
Django Synctool Documentation
Release 1.0.0

Preston Timmons

November 01, 2014

Contents

1 Basic usage 3
1.1 How it works . 4

2 Installation 5

3 Contents 7
3.1 Adding api views . 7
3.2 Syncing data from a remote api . 10
3.3 Creating a command-line interface . 11
3.4 API reference . 12

Python Module Index 15

i

ii

Django Synctool Documentation, Release 1.0.0

Synctool is a library for Django to make syncing querysets between databases easy. No more manually dumping or
entering data. No more out-of-date fixtures. Just get the data you want, on demand.

Contents 1

Django Synctool Documentation, Release 1.0.0

2 Contents

CHAPTER 1

Basic usage

Here’s an example for syncing the django.contrib.sites app.

1. Create an api view

myapp.views

from synctools.routing import Route

route = Route()

@route.app("sites", "sites")

2. Add the urls to your project

myproject.urls

from django.conf.urls import include, url
from myapp.views import route

urlpatterns += [
url("^sync/", include(route.urlpatterns)),

]

3. Sync data from the remote endpoint

myclient.py

from synctools.client import Client

client = Client(
api_url="https://myserver.com/sync/",
api_token="<token>",

)

if __name__ == "__main__":
client.sync("sites")

The sites app can now be synced locally from a remote data source by calling:

python myclient.py

3

Django Synctool Documentation, Release 1.0.0

1.1 How it works

Under the hood Synctool uses the Django JSON serializer to pass data between servers. Synctool isn’t limited to
syncing whole applications. It can also sync custom querysets and even download associated images.

4 Chapter 1. Basic usage

CHAPTER 2

Installation

Synctool can be installed from PyPI:

pip install django-synctool

5

Django Synctool Documentation, Release 1.0.0

6 Chapter 2. Installation

CHAPTER 3

Contents

3.1 Adding api views

In order to sync data, a remote server must make it available for download. This can be achieved using the
synctool.routing.Route class. This class takes care of:

• Creating the url pattern

• Serializing the returned data using the Django JSON serializer

• Returning an application/json response object

• Adding http basic authentication to the api

3.1.1 Serializing an application

The route.app function can be used to serialize a whole application. The returned data is the same as that of the
python manage.py dumpdata command.

route.app(path, label)

Parameters

• path – The path of the urlpattern to register.

• label – The label of the installed application to serialize.

Example:

from synctools.routing import Route

route = Route()

Sync the ‘‘django.contrib.sites‘‘ app
route.app("sites", "sites")

Sync an application call myblogapp
route.app("blogs", "myblogapp")

Once your urlpatterns are registered, you can open the url in a browser to inspect the data.

7

Django Synctool Documentation, Release 1.0.0

3.1.2 Serializing querysets

The route.queryset decorator can be used to register any function that returns one or more querysets.

route.queryset(path)

Parameters path – The path of the urlpattern to register.

Returning a single queryset

Example:

from myapp.models import Blog

@route.queryset("blogs")
def blogs():

return Blog.objects.all()

Returning multiple querysets

Multiple querysets can be returned as a list or tuple:

from myapp.models import Blog, Post

@route.queryset("blogs")
def blogs():

return [
Blog.objects.all(),
Post.objects.all(),

]

Filtering and slicing

Querysets can be filtered or sliced. This is useful when you only want to return a subset of a table.

Example:

@route.queryset("blogs")
def blogs():

return [
Blog.objects.all()[:100],

]

Accepting arguments

The route argument is a url regular expression. This means views can take arguments from the url.

Example:

@route.queryset("blog/(?P<slug>[^/]+)")
def blog(slug):

return Blog.objects.filter(slug=slug)

8 Chapter 3. Contents

Django Synctool Documentation, Release 1.0.0

Modifying querysets

Querysets can be modified before returning them. This can be helpful if you want to exclude certain information in
the output.

