the fieldnames as strings. When provided to the Resource by the order_by GET
parameter, you can specify either the fieldname (ascending order) or -fieldname (descending or-
der).

9.9.18 object_class

Provides the Resource with the object that serves as the data source. Default is None.

In the case of ModelResource, this is automatically populated by the queryset option and is the
model class.

9.9.19 queryset

Provides the Resource with the set of Django models to respond with. Default is None.

Unused by Resource but present for consistency.

Warning: If you place any callables in this, they’ll only be evaluated once (when the Meta class is instantiated).
This especially affects things that are date/time related. Please see the Tastypie Cookbook for a way around this.

9.9.20 fields

Controls what introspected fields the Resource should include. A whitelist of fields. Default is [].

56 Chapter 9. Resources

Tastypie Documentation, Release 0.13.3

9.9.21 excludes

Controls what introspected fields the Resource should NOT include. A blacklist of fields. Default is
[].

9.9.22 include_resource_uri

Specifies if the Resource should include an extra field that displays the detail URL (within the api) for
that resource. Default is True.

9.9.23 include_absolute_url

Specifies if the Resource should include an extra field that displays the get_absolute_url for that
object (on the site proper). Default is False.

9.9.24 always_return_data

Specifies all HTTP methods (except DELETE) should return a serialized form of the data. Default is
False.

If False, HttpNoContent (204) is returned on PUT with an empty body & a Location header of
where to request the full resource.

If True, HttpResponse (200) is returned on POST/PUT with a body containing all the data in a
serialized form.

9.9.25 collection_name

Specifies the collection of objects returned in the GET list will be named. Default is objects.

9.9.26 detail_uri_name

Specifies the name for the regex group that matches on detail views. Defaults to pk.

9.10 Basic Filtering

ModelResource provides a basic Django ORM filter interface. Simply list the resource fields which you’d like to
filter on and the allowed expression in a filtering property of your resource’s Meta class:

from tastypie.constants import ALL, ALL_WITH_RELATIONS

class MyResource(ModelResource):
class Meta:

filtering = {
"slug": ('exact', 'startswith',),
"title": ALL,

}

9.10. Basic Filtering 57

Tastypie Documentation, Release 0.13.3

Valid filtering values are: Django ORM filters (e.g. startswith, exact, lte, etc.) or the ALL or
ALL_WITH_RELATIONS constants defined in tastypie.constants.

These filters will be extracted from URL query strings using the same double-underscore syntax as the Django ORM:

/api/v1/myresource/?slug=myslug
/api/v1/myresource/?slug__startswith=test

9.11 Advanced Filtering

If you need to filter things other than ORM resources or wish to apply additional constraints (e.g. text filtering using
django-haystack rather than simple database queries) your Resource may define a custom build_filters()
method which allows you to filter the queryset before processing a request:

from haystack.query import SearchQuerySet

class MyResource(Resource):
def build_filters(self, filters=None):

if filters is None:
filters = {}

orm_filters = super(MyResource, self).build_filters(filters)

if "q" in filters:
sqs = SearchQuerySet().auto_query(filters['q'])

orm_filters["pk__in"] = [i.pk for i in sqs]

return orm_filters

9.12 Using PUT/DELETE/PATCH In Unsupported Places

Some places, like in certain browsers or hosts, don’t allow the PUT/DELETE/PATCH methods. In these environ-
ments, you can simulate those kinds of requests by providing an X-HTTP-Method-Override header. For exam-
ple, to send a PATCH request over POST, you’d send a request like:

curl --dump-header - -H "Content-Type: application/json" -H "X-HTTP-Method-Override: PATCH" -X POST --data '{"title": "I Visited Grandma Today"}' http://localhost:8000/api/v1/entry/1/

9.13 Resource Methods

Handles the data, request dispatch and responding to requests.

Serialization/deserialization is handled “at the edges” (i.e. at the beginning/end of the request/response cycle) so that
everything internally is Python data structures.

This class tries to be non-model specific, so it can be hooked up to other data sources, such as search results, files,
other data, etc.

9.13.1 wrap_view

Resource.wrap_view(self, view)

58 Chapter 9. Resources

https://docs.djangoproject.com/en/dev/ref/models/querysets/#field-lookups
http://haystacksearch.org/

Tastypie Documentation, Release 0.13.3

Wraps methods so they can be called in a more functional way as well as handling exceptions better.

Note that if BadRequest or an exception with a response attr are seen, there is special handling to either present
a message back to the user or return the response traveling with the exception.

9.13.2 base_urls

Resource.base_urls(self)

The standard URLs this Resource should respond to. These include the list, detail, schema & multiple endpoints by
default.

Should return a list of individual URLconf lines.

9.13.3 override_urls

Resource.override_urls(self)

Deprecated. Will be removed by v1.0.0. Please use Resource.prepend_urls instead.

9.13.4 prepend_urls

Resource.prepend_urls(self)

A hook for adding your own URLs or matching before the default URLs. Useful for adding custom endpoints or
overriding the built-in ones (from base_urls).

Should return a list of individual URLconf lines.

9.13.5 urls

Resource.urls(self)

Property

The endpoints this Resource responds to. A combination of base_urls & override_urls.

Mostly a standard URLconf, this is suitable for either automatic use when registered with an Api class or for including
directly in a URLconf should you choose to.

9.13.6 determine_format

Resource.determine_format(self, request)

Used to determine the desired format.

Largely relies on tastypie.utils.mime.determine_format but here as a point of extension.

9.13.7 serialize

Resource.serialize(self, request, data, format, options=None)

Given a request, data and a desired format, produces a serialized version suitable for transfer over the wire.

Mostly a hook, this uses the Serializer from Resource._meta.

9.13. Resource Methods 59

Tastypie Documentation, Release 0.13.3

9.13.8 deserialize

Resource.deserialize(self, request, data, format=’application/json’)

Given a request, data and a format, deserializes the given data.

It relies on the request properly sending a CONTENT_TYPE header, falling back to application/json if not
provided.

Mostly a hook, this uses the Serializer from Resource._meta.

9.13.9 alter_list_data_to_serialize

Resource.alter_list_data_to_serialize(self, request, data)

A hook to alter list data just before it gets serialized & sent to the user.

Useful for restructuring/renaming aspects of the what’s going to be sent.

Should accommodate for a list of objects, generally also including meta data.

9.13.10 alter_detail_data_to_serialize

Resource.alter_detail_data_to_serialize(self, request, data)

A hook to alter detail data just before it gets serialized & sent to the user.

Useful for restructuring/renaming aspects of the what’s going to be sent.

Should accommodate for receiving a single bundle of data.

9.13.11 alter_deserialized_list_data

Resource.alter_deserialized_list_data(self, request, data)

A hook to alter list data just after it has been received from the user & gets deserialized.

Useful for altering the user data before any hydration is applied.

9.13.12 alter_deserialized_detail_data

Resource.alter_deserialized_detail_data(self, request, data)

A hook to alter detail data just after it has been received from the user & gets deserialized.

Useful for altering the user data before any hydration is applied.

9.13.13 dispatch_list

Resource.dispatch_list(self, request, **kwargs)

A view for handling the various HTTP methods (GET/POST/PUT/DELETE) over the entire list of resources.

Relies on Resource.dispatch for the heavy-lifting.

60 Chapter 9. Resources

Tastypie Documentation, Release 0.13.3

9.13.14 dispatch_detail

Resource.dispatch_detail(self, request, **kwargs)

A view for handling the various HTTP methods (GET/POST/PUT/DELETE) on a single resource.

Relies on Resource.dispatch for the heavy-lifting.

9.13.15 dispatch

Resource.dispatch(self, request_type, request, **kwargs)

Handles the common operations (allowed HTTP method, authentication, throttling, method lookup) surrounding most
CRUD interactions.

9.13.16 remove_api_resource_names

Resource.remove_api_resource_names(self, url_dict)

Given a dictionary of regex matches from a URLconf, removes api_name and/or resource_name if found.

This is useful for converting URLconf matches into something suitable for data lookup. For example:

Model.objects.filter(**self.remove_api_resource_names(matches))

9.13.17 method_check

Resource.method_check(self, request, allowed=None)

Ensures that the HTTP method used on the request is allowed to be handled by the resource.

Takes an allowed parameter, which should be a list of lowercase HTTP methods to check against. Usually, this
looks like:

The most generic lookup.
self.method_check(request, self._meta.allowed_methods)

A lookup against what's allowed for list-type methods.
self.method_check(request, self._meta.list_allowed_methods)

A useful check when creating a new endpoint that only handles
GET.
self.method_check(request, ['get'])

9.13.18 is_authenticated

Resource.is_authenticated(self, request)

Handles checking if the user is authenticated and dealing with unauthenticated users.

Mostly a hook, this uses class assigned to authentication from Resource._meta.

9.13. Resource Methods 61

Tastypie Documentation, Release 0.13.3

9.13.19 throttle_check

Resource.throttle_check(self, request)

Handles checking if the user should be throttled.

Mostly a hook, this uses class assigned to throttle from Resource._meta.

9.13.20 log_throttled_access

Resource.log_throttled_access(self, request)

Handles the recording of the user’s access for throttling purposes.

Mostly a hook, this uses class assigned to throttle from Resource._meta.

9.13.21 build_bundle

Resource.build_bundle(self, obj=None, data=None, request=None)

Given either an object, a data dictionary or both, builds a Bundle for use throughout the dehydrate/hydrate
cycle.

If no object is provided, an empty object from Resource._meta.object_class is created so that attempts to
access bundle.obj do not fail.

9.13.22 build_filters

Resource.build_filters(self, filters=None)

Allows for the filtering of applicable objects.

This needs to be implemented at the user level.

ModelResource includes a full working version specific to Django’s Models.

9.13.23 apply_sorting

Resource.apply_sorting(self, obj_list, options=None)

Allows for the sorting of objects being returned.

This needs to be implemented at the user level.

ModelResource includes a full working version specific to Django’s Models.

9.13.24 get_bundle_detail_data

Resource.get_bundle_detail_data(self, bundle)

Convenience method to return the detail_uri_name attribute off bundle.obj.

Usually just accesses bundle.obj.pk by default.

62 Chapter 9. Resources

Tastypie Documentation, Release 0.13.3

9.13.25 get_resource_uri

Resource.get_resource_uri(self, bundle_or_obj=None, url_name=’api_dispatch_list’)

Handles generating a resource URI.

If the bundle_or_obj argument is not provided, it builds the URI for the list endpoint.

If the bundle_or_obj argument is provided, it builds the URI for the detail endpoint.

Return the generated URI. If that URI can not be reversed (not found in the URLconf), it will return an empty string.

9.13.26 resource_uri_kwargs

Resource.resource_uri_kwargs(self, bundle_or_obj=None)

Handles generating a resource URI.

If the bundle_or_obj argument is not provided, it builds the URI for the list endpoint.

If the bundle_or_obj argument is provided, it builds the URI for the detail endpoint.

Return the generated URI. If that URI can not be reversed (not found in the URLconf), it will return None.

9.13.27 detail_uri_kwargs

Resource.detail_uri_kwargs(self, bundle_or_obj)

This needs to be implemented at the user level.

Given a Bundle or an object, it returns the extra kwargs needed to generate a detail URI.

ModelResource includes a full working version specific to Django’s Models.

9.13.28 get_via_uri

Resource.get_via_uri(self, uri, request=None)

This pulls apart the salient bits of the URI and populates the resource via a obj_get.

Optionally accepts a request.

If you need custom behavior based on other portions of the URI, simply override this method.

9.13.29 full_dehydrate

Resource.full_dehydrate(self, bundle, for_list=False)

Populate the bundle’s data attribute.

The bundle parameter will have the data that needs dehydrating in its obj attribute.

The for_list parameter indicates the style of response being prepared:

• True indicates a list of items. Note that full_dehydrate() will be called once for each object
requested.

• False indicates a response showing the details for an item

9.13. Resource Methods 63

Tastypie Documentation, Release 0.13.3

This method is responsible for invoking the the dehydrate() method of all the fields in the resource. Additionally,
it calls Resource.dehydrate().

Must return a Bundle with the desired dehydrated data (usually a dict). Typically one should modify the bundle
passed in and return it, but you may also return a completely new bundle.

9.13.30 dehydrate

Resource.dehydrate(self, bundle)

A hook to allow a final manipulation of data once all fields/methods have built out the dehydrated data.

Useful if you need to access more than one dehydrated field or want to annotate on additional data.

Must return the modified bundle.

9.13.31 full_hydrate

Resource.full_hydrate(self, bundle)

Given a populated bundle, distill it and turn it back into a full-fledged object instance.

9.13.32 hydrate

Resource.hydrate(self, bundle)

A hook to allow a final manipulation of data once all fields/methods have built out the hydrated data.

Useful if you need to access more than one hydrated field or want to annotate on additional data.

Must return the modified bundle.

9.13.33 hydrate_m2m

Resource.hydrate_m2m(self, bundle)

Populate the ManyToMany data on the instance.

9.13.34 build_schema

Resource.build_schema(self)

Returns a dictionary of all the fields on the resource and some properties about those fields.

Used by the schema/ endpoint to describe what will be available.

9.13.35 dehydrate_resource_uri

Resource.dehydrate_resource_uri(self, bundle)

For the automatically included resource_uri field, dehydrate the URI for the given bundle.

Returns empty string if no URI can be generated.

64 Chapter 9. Resources

Tastypie Documentation, Release 0.13.3

9.13.36 generate_cache_key

Resource.generate_cache_key(self, *args, **kwargs)

Creates a unique-enough cache key.

This is based off the current api_name/resource_name/args/kwargs.

9.13.37 get_object_list

Resource.get_object_list(self, request)

A hook to allow making returning the list of available objects.

This needs to be implemented at the user level.

ModelResource includes a full working version specific to Django’s Models.

9.13.38 can_create

Resource.can_create(self)

Checks to ensure post is within allowed_methods.

9.13.39 can_update

Resource.can_update(self)

Checks to ensure put is within allowed_methods.

Used when hydrating related data.

9.13.40 can_delete

Resource.can_delete(self)

Checks to ensure delete is within allowed_methods.

9.13.41 apply_filters

Resource.apply_filters(self, request, applicable_filters)

A hook to alter how the filters are applied to the object list.

This needs to be implemented at the user level.

ModelResource includes a full working version specific to Django’s Models.

9.13.42 obj_get_list

Resource.obj_get_list(self, bundle, **kwargs)

Fetches the list of objects available on the resource.

This needs to be implemented at the user level.

ModelResource includes a full working version specific to Django’s Models.

9.13. Resource Methods 65

Tastypie Documentation, Release 0.13.3

9.13.43 cached_obj_get_list

Resource.cached_obj_get_list(self, bundle, **kwargs)

A version of obj_get_list that uses the cache as a means to get commonly-accessed data faster.

9.13.44 obj_get

Resource.obj_get(self, bundle, **kwargs)

Fetches an individual object on the resource.

This needs to be implemented at the user level. If the object can not be found, this should raise a NotFound exception.

ModelResource includes a full working version specific to Django’s Models.

9.13.45 cached_obj_get

Resource.cached_obj_get(self, bundle, **kwargs)

A version of obj_get that uses the cache as a means to get commonly-accessed data faster.

9.13.46 obj_create

Resource.obj_create(self, bundle, **kwargs)

Creates a new object based on the provided data.

This needs to be implemented at the user level.

ModelResource includes a full working version specific to Django’s Models.

9.13.47 lookup_kwargs_with_identifiers

Resource.lookup_kwargs_with_identifiers(self, bundle, kwargs)

Kwargs here represent uri identifiers. Ex: /repos/<user_id>/<repo_name>/ We need to turn those identifiers into
Python objects for generating lookup parameters that can find them in the DB.

9.13.48 obj_update

Resource.obj_update(self, bundle, **kwargs)

Updates an existing object (or creates a new object) based on the provided data.

This needs to be implemented at the user level.

ModelResource includes a full working version specific to Django’s Models.

66 Chapter 9. Resources

Tastypie Documentation, Release 0.13.3

9.13.49 obj_delete_list

Resource.obj_delete_list(self, bundle, **kwargs)

Deletes an entire list of objects.

This needs to be implemented at the user level.

ModelResource includes a full working version specific to Django’s Models.

9.13.50 obj_delete_list_for_update

Resource.obj_delete_list_for_update(self, bundle, **kwargs)

Deletes an entire list of objects, specific to PUT list.

This needs to be implemented at the user level.

ModelResource includes a full working version specific to Django’s Models.

