

 Navigation

 	
 index

 	
 next |

 	django-tabination 0.4.0 documentation

django-tabination

django-tabination is a library that enables you to easily build your own tab
navigation based on class based views.

The main idea behind this library is that the properties of the tabs are defined
inside the view and aren’t stored in the database. The database based approach
(which is used for example by django-sitetree [https://github.com/idlesign/django-sitetree] or django-treenav [https://github.com/caktus/django-treenav], often
based on django-mptt [https://github.com/django-mptt/django-mptt]) is great for CMS-like projects with users editing the
pages directly via the admin, but it causes many problems when the pages are
mainly coded directly in the views because the navigation is then not tracked by
your version control system and can be off-sync / inconsistent between different
versions or systems.

There are also projects that provide a set of template tags to mark a page as
active, which can then be used to render the navigation template accordingly
(e.g. django-tabs [http://code.google.com/p/django-tabs/]). But that solution is very limited and not as flexible as
django-tabination.

django-tabination allows you to create tabs directly in your class based views
by settings some specific attributes. This can be simplified even further by
creating a common base class for all your tab views that handles all the logic
necessary to build a dynamically configured tab navigation.

Features include conditional displaying/hiding of a tab, translation of the tab
labels, tab hierarchies to build multi-level navigations and more.

Table of Contents

	Installation and Configuration

	Usage

	The TabView Class

	Testing

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012 - 2014 Danilo Bargen and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-tabination 0.4.0 documentation

Installation and Configuration

There are several ways to install django-tabination, either by using a
package manager like pip [http://www.pip-installer.org/] or by manually downloading and installing a
copy of the library.

Installing

The recommended way to install django-tabination is directly from pypi [https://pypi.python.org/pypi/django-tabination] using
pip:

pip install django-tabination

If you prefer not to use an automated package installer, you can download [https://pypi.python.org/pypi/django-tabination] a
copy of django-tabination and install it manually. To install it, navigate to
the directory containing setup.py on your console and type:

python setup.py install

Configuration

Currently there is no further configuration needed to use django-tabination.
Take a look at the Usage docs to see how to implement your tabs.

Source Code

The source code of django-tabination is licensed under the LGPLv3 license and
can be forked on GitHub [https://github.com/dbrgn/django-tabination].

 Copyright 2012 - 2014 Danilo Bargen and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-tabination 0.4.0 documentation

Usage

django-tabination is a library that enables you to easily build your
own tab navigation templates by extending the views.TabView base class.

The library is strongly based on the class based views [https://docs.djangoproject.com/en/dev/topics/class-based-views/] that Django
has introduced with version 1.3. You cannot use this library if your
project is using function based views.

Creating tab views

For a working custom tab view, the following things are requried:

	You need to extend the views.TabView base class

	You need to add the class attribute _is_tab = True to your view

	You need to specify the tab_group.

	Each tab needs a tab_id.

	In order for the tab to be visible in your navigation, you need to
set a tab_label.

	You need to define a template_name.

Note

The _is_tab attribute is needed for the class to be tracked by a
tracking metaclass. Therefore it needs to be present when the
classes are parsed by the Python interpreter and cannot be added
later, e.g. with a decorator.

Getting started

The base class resides in tabination.views. Import it like this:

from tabination.views import TabView

This is a very simple example tab:

class SpamTab(TabView):
 _is_tab = True
 tab_id = 'spam'
 tab_group = 'main_navigation'
 tab_label = 'Spam'
 template_name = 'tabs/spam_tab.html'

Now your page will be rendered using the template tabs/spam_tab.html,
because views.TabView extends Django’s generic TemplateView.

If you want, you can also use other generic view mixins [https://docs.djangoproject.com/en/dev/ref/class-based-views/mixins/] (or any other
custom mixins) to provide additional functionality. A good example would
be the SingleObjectMixin:

from django.views.generic.detail import SingleObjectMixin

class SpamTab(SingleObjectMixin, TabView):
 _is_tab = True
 tab_id = 'spam'
 tab_group = 'main_navigation'
 tab_label = 'Spam'
 template_name = 'tabs/spam_tab.html'
 model = models.SpamCan

Now the SpamCan object with a primary key provided from your URL
definition will be passed on to your template as object (see
SingleObjectMixin documentation [https://docs.djangoproject.com/en/dev/ref/class-based-views/mixins-single-object/]).

Warning

As of Django 1.4, above example does not work due to a bug in the
class based views implementation (get_context_data in the
generic mixins does not call super()). This is fixed in Django
1.5 (see Ticket #16074 [https://code.djangoproject.com/ticket/16074]). If you’re still using Django 1.4 you can
either use generic mixins that don’t affect get_context_data,
manually call TabView.get_context_data(self, **kwargs) from your
tab code or create your own mixins. See the next section for an
example.

You can do everything with your TabView that you can do with normal
class based views. The only things that you need to bear in mind is that
views.TabView always needs to be the base class (on the right side of the
parentheses). It may be overloaded using mixins but cannot be combined
with other views that override get_context_data.

