

Django Tagging

A generic tagging application for Django [http://www.djangoproject.com] projects, which allows
association of a number of tags with any Django model instance and makes
retrieval of tags simple.

	Installation
	Installing an official release
	Source distribution

	Installing the development version

	Using Django Tagging in your applications

	Settings
	FORCE_LOWERCASE_TAGS

	MAX_TAG_LENGTH

	Registering your models
	The register function

	TagDescriptor

	ModelTagManager

	ModelTaggedItemManager

	Tags
	API reference
	Fields

	Manager functions

	Basic usage
	Tagging objects and retrieving an object’s tags

	Retrieving tags used by a particular model

	Tag input

	Tagged items
	API reference
	Fields

	Manager functions

	Basic usage
	Retrieving tagged objects

	Restricting objects returned

	Utilities
	parse_tag_input(input)

	edit_string_for_tags(tags)

	get_tag_list(tags)

	calculate_cloud(tags, steps=4, distribution=tagging.utils.LOGARITHMIC)

	Model Fields
	Field types
	TagField

	Form fields
	Field types
	TagField

	Generic views
	tagging.views.TaggedObjectList
	Example usage

	Template tags
	Tag reference
	tags_for_model

	tag_cloud_for_model

	tags_for_object

	tagged_objects

Installation

Installing an official release

Official releases are made available from
https://pypi.python.org/pypi/django-tagging/

Source distribution

Download the a distribution file and unpack it. Inside is a script
named setup.py. Enter this command:

$ python setup.py install

...and the package will install automatically.

More easily with pip:

$ pip install django-tagging

Installing the development version

Alternatively, if you’d like to update Django Tagging occasionally to pick
up the latest bug fixes and enhancements before they make it into an
official release, clone the git repository instead. The following
command will clone the development branch to django-tagging directory:

git clone git@github.com:Fantomas42/django-tagging.git

Add the resulting folder to your PYTHONPATH [http://www.python.org/doc/2.5.2/tut/node8.html#SECTION008120000000000000000] or symlink (junction [http://www.microsoft.com/technet/sysinternals/FileAndDisk/Junction.mspx],
if you’re on Windows) the tagging directory inside it into a
directory which is on your PYTHONPATH, such as your Python
installation’s site-packages directory.

You can verify that the application is available on your PYTHONPATH by
opening a Python interpreter and entering the following commands:

>>> import tagging
>>> tagging.__version__
0.4.dev0

When you want to update your copy of the Django Tagging source code, run
the command git pull from within the django-tagging directory.

Caution

The development version may contain bugs which are not present in the
release version and introduce backwards-incompatible changes.

If you’re tracking git, keep an eye on the CHANGELOG [https://github.com/Fantomas42/django-tagging/blob/develop/CHANGELOG.txt]
before you update your copy of the source code.

Using Django Tagging in your applications

Once you’ve installed Django Tagging and want to use it in your Django
applications, do the following:

	Put 'tagging' in your INSTALLED_APPS setting.

	Run the command manage.py migrate.

The migrate command creates the necessary database tables and
creates permission objects for all installed apps that need them.

That’s it!

Settings

Some of the application’s behaviour can be configured by adding the
appropriate settings to your project’s settings file.

The following settings are available:

FORCE_LOWERCASE_TAGS

Default: False

A boolean that turns on/off forcing of all tag names to lowercase before
they are saved to the database.

MAX_TAG_LENGTH

Default: 50

An integer which specifies the maximum length which any tag is allowed
to have. This is used for validation in the django.contrib.admin
application and in any forms automatically generated using ModelForm.

Registering your models

Your Django models can be registered with the tagging application to
access some additional tagging-related features.

Note

You don’t have to register your models in order to use them with
the tagging application - many of the features added by registration
are just convenience wrappers around the tagging API provided by the
Tag and TaggedItem models and their managers, as documented
further below.