9.13.51 obj_delete

Resource.obj_delete(self, bundle, **kwargs)

Deletes a single object.

This needs to be implemented at the user level.

ModelResource includes a full working version specific to Django’s Models.

9.13.52 create_response

Resource.create_response(self, request, data, response_class=HttpResponse, **response_kwargs)

Extracts the common “which-format/serialize/return-response” cycle.

Mostly a useful shortcut/hook.

9.13.53 is_valid

Resource.is_valid(self, bundle)

Handles checking if the data provided by the user is valid.

Mostly a hook, this uses class assigned to validation from Resource._meta.

If validation fails, an error is raised with the error messages serialized inside it.

9.13.54 rollback

Resource.rollback(self, bundles)

Given the list of bundles, delete all objects pertaining to those bundles.

This needs to be implemented at the user level. No exceptions should be raised if possible.

ModelResource includes a full working version specific to Django’s Models.

9.13. Resource Methods 67

Tastypie Documentation, Release 0.13.3

9.13.55 get_list

Resource.get_list(self, request, **kwargs)

Returns a serialized list of resources.

Calls obj_get_list to provide the data, then handles that result set and serializes it.

Should return a HttpResponse (200 OK).

9.13.56 get_detail

Resource.get_detail(self, request, **kwargs)

Returns a single serialized resource.

Calls cached_obj_get/obj_get to provide the data, then handles that result set and serializes it.

Should return a HttpResponse (200 OK).

9.13.57 put_list

Resource.put_list(self, request, **kwargs)

Replaces a collection of resources with another collection.

Calls delete_list to clear out the collection then obj_create with the provided the data to create the new
collection.

Return HttpNoContent (204 No Content) if Meta.always_return_data = False (default).

Return HttpAccepted (200 OK) if Meta.always_return_data = True.

9.13.58 put_detail

Resource.put_detail(self, request, **kwargs)

Either updates an existing resource or creates a new one with the provided data.

Calls obj_update with the provided data first, but falls back to obj_create if the object does not already exist.

If a new resource is created, return HttpCreated (201 Created). If Meta.always_return_data = True,
there will be a populated body of serialized data.

If an existing resource is modified and Meta.always_return_data = False (default), return
HttpNoContent (204 No Content). If an existing resource is modified and Meta.always_return_data =
True, return HttpAccepted (200 OK).

9.13.59 post_list

Resource.post_list(self, request, **kwargs)

Creates a new resource/object with the provided data.

Calls obj_create with the provided data and returns a response with the new resource’s location.

If a new resource is created, return HttpCreated (201 Created). If Meta.always_return_data = True,
there will be a populated body of serialized data.

68 Chapter 9. Resources

Tastypie Documentation, Release 0.13.3

9.13.60 post_detail

Resource.post_detail(self, request, **kwargs)

Creates a new subcollection of the resource under a resource.

This is not implemented by default because most people’s data models aren’t self-referential.

If a new resource is created, return HttpCreated (201 Created).

9.13.61 delete_list

Resource.delete_list(self, request, **kwargs)

Destroys a collection of resources/objects.

Calls obj_delete_list.

If the resources are deleted, return HttpNoContent (204 No Content).

9.13.62 delete_detail

Resource.delete_detail(self, request, **kwargs)

Destroys a single resource/object.

Calls obj_delete.

If the resource is deleted, return HttpNoContent (204 No Content). If the resource did not exist, return
HttpNotFound (404 Not Found).

9.13.63 patch_list

Resource.patch_list(self, request, **kwargs)

Updates a collection in-place.

The exact behavior of PATCH to a list resource is still the matter of some debate in REST circles, and the PATCH
RFC isn’t standard. So the behavior this method implements (described below) is something of a stab in the dark. It’s
mostly cribbed from GData, with a smattering of ActiveResource-isms and maybe even an original idea or two.

The PATCH format is one that’s similar to the response returned from a GET on a list resource:

{
"objects": [{object}, {object}, ...],
"deleted_objects": ["URI", "URI", "URI", ...],

}

For each object in objects:

• If the dict does not have a resource_uri key then the item is considered “new” and is handled like a POST
to the resource list.

• If the dict has a resource_uri key and the resource_uri refers to an existing resource then the item is
an update; it’s treated like a PATCH to the corresponding resource detail.

• If the dict has a resource_uri but the resource doesn’t exist, then this is considered to be a create-via-PUT.

9.13. Resource Methods 69

Tastypie Documentation, Release 0.13.3

Each entry in deleted_objects refers to a resource URI of an existing resource to be deleted; each is handled
like a DELETE to the relevant resource.

In any case:

• If there’s a resource URI it must refer to a resource of this type. It’s an error to include a URI of a different
resource.

• PATCH is all or nothing. If a single sub-operation fails, the entire request will fail and all resources will be rolled
back.

• For PATCH to work, you must have patch in your detail_allowed_methods setting.

• To delete objects via deleted_objects in a PATCH request you must have delete in your de-
tail_allowed_methods setting.

9.13.64 patch_detail

Resource.patch_detail(self, request, **kwargs)

Updates a resource in-place.

Calls obj_update.

If the resource is updated, return HttpAccepted (202 Accepted). If the resource did not exist, return
HttpNotFound (404 Not Found).

9.13.65 get_schema

Resource.get_schema(self, request, **kwargs)

Returns a serialized form of the schema of the resource.

Calls build_schema to generate the data. This method only responds to HTTP GET.

Should return a HttpResponse (200 OK).

9.13.66 get_multiple

Resource.get_multiple(self, request, **kwargs)

Returns a serialized list of resources based on the identifiers from the URL.

Calls obj_get to fetch only the objects requested. This method only responds to HTTP GET.

Should return a HttpResponse (200 OK).

9.14 ModelResource Methods

A subclass of Resource designed to work with Django’s Models.

This class will introspect a given Model and build a field list based on the fields found on the model (excluding
relational fields).

Given that it is aware of Django’s ORM, it also handles the CRUD data operations of the resource.

70 Chapter 9. Resources

Tastypie Documentation, Release 0.13.3

9.14.1 should_skip_field

ModelResource.should_skip_field(cls, field)

Class method

Given a Django model field, return if it should be included in the contributed ApiFields.

9.14.2 api_field_from_django_field

ModelResource.api_field_from_django_field(cls, f, default=CharField)

Class method

Returns the field type that would likely be associated with each Django type.

9.14.3 get_fields

ModelResource.get_fields(cls, fields=None, excludes=None)

Class method

Given any explicit fields to include and fields to exclude, add additional fields based on the associated model.

9.14.4 check_filtering

ModelResource.check_filtering(self, field_name, filter_type=’exact’, filter_bits=None)

Given a field name, an optional filter type and an optional list of additional relations, determine if a field can be filtered
on.

If a filter does not meet the needed conditions, it should raise an InvalidFilterError.

If the filter meets the conditions, a list of attribute names (not field names) will be returned.

9.14.5 build_filters

ModelResource.build_filters(self, filters=None)

Given a dictionary of filters, create the necessary ORM-level filters.

Keys should be resource fields, NOT model fields.

Valid values are either a list of Django filter types (i.e. [’startswith’, ’exact’, ’lte’]), the ALL constant
or the ALL_WITH_RELATIONS constant.

At the declarative level:

filtering = {
'resource_field_name': ['exact', 'startswith', 'endswith', 'contains'],
'resource_field_name_2': ['exact', 'gt', 'gte', 'lt', 'lte', 'range'],
'resource_field_name_3': ALL,
'resource_field_name_4': ALL_WITH_RELATIONS,
...

}

Accepts the filters as a dict. None by default, meaning no filters.

9.14. ModelResource Methods 71

Tastypie Documentation, Release 0.13.3

9.14.6 apply_sorting

ModelResource.apply_sorting(self, obj_list, options=None)

Given a dictionary of options, apply some ORM-level sorting to the provided QuerySet.

Looks for the order_by key and handles either ascending (just the field name) or descending (the field name with a
- in front).

The field name should be the resource field, NOT model field.

9.14.7 apply_filters

ModelResource.apply_filters(self, request, applicable_filters)

An ORM-specific implementation of apply_filters.

The default simply applies the applicable_filters as **kwargs, but should make it possible to do more
advanced things.

9.14.8 get_object_list

ModelResource.get_object_list(self, request)

A ORM-specific implementation of get_object_list.

Returns a QuerySet that may have been limited by other overrides.

9.14.9 obj_get_list

ModelResource.obj_get_list(self, filters=None, **kwargs)

A ORM-specific implementation of obj_get_list.

Takes an optional filters dictionary, which can be used to narrow the query.

9.14.10 obj_get

ModelResource.obj_get(self, **kwargs)

A ORM-specific implementation of obj_get.

Takes optional kwargs, which are used to narrow the query to find the instance.

9.14.11 obj_create

ModelResource.obj_create(self, bundle, **kwargs)

A ORM-specific implementation of obj_create.

9.14.12 obj_update

ModelResource.obj_update(self, bundle, **kwargs)

A ORM-specific implementation of obj_update.

72 Chapter 9. Resources

Tastypie Documentation, Release 0.13.3

9.14.13 obj_delete_list

ModelResource.obj_delete_list(self, **kwargs)

A ORM-specific implementation of obj_delete_list.

Takes optional kwargs, which can be used to narrow the query.

9.14.14 obj_delete_list_for_update

ModelResource.obj_delete_list_for_update(self, **kwargs)

A ORM-specific implementation of obj_delete_list_for_update.

Takes optional kwargs, which can be used to narrow the query.

9.14.15 obj_delete

ModelResource.obj_delete(self, **kwargs)

A ORM-specific implementation of obj_delete.

Takes optional kwargs, which are used to narrow the query to find the instance.

9.14.16 rollback

ModelResource.rollback(self, bundles)

A ORM-specific implementation of rollback.

Given the list of bundles, delete all models pertaining to those bundles.

9.14.17 save_related

ModelResource.save_related(self, bundle)

Handles the saving of related non-M2M data.

Calling assigning child.parent = parent & then calling Child.save isn’t good enough to make sure the
parent is saved.

To get around this, we go through all our related fields & call save on them if they have related, non-M2M data.
M2M data is handled by the ModelResource.save_m2m method.

9.14.18 save_m2m

ModelResource.save_m2m(self, bundle)

Handles the saving of related M2M data.

Due to the way Django works, the M2M data must be handled after the main instance, which is why this isn’t a part
of the main save bits.

Currently slightly inefficient in that it will clear out the whole relation and recreate the related data as needed.

9.14. ModelResource Methods 73

Tastypie Documentation, Release 0.13.3

9.14.19 get_resource_uri

ModelResource.get_resource_uri(self, bundle_or_obj)

Handles generating a resource URI for a single resource.

Uses the model’s pk in order to create the URI.

74 Chapter 9. Resources

CHAPTER 10

Bundles

10.1 What Are Bundles?

Bundles are a small abstraction that allow Tastypie to pass data between resources. This allows us not to depend on
passing request to every single method (especially in places where this would be overkill). It also allows resources
to work with data coming into the application paired together with an unsaved instance of the object in question.
Finally, it aids in keeping Tastypie more thread-safe.

Think of it as package of user data & an object instance (either of which are optionally present).

10.2 Attributes

All data within a bundle can be optional, especially depending on how it’s being used. If you write custom code using
Bundle, make sure appropriate guards are in place.

10.2.1 obj

Either a Python object or None.

Usually a Django model, though it may/may not have been saved already.

10.2.2 data

Always a plain Python dictionary of data. If not provided, it will be empty.

10.2.3 request

Either the Django request that’s part of the issued request or an empty HttpRequest if it wasn’t provided.

10.2.4 related_obj

Either another “parent” Python object or None.

Useful when handling one-to-many relations. Used in conjunction with related_name.

75

Tastypie Documentation, Release 0.13.3

10.2.5 related_name

Either a Python string name of an attribute or None.

Useful when handling one-to-many relations. Used in conjunction with related_obj.

76 Chapter 10. Bundles

CHAPTER 11

Api

In terms of a REST-style architecture, the “api” is a collection of resources. In Tastypie, the Api gathers together the
Resources & provides a nice way to use them as a set. It handles many of the URLconf details for you, provides a
helpful “top-level” view to show what endpoints are available & some extra URL resolution juice.

11.1 Quick Start

A sample api definition might look something like (usually located in a URLconf):

from django.conf.urls import url, include
from tastypie.api import Api
from myapp.api.resources import UserResource, EntryResource

v1_api = Api(api_name='v1')
v1_api.register(UserResource())
v1_api.register(EntryResource())

Standard bits...
urlpatterns = [

url(r'^api/', include(v1_api.urls)),
]

For namespaced urls see Namespaces

11.2 Api Methods

Implements a registry to tie together the various resources that make up an API.

Especially useful for navigation, HATEOAS and for providing multiple versions of your API.

Optionally supplying api_name allows you to name the API. Generally, this is done with version numbers (i.e. v1,
v2, etc.) but can be named any string.

11.2.1 register

Api.register(self, resource, canonical=True):

Registers an instance of a Resource subclass with the API.

77

Tastypie Documentation, Release 0.13.3

Optionally accept a canonical argument, which indicates that the resource being registered is the canonical variant.
Defaults to True.

11.2.2 unregister

Api.unregister(self, resource_name):

If present, unregisters a resource from the API.

11.2.3 canonical_resource_for

Api.canonical_resource_for(self, resource_name):

Returns the canonical resource for a given resource_name.

override_urls

Api.override_urls(self):

Deprecated. Will be removed by v1.0.0. Please use Api.prepend_urls instead.

prepend_urls

Api.prepend_urls(self):

A hook for adding your own URLs or matching before the default URLs. Useful for adding custom endpoints or
overriding the built-in ones.

Should return a list of individual URLconf lines.

11.2.4 urls

Api.urls(self):

Property

Provides URLconf details for the Api and all registered Resources beneath it.

11.2.5 top_level

Api.top_level(self, request, api_name=None):

A view that returns a serialized list of all resources registers to the Api. Useful for discovery.

78 Chapter 11. Api

CHAPTER 12

Resource Fields

When designing an API, an important component is defining the representation of the data you’re presenting. Like
Django models, you can control the representation of a Resource using fields. There are a variety of fields for
various types of data.

12.1 Quick Start

For the impatient:

from tastypie import fields, utils
from tastypie.resources import Resource
from myapp.api.resources import ProfileResource, NoteResource

class PersonResource(Resource):
name = fields.CharField(attribute='name')
age = fields.IntegerField(attribute='years_old', null=True)
created = fields.DateTimeField(readonly=True, help_text='When the person was created', default=utils.now)
is_active = fields.BooleanField(default=True)
profile = fields.ToOneField(ProfileResource, 'profile')
notes = fields.ToManyField(NoteResource, 'notes', full=True)

12.2 Standard Data Fields

All standard data fields have a common base class ApiField which handles the basic implementation details.

Note: You should not use the ApiField class directly. Please use one of the subclasses that is more correct for your
data.

12.2.1 Common Field Options

All ApiField objects accept the following options.

79

Tastypie Documentation, Release 0.13.3

attribute

ApiField.attribute

A string naming an instance attribute of the object wrapped by the Resource. The attribute will be accessed during the
dehydrate or or written during the hydrate.

Defaults to None, meaning data will be manually accessed.

default

ApiField.default

Provides default data when the object being dehydrated/hydrated has no data on the field.

Defaults to tastypie.fields.NOT_PROVIDED.

null

ApiField.null

Indicates whether or not a None is allowable data on the field. Defaults to False.

blank

ApiField.blank

Indicates whether or not data may be omitted on the field. Defaults to False.

This is useful for allowing the user to omit data that you can populate based on the request, such as the user or site
to associate a record with.

readonly

ApiField.readonly

Indicates whether the field is used during the hydrate or not. Defaults to False.

unique

ApiField.unique

Indicates whether the field is a unique identifier for the object.

help_text

ApiField.help_text

A human-readable description of the field exposed at the schema level. Defaults to the per-Field definition.

80 Chapter 12. Resource Fields

Tastypie Documentation, Release 0.13.3

use_in

ApiField.use_in

Optionally omit this field in list or detail views. It can be either ‘all’, ‘list’, or ‘detail’ or a callable which accepts a
bundle and returns a boolean value.

12.2.2 Field Types

12.2.3 BooleanField

A boolean field.

Covers both models.BooleanField and models.NullBooleanField.

12.2.4 CharField

A text field of arbitrary length.

Covers both models.CharField and models.TextField.

12.2.5 DateField

A date field.

12.2.6 DateTimeField

A datetime field.

12.2.7 DecimalField

A decimal field.