For example, if Blog had a User relation, we could return a Blog queryset but leave out the user information.

Example:

@route.queryset("blogs")
def pickle_blog():

queryset = Blog.objects.all()
for blog in queryset:

blog.user = None
return queryset

Note: This example assumes the user field is nullable.

Order is important

When syncing applications using the route.app function, model dependencies are automatically calculated and
sorted. When using route.queryset, this is not the case. Therefore, you must pay attention to the order in which
you return querysets.

For example, assume you had a Blog and Post model. The Post model has a foreign key to Blog:

@route.queryset("blogs")
def blogs():

Good: Post depends on blog existing first. Since blog
is serialized first, blog will be saved first.
return [

Blog.objects.all(),
Post.objects.all(),

]

@route.queryset("blogs")
def blogs():

Bad: The sync client can fail with an IntegrityError because
post points to blogs that haven’t been saved locally yet.
return [

Post.objects.all(),
Blog.objects.all(),

]

3.1.3 Authentication

HTTP basic authentication is added to each view created using the Route class. By default, the credential is set to
settings.SYNCTOOL_API_TOKEN. A custom token can be specified as an argument to the Route class.

Example:

route = Route(api_token="mytoken")

A sample call that grants access to this view would be:

$ curl https://myserver.com/sync/sites -u mytoken:

3.1. Adding api views 9

Django Synctool Documentation, Release 1.0.0

Note: If you want your queryset information and credentials to remain private, make sure to serve your API over SSL
only.

3.1.4 Including urls

The routed url patterns can be included in your project in the same way as another other url pattern:

Example:

myproject.urls

from myapp.views import route

urlpatterns += patterns("",
url("^sync/", include(route.urlpatterns)),

)

3.2 Syncing data from a remote api

This library provides a client for syncing data from a remote url.

Begin by creating a client instance:

from synctools.client import Client

client = Client(
api_url="https://<remote-server.com>/sync/",
api_token="<mytoken>",

)

Now, you can try syncing data from a remote api:

client.sync("<path>")

3.2.1 Cleaning local data

It’s often preferable to delete local data before saving the remote information. The sync function will do this if you
passing the clean argument.

client.sync("<path>", clean=True)

This step is especially helpful if you’ve made local edits to your database. If you’ve made local changes that conflict
with the remote queryset, and do not clear your local data, the sync process can fail with an IntegrityError.

3.2.2 Downloading images

The sync command can be instructed to download remote images in addition to saving the database information. To
do this, pass images argument.

client.sync("<path>", images=True)

When images are synced this way, images will be downloaded for every ImageField of every model type in the
data returned by the remote url. If images already exist locally, the download will be skipped.

10 Chapter 3. Contents

Django Synctool Documentation, Release 1.0.0

3.2.3 Reset sequence

After completing a sync, the sync_data command resets the primary key sequence for each application the remote
querysets belonged to. Without this step, adding new items to your local database may fail with integrity errors.

If you do not want to reset the sequence for some reason, pass reset as False.

client.sync("<path>", reset=False)

3.2.4 Downloading images manually

You can manually initiate the download image process. This is helpful if:

• You already have local data that you want to download images for

• You only want to download images for certain fields of a model

client = Client(
media_url="http://<remote-server.com>/<mediaroot>/",

)

client.images(
queryset=Post.objects.all(),
field="hero_image"

)

This will download and save an image for each entry in the queryset. If the image entry is empty, or the local image
already exists, the download is skipped.

Note: This function assumes you’re using file storage in your local environment.

3.3 Creating a command-line interface

If you sync more than a few models, it’s nice to wrap that up in a command-line interface. This can be done easily
using the Click library.

3.3.1 Example interface

sync.py

import os
os.environ["DJANGO_SETTINGS_MODULE"] = "mysite.settings"

import django
django.setup()

import click
from synctool.client import Client

client = Client(
api_url="<remote-url>",
media_url="<media-url>",

)

3.3. Creating a command-line interface 11

http://click.pocoo.org/

Django Synctool Documentation, Release 1.0.0

@click.group()
def cli():

"""A tool for syncing data."""