The register function

To register a model, import the tagging.registry module and call its
register function, like so:

from django.db import models

from tagging.registry import register

class Widget(models.Model):
 name = models.CharField(max_length=50)

register(Widget)

The following argument is required:

	model

	The model class to be registered.

An exception will be raised if you attempt to register the same class
more than once.

The following arguments are optional, with some recommended defaults -
take care to specify different attribute names if the defaults clash
with your model class’ definition:

	tag_descriptor_attr

	The name of an attribute in the model class which will hold a tag
descriptor for the model. Default: 'tags'

See TagDescriptor below for details about the use of this
descriptor.

	tagged_item_manager_attr

	The name of an attribute in the model class which will hold a custom
manager for accessing tagged items for the model. Default:
'tagged'.

See ModelTaggedItemManager below for details about the use of this
manager.

TagDescriptor

When accessed through the model class itself, this descriptor will return
a ModelTagManager for the model. See ModelTagManager below for
more details about its use.

When accessed through a model instance, this descriptor provides a handy
means of retrieving, updating and deleting the instance’s tags. For
example:

>>> widget = Widget.objects.create(name='Testing descriptor')
>>> widget.tags
[]
>>> widget.tags = 'toast, melted cheese, butter'
>>> widget.tags
[<Tag: butter>, <Tag: melted cheese>, <Tag: toast>]
>>> del widget.tags
>>> widget.tags
[]

ModelTagManager

A manager for retrieving tags used by a particular model.

Defines the following methods:

	get_queryset() – as this method is redefined, any QuerySets
created by this model will be initially restricted to contain the
distinct tags used by all the model’s instances.

	cloud(*args, **kwargs) – creates a list of tags used by the
model’s instances, with count and font_size attributes set for
use in displaying a tag cloud.

See the documentation on Tag‘s manager’s cloud_for_model method
for information on additional arguments which can be given.

	related(self, tags, *args, **kwargs) – creates a list of tags
used by the model’s instances, which are also used by all instance
which have the given tags.

See the documentation on Tag‘s manager’s
related_for_model method for information on additional arguments
which can be given.

	usage(self, *args, **kwargs)) – creates a list of tags used by
the model’s instances, with optional usages counts, restriction based
on usage counts and restriction of the model instances from which
usage and counts are determined.

See the documentation on Tag‘s manager’s usage_for_model method
for information on additional arguments which can be given.

Example usage:

Create a ``QuerySet`` of tags used by Widget instances
Widget.tags.all()

Retrieve a list of tags used by Widget instances with usage counts
Widget.tags.usage(counts=True)

Retrieve tags used by instances of WIdget which are also tagged with
'cheese' and 'toast'
Widget.tags.related(['cheese', 'toast'], counts=True, min_count=3)

ModelTaggedItemManager

A manager for retrieving model instance for a particular model, based on
their tags.

	related_to(obj, queryset=None, num=None) – creates a list
of model instances which are related to obj, based on its tags. If
a queryset argument is provided, it will be used to restrict the
resulting list of model instances.

If num is given, a maximum of num instances will be returned.

	with_all(tags, queryset=None) – creates a QuerySet containing
model instances which are tagged with all the given tags. If a
queryset argument is provided, it will be used as the basis for
the resulting QuerySet.

	with_any(tags, queryset=None) – creates a QuerySet containing model
instances which are tagged with any the given tags. If a queryset
argument is provided, it will be used as the basis for the resulting
QuerySet.

Tags

Tags are represented by the Tag model, which lives in the
tagging.models module.

API reference

Fields

Tag objects have the following fields:

	name – The name of the tag. This is a unique value.

Manager functions

The Tag model has a custom manager which has the following helper
methods:

	update_tags(obj, tag_names) – updates tags associated with an
object.

tag_names is a string containing tag names with which obj
should be tagged.

If tag_names is None or '', the object’s tags will be
cleared.

	add_tag(obj, tag_name) – associates a tag with an an object.

tag_name is a string containing a tag name with which obj
should be tagged.

	get_for_object(obj) – returns a QuerySet containing all
Tag objects associated with obj.

	usage_for_model(model, counts=False, min_count=None, filters=None)
– returns a list of Tag objects associated with instances of
model.