12.2.8 DictField

A dictionary field.

12.2.9 FileField

A file-related field.

Covers both models.FileField and models.ImageField.

12.2.10 FloatField

A floating point field.

12.2. Standard Data Fields 81

Tastypie Documentation, Release 0.13.3

12.2.11 IntegerField

An integer field.

Covers models.IntegerField, models.PositiveIntegerField, models.PositiveSmallIntegerField
and models.SmallIntegerField.

12.2.12 ListField

A list field.

12.2.13 TimeField

A time field.

12.3 Relationship Fields

Provides access to data that is related within the database.

The RelatedField base class is not intended for direct use but provides functionality that ToOneField and
ToManyField build upon.

The contents of this field actually point to another Resource, rather than the related object. This allows the field to
represent its data in different ways.

The abstractions based around this are “leaky” in that, unlike the other fields provided by tastypie, these fields
don’t handle arbitrary objects very well. The subclasses use Django’s ORM layer to make things go, though there is
no ORM-specific code at this level.

12.3.1 Common Field Options

In addition to the common attributes for all ApiField, relationship fields accept the following.

to

RelatedField.to

The to argument should point to a Resource class, NOT to a Model. Required.

full

RelatedField.full

Indicates how the related Resource will appear post-dehydrate. If False, the related Resource will appear
as a URL to the endpoint of that resource. If True, the result of the sub-resource’s dehydrate will be included in
full. You can further control post-dehydrate behaviour when requesting a resource or a list of resources by setting
full_list and full_detail.

82 Chapter 12. Resource Fields

Tastypie Documentation, Release 0.13.3

full_list

RelatedField.full_list

Indicates how the related Resource will appear post-dehydrate when requesting a list of resources. The value
is one of True, False or a callable that accepts a bundle and returns True or False. If False, the related
Resource will appear as a URL to the endpoint of that resource if accessing a list of resources. If True and full
is also True, the result of thesub-resource’s dehydrate will be included in full. Default is True

full_detail

RelatedField.full_detail

Indicates how the related Resource will appear post-dehydrate when requesting a single resource. The value
is one of True, False or a callable that accepts a bundle and returns True or False. If False, the related
Resource will appear as a URL to the endpoint of that resource if accessing a specific resources. If True and full
is also True, the result of thesub-resource’s dehydrate will be included in full. Default is True

related_name

RelatedField.related_name

Used to help automatically populate reverse relations when creating data. Defaults to None.

In order for this option to work correctly, there must be a field on the other Resource with this as an
attribute/instance_name. Usually this just means adding a reflecting ToOneField pointing back.

Example:

class EntryResource(ModelResource):
authors = fields.ToManyField('path.to.api.resources.AuthorResource', 'author_set', related_name='entry')

class Meta:
queryset = Entry.objects.all()
resource_name = 'entry'

class AuthorResource(ModelResource):
entry = fields.ToOneField(EntryResource, 'entry')

class Meta:
queryset = Author.objects.all()
resource_name = 'author'

12.3.2 Field Types

ToOneField

Provides access to related data via foreign key.

This subclass requires Django’s ORM layer to work properly.

OneToOneField

An alias to ToOneField for those who prefer to mirror django.db.models.

12.3. Relationship Fields 83

Tastypie Documentation, Release 0.13.3

ForeignKey

An alias to ToOneField for those who prefer to mirror django.db.models.

ToManyField

Provides access to related data via a join table.

This subclass requires Django’s ORM layer to work properly.

This field also has special behavior when dealing with attribute in that it can take a callable. For instance, if you
need to filter the reverse relation, you can do something like:

subjects = fields.ToManyField(SubjectResource, attribute=lambda bundle: Subject.objects.filter(notes=bundle.obj, name__startswith='Personal'))

Note that the hydrate portions of this field are quite different than any other field. hydrate_m2m actually handles
the data and relations. This is due to the way Django implements M2M relationships.

ManyToManyField

An alias to ToManyField for those who prefer to mirror django.db.models.

OneToManyField

An alias to ToManyField for those who prefer to mirror django.db.models.

84 Chapter 12. Resource Fields

CHAPTER 13

Caching

When adding an API to your site, it’s important to understand that most consumers of the API will not be people,
but instead machines. This means that the traditional “fetch-read-click” cycle is no longer measured in minutes but in
seconds or milliseconds.

As such, caching is a very important part of the deployment of your API. Tastypie ships with two classes to make
working with caching easier. These caches store at the object level, reducing access time on the database.

However, it’s worth noting that these do NOT cache serialized representations. For heavy traffic, we’d encourage the
use of a caching proxy, especially Varnish, as it shines under this kind of usage. It’s far faster than Django views and
already neatly handles most situations.

The first section below demonstrates how to cache at the Django level, reducing the amount of work required to satisfy
a request. In many cases your API serves web browsers or is behind by a caching proxy such as Varnish and it is
possible to set HTTP Cache-Control headers to avoid issuing a request to your application at all. This is discussed in
the HTTP Cache-Control section below.

13.1 Usage

Using these classes is simple. Simply provide them (or your own class) as a Meta option to the Resource in
question. For example:

from django.contrib.auth.models import User
from tastypie.cache import SimpleCache
from tastypie.resources import ModelResource

class UserResource(ModelResource):
class Meta:

queryset = User.objects.all()
resource_name = 'auth/user'
excludes = ['email', 'password', 'is_superuser']
Add it here.
cache = SimpleCache(timeout=10)

13.2 Caching Options

Tastypie ships with the following Cache classes:

85

http://www.varnish-cache.org/
http://www.varnish-cache.org/

Tastypie Documentation, Release 0.13.3

13.2.1 NoCache

The no-op cache option, this does no caching but serves as an api-compatible plug. Very useful for development.

13.2.2 SimpleCache

This option does basic object caching, attempting to find the object in the cache & writing the object to the cache. By
default, it uses the default cache backend as configured in the CACHES setting. However, an optional cache_name
parameter can be passed to the constructor to specify a different backend. For example, if CACHES looks like:

CACHES = {
'default': {

'BACKEND': 'django.core.cache.backends.locmem.LocMemCache',
'TIMEOUT': 60

},
'resources': {

'BACKEND': 'django.core.cache.backends.locmem.LocMemCache',
'TIMEOUT': 60

}
}

you can configure your resource’s cache_name property like so:

cache = SimpleCache(cache_name='resources', timeout=10)

In this case, the cache used will be the one named, and the default timeout specified in CACHES[’resources’]
will be overriden by the timeout parameter.

13.3 Implementing Your Own Cache

Implementing your own Cache class is as simple as subclassing NoCache and overriding the get & set methods.
For example, a json-backed cache might look like:

import json
from django.conf import settings
from tastypie.cache import NoCache

class JSONCache(NoCache):
def _load(self):

data_file = open(settings.TASTYPIE_JSON_CACHE, 'r')
return json.load(data_file)

def _save(self, data):
data_file = open(settings.TASTYPIE_JSON_CACHE, 'w')
return json.dump(data, data_file)

def get(self, key):
data = self._load()
return data.get(key, None)

def set(self, key, value, timeout=60):
data = self._load()
data[key] = value
self._save(data)

86 Chapter 13. Caching

Tastypie Documentation, Release 0.13.3

Note that this is NOT necessarily an optimal solution, but is simply demonstrating how one might go about imple-
menting your own Cache.

13.4 HTTP Cache-Control

The HTTP protocol defines a Cache-Control header, which can be used to tell clients and intermediaries who is
allowed to cache a response and for how long. Mark Nottingham has a general caching introduction and the Django
cache documentation describes how to set caching-related headers in your code. The range of possible options is
beyond the scope of this documentation, but it’s important to know that, by default, Tastypie will prevent responses
from being cached to ensure that clients always receive current information.

To override the default no-cache response, your Resource should ensure that your cache class implements
cache_control. The default SimpleCache does this by default. It uses the timeout passed to the initialization
as the max-age and s-maxage. By default, it does not claim to know if the results should be public or privately
cached but this can be changed by passing either a public=True or a private=True to the initialization of the
SimpleClass.

Behind the scenes, the return value from the cache_controlmethod is passed to the cache_control helper provided
by Django. If you wish to add your own methods to it, you can do so by overloading the cache_control method
and modifying the dictionary it returns.:

from tastypie.cache import SimpleCache

class NoTransformCache(SimpleCache):

def cache_control(self):
control = super(NoTransformCache, self).cache_control()
control.update({"no_transform": True})
return control

13.5 HTTP Vary

The HTTP protocol defines a Vary header, which can be used to tell clients and intermediaries on what headers your
response varies. This allows clients to store a correct response for each type. By default, Tastypie will send the Vary:
Accept header so that a seperate response is cached for each Content-Type. However, if you wish to change this,
simply pass a list to the varies kwarg of any Cache class.

It is important to note that if a list is passed, Tastypie not automatically include the Vary: Accept and you should
include it as a member of your list.:

class ExampleResource(Resource):
class Meta:

cache = SimpleCache(varies=["Accept", "Cookie"])

13.4. HTTP Cache-Control 87

http://www.mnot.net/cache_docs/
https://docs.djangoproject.com/en/dev/topics/cache/#controlling-cache-using-other-headers
https://docs.djangoproject.com/en/dev/topics/cache/#controlling-cache-using-other-headers
https://docs.djangoproject.com/en/dev/topics/cache/?from=olddocs#controlling-cache-using-other-headers

Tastypie Documentation, Release 0.13.3

88 Chapter 13. Caching

CHAPTER 14

Validation

Validation allows you to ensure that the data being submitted by the user is appropriate for storage. This can range
from simple type checking on up to complex validation that compares different fields together.

If the data is valid, an empty dictionary is returned and processing continues as normal. If the data is invalid, a
dictionary of error messages (keys being the field names, values being a list of error messages) is immediately returned
to the user, serialized in the format they requested.

14.1 Usage

Using these classes is simple. Simply provide them (or your own class) as a Meta option to the Resource in
question. For example:

from django.contrib.auth.models import User
from tastypie.validation import Validation
from tastypie.resources import ModelResource

class UserResource(ModelResource):
class Meta:

queryset = User.objects.all()
resource_name = 'auth/user'
excludes = ['email', 'password', 'is_superuser']
Add it here.
validation = Validation()

14.2 Validation Options

Tastypie ships with the following Validation classes:

14.2.1 Validation

The no-op validation option, the data submitted is always considered to be valid.

This is the default class hooked up to Resource/ModelResource.

89

Tastypie Documentation, Release 0.13.3

14.2.2 FormValidation

A more complex form of validation, this class accepts a form_class argument to its constructor. You supply a
Django Form (or ModelForm, though save will never get called) and Tastypie will verify the data in the Bundle
against the form.

This class DOES NOT alter the data sent, only verifies it. If you want to alter the data, please use the
CleanedDataFormValidation class instead.

Warning: Data in the bundle must line up with the fieldnames in the Form. If they do not, you’ll need to either
munge the data or change your form.

Usage looks like:

from django import forms

class NoteForm(forms.Form):
title = forms.CharField(max_length=100)
slug = forms.CharField(max_length=50)
content = forms.CharField(required=False, widget=forms.Textarea)
is_active = forms.BooleanField()

form = FormValidation(form_class=NoteForm)

14.2.3 CleanedDataFormValidation

Similar to the FormValidation class, this uses a Django Form to handle validation. However, it will use the
form.cleaned_data to replace the bundle data sent by user! Usage is identical to FormValidation.

14.3 Implementing Your Own Validation

Implementing your own Validation classes is a simple process. The constructor can take whatever **kwargs it
needs (if any). The only other method to implement is the is_valid method:

from tastypie.validation import Validation

class AwesomeValidation(Validation):
def is_valid(self, bundle, request=None):

if not bundle.data:
return {'__all__': 'Not quite what I had in mind.'}

errors = {}

for key, value in bundle.data.items():
if not isinstance(value, basestring):

continue

if not 'awesome' in value:
errors[key] = ['NOT ENOUGH AWESOME. NEEDS MORE.']

return errors

Under this validation, every field that’s a string is checked for the word ‘awesome’. If it’s not in the string, it’s an error.

90 Chapter 14. Validation

CHAPTER 15

Authentication

Authentication is the component needed to verify who a certain user is and to validate their access to the API.

Authentication answers the question “Who is this person?” This usually involves requiring credentials, such as an API
key or username/password or oAuth tokens.

15.1 Usage

Using these classes is simple. Simply provide them (or your own class) as a Meta option to the Resource in
question. For example:

from django.contrib.auth.models import User
from tastypie.authentication import BasicAuthentication
from tastypie.resources import ModelResource

class UserResource(ModelResource):
class Meta:

queryset = User.objects.all()
resource_name = 'auth/user'
excludes = ['email', 'password', 'is_superuser']
Add it here.
authentication = BasicAuthentication()

15.2 Authentication Options

Tastypie ships with the following Authentication classes:

15.2.1 Authentication

The no-op authentication option, the client is always allowed through. Very useful for development and read-only
APIs.

15.2.2 BasicAuthentication

This authentication scheme uses HTTP Basic Auth to check a user’s credentials. The username is their
django.contrib.auth.models.User username (assuming it is present) and their password should also cor-

91

Tastypie Documentation, Release 0.13.3

respond to that entry.

Warning: If you’re using Apache & mod_wsgi, you will need to enable WSGIPassAuthorization On.
See this post for details.

15.2.3 ApiKeyAuthentication

As an alternative to requiring sensitive data like a password, the ApiKeyAuthentication allows you to collect
just username & a machine-generated api key. Tastypie ships with a special Model just for this purpose, so you’ll
need to ensure tastypie is in INSTALLED_APPS and that the model’s database tables have been created (e.g. via
django-admin.py syncdb).

To use this mechanism, the end user can either specify an Authorization header or pass the
username/api_key combination as GET/POST parameters. Examples:

As a header
Format is ``Authorization: ApiKey <username>:<api_key>
Authorization: ApiKey daniel:204db7bcfafb2deb7506b89eb3b9b715b09905c8

As GET params
http://127.0.0.1:8000/api/v1/entries/?username=daniel&api_key=204db7bcfafb2deb7506b89eb3b9b715b09905c8

Tastypie includes a signal function you can use to auto-create ApiKey objects. Hooking it up looks like:

from django.contrib.auth.models import User
from django.db.models import signals
from tastypie.models import create_api_key

signals.post_save.connect(create_api_key, sender=User)

Warning: If you’re using Apache & mod_wsgi, you will need to enable WSGIPassAuthorization On,
otherwise mod_wsgi strips out the Authorization header. See this post for details (even though it only
mentions Basic auth).

Note: In some cases it may be useful to make the ApiKey model an abstract base class. To enable this, set
settings.TASTYPIE_ABSTRACT_APIKEY to True. See the documentation for this setting for more informa-
tion.

15.2.4 SessionAuthentication

This authentication scheme uses the built-in Django sessions to check if a user is logged. This is typically useful when
used by Javascript on the same site as the API is hosted on.

It requires that the user has logged in & has an active session. They also must have a valid CSRF token.

15.2.5 DigestAuthentication

This authentication scheme uses HTTP Digest Auth to check a user’s credentials. The username is their
django.contrib.auth.models.User username (assuming it is present) and their password should be their
machine-generated api key. As with ApiKeyAuthentication, tastypie should be included in INSTALLED_APPS.

92 Chapter 15. Authentication

http://www.nerdydork.com/basic-authentication-on-mod_wsgi.html
http://www.nerdydork.com/basic-authentication-on-mod_wsgi.html
https://docs.djangoproject.com/en/dev/topics/db/models/#abstract-base-classes
http://django-tastypie.readthedocs.org/en/latest/settings.html#tastypie-abstract-apikey

Tastypie Documentation, Release 0.13.3

Warning: If you’re using Apache & mod_wsgi, you will need to enable WSGIPassAuthorization On.
See this post for details (even though it only mentions Basic auth).

15.2.6 OAuthAuthentication

Handles OAuth, which checks a user’s credentials against a separate service. Currently verifies against OAuth 1.0a
services.

This does NOT provide OAuth authentication in your API, strictly consumption.

Warning: If you’re used to in-browser OAuth flow (click a “Sign In” button, get redirected, login on remote
service, get redirected back), this isn’t the same. Most prominently, expecting that would cause API clients to have
to use tools like mechanize to fill in forms, which would be difficult.
This authentication expects that you’re already followed some sort of OAuth flow & that the credentials
(Nonce/token/etc) are simply being passed to it. It merely checks that the credentials are valid. No requests
are made to remote services as part of this authentication class.