Customizing your tab view

You can further customize your tab view by overloading the views.TabView‘s
class attributes with your own class- or instance attributes or
properties [http://docs.python.org/library/functions.html#property] (if logic is required).

For available attributes, see views.TabView documentation. You can also
create your own attributes, as long as they’re used in your template.

Keep in mind that if the tab you’re working with is not the currently
loaded tab, it is just an instance of the tab that has not passed
through the dispatching functions. In case you need some variables that
you get only by dispatching the request (e.g. self.kwargs), you can
use the special attribute self.current_tab to gain access to the
currently loaded tab. See also section Accessing request data.

Here is an example of a more sophisticated tab view hierarchy:

from django.contrib.auth.decorators import login_required
from django.utils import decorators
from django.utils.translation import ugettext as _

from tabination.views import TabView

class MainNavigationBaseTab(TabView):
 """Base class for all main navigation tabs."""
 tab_group = 'main_navigation'
 tab_classes = ['main-navigation-tab']

 def get_context_data(self, **kwargs):
 context = super(MainNavigationBaseTab, self).get_context_data(**kwargs)
 context['spam'] = 'ham'
 return context

 @property
 def tab_classes(self):
 """If user is logged in, set ``logged_in_only`` class."""
 classes = super(MainNavigationBaseTab, self).tab_classes[:]
 if self.current_tab.request.user.is_authenticated():
 classes += ['logged_in_only']
 return classes

class SpamTab(MainNavigationBaseTab):
 """A simple TabView."""
 _is_tab = True
 tab_id = 'spam'
 tab_label = _('Spam')
 template_name = 'spam_tab.html'

class HamTab(MainNavigationBaseTab):
 """TabView is only visible after authentication."""
 _is_tab = True
 tab_id = 'ham'
 tab_label = _('Ham')
 tab_rel = 'nofollow,noindex'
 template_name = 'ham_tab.html'

 @decorators.method_decorator(login_required)
 def dispatch(self, *args, **kwargs):
 """Make sure only authenticated users can access this tab."""
 return super(HamTab, self).dispatch(*args, **kwargs)

 @property
 def tab_visible(self):
 """Show tab only if current user is logged in."""
 return self.current_tab.request.user.is_authenticated()

class HiddenTab(MainNavigationBaseTab):
 """A hidden TabView."""
 _is_tab = True
 tab_id = 'hidden'
 template_name = 'hidden_tab.html'

In this example, a base tab class was created. Because it does not
contain the _is_tab class attribute, it is not listed as a tab
itself (which wouldn’t be possible anyway, as it has no tab_id). The
three classes SpamTab, HamTab and HiddenTab
extend the MainNavigationBaseTab. The base class predefines a
tab group, so each extending tab doesn’t have to define it again,
therefore following the DRY principle. It also adds a new context
variable called spam to the context of each tab.

The second tab, HamTab, overrides some more attributes. In this
example, the tab is only visible in the template if the current user is
logged in. Additionally, if the user is logged in, a new CSS class
logged_in_only gets added to the tab_classes list, in order to be
able to show the user that this is a “secret” tab that guest users
aren’t able to see. A copy of the tab_classes list is used because
otherwise the CSS class would be added to all classes which extend
MainNavigationBaseTab.

The third tab, HiddenTab, doesn’t define a tab_label and is
therefore not shown at all (see default behavior of
views.TabView.tab_visible()).

Warning

Keep in mind that if you’re overriding get_context_data(self,
**kwargs), you need to call the superclasses’ versions of the
method first (like in the example above). Otherwise, you’ll override
the tabs context variable.

Accessing request data

If you want to access self.request in a function used to render the
tab item in your template, you may notice that it is not available. This
is because the tab instances other than your current tab don’t pass
through the request dispatching functions.

If you need access to your current request information, you can access
it via the self.current_tab attribute, e.g.:

class SpamTab(TabView):
 # (...)
 def username(self):
 current_tab = self.current_tab
 user = current_tab.request.user
 return user.username

Tab navigation template

Available context variables:

	tabs

	current_tab_id

	parent_tabs

	parent_tab_id

	child_tabs

	view

In order to display the tabs in your templates, you need to create a tab
list using the {{ tabs }} context variable. You can also use
{{ current_tab_id }} to access the id of the currently active tab.
Here is an example template:

<div id="tab_navigation">

 {% for tab in tabs %}
 <li class="{{ tab.tab_classes|join:" " }}{% if tab.tab_id == current_tab_id %} active{% endif %}">

 {% if tab.tab_counter %}{{ tab.tab_counter }}{% endif %}
 {{ tab.tab_label }}

 {% endfor %}

</div>

Each item in the {{ tabs }} list is an instance of a tab in the same
tab group as the current tab. Therefore you can use all class- and
instance variables as well as all functions without arguments that are
defined in the views.TabView base class or in the extending class.