If counts is True, a count attribute will be added to each
tag, indicating how many times it has been associated with instances
of model.

If min_count is given, only tags which have a count greater
than or equal to min_count will be returned. Passing a value for
min_count implies counts=True.

To limit the tags (and counts, if specified) returned to those used by
a subset of the model’s instances, pass a dictionary of field lookups
to be applied to model as the filters argument.

	related_for_model(tags, Model, counts=False, min_count=None)
– returns a list of tags related to a given list of tags - that is,
other tags used by items which have all the given tags.

If counts is True, a count attribute will be added to each
tag, indicating the number of items which have it in addition to the
given list of tags.

If min_count is given, only tags which have a count greater
than or equal to min_count will be returned. Passing a value for
min_count implies counts=True.

	cloud_for_model(Model, steps=4, distribution=LOGARITHMIC,
filters=None, min_count=None) – returns a list of the distinct
Tag objects associated with instances of Model, each having a
count attribute as above and an additional font_size
attribute, for use in creation of a tag cloud (a type of weighted
list).

steps defines the number of font sizes available - font_size
may be an integer between 1 and steps, inclusive.

distribution defines the type of font size distribution algorithm
which will be used - logarithmic or linear. It must be either
tagging.utils.LOGARITHMIC or tagging.utils.LINEAR.

To limit the tags displayed in the cloud to those associated with a
subset of the Model’s instances, pass a dictionary of field lookups to
be applied to the given Model as the filters argument.

To limit the tags displayed in the cloud to those with a count
greater than or equal to min_count, pass a value for the
min_count argument.

	usage_for_queryset(queryset, counts=False, min_count=None) –
Obtains a list of tags associated with instances of a model contained
in the given queryset.

If counts is True, a count attribute will be added to each tag,
indicating how many times it has been used against the Model class in
question.

If min_count is given, only tags which have a count greater
than or equal to min_count will be returned.

Passing a value for min_count implies counts=True.

Basic usage

Tagging objects and retrieving an object’s tags

Objects may be tagged using the update_tags helper function:

>>> from shop.apps.products.models import Widget
>>> from tagging.models import Tag
>>> widget = Widget.objects.get(pk=1)
>>> Tag.objects.update_tags(widget, 'house thing')

Retrieve tags for an object using the get_for_object helper
function:

>>> Tag.objects.get_for_object(widget)
[<Tag: house>, <Tag: thing>]

Tags are created, associated and unassociated accordingly when you use
update_tags and add_tag:

>>> Tag.objects.update_tags(widget, 'house monkey')
>>> Tag.objects.get_for_object(widget)
[<Tag: house>, <Tag: monkey>]
>>> Tag.objects.add_tag(widget, 'tiles')
>>> Tag.objects.get_for_object(widget)
[<Tag: house>, <Tag: monkey>, <Tag: tiles>]

Clear an object’s tags by passing None or '' to
update_tags:

>>> Tag.objects.update_tags(widget, None)
>>> Tag.objects.get_for_object(widget)
[]

Retrieving tags used by a particular model

To retrieve all tags used for a particular model, use the
get_for_model helper function:

>>> widget1 = Widget.objects.get(pk=1)
>>> Tag.objects.update_tags(widget1, 'house thing')
>>> widget2 = Widget.objects.get(pk=2)
>>> Tag.objects.update_tags(widget2, 'cheese toast house')
>>> Tag.objects.usage_for_model(Widget)
[<Tag: cheese>, <Tag: house>, <Tag: thing>, <Tag: toast>]

To get a count of how many times each tag was used for a particular
model, pass in True for the counts argument:

>>> tags = Tag.objects.usage_for_model(Widget, counts=True)
>>> [(tag.name, tag.count) for tag in tags]
[('cheese', 1), ('house', 2), ('thing', 1), ('toast', 1)]