15.2.7 MultiAuthentication

This authentication class actually wraps any number of other authentication classes, attempting each until successfully
authenticating. For example:

from django.contrib.auth.models import User
from tastypie.authentication import BasicAuthentication, ApiKeyAuthentication, MultiAuthentication
from tastypie.authorization import DjangoAuthorization
from tastypie.resources import ModelResource

class UserResource(ModelResource):
class Meta:

queryset = User.objects.all()
resource_name = 'auth/user'
excludes = ['email', 'password', 'is_superuser']

authentication = MultiAuthentication(BasicAuthentication(), ApiKeyAuthentication())
authorization = DjangoAuthorization()

In the case of an authentication returning a customized HttpUnauthorized, MultiAuthentication defaults to the first
returned one. Authentication schemes that need to control the response, such as the included BasicAuthentication and
DigestAuthentication, should be placed first.

15.3 Implementing Your Own Authentication/Authorization

Implementing your own Authentication classes is a simple process. Authentication has two methods to
override (one of which is optional but recommended to be customized):

from tastypie.authentication import Authentication

class SillyAuthentication(Authentication):
def is_authenticated(self, request, **kwargs):

if 'daniel' in request.user.username:

15.3. Implementing Your Own Authentication/Authorization 93

http://www.nerdydork.com/basic-authentication-on-mod_wsgi.html
http://pypi.python.org/pypi/mechanize/

Tastypie Documentation, Release 0.13.3

return True

return False

Optional but recommended
def get_identifier(self, request):

return request.user.username

Under this scheme, only users with ‘daniel’ in their username will be allowed in.

94 Chapter 15. Authentication

CHAPTER 16

Authorization

Authorization is the component needed to verify what someone can do with the resources within an API.

Authorization answers the question “Is permission granted for this user to take this action?” This usually involves
checking permissions such as Create/Read/Update/Delete access, or putting limits on what data the user can access.

16.1 Usage

Using these classes is simple. Simply provide them (or your own class) as a Meta option to the Resource in
question. For example:

from django.contrib.auth.models import User
from tastypie.authorization import DjangoAuthorization
from tastypie.resources import ModelResource

class UserResource(ModelResource):
class Meta:

queryset = User.objects.all()
resource_name = 'auth/user'
excludes = ['email', 'password', 'is_superuser']
Add it here.
authorization = DjangoAuthorization()

16.2 Authorization Options

Tastypie ships with the following Authorization classes:

16.2.1 Authorization

The no-op authorization option, no permissions checks are performed.

Warning: This is a potentially dangerous option, as it means ANY recognized user can modify ANY data they
encounter in the API. Be careful who you trust.

95

Tastypie Documentation, Release 0.13.3

16.2.2 ReadOnlyAuthorization

This authorization class only permits reading data, regardless of what the Resource might think is allowed. This is
the default Authorization class and the safe option.

16.2.3 DjangoAuthorization

The most advanced form of authorization, this checks the permission a user has granted to them (via
django.contrib.auth.models.Permission). In conjunction with the admin, this is a very effective means
of control.

16.3 The Authorization API

An Authorization-compatible class implements the following methods:

• read_list

• read_detail

• create_list

• create_detail

• update_list

• update_detail

• delete_list

• delete_detail

Each method takes two parameters, object_list & bundle.

object_list is the collection of objects being processed as part of the request. FILTERING & other restrictions
to the set will have already been applied prior to this call.

bundle is the populated Bundle object for the request. You’ll likely frequently be accessing
bundle.request.user, though raw access to the data can be helpful.

What you return from the method varies based on the type of method.

16.3.1 Return Values: The List Case

In the case of the *_list methods, you’ll want to filter the object_list & return only the objects the user has
access to.

Returning an empty list simply won’t allow the action to be applied to any objects. However, they will not get a HTTP
error status code.

If you’d rather they received an unauthorized status code, raising Unauthorized will return a HTTP 401.

16.3.2 Return Values: The Detail Case

In the case of the *_detail methods, you’ll have access to the object_list (so you know if a given object fits
within the overall set), BUT you’ll want to be inspecting bundle.obj & either returning True if they should be
allowed to continue or raising the Unauthorized exception if not.

96 Chapter 16. Authorization

Tastypie Documentation, Release 0.13.3

Raising Unauthorized will cause a HTTP 401 error status code in the response.

16.4 Implementing Your Own Authorization

Implementing your own Authorization classes is a relatively simple process. Anything that is API-compatible is
acceptable, only the method names matter to Tastypie.

An example implementation of a user only being able to access or modify “their” objects might look like:

from tastypie.authorization import Authorization
from tastypie.exceptions import Unauthorized

class UserObjectsOnlyAuthorization(Authorization):
def read_list(self, object_list, bundle):

This assumes a ``QuerySet`` from ``ModelResource``.
return object_list.filter(user=bundle.request.user)

def read_detail(self, object_list, bundle):
Is the requested object owned by the user?
return bundle.obj.user == bundle.request.user

def create_list(self, object_list, bundle):
Assuming they're auto-assigned to ``user``.
return object_list

def create_detail(self, object_list, bundle):
return bundle.obj.user == bundle.request.user

def update_list(self, object_list, bundle):
allowed = []

Since they may not all be saved, iterate over them.
for obj in object_list:

if obj.user == bundle.request.user:
allowed.append(obj)

return allowed

def update_detail(self, object_list, bundle):
return bundle.obj.user == bundle.request.user

def delete_list(self, object_list, bundle):
Sorry user, no deletes for you!
raise Unauthorized("Sorry, no deletes.")

def delete_detail(self, object_list, bundle):
raise Unauthorized("Sorry, no deletes.")

16.4. Implementing Your Own Authorization 97

Tastypie Documentation, Release 0.13.3

98 Chapter 16. Authorization

CHAPTER 17

Serialization

Serialization can be one of the most contentious areas of an API. Everyone has their own requirements, their own
preferred output format & the desire to have control over what is returned.

As a result, Tastypie ships with a serializer that tries to meet the basic needs of most use cases, and the flexibility to go
outside of that when you need to.

17.1 Usage

Using this class is simple. It is the default option on all Resource classes unless otherwise specified. The following
code is identical to the defaults but demonstrate how you could use your own serializer:

from django.contrib.auth.models import User
from tastypie.resources import ModelResource
from tastypie.serializers import Serializer

class UserResource(ModelResource):
class Meta:

queryset = User.objects.all()
resource_name = 'auth/user'
excludes = ['email', 'password', 'is_superuser']
Add it here.
serializer = Serializer()

17.1.1 Configuring Allowed Formats

The default Serializer supports the following formats:

• json

• jsonp (Disabled by default)

• xml

• yaml

• plist (see http://explorapp.com/biplist/)

Not everyone wants to install or support all the serialization options. If you would like to customize the list of supported
formats for your entire site the TASTYPIE_DEFAULT_FORMATS setting allows you to set the default format list site-
wide.

99

http://explorapp.com/biplist/

Tastypie Documentation, Release 0.13.3

If you wish to change the format list for a specific resource, you can pass the list of supported formats using the
formats= kwarg. For example, to provide only JSON & binary plist serialization:

from django.contrib.auth.models import User
from tastypie.resources import ModelResource
from tastypie.serializers import Serializer

class UserResource(ModelResource):
class Meta:

queryset = User.objects.all()
resource_name = 'auth/user'
excludes = ['email', 'password', 'is_superuser']
serializer = Serializer(formats=['json', 'plist'])

Enabling the built-in (but disabled by default) JSONP support looks like:

from django.contrib.auth.models import User
from tastypie.resources import ModelResource
from tastypie.serializers import Serializer

class UserResource(ModelResource):
class Meta:

queryset = User.objects.all()
resource_name = 'auth/user'
excludes = ['email', 'password', 'is_superuser']
serializer = Serializer(formats=['json', 'jsonp', 'xml', 'yaml', 'plist'])

17.2 Serialization Security

Deserialization of input from unknown or untrusted sources is an intrinsically risky endeavor and vulnerabilities are
regularly found in popular format libraries. Tastypie adopts and recommends the following approach:

• Support the minimum required set of formats in your application. If you do not require a format, it’s much safer
to disable it completely. See TASTYPIE_DEFAULT_FORMATS setting.

• Some parsers offer additional safety check for use with untrusted content. The standard Tastypie Serializer
attempts to be secure by default using features like PyYAML’s safe_load function and the defusedxml security
wrapper for popular Python XML libraries.

Note: Tastypie’s precautions only apply to the default Serializer. If you have written your own serializer
subclass we strongly recommend that you review your code to ensure that it uses the same precautions.

If backwards compatibility forces you to load files which require risky features we strongly recommend enabling
those features only for the necessary resources and making your authorization checks as strict as possible. The
Authentication and Authorization checks happen before deserialization so, for example, a resource which only
allowed POST or PUT requests to be made by administrators is far less exposed than a general API open to the
unauthenticated internet.

100 Chapter 17. Serialization

http://pyyaml.org/wiki/PyYAMLDocumentation#LoadingYAML
https://pypi.python.org/pypi/defusedxml

Tastypie Documentation, Release 0.13.3

17.3 Implementing Your Own Serializer

There are several different use cases here. We’ll cover simple examples of wanting a tweaked format & adding a
different format.

To tweak a format, simply override it’s to_<format> & from_<format> methods. So adding the server time to
all output might look like so:

import time
import json
from django.core.serializers.json import DjangoJSONEncoder
from tastypie.serializers import Serializer

class CustomJSONSerializer(Serializer):
def to_json(self, data, options=None):

options = options or {}

data = self.to_simple(data, options)

Add in the current time.
data['requested_time'] = time.time()

return json.dumps(data, cls=DjangoJSONEncoder, sort_keys=True)

def from_json(self, content):
data = json.loads(content)

if 'requested_time' in data:
Log the request here...
pass

return data

In the case of adding a different format, let’s say you want to add a CSV output option to the existing set. Your
Serializer subclass might look like:

import csv
import StringIO
from tastypie.serializers import Serializer

class CSVSerializer(Serializer):
formats = Serializer.formats + ['csv']

content_types = dict(
Serializer.content_types.items() +
[('csv', 'text/csv')])

def to_csv(self, data, options=None):
options = options or {}
data = self.to_simple(data, options)
raw_data = StringIO.StringIO()
if data['objects']:

fields = data['objects'][0].keys()
writer = csv.DictWriter(raw_data, fields,

dialect="excel",
extrasaction='ignore')

header = dict(zip(fields, fields))

17.3. Implementing Your Own Serializer 101

Tastypie Documentation, Release 0.13.3

writer.writerow(header) # In Python 2.7: `writer.writeheader()`
for item in data['objects']:

writer.writerow(item)

return raw_data.getvalue()

def from_csv(self, content):
raw_data = StringIO.StringIO(content)
data = []
Untested, so this might not work exactly right.
for item in csv.DictReader(raw_data):

data.append(item)
return data

17.4 Serializer Methods

A swappable class for serialization.

This handles most types of data as well as the following output formats:

* json

* jsonp

* xml

* yaml

* plist

It was designed to make changing behavior easy, either by overridding the various format methods (i.e. to_json),
by changing the formats/content_types options or by altering the other hook methods.

17.4.1 get_mime_for_format

Serializer.get_mime_for_format(self, format):

Given a format, attempts to determine the correct MIME type.

If not available on the current Serializer, returns application/json by default.

17.4.2 format_datetime

Serializer.format_datetime(data):

A hook to control how datetimes are formatted.

Can be overridden at the Serializer level (datetime_formatting) or globally (via
settings.TASTYPIE_DATETIME_FORMATTING).

Default is iso-8601, which looks like “2010-12-16T03:02:14”.

17.4.3 format_date

Serializer.format_date(data):

102 Chapter 17. Serialization

Tastypie Documentation, Release 0.13.3

A hook to control how dates are formatted.

Can be overridden at the Serializer level (datetime_formatting) or globally (via
settings.TASTYPIE_DATETIME_FORMATTING).

Default is iso-8601, which looks like “2010-12-16”.

17.4.4 format_time

Serializer.format_time(data):

A hook to control how times are formatted.

Can be overridden at the Serializer level (datetime_formatting) or globally (via
settings.TASTYPIE_DATETIME_FORMATTING).

Default is iso-8601, which looks like “03:02:14”.

17.4.5 serialize

Serializer.serialize(self, bundle, format=’application/json’, options={}):

Given some data and a format, calls the correct method to serialize the data and returns the result.

17.4.6 deserialize

Serializer.deserialize(self, content, format=’application/json’):

Given some data and a format, calls the correct method to deserialize the data and returns the result.

17.4.7 to_simple

Serializer.to_simple(self, data, options):

For a piece of data, attempts to recognize it and provide a simplified form of something complex.

This brings complex Python data structures down to native types of the serialization format(s).

17.4.8 to_etree

Serializer.to_etree(self, data, options=None, name=None, depth=0):

Given some data, converts that data to an etree.Element suitable for use in the XML output.

17.4.9 from_etree

Serializer.from_etree(self, data):

Not the smartest deserializer on the planet. At the request level, it first tries to output the deserialized subelement
called “object” or “objects” and falls back to deserializing based on hinted types in the XML element attribute “type”.

17.4. Serializer Methods 103

Tastypie Documentation, Release 0.13.3

17.4.10 to_json

Serializer.to_json(self, data, options=None):

Given some Python data, produces JSON output.

17.4.11 from_json

Serializer.from_json(self, content):

Given some JSON data, returns a Python dictionary of the decoded data.

17.4.12 to_jsonp

Serializer.to_jsonp(self, data, options=None):

Given some Python data, produces JSON output wrapped in the provided callback.

17.4.13 to_xml

Serializer.to_xml(self, data, options=None):

Given some Python data, produces XML output.

17.4.14 from_xml

Serializer.from_xml(self, content):

Given some XML data, returns a Python dictionary of the decoded data.

17.4.15 to_yaml

Serializer.to_yaml(self, data, options=None):

Given some Python data, produces YAML output.

17.4.16 from_yaml

Serializer.from_yaml(self, content):

Given some YAML data, returns a Python dictionary of the decoded data.

17.4.17 to_plist

Serializer.to_plist(self, data, options=None):

Given some Python data, produces binary plist output.

104 Chapter 17. Serialization

Tastypie Documentation, Release 0.13.3

17.4.18 from_plist

Serializer.from_plist(self, content):

Given some binary plist data, returns a Python dictionary of the decoded data.

17.4. Serializer Methods 105

Tastypie Documentation, Release 0.13.3

106 Chapter 17. Serialization

CHAPTER 18

Throttling

Sometimes, the client on the other end may request data too frequently or you have a business use case that dictates
that the client should be limited to a certain number of requests per hour.

For this, Tastypie includes throttling as a way to limit the number of requests in a timeframe.

18.1 Usage

To specify a throttle, add the Throttle class to the Meta class on the Resource:

from django.contrib.auth.models import User
from tastypie.resources import ModelResource
from tastypie.throttle import BaseThrottle

class UserResource(ModelResource):
class Meta:

queryset = User.objects.all()
resource_name = 'auth/user'
excludes = ['email', 'password', 'is_superuser']
Add it here.
throttle = BaseThrottle(throttle_at=100)

18.2 Throttle Options

Each of the Throttle classes accepts the following initialization arguments:

• throttle_at - the number of requests at which the user should be throttled. Default is 150 requests.

• timeframe - the length of time (in seconds) in which the user make up to the throttle_at requests.
Default is 3600 seconds (1 hour).

• expiration - the length of time to retain the times the user has accessed the api in the cache. Default is
604800 (1 week).

Tastypie ships with the following Throttle classes:

107

Tastypie Documentation, Release 0.13.3

18.2.1 BaseThrottle

The no-op throttle option, this does no throttling but implements much of the common logic and serves as an api-
compatible plug. Very useful for development.

18.2.2 CacheThrottle

This uses just the cache to manage throttling. Fast but prone to cache misses and/or cache restarts.

18.2.3 CacheDBThrottle

A write-through option that uses the cache first & foremost, but also writes through to the database to persist access
times. Useful for logging client accesses & with RAM-only caches.

18.3 Implementing Your Own Throttle

Writing a Throttle class is not quite as simple as the other components. There are two important methods,
should_be_throttled & accessed. The should_be_throttled method dictates whether or not the
client should be throttled. The accessed method allows for the recording of the hit to the API.

An example of a subclass might be:

import random
from tastypie.throttle import BaseThrottle

class RandomThrottle(BaseThrottle):
def should_be_throttled(self, identifier, **kwargs):

if random.randint(0, 10) % 2 == 0:
return True

return False

def accessed(self, identifier, **kwargs):
pass

This throttle class would pick a random number between 0 & 10. If the number is even, their request is allowed
through; otherwise, their request is throttled & rejected.