@cli.command()
@click.option("--clean/--no-clean", default=False)
@click.option("--images/--no-images", default=False)
def blogs(clean, images):

""" Sync blogs """
client.sync("blogs", clean=True)

if __name__ == "__main__":
cli()

Now you can sync data using a command like:

python sync.py blogs --clean

You can make this yet better by integrating with setuptools.

This would enable you to simplify it to something like:

sync blogs --clean

Further, if your application is installed in a virtualenv, you can call the command without needing to activate the
virtualenv.

3.4 API reference

This provides a reference to the public classes and functions.

3.4.1 The Client class

class synctools.client.Client
The Client class provides functions for downloading remote data and images.

Methods

Client.__init__(api_token=None, api_url=None, media_url=None)
Instantiates a Client object.

api_token is the username used for HTTP basic authentication with the remote api. If this value isn’t pro-
vided, it defaults to settings.SYNCTOOL_CLIENT_TOKEN.

api_url is the base url of the remote api to connect with. This would be something like
https://myserver.com/sync/. This value is prefixed to the url provided to the Client.sync func-
tion. If this value isn’t provided, it defaults to settings.SYNCTOOL_CLIENT_ENDPOINT.

media_url is the base url from where remote media files are served. This is used if the client is instructed to
download images.

12 Chapter 3. Contents

http://click.pocoo.org/3/setuptools/

Django Synctool Documentation, Release 1.0.0

Client.sync(url, clean=False, reset=True, images=False)
Syncs data from a remote api.

url is the remote url to connect to. This is only the part of the url after self.api_url. For example,
if the api url is https://<remote-server>/sync/, client.sync("sites") would connect to
https://<remote-server>/sync/sites.

clean tells the client whether to delete local information before saving the remote data.

reset tells the client whether reset the primary key sequence of the application tables after the sync is finished.

images tells the client whether to download images for any image fields contained in the synced data.

Client.images(queryset, field)
Download remote images for a queryset. Images will be downloaded from the media_url client option.

queryset is the queryset to download images for, i.e. Blog.objects.all()

field is the name of the image field to download images for.

3.4.2 The Route class

class synctools.routing.Route
The Route class creates views and urls for sync apis.

Methods

Route.__init__(api_token=None)
Instantiates a Route object.

api_token is the authentication token to require for any clients connecting to this api. If this value isn’t
provided, it defaults to settings.SYNCTOOL_API_TOKEN.

Route.app(path, label)
Creates a view to serialize data from a given app label.

Example:

route.app("blogs", "myblogapp")

path is the url regex to serve the view from.

label is the installed application label to serialize.

Route.queryset(path)
A decorator factory for views that serialize a given queryset.

Example:

@route.queryset("blogs")
def blogs():

return Blog.objects.all()

path is the url regex to serve the view from.

3.4. API reference 13

Django Synctool Documentation, Release 1.0.0

14 Chapter 3. Contents

Python Module Index

s
synctools.client, 12
synctools.routing, 13

15

Django Synctool Documentation, Release 1.0.0

16 Python Module Index

Index

Symbols
__init__() (synctools.client.Client method), 12
__init__() (synctools.routing.Route method), 13

A
app() (synctools.routing.Route method), 13

C
Client (class in synctools.client), 12

I
images() (synctools.client.Client method), 13

Q
queryset() (synctools.routing.Route method), 13

R
Route (class in synctools.routing), 13
route.app() (built-in function), 7
route.queryset() (built-in function), 8

S
sync() (synctools.client.Client method), 12
synctools.client (module), 12
synctools.routing (module), 13

17

	Basic usage
	How it works

	Installation
	Contents
	Adding api views
	Syncing data from a remote api
	Creating a command-line interface
	API reference

	Python Module Index