To get counts and limit the tags returned to those with counts above a
certain size, pass in a min_count argument:

>>> tags = Tag.objects.usage_for_model(Widget, min_count=2)
>>> [(tag.name, tag.count) for tag in tags]
[('house', 2)]

You can also specify a dictionary of field lookups [http://docs.djangoproject.com/en/dev/topics/db/queries/#field-lookups] to be used to
restrict the tags and counts returned based on a subset of the
model’s instances. For example, the following would retrieve all tags
used on Widgets created by a user named Alan which have a size
greater than 99:

>>> Tag.objects.usage_for_model(Widget, filters=dict(size__gt=99, user__username='Alan'))

The usage_for_queryset method allows you to pass a pre-filtered
queryset to be used when determining tag usage:

>>> Tag.objects.usage_for_queryset(Widget.objects.filter(size__gt=99, user__username='Alan'))

Tag input

Tag input from users is treated as follows:

	If the input doesn’t contain any commas or double quotes, it is simply
treated as a space-delimited list of tag names.

	If the input does contain either of these characters, we parse the
input like so:
	Groups of characters which appear between double quotes take
precedence as multi-word tags (so double quoted tag names may
contain commas). An unclosed double quote will be ignored.

	For the remaining input, if there are any unquoted commas in the
input, the remainder will be treated as comma-delimited. Otherwise,
it will be treated as space-delimited.

Examples:

	Tag input string
	Resulting tags
	Notes

	apple ball cat
	[apple], [ball], [cat]
	No commas, so space delimited

	apple, ball cat
	[apple], [ball cat]
	Comma present, so comma delimited

	“apple, ball” cat dog
	[apple, ball], [cat], [dog]
	All commas are quoted, so space delimited

	“apple, ball”, cat dog
	[apple, ball], [cat dog]
	Contains an unquoted comma, so comma delimited

	apple “ball cat” dog
	[apple], [ball cat], [dog]
	No commas, so space delimited

	“apple” “ball dog
	[apple], [ball], [dog]
	Unclosed double quote is ignored

Tagged items

The relationship between a Tag and an object is represented by
the TaggedItem model, which lives in the tagging.models
module.

API reference

Fields

TaggedItem objects have the following fields:

	tag – The Tag an object is associated with.

	content_type – The ContentType of the associated model
instance.

	object_id – The id of the associated object.

	object – The associated object itself, accessible via the
Generic Relations API.

Manager functions

The TaggedItem model has a custom manager which has the following
helper methods, which accept either a QuerySet or a Model
class as one of their arguments. To restrict the objects which are
returned, pass in a filtered QuerySet for this argument:

	get_by_model(queryset_or_model, tag) – creates a QuerySet
containing instances of the specififed model which are tagged with
the given tag or tags.

	get_intersection_by_model(queryset_or_model, tags) – creates a
QuerySet containing instances of the specified model which are
tagged with every tag in a list of tags.

get_by_model will call this function behind the scenes when you
pass it a list, so you can use get_by_model instead of calling
this method directly.

	get_union_by_model(queryset_or_model, tags) – creates a
QuerySet containing instances of the specified model which are
tagged with any tag in a list of tags.

	get_related(obj, queryset_or_model, num=None) - returns a list of
instances of the specified model which share tags with the model
instance obj, ordered by the number of shared tags in descending
order.

If num is given, a maximum of num instances will be returned.

Basic usage

Retrieving tagged objects

Objects may be retrieved based on their tags using the get_by_model
manager method:

>>> from shop.apps.products.models import Widget
>>> from tagging.models import Tag
>>> house_tag = Tag.objects.get(name='house')
>>> TaggedItem.objects.get_by_model(Widget, house_tag)
[<Widget: pk=1>, <Widget: pk=2>]

Passing a list of tags to get_by_model returns an intersection of
objects which have those tags, i.e. tag1 AND tag2 ... AND tagN:

>>> thing_tag = Tag.objects.get(name='thing')
>>> TaggedItem.objects.get_by_model(Widget, [house_tag, thing_tag])
[<Widget: pk=1>]