18.4 Usage with Resource

Using throttling with something like search, requires that you call throttle_check and
log_throttled_access explicitly.

An example of this might be:

from tastypie.throttle import CacheThrottle

class NoteResource(Resource):
class Meta:

allowed_methods = ['get']

108 Chapter 18. Throttling

Tastypie Documentation, Release 0.13.3

resource_name = 'notes'
throttle = CacheThrottle()

def prepend_urls(self):
return [

url(r"^(?P<resource_name>%s)/search%s$" % (self._meta.resource_name, trailing_slash()), self.wrap_view('get_search'), name="api_get_search"),
]

def search(self, request, **kwargs):
self.method_check(request, allowed=self.Meta.allowed_methods)
self.is_authenticated(request)
self.throttle_check(request)
self.log_throttled_access(request)

Do the query.
sqs = SearchQuerySet().models(Note).load_all().auto_query(request.GET.get('q', ''))
paginator = Paginator(sqs, 20)

try:
page = paginator.page(int(request.GET.get('page', 1)))

except InvalidPage:
raise Http404("Sorry, no results on that page.")

objects = []

for result in page.object_list:
bundle = self.build_bundle(obj=result.object, request=request)
bundle = self.full_dehydrate(bundle)
objects.append(bundle)

object_list = {
'objects': objects,

}

return self.create_response(request, object_list)

18.4. Usage with Resource 109

Tastypie Documentation, Release 0.13.3

110 Chapter 18. Throttling

CHAPTER 19

Paginator

Similar to Django’s Paginator, Tastypie includes a Paginator object which limits result sets down to sane
amounts for passing to the client.

This is used in place of Django’s Paginator due to the way pagination works. limit & offset (tastypie) are
used in place of page (Django) so none of the page-related calculations are necessary.

This implementation also provides additional details like the total_count of resources seen and convenience links
to the previous/next pages of data as available.

19.1 Usage

Using this class is simple, but slightly different than the other classes used by Tastypie. Like the others, you provide
the Paginator (or your own subclass) as a Meta option to the Resource in question. Unlike the others, you
provide the class, NOT an instance. For example:

from django.contrib.auth.models import User
from tastypie.paginator import Paginator
from tastypie.resources import ModelResource

class UserResource(ModelResource):
class Meta:

queryset = User.objects.all()
resource_name = 'auth/user'
excludes = ['email', 'password', 'is_superuser']
Add it here.
paginator_class = Paginator

Warning: The default paginator contains the total_count value, which shows how many objects are in the
underlying object list.
Obtaining this data from the database may be inefficient, especially with large datasets, and unfiltered API requests.
See http://wiki.postgresql.org/wiki/Slow_Counting and http://www.wikivs.com/wiki/MySQL_vs_PostgreSQL#COUNT.28.2A.29
for reference, on why this may be a problem when using PostgreSQL and MySQL’s InnoDB engine.
Here’s an example solution to this problem.

111

http://wiki.postgresql.org/wiki/Slow_Counting
http://www.wikivs.com/wiki/MySQL_vs_PostgreSQL#COUNT.28.2A.29

Tastypie Documentation, Release 0.13.3

19.2 Implementing Your Own Paginator

Adding other features to a paginator usually consists of overriding one of the built-in methods. For instance, adding a
page number to the output might look like:

from tastypie.paginator import Paginator

class PageNumberPaginator(Paginator):
def page(self):

output = super(PageNumberPaginator, self).page()
output['page_number'] = int(self.offset / self.limit) + 1
return output

Another common request is to alter the structure Tastypie uses in the list view. Here’s an example of renaming:

from tastypie.paginator import Paginator

class BlogEntryPaginator(Paginator):
def page(self):

output = super(BlogEntryPaginator, self).page()

First keep a reference.
output['pagination'] = output['meta']
output['entries'] = output['objects']

Now nuke the original keys.
del output['meta']
del output['objects']

return output

19.2.1 Estimated count instead of total count

Here’s an example, of how you can omit total_count from the resource, and instead add an estimated_count
for efficiency. See the warning above for details:

import json

from django.db import connection

from tastypie.paginator import Paginator

class EstimatedCountPaginator(Paginator):

def get_next(self, limit, offset, count):
The parent method needs an int which is higher than "limit + offset"
to return a url. Setting it to an unreasonably large value, so that
the parent method will always return the url.
count = 2 ** 64
return super(NoTotalCountPaginator, self).get_next(limit, offset, count)

def get_count(self):
return None

112 Chapter 19. Paginator

Tastypie Documentation, Release 0.13.3

def get_estimated_count(self):
"""Get the estimated count by using the database query planner."""
If you do not have PostgreSQL as your DB backend, alter this method
accordingly.
return self._get_postgres_estimated_count()

def _get_postgres_estimated_count(self):

This method only works with postgres >= 9.0.
If you need postgres vesrions less than 9.0, remove "(format json)"
below and parse the text explain output.

def _get_postgres_version():
Due to django connections being lazy, we need a cursor to make
sure the connection.connection attribute is not None.
connection.cursor()
return connection.connection.server_version

try:
if _get_postgres_version() < 90000:

return
except AttributeError:

return

cursor = connection.cursor()
query = self.objects.all().query

Remove limit and offset from the query, and extract sql and params.
query.low_mark = None
query.high_mark = None
query, params = self.objects.query.sql_with_params()

Fetch the estimated rowcount from EXPLAIN json output.
query = 'explain (format json) %s' % query
cursor.execute(query, params)
explain = cursor.fetchone()[0]
Older psycopg2 versions do not convert json automatically.
if isinstance(explain, basestring):

explain = json.loads(explain)
rows = explain[0]['Plan']['Plan Rows']
return rows

def page(self):
data = super(NoTotalCountPaginator, self).page()
data['meta']['estimated_count'] = self.get_estimated_count()
return data

19.2. Implementing Your Own Paginator 113

Tastypie Documentation, Release 0.13.3

114 Chapter 19. Paginator

CHAPTER 20

GeoDjango

Tastypie features support for GeoDjango! Resources return and accept GeoJSON (or similarly-formatted analogs for
other formats) and all spatial lookup filters are supported. Distance lookups are not yet supported.

20.1 Usage

Here’s an example geographic model for leaving notes in polygonal regions:

from django.contrib.gis import models

class GeoNote(models.Model):
content = models.TextField()
polys = models.MultiPolygonField(null=True, blank=True)

objects = models.GeoManager()

To define a resource that takes advantage of the geospatial features, we use
tastypie.contrib.gis.resources.ModelResource:

from tastypie.contrib.gis.resources import ModelResource

class GeoNoteResource(ModelResource):
class Meta:

resource_name = 'geonotes'
queryset = GeoNote.objects.all()

filtering = {
'polys': ALL,

}

Now when we do a GET on our GeoNoteResource we get back GeoJSON in our response:

{
"content": "My note content",
"id": "1",
"polys": {

"coordinates": [[[
[-122.511067, 37.771276], [-122.510037, 37.766390999999999],
[-122.510037, 37.763812999999999], [-122.456822, 37.765847999999998],
[-122.45296, 37.766458999999998], [-122.454848, 37.773989999999998],
[-122.475362, 37.773040000000002], [-122.511067, 37.771276]

]]],

115

http://geojson.org/geojson-spec.html
https://docs.djangoproject.com/en/dev/ref/contrib/gis/geoquerysets/#spatial-lookups

Tastypie Documentation, Release 0.13.3

"type": "MultiPolygon"
},
"resource_uri": "/api/v1/geonotes/1/"

}

When updating or creating new resources, simply provide GeoJSON or the GeoJSON analog for your perferred format.

20.1.1 Filtering

We can filter using any standard GeoDjango spatial lookup filter. Simply provide a GeoJSON (or the analog) as a GET
parameter value.

Let’s find all of our GeoNote resources that contain a point inside of Golden Gate Park:

/api/v1/geonotes/?polys__contains={"type": "Point", "coordinates": [-122.475233, 37.768617]}

Returns:

{
"meta": {

"limit": 20, "next": null, "offset": 0, "previous": null, "total_count": 1},
"objects": [

{
"content": "My note content",
"id": "1",
"polys": {

"coordinates": [[[
[-122.511067, 37.771276], [-122.510037, 37.766390999999999],
[-122.510037, 37.763812999999999], [-122.456822, 37.765847999999998],
[-122.45296, 37.766458999999998], [-122.454848, 37.773989999999998],
[-122.475362, 37.773040000000002], [-122.511067, 37.771276]

]]],
"type": "MultiPolygon"

},
"resource_uri": "/api/geonotes/1/"

}
]

}

We get back the GeoNote resource defining Golden Gate Park. Awesome!

116 Chapter 20. GeoDjango

https://docs.djangoproject.com/en/dev/ref/contrib/gis/geoquerysets/#spatial-lookups
https://sf.localwiki.org/Golden_Gate_Park

CHAPTER 21

ContentTypes and GenericForeignKeys

Content Types and GenericForeignKeys are for relationships where the model on one end is not defined by the model’s
schema.

If you’re using GenericForeignKeys in django, you can use a GenericForeignKeyField in Tastypie.

21.1 Usage

Here’s an example model with a GenericForeignKey taken from the Django docs:

from django.db import models
from django.contrib.contenttypes.models import ContentType
from django.contrib.contenttypes import generic

class TaggedItem(models.Model):
tag = models.SlugField()
content_type = models.ForeignKey(ContentType)
object_id = models.PositiveIntegerField()
content_object = generic.GenericForeignKey('content_type', 'object_id')

def __unicode__(self):
return self.tag

A simple ModelResource for this model might look like this:

from tastypie.contrib.contenttypes.fields import GenericForeignKeyField
from tastypie.resources import ModelResource

from .models import Note, Quote, TaggedItem

class QuoteResource(ModelResource):

class Meta:
resource_name = 'quotes'
queryset = Quote.objects.all()

class NoteResource(ModelResource):

class Meta:
resource_name = 'notes'

117

https://docs.djangoproject.com/en/dev/ref/contrib/contenttypes/

Tastypie Documentation, Release 0.13.3

queryset = Note.objects.all()

class TaggedItemResource(ModelResource):
content_object = GenericForeignKeyField({

Note: NoteResource,
Quote: QuoteResource

}, 'content_object')

class Meta:
resource_name = 'tagged_items'
queryset = TaggedItem.objects.all()

A ModelResource that is to be used as a relation to a GenericForeignKeyField must also be registered to the Api
instance defined in your URLconf in order to provide a reverse uri for lookups.

Like ToOneField, you must add your GenericForeignKey attribute to your ModelResource definition. It will not be
added automatically like most other field or attribute types. When you define it, you must also define the other models
and match them to their resources in a dictionary, and pass that as the first argument, the second argument is the name
of the attribute on the model that holds the GenericForeignKey.

118 Chapter 21. ContentTypes and GenericForeignKeys

CHAPTER 22

Namespaces

For various reasons you might want to deploy your API under a namespaced URL path. To support that tastypie
includes NamespacedApi and NamespacedModelResource.

A sample definition of your API in this case would be something like:

from django.conf.urls import url, include
from tastypie.api import NamespacedApi
from my_application.api.resources import NamespacedUserResource

api = NamespacedApi(api_name='v1', urlconf_namespace='special')
api.register(NamespacedUserResource())

urlpatterns = [
url(r'^api/', include(api.urls, namespace='special')),

]

And your model resource:

from django.contrib.auth.models import User
from tastypie.resources import NamespacedModelResource
from tastypie.authorization import Authorization

class NamespacedUserResource(NamespacedModelResource):
class Meta:

resource_name = 'users'
queryset = User.objects.all()
authorization = Authorization()

119

Tastypie Documentation, Release 0.13.3

120 Chapter 22. Namespaces

CHAPTER 23

Tastypie Cookbook

23.1 Creating a Full OAuth 2.0 API

It is common to use django to provision OAuth 2.0 tokens for users and then have Tasty Pie use these tokens to authen-
ticate users to the API. Follow this tutorial and use this custom authentication class to enable OAuth 2.0 authentication
with Tasty Pie.

api.py
from tastypie import fields
from tastypie.authorization import DjangoAuthorization
from tastypie.resources import ModelResource, Resource
from myapp.models import Poll, Choice
from authentication import OAuth20Authentication

class ChoiceResource(ModelResource):
class Meta:

queryset = Choice.objects.all()
resource_name = 'choice'
authorization = DjangoAuthorization()
authentication = OAuth20Authentication()

class PollResource(ModelResource):
choices = fields.ToManyField(ChoiceResource, 'choice_set', full=True)

class Meta:
queryset = Poll.objects.all()
resource_name = 'poll'
authorization = DjangoAuthorization()
authentication = OAuth20Authentication()

23.2 Adding Custom Values

You might encounter cases where you wish to include additional data in a response which is not obtained from a field
or method on your model. You can easily extend the dehydrate() method to provide additional values:

from myapp.models import MyModel

121

http://ianalexandr.com/blog/building-a-true-oauth-20-api-with-django-and-tasty-pie.html
https://github.com/ianalexander/django-oauth2-tastypie

Tastypie Documentation, Release 0.13.3

class MyModelResource(Resource):
class Meta:

queryset = MyModel.objects.all()

def dehydrate(self, bundle):
bundle.data['custom_field'] = "Whatever you want"
return bundle

23.3 Per-Request Alterations To The Queryset

A common pattern is needing to limit a queryset by something that changes per-request, for instance the date/time.
You can accomplish this by lightly modifying get_object_list:

from django.utils import timezone
from myapp.models import MyModel

class MyModelResource(ModelResource):
class Meta:

queryset = MyModel.objects.all()

def get_object_list(self, request):
return super(MyModelResource, self).get_object_list(request).filter(start_date__gte=timezone.now())

23.4 Using Your Resource In Regular Views

In addition to using your resource classes to power the API, you can also use them to write other parts of your appli-
cation, such as your views. For instance, if you wanted to encode user information in the page for some Javascript’s
use, you could do the following. In this case, user_json will not include a valid resource_uri:

views.py
from django.shortcuts import render_to_response
from myapp.api.resources import UserResource

def user_detail(request, username):
res = UserResource()
request_bundle = res.build_bundle(request=request)
user = res.obj_get(request_bundle, username=username)

Other things get prepped to go into the context then...

user_bundle = res.build_bundle(request=request, obj=user)
user_json = res.serialize(None, res.full_dehydrate(user_bundle), "application/json")

return render_to_response("myapp/user_detail.html", {
Other things here.
"user_json": user_json,

})

To include a valid resource_uri, the resource must be associated with an tastypie.Api instance, as below:

urls.py
from tastypie.api import Api

122 Chapter 23. Tastypie Cookbook

Tastypie Documentation, Release 0.13.3

from myapp.api.resources import UserResource

my_api = Api(api_name='v1')
my_api.register(UserResource())

views.py
from myapp.urls import my_api

def user_detail(request, username):
res = my_api.canonical_resource_for('user')
continue as above...

Alternatively, to get a valid resource_uri you may pass in the api_name parameter directly to the Resource:

views.py
from django.shortcuts import render_to_response
from myapp.api.resources import UserResource

def user_detail(request, username):
res = UserResource(api_name='v1')
continue as above...

Example of getting a list of users:

def user_list(request):
res = UserResource()
request_bundle = res.build_bundle(request=request)
queryset = res.obj_get_list(request_bundle)

bundles = []
for obj in queryset:

bundle = res.build_bundle(obj=obj, request=request)
bundles.append(res.full_dehydrate(bundle, for_list=True))

list_json = res.serialize(None, bundles, "application/json")

return render_to_response('myapp/user_list.html', {
Other things here.
"list_json": list_json,

})

Then in template you could convert JSON into JavaScript object:

<script>
var json = "{{ list_json|escapejs }}";
var users = JSON.parse(json);

</script>

23.5 Using Non-PK Data For Your URLs

By convention, ModelResources usually expose the detail endpoints utilizing the primary key of the Model they
represent. However, this is not a strict requirement. Each URL can take other named URLconf parameters that can be
used for the lookup.

23.5. Using Non-PK Data For Your URLs 123

Tastypie Documentation, Release 0.13.3

For example, if you want to expose User resources by username, you can do something like the following:

myapp/api/resources.py
from django.conf.urls import url
from django.contrib.auth.models import User

class UserResource(ModelResource):
class Meta:

queryset = User.objects.all()
detail_uri_name = 'username'

def prepend_urls(self):
return [

url(r"^(?P<resource_name>%s)/(?P<username>[\w\d_.-]+)/$" % self._meta.resource_name, self.wrap_view('dispatch_detail'), name="api_dispatch_detail"),
]

The added URLconf matches before the standard URLconf included by default & matches on the username provided
in the URL.