If you want to access the current tab instance, you can simply use the view
variable which is provided by Django’s ContextMixin [https://docs.djangoproject.com/en/dev/ref/class-based-views/mixins-simple/#django.views.generic.base.ContextMixin].

It’s a good idea to put this template code in a file called e.g.
blocks/tabination.html and to include it everywhere you want
the navigation to be displayed:

...
{% include "blocks/tabination.html" %}
...

Multilevel navigation

django-tabination can also be used for multilevel navigation. You can
use the tab_parent attribute to connect two navigation levels. The
attribute is defined at the child base navigation class. The
following example has a tab called ParentTab which is at the first
navigation level. The base class of the second navigation level is
ChildNavigationBaseTab. This class defines the attribute
tab_parent to connect itself and all it’s siblings with the parent
navigation level.

from tabination.views import TabView

First navigation level

class ParentNavigationBaseTab(TabView):
 """Base class for all parent navigation tabs."""
 tab_group = 'parent_navigation'
 tab_classes = ['parent-navigation-tab']

class ParentTab(ParentNavigationBaseTab):
 _is_tab = True
 tab_id = 'parent'
 tab_label = 'Parent'
 template_name = 'parent_tab.html'

class EmptyTab(ParentNavigationBaseTab):
 _is_tab = True
 tab_id = 'empty'
 tab_label = 'Empty'
 template_name = 'empty_tab.html'

Second navigation level

class ChildNavigationBaseTab(TabView):
 """Base class for all child navigation tabs."""
 tab_group = 'child_navigation'
 tab_classes = ['child-navigation-tab']
 tab_parent = ParentTab

class FirstChildTab(ChildNavigationBaseTab):
 _is_tab = True
 tab_id = 'first_child'
 tab_label = 'First Child'
 template_name = 'first_child_tab.html'

class SecondChildTab(ChildNavigationBaseTab):
 _is_tab = True
 tab_id = 'second_child'
 tab_label = 'Second Child'
 template_name = 'second_child_tab.html'

Multilevel template context

If you use multilevel navigation new values are added to your template
context.

If the current tab has a parent tab the following values are added:

	parent_tab_id

	The tab_id of the parent tab.

	parent_tabs

	Instances of all tabs at the parent level.

The following variable is added to the template context if the current
tab is a parent tab and has one or more children:

	child_tabs

	A list of instances of all child tabs.

Because the {{ current_tab }} and {{ current_tab_id }} context
variables always refer to the globally current tab and not to the active
tab in the current tab group, you would have to write different
templates for the different levels of navigation to properly set an
active class on the tab item. To avoid this problem, you can use the
tab.group_current_tab attribute which is provided with every tab
object and refers to the active tab of the current tab group, no whether
where in the hierarchy the group is positioned.

If you didn’t quite understand the things above (it’s complicated I
know...), just take a look at the following example:

{# blocks/tab.html #}

<li class="{{ tab.tab_classes|join:" " }}{% if tab.tab_id == tab.group_current_tab.tab_id %} active{% endif %}">

 {{ tab.tab_label }}

{# blocks/navigation.html #}

<div id="tab_navigation">
 {% if parent_tabs %}

 {% for tab in parent_tabs %}
 {% include 'blocks/tab.html' %}
 {% endfor %}

 {% endif %}

 {% for tab in tabs %}
 {% include 'blocks/tab.html' %}
 {% endfor %}

 {% if child_tabs %}

 {% for tab in child_tabs %}
 {% include 'blocks/tab.html' %}
 {% endfor %}

 {% endif %}
</div>

Sorting tabs

Tabs are sorted by their weight attribute automatically. Tabs with a
lower weight are sorted before tabs with a higher weight. The default
value of weight is 0. Negative values are also allowed and will be
sorted before postive values. If two tabs have the same weight the
natural order of the classes is used.

 Copyright 2012 - 2014 Danilo Bargen and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-tabination 0.4.0 documentation

TabView

This page documents the attribute values and functions of the TabView base class.

 Copyright 2012 - 2014 Danilo Bargen and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	django-tabination 0.4.0 documentation

Testing

Current build status:

[image: Build status]
 [http://travis-ci.org/dbrgn/django-tabination]To set up a testing environment, you need to install Django and some additional
dependencies:

$ pip install Django
$ make install

To run the test suite, use

$ make test

If you want to generate a coverage report, use

$ make report

To see a HTML version of the coverage report, there’s

$ make report-html

Finally, to check conformance to the PEP8 coding standard, use

$ make flake8

Note

The flake8 configuration ignores E128 (continuation line under-indented for
visual indent) errors and allows a max line length of 99 characters per
line.

 Copyright 2012 - 2014 Danilo Bargen and contributors.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	django-tabination 0.4.0 documentation

Index

 Copyright 2012 - 2014 Danilo Bargen and contributors.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		django-tabination 0.4.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012 - 2014 Danilo Bargen and contributors.
 Created using Sphinx 1.3.5.

_static/comment.png

_static/plus.png

_static/down.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