Functions which take tags are flexible when it comes to tag input:

>>> TaggedItem.objects.get_by_model(Widget, Tag.objects.filter(name__in=['house', 'thing']))
[<Widget: pk=1>]
>>> TaggedItem.objects.get_by_model(Widget, 'house thing')
[<Widget: pk=1>]
>>> TaggedItem.objects.get_by_model(Widget, ['house', 'thing'])
[<Widget: pk=1>]

Restricting objects returned

Pass in a QuerySet to restrict the objects returned:

Retrieve all Widgets which have a price less than 50, tagged with 'house'
TaggedItem.objects.get_by_model(Widget.objects.filter(price__lt=50), 'house')

Retrieve all Widgets which have a name starting with 'a', tagged with any
of 'house', 'garden' or 'water'.
TaggedItem.objects.get_union_by_model(Widget.objects.filter(name__startswith='a'),
 ['house', 'garden', 'water'])

Utilities

Tag-related utility functions are defined in the tagging.utils
module:

parse_tag_input(input)

Parses tag input, with multiple word input being activated and
delineated by commas and double quotes. Quotes take precedence, so they
may contain commas.

Returns a sorted list of unique tag names.

See tag input for more details.

edit_string_for_tags(tags)

Given list of Tag instances, creates a string representation of the
list suitable for editing by the user, such that submitting the given
string representation back without changing it will give the same list
of tags.

Tag names which contain commas will be double quoted.

If any tag name which isn’t being quoted contains whitespace, the
resulting string of tag names will be comma-delimited, otherwise it will
be space-delimited.

get_tag_list(tags)

Utility function for accepting tag input in a flexible manner.

If a Tag object is given, it will be returned in a list as its
single occupant.

If given, the tag names in the following will be used to create a
Tag QuerySet:

	A string, which may contain multiple tag names.

	A list or tuple of strings corresponding to tag names.

	A list or tuple of integers corresponding to tag ids.

If given, the following will be returned as-is:

	A list or tuple of Tag objects.

	A Tag QuerySet.

calculate_cloud(tags, steps=4, distribution=tagging.utils.LOGARITHMIC)

Add a font_size attribute to each tag according to the frequency of
its use, as indicated by its count attribute.

steps defines the range of font sizes - font_size will be an
integer between 1 and steps (inclusive).

distribution defines the type of font size distribution algorithm
which will be used - logarithmic or linear. It must be one of
tagging.utils.LOGARITHMIC or tagging.utils.LINEAR.

Model Fields

The tagging.fields module contains fields which make it easy to
integrate tagging into your models and into the
django.contrib.admin application.

Field types

TagField

A CharField that actually works as a relationship to tags “under
the hood”.

Using this example model:

class Link(models.Model):
 ...
 tags = TagField()

Setting tags:

>>> l = Link.objects.get(...)
>>> l.tags = 'tag1 tag2 tag3'

Getting tags for an instance:

>>> l.tags
'tag1 tag2 tag3'

Getting tags for a model - i.e. all tags used by all instances of the
model:

>>> Link.tags
'tag1 tag2 tag3 tag4 tag5'

This field will also validate that it has been given a valid list of
tag names, separated by a single comma, a single space or a comma
followed by a space.

Form fields

The tagging.forms module contains a Field for use with
Django’s forms library [http://docs.djangoproject.com/en/dev/topics/forms/] which takes care of validating tag name
input when used in your forms.

Field types

TagField

A form Field which is displayed as a single-line text input, which
validates that the input it receives is a valid list of tag names.

When you generate a form for one of your models automatically, using
the ModelForm class, any tagging.fields.TagField fields in your
model will automatically be represented by a tagging.forms.TagField
in the generated form.