Another alternative approach is to override the dispatch method:

myapp/api/resources.py
from myapp.models import MyModel

class MyModelResource(ModelResource):
user = fields.ForeignKey(UserResource, 'user')

class Meta:
queryset = MyModel.objects.all()
resource_name = 'mymodel'

def dispatch(self, request_type, request, **kwargs):
username = kwargs.pop('username')
kwargs['user'] = get_object_or_404(User, username=username)
return super(MyModelResource, self).dispatch(request_type, request, **kwargs)

urls.py
from django.conf.urls import url, include

mymodel_resource = MyModelResource()

urlpatterns = [
The normal jazz here, then...
url(r'^api/(?P<username>\w+)/', include(mymodel_resource.urls)),

]

23.6 Nested Resources

You can also do “nested resources” (resources within another related resource) by lightly overriding the
prepend_urls method & adding on a new method to handle the children:

class ChildResource(ModelResource):
pass

from tastypie.utils import trailing_slash

124 Chapter 23. Tastypie Cookbook

Tastypie Documentation, Release 0.13.3

class ParentResource(ModelResource):
children = fields.ToManyField(ChildResource, 'children')

def prepend_urls(self):
return [

url(r"^(?P<resource_name>%s)/(?P<pk>\w[\w/-]*)/children%s$" % (self._meta.resource_name, trailing_slash()), self.wrap_view('get_children'), name="api_get_children"),
]

def get_children(self, request, **kwargs):
try:

bundle = self.build_bundle(data={'pk': kwargs['pk']}, request=request)
obj = self.cached_obj_get(bundle=bundle, **self.remove_api_resource_names(kwargs))

except ObjectDoesNotExist:
return HttpGone()

except MultipleObjectsReturned:
return HttpMultipleChoices("More than one resource is found at this URI.")

child_resource = ChildResource()
return child_resource.get_list(request, parent_id=obj.pk)

23.7 Adding Search Functionality

Another common request is being able to integrate search functionality. This approach uses Haystack, though you
could hook it up to any search technology. We leave the CRUD methods of the resource alone, choosing to add a new
endpoint at /api/v1/notes/search/:

from django.conf.urls import url, include
from django.core.paginator import Paginator, InvalidPage
from django.http import Http404
from haystack.query import SearchQuerySet
from tastypie.resources import ModelResource
from tastypie.utils import trailing_slash
from notes.models import Note

class NoteResource(ModelResource):
class Meta:

queryset = Note.objects.all()
resource_name = 'notes'

def prepend_urls(self):
return [

url(r"^(?P<resource_name>%s)/search%s$" % (self._meta.resource_name, trailing_slash()), self.wrap_view('get_search'), name="api_get_search"),
]

def get_search(self, request, **kwargs):
self.method_check(request, allowed=['get'])
self.is_authenticated(request)
self.throttle_check(request)

Do the query.
sqs = SearchQuerySet().models(Note).load_all().auto_query(request.GET.get('q', ''))
paginator = Paginator(sqs, 20)

try:
page = paginator.page(int(request.GET.get('page', 1)))

23.7. Adding Search Functionality 125

http://haystacksearch.org/

Tastypie Documentation, Release 0.13.3

except InvalidPage:
raise Http404("Sorry, no results on that page.")

objects = []

for result in page.object_list:
bundle = self.build_bundle(obj=result.object, request=request)
bundle = self.full_dehydrate(bundle)
objects.append(bundle)

object_list = {
'objects': objects,

}

self.log_throttled_access(request)
return self.create_response(request, object_list)

23.8 Creating per-user resources

One might want to create an API which will require every user to authenticate and every user will be working only
with objects associated with them. Let’s see how to implement it for two basic operations: listing and creation of an
object.

For listing we want to list only objects for which ‘user’ field matches ‘request.user’. This could be done by applying
a filter in the authorized_read_list method of your resource.

For creating we’d have to wrap obj_create method of ModelResource. Then the resulting code will look
something like:

myapp/api/resources.py
from tastypie.authentication import ApiKeyAuthentication
from tastypie.authorization import Authorization

class MyModelResource(ModelResource):
class Meta:

queryset = MyModel.objects.all()
resource_name = 'mymodel'
list_allowed_methods = ['get', 'post']
authentication = ApiKeyAuthentication()
authorization = Authorization()

def obj_create(self, bundle, **kwargs):
return super(MyModelResource, self).obj_create(bundle, user=bundle.request.user)

def authorized_read_list(self, object_list, bundle):
return object_list.filter(user=bundle.request.user)

23.9 camelCase JSON Serialization

The convention in the world of Javascript has standardized on camelCase, where Tastypie uses underscore syntax,
which can lead to “ugly” looking code in Javascript. You can create a custom serializer that emits values in camelCase
instead:

126 Chapter 23. Tastypie Cookbook

Tastypie Documentation, Release 0.13.3

import re
import json
from tastypie.serializers import Serializer

class CamelCaseJSONSerializer(Serializer):
formats = ['json']
content_types = {

'json': 'application/json',
}

def to_json(self, data, options=None):
Changes underscore_separated names to camelCase names to go from python convention to javacsript convention
data = self.to_simple(data, options)

def underscoreToCamel(match):
return match.group()[0] + match.group()[2].upper()

def camelize(data):
if isinstance(data, dict):

new_dict = {}
for key, value in data.items():

new_key = re.sub(r"[a-z]_[a-z]", underscoreToCamel, key)
new_dict[new_key] = camelize(value)

return new_dict
if isinstance(data, (list, tuple)):

for i in range(len(data)):
data[i] = camelize(data[i])

return data
return data

camelized_data = camelize(data)

return json.dumps(camelized_data, sort_keys=True)

def from_json(self, content):
Changes camelCase names to underscore_separated names to go from javascript convention to python convention
data = json.loads(content)

def camelToUnderscore(match):
return match.group()[0] + "_" + match.group()[1].lower()

def underscorize(data):
if isinstance(data, dict):

new_dict = {}
for key, value in data.items():

new_key = re.sub(r"[a-z][A-Z]", camelToUnderscore, key)
new_dict[new_key] = underscorize(value)

return new_dict
if isinstance(data, (list, tuple)):

for i in range(len(data)):
data[i] = underscorize(data[i])

return data
return data

underscored_data = underscorize(data)

return underscored_data

23.9. camelCase JSON Serialization 127

Tastypie Documentation, Release 0.13.3

23.10 Pretty-printed JSON Serialization

By default, Tastypie outputs JSON with no indentation or newlines (equivalent to calling json.dumps()with indent
set to None). You can override this behavior in a custom serializer:

import json
from django.core.serializers.json import DjangoJSONEncoder
from tastypie.serializers import Serializer

class PrettyJSONSerializer(Serializer):
json_indent = 2

def to_json(self, data, options=None):
options = options or {}
data = self.to_simple(data, options)
return json.dumps(data, cls=DjangoJSONEncoder,

sort_keys=True, ensure_ascii=False, indent=self.json_indent)

23.11 Determining format via URL

Sometimes it’s required to allow selecting the response format by specifying it in the API URL, for example
/api/v1/users.json instead of /api/v1/users/?format=json. The following snippet allows that kind
of syntax additional to the default URL scheme:

myapp/api/resources.py

from django.contrib.auth.models import User
Piggy-back on internal csrf_exempt existence handling
from tastypie.resources import csrf_exempt

class UserResource(ModelResource):
class Meta:

queryset = User.objects.all()

def prepend_urls(self):
"""
Returns a URL scheme based on the default scheme to specify
the response format as a file extension, e.g. /api/v1/users.json
"""
return [

url(r"^(?P<resource_name>%s)\.(?P<format>\w+)$" % self._meta.resource_name, self.wrap_view('dispatch_list'), name="api_dispatch_list"),
url(r"^(?P<resource_name>%s)/schema\.(?P<format>\w+)$" % self._meta.resource_name, self.wrap_view('get_schema'), name="api_get_schema"),
url(r"^(?P<resource_name>%s)/set/(?P<pk_list>\w[\w/;-]*)\.(?P<format>\w+)$" % self._meta.resource_name, self.wrap_view('get_multiple'), name="api_get_multiple"),
url(r"^(?P<resource_name>%s)/(?P<pk>\w[\w/-]*)\.(?P<format>\w+)$" % self._meta.resource_name, self.wrap_view('dispatch_detail'), name="api_dispatch_detail"),

]

def determine_format(self, request):
"""
Used to determine the desired format from the request.format
attribute.
"""
if (hasattr(request, 'format') and

request.format in self._meta.serializer.formats):
return self._meta.serializer.get_mime_for_format(request.format)

return super(UserResource, self).determine_format(request)

128 Chapter 23. Tastypie Cookbook

Tastypie Documentation, Release 0.13.3

def wrap_view(self, view):
@csrf_exempt
def wrapper(request, *args, **kwargs):

request.format = kwargs.pop('format', None)
wrapped_view = super(UserResource, self).wrap_view(view)
return wrapped_view(request, *args, **kwargs)

return wrapper

23.12 Adding to the Django Admin

If you’re using the django admin and ApiKeyAuthentication, you may want to see or edit ApiKeys next to users. To
do this, you need to unregister the built-in UserAdmin, alter the inlines, and re-register it. This could go in any of your
admin.py files. You may also want to register ApiAccess and ApiKey models on their own.:

from django.contrib import admin
from django.contrib.auth.admin import UserAdmin
from django.contrib.auth.models import User

from tastypie.admin import ApiKeyInline

class UserModelAdmin(UserAdmin):
inlines = UserAdmin.inlines + [ApiKeyInline]

admin.site.unregister(User)
admin.site.register(User, UserModelAdmin)

23.13 Using SessionAuthentication

If your users are logged into the site & you want Javascript to be able to access the API (assuming jQuery), the first
thing to do is setup SessionAuthentication:

from django.contrib.auth.models import User
from tastypie.authentication import SessionAuthentication
from tastypie.resources import ModelResource

class UserResource(ModelResource):
class Meta:

resource_name = 'users'
queryset = User.objects.all()
authentication = SessionAuthentication()

Then you’d build a template like:

<html>
<head>

<title></title>
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.7.2/jquery.min.js"></script>
<script type="text/javascript">

$(document).ready(function() {
// We use ``.ajax`` here due to the overrides.

23.12. Adding to the Django Admin 129

Tastypie Documentation, Release 0.13.3

$.ajax({
// Substitute in your API endpoint here.
url: '/api/v1/users/',
contentType: 'application/json',
// The ``X-CSRFToken`` evidently can't be set in the
// ``headers`` option, so force it here.
// This method requires jQuery 1.5+.
beforeSend: function(jqXHR, settings) {

// Pull the token out of the DOM.
jqXHR.setRequestHeader('X-CSRFToken', $('input[name=csrfmiddlewaretoken]').val());

},
success: function(data, textStatus, jqXHR) {

// Your processing of the data here.
console.log(data);

}
});

});
</script>

</head>
<body>

<!-- Include the CSRF token in the body of the HTML -->
{% csrf_token %}

</body>
</html>

There are other ways to make this function, with other libraries or other techniques for supplying the token (see
https://docs.djangoproject.com/en/dev/ref/contrib/csrf/#ajax for an alternative). This is simply a starting point for
getting things working.

130 Chapter 23. Tastypie Cookbook

https://docs.djangoproject.com/en/dev/ref/contrib/csrf/#ajax

CHAPTER 24

Debugging Tastypie

There are some common problems people run into when using Tastypie for the first time. Some of the common
problems and things to try appear below.

24.1 “I’m getting XML output in my browser but I want JSON output!”

This is actually not a bug and JSON support is present in your Resource. This issue is that Tastypie respects the
Accept header your browser sends. Most browsers send something like:

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8

Note that application/xml is the first format that Tastypie handles, hence you receive XML.

If you use curl from the command line, you should receive JSON by default:

curl http://localhost:8000/api/v1/

If you want JSON in the browser, simply append ?format=json to your URL. Tastypie always respects this override
first, before it falls back to the Accept header.

24.2 “What’s the format for a POST or PUT?”

You can view full schema for your resource through Inspecting The Resource’s Schema.

In general, Tastypie will accept resources in the same format as it gives you. This means that you can see what any
POST or PUT should look like by performing a GET of that resource.

Creating a duplicate of an entry, using Python and Requests:

import requests
import json

response = requests.get('http://localhost:8000/api/v1/entry/1/')
event = json.loads(response.content)

del event['id'] # We want the server to assign a new id

response = requests.post('http://localhost:8000/api/v1/entry/',
data=json.dumps(event),
headers={'content-type': 'application/json'})

131

http://python-requests.org

Tastypie Documentation, Release 0.13.3

The new event should be almost identical, with the exception of readonly fields. This method may fail if your model
has a unique constraint, or otherwise fails validation.

This is less likely to happen on PUT, except for application logic changes (e.g. a last_update field). The following two
curl commands replace and entry with an copy:

curl -H 'Accept: application/json' 'http://localhost:8000/api/v1/entry/1/' | \
curl -H 'Content-Type: application/json' -X PUT --data @- "http://localhost:8000/api/v1/entry/1/"

You can do this over an entire collection as well:

curl -H 'Accept: application/json' 'http://localhost:8000/api/v1/entry/?limit=0' | \
curl -H 'Content-Type: application/json' -X PUT --data @- "http://localhost:8000/api/v1/entry/"

132 Chapter 24. Debugging Tastypie

CHAPTER 25

Sites Using Tastypie

The following sites are a partial list of people using Tastypie. I’m always interested in adding more sites, so please
find me (daniellindsley) via IRC or start a mailing list thread.

25.1 LJWorld Marketplace

• http://www2.ljworld.com/marketplace/api/v1/?format=json

25.2 Forkinit

Read-only API access to recipes.

• http://forkinit.com/

• http://forkinit.com/api/v1/?format=json

25.3 Read The Docs

A hosted documentation site, primarily for Python docs. General purpose read-write access.

• http://readthedocs.org/

• http://readthedocs.org/api/v1/?format=json

25.4 Luzme

An e-book search site that lets you fetch pricing information.

• http://luzme.com/

• http://luzme.readthedocs.org/en/latest/

133

http://www2.ljworld.com/marketplace/api/v1/?format=json
http://forkinit.com/
http://forkinit.com/api/v1/?format=json
http://readthedocs.org/
http://readthedocs.org/api/v1/?format=json
http://luzme.com/
http://luzme.readthedocs.org/en/latest/

Tastypie Documentation, Release 0.13.3

25.5 Politifact

To power their mobile (iPhone/Android/Playbook) applications.

• http://www.politifact.com/mobile/

25.6 LocalWiki

LocalWiki is a tool for collaborating in local, geographic communities. It’s using Tastypie to provide an geospatially-
aware REST API.

• http://localwiki.readthedocs.org/en/latest/api.html

• http://localwiki.org/blog/2012/aug/31/localwiki-api-released/

25.7 I-Am-CC.org

I-Am-CC.org is a tool for releasing Instagram photos under a Creative Commons license.

• http://i-am-cc.org/api/?format=json

25.8 Dbpatterns

Dbpatterns is a service that allows you to create, share, explore database models on the web.

• http://dbpatterns.com

25.9 CourtListener

Read-only API providing 2.5M legal opinions and other judicial data via Solr/Sunburnt and Postgres (Django models).

• Site: https://www.courtlistener.com

• Code : https://bitbucket.org/mlissner/search-and-awareness-platform-courtlistener/src

134 Chapter 25. Sites Using Tastypie

http://www.politifact.com/mobile/
http://localwiki.org
http://localwiki.readthedocs.org/en/latest/api.html
http://localwiki.org/blog/2012/aug/31/localwiki-api-released/
http://i-am-cc.org
http://i-am-cc.org/api/?format=json
http://dbpatterns.com
https://www.courtlistener.com
https://bitbucket.org/mlissner/search-and-awareness-platform-courtlistener/src

CHAPTER 26

Contributing

Tastypie is open-source and, as such, grows (or shrinks) & improves in part due to the community. Below are some
guidelines on how to help with the project.

26.1 Philosophy

• Tastypie is BSD-licensed. All contributed code must be either

– the original work of the author, contributed under the BSD, or...

– work taken from another project released under a BSD-compatible license.

• GPL’d (or similar) works are not eligible for inclusion.