Generic views

The tagging.views module contains views to handle simple cases of
common display logic related to tagging.

tagging.views.TaggedObjectList

Description:

A view that displays a list of objects for a given model which have a
given tag. This is a thin wrapper around the
django.views.generic.list.ListView view, which takes a
model and a tag as its arguments (in addition to the other optional
arguments supported by ListView), building the appropriate
QuerySet for you instead of expecting one to be passed in.

Required arguments:

	tag: The tag which objects of the given model must have in
order to be listed.

Optional arguments:

Please refer to the ListView documentation [https://docs.djangoproject.com/en/1.8/ref/class-based-views/generic-display/#listview] for additional optional
arguments which may be given.

	related_tags: If True, a related_tags context variable
will also contain tags related to the given tag for the given
model.

	related_tag_counts: If True and related_tags is
True, each related tag will have a count attribute
indicating the number of items which have it in addition to the
given tag.

Template context:

Please refer to the ListView documentation [https://docs.djangoproject.com/en/1.8/ref/class-based-views/generic-display/#listview] for additional
template context variables which may be provided.

	tag: The Tag instance for the given tag.

Example usage

The following sample URLconf demonstrates using this generic view to
list items of a particular model class which have a given tag:

from django.conf.urls.defaults import *

from tagging.views import TaggedObjectList

from shop.apps.products.models import Widget

urlpatterns = patterns('',
 url(r'^widgets/tag/(?P<tag>[^/]+(?u))/$',
 TaggedObjectList.as_view(model=Widget, paginate_by=10, allow_empty=True),
 name='widget_tag_detail'),
)

The following sample view demonstrates wrapping this generic view to
perform filtering of the objects which are listed:

from myapp.models import People

from tagging.views import TaggedObjectList

class TaggedPeopleFilteredList(TaggedObjectList):
 queryset = People.objects.filter(country__code=country_code)

Template tags

The tagging.templatetags.tagging_tags module defines a number of
template tags which may be used to work with tags.

Tag reference

tags_for_model

Retrieves a list of Tag objects associated with a given model and
stores them in a context variable.

Usage:

{% tags_for_model [model] as [varname] %}

The model is specified in [appname].[modelname] format.

Extended usage:

{% tags_for_model [model] as [varname] with counts %}

If specified - by providing extra with counts arguments - adds a
count attribute to each tag containing the number of instances of
the given model which have been tagged with it.

Examples:

{% tags_for_model products.Widget as widget_tags %}
{% tags_for_model products.Widget as widget_tags with counts %}

tag_cloud_for_model

Retrieves a list of Tag objects for a given model, with tag cloud
attributes set, and stores them in a context variable.

Usage:

{% tag_cloud_for_model [model] as [varname] %}

The model is specified in [appname].[modelname] format.

Extended usage:

{% tag_cloud_for_model [model] as [varname] with [options] %}

Extra options can be provided after an optional with argument, with
each option being specified in [name]=[value] format. Valid extra
options are:

	steps

	Integer. Defines the range of font sizes.

	min_count

	Integer. Defines the minimum number of times a tag must have
been used to appear in the cloud.

	distribution

	One of linear or log. Defines the font-size
distribution algorithm to use when generating the tag cloud.

Examples:

{% tag_cloud_for_model products.Widget as widget_tags %}
{% tag_cloud_for_model products.Widget as widget_tags with steps=9 min_count=3 distribution=log %}

tags_for_object

Retrieves a list of Tag objects associated with an object and stores
them in a context variable.

Usage:

{% tags_for_object [object] as [varname] %}

Example:

{% tags_for_object foo_object as tag_list %}

tagged_objects

Retrieves a list of instances of a given model which are tagged with a
given Tag and stores them in a context variable.

Usage:

{% tagged_objects [tag] in [model] as [varname] %}

The model is specified in [appname].[modelname] format.

The tag must be an instance of a Tag, not the name of a tag.

Example:

{% tagged_objects comedy_tag in tv.Show as comedies %}

Index

 nav.xhtml

 Table of Contents

 		Django Tagging

_static/comment-close.png

_static/down-pressed.png

_static/comment-bright.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/minus.png

_static/file.png