• Tastypie’s git master branch should always be stable, production-ready & passing all tests.

• Major releases (1.x.x) are commitments to backward-compatibility of the public APIs. Any documented API
should ideally not change between major releases. The exclusion to this rule is in the event of either a security
issue or to accommodate changes in Django itself.

• Minor releases (x.3.x) are for the addition of substantial features or major bugfixes.

• Patch releases (x.x.4) are for minor features or bugfixes.

26.2 Guidelines For Reporting An Issue/Feature

So you’ve found a bug or have a great idea for a feature. Here’s the steps you should take to help get it added/fixed in
Tastypie:

• First, check to see if there’s an existing issue/pull request for the bug/feature. All issues are
at https://github.com/django-tastypie/django-tastypie/issues and pull reqs are at https://github.com/django-
tastypie/django-tastypie/pulls.

• If there isn’t one there, please file an issue. The ideal report includes:

– A description of the problem/suggestion.

– How to recreate the bug.

– If relevant, including the versions of your:

* Python interpreter

* Django

135

https://github.com/django-tastypie/django-tastypie/issues
https://github.com/django-tastypie/django-tastypie/pulls
https://github.com/django-tastypie/django-tastypie/pulls

Tastypie Documentation, Release 0.13.3

* Tastypie

* Optionally of the other dependencies involved

– Ideally, creating a pull request with a (failing) test case demonstrating what’s wrong. This makes it easy
for us to reproduce & fix the problem. Instructions for running the tests are at Welcome to Tastypie!

You might also hop into the IRC channel (#tastypie on irc.freenode.net) & raise your question there, as
there may be someone who can help you with a work-around.

26.3 Guidelines For Contributing Code

If you’re ready to take the plunge & contribute back some code/docs, the process should look like:

• Fork the project on GitHub into your own account.

• Clone your copy of Tastypie.

• Make a new branch in git & commit your changes there.

• Push your new branch up to GitHub.

• Again, ensure there isn’t already an issue or pull request out there on it. If there is & you feel you have a better
fix, please take note of the issue number & mention it in your pull request.

• Create a new pull request (based on your branch), including what the problem/feature is, versions of your
software & referencing any related issues/pull requests.

In order to be merged into Tastypie, contributions must have the following:

• A solid patch that:

– is clear.

– works across all supported versions of Python/Django.

– follows the existing style of the code base (mostly PEP-8).

– comments included as needed.

• A test case that demonstrates the previous flaw that now passes with the included patch.

• If it adds/changes a public API, it must also include documentation for those changes.

• Must be appropriately licensed (see “Philosophy”).

• Adds yourself to the AUTHORS file.

Please also:

• Unless your change only modifies the documentation, add the issue you’re solving to the list in
docs/release_notes/dev.rst, include issue and PR numbers.

• Squash your changes down to a single commit, or down to one commit containing your failing tests and one
more commit containing the fix that makes those tests pass.

If your contribution lacks any of these things, they will have to be added by a core contributor before being merged
into Tastypie proper, which may take substantial time for the all-volunteer team to get to.

136 Chapter 26. Contributing

Tastypie Documentation, Release 0.13.3

26.4 Guidelines For Core Contributors

If you’ve been granted the commit bit, here’s how to shepherd the changes in:

• Any time you go to work on Tastypie, please use git pull --rebase to fetch the latest changes.

• Any new features/bug fixes must meet the above guidelines for contributing code (solid patch/tests passing/docs
included).

• Commits are typically cherry-picked onto a branch off master.

– This is done so as not to include extraneous commits, as some people submit pull reqs based on their git
master that has other things applied to it.

• A set of commits should be squashed down to a single commit.

– git merge --squash is a good tool for performing this, as is git rebase -i HEAD~N.

– This is done to prevent anyone using the git repo from accidently pulling work-in-progress commits.

• Commit messages should use past tense, describe what changed & thank anyone involved. Examples:

"""Added a new way to do per-object authorization."""
"""Fixed a bug in ``Serializer.to_xml``. Thanks to joeschmoe for the report!"""
"""BACKWARD-INCOMPATIBLE: Altered the arguments passed to ``Bundle.__init__``.

Further description appears here if the change warrants an explanation
as to why it was done."""

• For any patches applied from a contributor, please ensure their name appears in the AUTHORS file.

• When closing issues or pull requests, please reference the SHA in the closing message (i.e. Thanks! Fixed
in SHA: 6b93f6). GitHub will automatically link to it.

26.4. Guidelines For Core Contributors 137

Tastypie Documentation, Release 0.13.3

138 Chapter 26. Contributing

CHAPTER 27

Release Notes

27.1 dev

The current in-progress version. Put your notes here so they can be easily copied to the release notes for the next
release.

27.1.1 Bugfixes

• list of changes

27.2 v0.13.3

date 2016-02-17

27.2.1 Bugfixes

• Permit changing existing value on a ToOneField to None. (Closes #1449)

27.3 v0.13.2

date 2016-02-14

27.3.1 Bugfixes

• Fix in Resource.save_related: related_obj can be empty in patch requests (introduced in #1378). (Fixes #1436)

• Fixed bug that prevented fitlering on related resources. apply_filters hook now used in obj_get. (Fixes #1435,
Fixes #1443)

• Use build_filters in obj_get. (Fixes #1444)

• Updated DjangoAuthorization to disallow read unless a user has change permission. (#1407, PR #1409)

• Authorization classes now handle usernames containing spaces. Closes #966.

• Cleaned up old, unneeded code. (closes PR #1433)

139

Tastypie Documentation, Release 0.13.3

– Reuse Django test Client.patch(). (@SeanHayes, closes #1442)

– Just a typo fix in the testing docs (by @bezidejni, closes #810)

– Removed references to patterns() (by @SeanHayes, closes #1437)

– Removed deprecated methods Resource.apply_authorization_limits and Authorization.apply_limits
from code and documentation. (by @SeanHayes, closes #1383, #1045, #1284, #837)

– Updates docs/cookbook.rst to make sure it’s clear which url to import. (by @yuvadm, closes #716)

– Updated docs/tutorial.rst. Without “null=True, blank=True” parameters in Slugfield, expecting “au-
tomatic slug generation” in save method is pointless. (by @orges, closes #753)

– Cleaned up Riak docs. (by @SeanHayes, closes #275)

– Include import statement for trailing_slash. (by @ljosa, closes #770)

– Fix docs: Meta.filtering is actually a dict. (by @georgedorn, closes #807)

– Fix load data command. (by @blite, closes #357, #358)

• Related schemas no longer raise error when not URL accessible. (Fixes PR #1439)

• Avoid modifying Field instances during request/response cycle. (closes #1415)

• Removing the Manager dependency in ToManyField.dehydrate(). (Closes #537)

27.4 v0.13.1

date 2016-01-25

27.4.1 Bugfixes

• Prevent muting non-tastypie’s exceptions (#1297, PR #1404)

• Gracefully handle UnsupportFormat exception (#1154, PR #1417)

• Add related schema urls (#782, PR #1309)

• Repr value must be str in Py2 (#1421, PR #1422)

• Fixed assertHttpAccepted (PR #1416)

27.5 v0.13.0

date 2016-01-12

Dropped Django 1.5-1.6 support, added Django 1.9.

27.5.1 Bugfixes

• Various performance improvements (#1330, #1335, #1337, #1363)

• More descriptive error messages (#1201)

• Throttled requests now include Retry-After header. (#1204)

• In DecimalField.hydrate, catch decimal.InvalidOperation and raise ApiFieldError (#862)

140 Chapter 27. Release Notes

Tastypie Documentation, Release 0.13.3

• Add ‘primary_key’ Field To Schema (#1141)

• ContentTypes: Remove ‘return’ in __init__; remove redundant parentheses (#1090)

• Allow callable strings for ToOneField.attribute (#1193)

• Ensure Tastypie doesn’t return extra data it received (#1169)

• In DecimalField.hydrate, catch decimal.InvalidOperation and raise ApiFieldError (#862)

• Fixed tastypie’s losing received microseconds. (#1126)

• Data leakage fix (#1203)

• Ignore extra related data (#1336)

• Suppress Content-Type header on HTTP 204 (see #111) (#1054)

• Allow creation of related resources that have an ‘items’ related_name (supercedes #1000) (#1340)

• Serializers: remove unimplemented to_html/from_html (#1343)

• If GEOS is not installed then exclude geos related calls. (#1348)

• Fixed Resource.deserialize() to honor format parameter (#1354 #1356, #1358)

• Raise ValueError when trying to register a Resource class instead of a Resource instance. (#1361)

• Fix hydrating/saving of related resources. (#1363)

• Use Tastypie DateField for DateField on the model. (SHA: b248e7f)

• ApiFieldError on empty non-null field (#1208)

• Full schema (all schemas in a single request) (#1207)

• Added verbose_name to API schema. (#1370)

• Fixes Reverse One to One Relationships (Replaces #568) (#1378)

• Fixed “GIS importerror vs improperlyconfigured” (#1384)

• Fixed bug which occurs when detail_uri_name field has a default value (Issue #1323) (#1387)

• Fixed disabling cache using timeout=0, fixes #1213, #1212 (#1399)

• Removed Django 1.5-1.6 support, added 1.9 support. (#1400)

• stop using django.conf.urls.patterns (#1402)

• Fix for saving related items when resource_uri is provided but other unique data is not. (#1394) (#1410)

27.6 v0.12.1

date 2015-07-16

Dropped Python 2.6 support, added Django 1.8.

27.6.1 Bugfixes

• Dropped support for Python 2.6

• Added support for Django 1.8

• Fix stale data caused by prefetch_related cache (SHA: b78661d)

27.6. v0.12.1 141

Tastypie Documentation, Release 0.13.3

27.7 v0.12.1

date 2014-10-22

This release is a small bugfix release, specifically to remove accidentally added files in the Wheel release.

27.8 v0.12.0

date 2014-09-11

This release adds official support for both Django 1.7, as well as several bugfixes.

Warning: If you were previously relying on importing the User model from tastypie.compat, this import
will no longer work correctly. This was removed due to the way app-loading works in Django 1.7 & no great
solution for dodging this issue exists.
If you were using either of:

from tastypie.compat import User
from tastypie.compat import username_field

Please update your code as follows:

from tastypie.compat import get_user_model
from tastypie.compat import get_username_field

27.8.1 Bugfixes

• Drastic reworking of the test suite. (SHA: 95f57f7)

• Fixed Travis to run Python 3.4 tests. (SHA: 7af528c)

• Fixed a bug where URLs would be incorrectly handled if the api_name & resource_name were the same.
(SHA: fd55aa3)

• Fixed a test requirement for PyYAML. (SHA: b4f6531)

• Added support for Django 1.7. (SHA: 7881bb6)

• Documentation updates:

– Fixed header in tools.rst. (SHA: f8af772)

– Fixed header in resources.rst. (SHA: 9508cbf)

27.9 v0.11.1

date 2014-05-22

This release is primarily a security release. The two issues fixed have been present but unknown for a long time &
ALL users are recommended to upgrade where possible.

1. Tastypie previously would accept a relation URI & solely parse out the identifiers, ignoring if the URI was for
the right resource. Where ’user’: ’/api/v1/users/1/’, would be accepted as a User URI, you
could accidentally/intentionally pass something like ’user’: ’/api/v1/notes/1/’, (notes rather

142 Chapter 27. Release Notes

Tastypie Documentation, Release 0.13.3

than users), which would assign it to the User with a pk=1. Tastypie would resolve the URI, but proceed
to only care about the kwargs, not validating it was for the correct resource.

Tastypie now checks to ensure the resolving resource has a matching URI, so these cases of mistaken identity
can no longer happen (& with quicker lookups). Thanks to Sergey Orshanskiy for the report!

Fixed in SHA: 6da76c6

2. In some browsers (specifically Firefox), it was possible to construct a URL that would include an XSS attack
(specifically around the offset/limit pagination parameters). Firefox seems to evaluate the JSON returned,
completing the attack. Safari & Chrome do not appear to be affected.

Tastypie now escapes all error messages that could be returned to the user to prevent this kind of attack in the
future. Thanks to Micah Hausler for the report!

Fixed in SHA: ae515bd

Should you find a security issue in Tastypie, please report it to tastypie-security@googlegroups.com. Please DO NOT
open GitHub issues or post the issues on the main Tastypie mailing list. Thanks!

27.9.1 Bugfixes

• Removed a mutable argument to Serializer.serialize. (SHA: fb7326d)

• Fixed the unquote import in tastypie.contrib.gis. (SHA: 1958df0)

• Enabled testing on Travis for Python 3.4. (SHA: 6596935)

• Documentation updates:

– Fixed indentation in v0.9.16 release notes. (SHA: dd3725c)

– Updated the v0.10.0 release notes. (SHA: e4c2455)

– Fixed a Cookbook example to import json correctly. (SHA: bc7eb42)

– Updated the non-ORM docs to match Resource. (SHA: da6a629)

– Fixed grammar in Authorization docs. (SHA: 765ebf3)

– Fixed a typo in Authorization docs. (SHA: 4818f08)

– Updated the Cookbook to move an alternative approach to the correct place. (SHA: 803d679)

– Updated the tutorial to import slugify from a more modern location. (SHA: 86bb5d9)

– Fixed up inheritence in the Tools docs. (SHA: a1a2e64 & SHA: 12aa298)

– Added a section about httpie to the Tools docs. (SHA: 5e49436)

– Corrected the URL for biplist. (SHA: 859ce97)

– Added Postman to the list of Tools. (SHA: b9f0dec)

– Fixed a typo on the docs index. (SHA: 17e5a91)

– Fixed incorrect apostrophes. (SHA: 635729c)

– Fixed a typo in the Resources docs. (SHA: d789eea)

27.9. v0.11.1 143

mailto:tastypie-security@googlegroups.com

Tastypie Documentation, Release 0.13.3

27.10 v0.11.0

date 2013-12-03

This release is a bugfix release. This also fixes installing Tastypie on Python 3 (due to the python-mimeparse
dependency change).

This release is also the first to be released as a Python wheel as well. Ex:

pip install wheel
pip install --use-wheel django-tastypie

27.10.1 Bugfixes

• Now raises ApiFieldError when a datetime can’t be parsed. (SHA: b59ac03)

• Reduced the length of the ApiKey.key field to 128. (SHA: 1cdf2c4)

• A bunch of test improvements. (SHA: 4320db4, SHA: f1bc584 & SHA: bd75a92)

• Updated SimpleCache to the post-Django 1.3 world. (SHA: 4963d97)

• Fixed a bug where tastypie.utils.timezone.now could throw an exception. (SHA: b78175d)

• Fixed the python-mimeparse dependency in setup.py. (SHA: 26dc473)

• Pinned to the beta of python3-digest. (SHA: cc8ef0f)

• Fixed CacheThrottle to work with Django’s DummyCache. (SHA: 5b8a316)

• Improved the error message from assertHttpAccepted. (SHA: 7dbed92)

• Now raises BadRequest if we fail to decode JSON. (SHA: e9048fd)

• Removed a duplicate if check. (SHA: 823d007)

• Added further exception checking for new versions of dateutil. (SHA: 9739a35 & SHA: a8734cf)

• Removed simplejson. (SHA: ae58615)

• Removed old Django 1.4 code. (SHA: 3c7ce47)

• Documentation updates:

– Added examples of how to implement throttling. (SHA: a305549)

– Added docs on how to disable all list endpoints. (SHA: f4f4df2)

– Added docs on GFKs. (SHA: 50189d7)

– Added to the Tools docs. (SHA: bdde083 & SHA: 8c59e2c)

– Added docs about running tests with tox. (SHA: f0222ea)

– Fixed docs on resources. (SHA: d5a290b, SHA: 0c859bf, SHA: bc6defd & SHA: 95be355)

– Added defusedxml to the docs. (SHA: 521a696)

– Added to Who Uses. (SHA: dea9bf8)

144 Chapter 27. Release Notes

http://wheel.readthedocs.org/

Tastypie Documentation, Release 0.13.3

27.11 v0.10.0

date 2013-08-03

This release adds official Python 3 support! This effort was partially funded by RevSys & the PSF, so much thanks to
them!

27.11.1 Features

• Python 3 support! Not a lot to say, beyond there are a couple dependency changes. Please see the Python 3
Support docs!

27.12 v0.9.16

date 2013-08-03

This release is a bugfix release, the last one before Python 3 support will be added. This is the final release of Tastypie
that is compatible with Django 1.4.

27.12.1 Features

• Added support for Unicode HTTP method names. (SHA: 2ebb362)

• Added a response for HTTP 422 Unprocessable Entity. (SHA: 7aadbf8)

• Added ISO-8601 strict support. (SHA: 3043140)

27.12.2 Bugfixes

• Added a None value for username_field in the compat module. (SHA: 569a72e)

• Fixed a bug where obj_create would check authorization twice. (SHA: 9a404fa)

• Fixed test case to no longer require a defined object class. (SHA: d8e250f)

• Fixed the signature on dehydrate in the GIS resource class. (SHA: f724919)

• Fixed a bug involving updating foreign relations on create. (SHA: 50a6741)

• Changed the PUT response code (with always_return_data = True) from 202 to 200. (SHA: abc0bef)

• Documentation updates:

– Added an OAuth 2.0 example to the cookbook. (SHA: 7c93ae2)

– Added a detail_uri_name to the Non-PK example in the cookbook. (SHA: 1fde565)

– Added docs warning about total_count & performance overhead by default. (SHA: ebfbb7f)

– Updated the Nested Resources example in the cookbook. (SHA: d582ead)

– Added an example of converting a list of objects to JSON in the cookbook. (SHA: 2e81342)

27.11. v0.10.0 145

http://revsys.com/
http://www.python.org/psf/

Tastypie Documentation, Release 0.13.3

27.13 v0.9.15

date 2013-05-02

This release is primarily a bugfix release. It makes using Tastypie with Django 1.5 more friendly, better exceptions

27.13.1 Features

• Drops Python 2.5 support. Yes, this is a feature that will pave the way for Tastypie on Python 3 support.

• Added TASTYPIE_ABSTRACT_APIKEY, which allows switching the ApiKey model out. (SHA: b8f4b9c)

27.13.2 Bugfixes

• Better support for Django 1.5:

– Removed deprecation warnings (SHA: bb01761)

– Numerous custom User improvements (SHA: d24b390)

• Expanded places use_in is used (SHA: b32c45)

• Authorization is now only called once with a full bundle (SHA: f06f41)

• Changed for_list to accept a boolean (SHA: 01e620)

• Only save related models that have changed (SHA: 6efdea)

• Better exception reporting, especially in conjunction with Sentry

– (SHA: 3f9ce0)

– (SHA: 4adf11)

• Configuration warning about defusedxml (SHA: aa8d9fd)

• Fixed a dependency in setup.py (SHA: cb0fe7)

• Release notes became a thing! Hooray! (SHA: 95e2499)

• Documentation updates:

– Typo in CleanedDataFormValidation (SHA: bf252a)

– CamelCase JSON (SHA: bf252a)

– Docstring typo (SHA: e86dad)

– Per-user resource (SHA: a77b28c)

– Added more details about creating the ApiKey model (SHA: 80f9b8)

27.14 v0.9.14

date 2013-03-19

An emergency release removing a failed attempt at using rose to handle versioning.

146 Chapter 27. Release Notes

Tastypie Documentation, Release 0.13.3

27.14.1 Features

• None

27.14.2 Bugfixes

• Removed the dependency on rose, which wasn’t effective at de-duplicating the version information. :(

27.15 v0.9.13

SECURITY HARDENING

The latest version of Tastypie includes a number of important security fixes and all users are strongly encouraged to
upgrade.

Please note that the fixes might cause backwards incompatibility issues, so please check the upgrade notes carefully.

27.15.1 Security hardening improvements

• XML decoding has been wrapped in the defusedxml library

• XML requests may no longer include DTDs by default

• Deserialization will return HTTP 400 for any XML decode errors

• Don’t even use XML and want to disable it? There’s a simple TASTYPIE_DEFAULT_FORMATS setting setting
to globally restrict the set of supported formats (closes #833):

http://django-tastypie.readthedocs.org/en/v0.9.14/settings.html#tastypie-default-formats

• Content negotiation will return an error for malformed accept headers (closes #832)

• The Api class itself now allows a custom serializer (closes #817)

• The serialization documentation has been upgraded with security advice:

http://django-tastypie.readthedocs.org/en/v0.9.14/serialization.html#serialization-security

Upgrade notes:

• If you use XML serialization (enabled by default):

– defusedxml is now required

– defusedxml requires lxml 3 or later

pip install defusedxml "lxml>=3"

• Python 2.5 is no longer officially supported because defusedxml requires Python 2.6 or later. If you cannot
upgrade to a newer version of Python please consider disabling XML support entirely.

27.15. v0.9.13 147

https://github.com/django-tastypie/django-tastypie/pull/833
http://django-tastypie.readthedocs.org/en/v0.9.14/settings.html#tastypie-default-formats
https://github.com/django-tastypie/django-tastypie/pull/832
https://github.com/django-tastypie/django-tastypie/pull/817
http://django-tastypie.readthedocs.org/en/v0.9.14/serialization.html#serialization-security

Tastypie Documentation, Release 0.13.3

148 Chapter 27. Release Notes

CHAPTER 28

Quick Start

1. Add tastypie to INSTALLED_APPS.

2. Create an api directory in your app with a bare __init__.py.

3. Create an <my_app>/api/resources.py file and place the following in it:

from tastypie.resources import ModelResource
from my_app.models import MyModel

class MyModelResource(ModelResource):
class Meta:

queryset = MyModel.objects.all()
allowed_methods = ['get']

4. In your root URLconf, add the following code (around where the admin code might be):

from django.conf.urls import url, include
from tastypie.api import Api
from my_app.api.resources import MyModelResource

v1_api = Api(api_name='v1')
v1_api.register(MyModelResource())

urlpatterns = [
...more URLconf bits here...
Then add:
url(r'^api/', include(v1_api.urls)),

]

5. Hit http://localhost:8000/api/v1/?format=json in your browser!

149

http://localhost:8000/api/v1/?format=json

Tastypie Documentation, Release 0.13.3

150 Chapter 28. Quick Start

CHAPTER 29

Requirements

29.1 Core

• Python 2.7+ or Python 3.4+

• Django 1.7 through Django 1.9

• dateutil (http://labix.org/python-dateutil) >= 2.1

29.2 Format Support

• XML: lxml 3 (http://lxml.de/) and defusedxml (https://pypi.python.org/pypi/defusedxml)

• YAML: pyyaml (http://pyyaml.org/)

• binary plist: biplist (http://explorapp.com/biplist/)

29.3 Optional

• HTTP Digest authentication: python3-digest (https://bitbucket.org/akoha/python-digest/)

151

http://labix.org/python-dateutil
http://lxml.de/
https://pypi.python.org/pypi/defusedxml
http://pyyaml.org/
http://explorapp.com/biplist/
https://bitbucket.org/akoha/python-digest/

Tastypie Documentation, Release 0.13.3

152 Chapter 29. Requirements

CHAPTER 30

Why Tastypie?

There are other API frameworks out there for Django. You need to assess the options available and decide for yourself.
That said, here are some common reasons for tastypie.

• You need an API that is RESTful and uses HTTP well.

• You want to support deep relations.

• You DON’T want to have to write your own serializer to make the output right.

• You want an API framework that has little magic, very flexible and maps well to the problem domain.

• You want/need XML serialization that is treated equally to JSON (and YAML is there too).

153

Tastypie Documentation, Release 0.13.3

154 Chapter 30. Why Tastypie?

CHAPTER 31

Reference Material

• https://django-tastypie.readthedocs.org/en/latest/

• https://github.com/django-tastypie/django-tastypie/tree/master/tests/basic shows basic usage of tastypie

• http://en.wikipedia.org/wiki/REST

• http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

• http://www.ietf.org/rfc/rfc2616.txt

• http://jacobian.org/writing/rest-worst-practices/

155

https://django-tastypie.readthedocs.org/en/latest/
https://github.com/django-tastypie/django-tastypie/tree/master/tests/basic
http://en.wikipedia.org/wiki/REST
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://www.ietf.org/rfc/rfc2616.txt
http://jacobian.org/writing/rest-worst-practices/

Tastypie Documentation, Release 0.13.3

156 Chapter 31. Reference Material

CHAPTER 32

Getting Help

There are two primary ways of getting help.

1. Go to StackOverflow and post a question with the tastypie tag.

2. We have an IRC channel (#tastypie on irc.freenode.net) to get help, bounce an idea by us, or generally shoot the
breeze.

157

https://stackoverflow.com/questions/tagged/tastypie

Tastypie Documentation, Release 0.13.3

158 Chapter 32. Getting Help

CHAPTER 33

Running The Tests

The easiest way to get setup to run Tastypie’s tests looks like:

$ git clone https://github.com/django-tastypie/django-tastypie.git
$ cd django-tastypie
$ virtualenv env
$. env/bin/activate
$./env/bin/pip install -U -r requirements.txt

Then running the tests is as simple as:

From the same directory as above:
$./env/bin/pip install -U -r tests/requirements.txt
$./env/bin/pip install tox
$ tox

Tastypie is maintained with all tests passing at all times for released dependencies. (At times tests may fail with
development versions of Django. These will be noted as allowed failures in the .travis.yml file.) If you find a
failure, please report it along with the versions of the installed software.

159

https://github.com/django-tastypie/django-tastypie/issues

Tastypie Documentation, Release 0.13.3

160 Chapter 33. Running The Tests

Python Module Index

t
tastypie.fields, 81

161

Tastypie Documentation, Release 0.13.3

162 Python Module Index

Index

Symbols
__init__() (TestApiClient method), 40

A
alter_deserialized_detail_data() (Resource method), 60
alter_deserialized_list_data() (Resource method), 60
alter_detail_data_to_serialize() (Resource method), 60
alter_list_data_to_serialize() (Resource method), 60
api_field_from_django_field() (ModelResource method),

71
apply_filters() (ModelResource method), 72
apply_filters() (Resource method), 65
apply_sorting() (ModelResource method), 72
apply_sorting() (Resource method), 62
assertHttpAccepted() (ResourceTestCaseMixin method),

37
assertHttpApplicationError() (ResourceTestCaseMixin

method), 38
assertHttpBadRequest() (ResourceTestCaseMixin

method), 37
assertHttpConflict() (ResourceTestCaseMixin method),

38
assertHttpCreated() (ResourceTestCaseMixin method),

36
assertHttpForbidden() (ResourceTestCaseMixin method),

37
assertHttpGone() (ResourceTestCaseMixin method), 38
assertHttpMethodNotAllowed() (ResourceTest-

CaseMixin method), 37
assertHttpMultipleChoices() (ResourceTestCaseMixin

method), 37
assertHttpNotFound() (ResourceTestCaseMixin method),

37
assertHttpNotImplemented() (ResourceTestCaseMixin

method), 38
assertHttpNotModified() (ResourceTestCaseMixin

method), 37
assertHttpOK() (ResourceTestCaseMixin method), 36
assertHttpSeeOther() (ResourceTestCaseMixin method),

37

assertHttpTooManyRequests() (ResourceTestCaseMixin
method), 38

assertHttpUnauthorized() (ResourceTestCaseMixin
method), 37

assertKeys() (ResourceTestCaseMixin method), 40
assertValidJSON() (ResourceTestCaseMixin method), 38
assertValidJSONResponse() (ResourceTestCaseMixin

method), 39
assertValidPlist() (ResourceTestCaseMixin method), 38
assertValidPlistResponse() (ResourceTestCaseMixin

method), 39
assertValidXML() (ResourceTestCaseMixin method), 38
assertValidXMLResponse() (ResourceTestCaseMixin

method), 39
assertValidYAML() (ResourceTestCaseMixin method),

38
assertValidYAMLResponse() (ResourceTestCaseMixin

method), 39
attribute (ApiField attribute), 80

B
base_urls() (Resource method), 59
blank (ApiField attribute), 80
build_bundle() (Resource method), 62
build_filters() (ModelResource method), 71
build_filters() (Resource method), 62
build_schema() (Resource method), 64

C
cached_obj_get() (Resource method), 66
cached_obj_get_list() (Resource method), 66
can_create() (Resource method), 65
can_delete() (Resource method), 65
can_update() (Resource method), 65
check_filtering() (ModelResource method), 71
create_apikey() (ResourceTestCaseMixin method), 36
create_basic() (ResourceTestCaseMixin method), 36
create_digest() (ResourceTestCaseMixin method), 36
create_oauth() (ResourceTestCaseMixin method), 36
create_response() (Resource method), 67

163

Tastypie Documentation, Release 0.13.3

D
default (ApiField attribute), 80
dehydrate() (Resource method), 64
dehydrate_resource_uri() (Resource method), 64
delete() (TestApiClient method), 42
delete_detail() (Resource method), 69
delete_list() (Resource method), 69
deserialize() (Resource method), 60
deserialize() (ResourceTestCaseMixin method), 39
detail_uri_kwargs() (Resource method), 63
determine_format() (Resource method), 59
dispatch() (Resource method), 61
dispatch_detail() (Resource method), 61
dispatch_list() (Resource method), 60

F
full (tastypie.fields.RelatedField attribute), 82
full_dehydrate() (Resource method), 63
full_detail (tastypie.fields.RelatedField attribute), 83
full_hydrate() (Resource method), 64
full_list (tastypie.fields.RelatedField attribute), 83

G
generate_cache_key() (Resource method), 65
get() (TestApiClient method), 40
get_bundle_detail_data() (Resource method), 62
get_content_type() (TestApiClient method), 40
get_credentials() (ResourceTestCaseMixin method), 36
get_detail() (Resource method), 68
get_fields() (ModelResource method), 71
get_list() (Resource method), 68
get_multiple() (Resource method), 70
get_object_list() (ModelResource method), 72
get_object_list() (Resource method), 65
get_resource_uri() (ModelResource method), 74
get_resource_uri() (Resource method), 63
get_schema() (Resource method), 70
get_via_uri() (Resource method), 63

H
help_text (ApiField attribute), 80
hydrate() (Resource method), 64
hydrate_m2m() (Resource method), 64

I
is_authenticated() (Resource method), 61
is_valid() (Resource method), 67

L
log_throttled_access() (Resource method), 62
lookup_kwargs_with_identifiers() (Resource method), 66

M
method_check() (Resource method), 61

N
null (ApiField attribute), 80

O
obj_create() (ModelResource method), 72
obj_create() (Resource method), 66
obj_delete() (ModelResource method), 73
obj_delete() (Resource method), 67
obj_delete_list() (ModelResource method), 73
obj_delete_list() (Resource method), 67
obj_delete_list_for_update() (ModelResource method),

73
obj_delete_list_for_update() (Resource method), 67
obj_get() (ModelResource method), 72
obj_get() (Resource method), 66
obj_get_list() (ModelResource method), 72
obj_get_list() (Resource method), 65
obj_update() (ModelResource method), 72
obj_update() (Resource method), 66
override_urls() (Resource method), 59

P
patch() (TestApiClient method), 42
patch_detail() (Resource method), 70
patch_list() (Resource method), 69
post() (TestApiClient method), 41
post_detail() (Resource method), 69
post_list() (Resource method), 68
prepend_urls() (Resource method), 59
put() (TestApiClient method), 41
put_detail() (Resource method), 68
put_list() (Resource method), 68

R
readonly (ApiField attribute), 80
related_name (tastypie.fields.RelatedField attribute), 83
remove_api_resource_names() (Resource method), 61
resource_uri_kwargs() (Resource method), 63
rollback() (ModelResource method), 73
rollback() (Resource method), 67

S
save_m2m() (ModelResource method), 73
save_related() (ModelResource method), 73
serialize() (Resource method), 59
serialize() (ResourceTestCaseMixin method), 40
should_skip_field() (ModelResource method), 71

T
tastypie.fields (module), 81
throttle_check() (Resource method), 62
to (tastypie.fields.RelatedField attribute), 82

164 Index

Tastypie Documentation, Release 0.13.3

U
unique (ApiField attribute), 80
urls() (Resource method), 59
use_in (ApiField attribute), 81

W
wrap_view() (Resource method), 58

Index 165

	Getting Started with Tastypie
	Interacting With The API
	Tastypie Settings
	Using Tastypie With Non-ORM Data Sources
	Tools
	Testing
	Compatibility Notes
	Python 3 Support
	Resources
	Bundles
	Api
	Resource Fields
	Caching
	Validation
	Authentication
	Authorization
	Serialization
	Throttling
	Paginator
	GeoDjango
	ContentTypes and GenericForeignKeys
	Namespaces
	Tastypie Cookbook
	Debugging Tastypie
	Sites Using Tastypie
	Contributing
	Release Notes
	Quick Start
	Requirements
	Why Tastypie?
	Reference Material
	Getting Help
	Running The Tests
	Python Module Index

