

 Navigation

 	
 index

 	
 next |

 	django-superform 0.4.0.dev1 documentation

django-superform: nest all the forms!

A SuperForm lets you nest other forms and formsets inside a form. That way
handling multiple forms on one page gets super easy.

Contents:

	Quickstart with django-superform

	Available Forms
	SuperForm

	SuperFormMixin

	SuperModelForm

	SuperModelFormMixin

	Fields
	CompositeField

	FormField

	ModelFormField

	ForeignKeyFormField

	FormSetField

	ModelFormSetField

	InlineFormSetField

	On saving SuperModelForm

	Changelog
	0.3.1

	0.3.0

	0.2.0

	0.1.0

Index | Module Index | Search Page

 Copyright 2014, Gregor Müllegger.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-superform 0.4.0.dev1 documentation

Quickstart with django-superform

TODO.

 Copyright 2014, Gregor Müllegger.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-superform 0.4.0.dev1 documentation

Available Forms

SuperForm

	
class django_superform.forms.SuperForm(*args, **kwargs)[source]

	

SuperFormMixin

	
class django_superform.forms.SuperFormMixin(*args, **kwargs)[source]

	The base class for all super forms. It behaves just like a normal django
form but will also take composite fields, like
FormField and
FormSetField.

Cleaning, validation, etc. should work totally transparent.

SuperModelForm

	
class django_superform.forms.SuperModelForm(*args, **kwargs)[source]

	

SuperModelFormMixin

	
class django_superform.forms.SuperModelFormMixin(*args, **kwargs)[source]

	

 Copyright 2014, Gregor Müllegger.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-superform 0.4.0.dev1 documentation

Fields

This is the class hierachy of all the available composite fields to be used in
a SuperForm:

+ CompositeField
|
+-+ FormField
| |
| +-+ ModelFormField
| |
| +-- ForeignKeyFormField
|
+-+ FormSetField
 |
 +-+ ModelFormSetField
 |
 +-+ InlineFormSetField

CompositeField

	
class django_superform.fields.CompositeField(*args, **kwargs)[source]

	Implements the base structure that is relevant for all composite fields.
This field cannot be used directly, use a subclass of it.

	
get_initial(form, name)[source]

	Get the initial data that got passed into the superform for this
composite field. It should return None if no initial values where
given.

	
get_kwargs(form, name)[source]

	Return the keyword arguments that are used to instantiate the formset.

	
get_prefix(form, name)[source]

	Return the prefix that is used for the formset.

FormField

	
class django_superform.fields.FormField(form_class, kwargs=None, **field_kwargs)[source]

	A field that can be used to nest a form inside another form:

from django import forms
from django_superform import SuperForm

class AddressForm(forms.Form):
 street = forms.CharField()
 city = forms.CharField()

class RegistrationForm(SuperForm):
 first_name = forms.CharField()
 last_name = forms.CharField()
 address = FormField(AddressForm)

You can then display the fields in the template with (given that
registration_form is an instance of RegistrationForm):

{{ registration_form.address.street }}
{{ registration_form.address.street.errors }}
{{ registration_form.address.city }}
{{ registration_form.address.city.errors }}

The fields will all have a prefix in their name so that the naming does not
clash with other fields on the page. The name attribute of the input tag
for the street field in this example will be: form-address-street.
The name will change if you set a prefix on the superform:

form = RegistrationForm(prefix='registration')

Then the field name will be registration-form-address-street.

You can pass the kwargs argument to the __init__ method in order to
give keyword arguments that you want to pass through to the form when it is
instaniated. So you could use this to pass in initial values:

class RegistrationForm(SuperForm):
 address = FormField(AddressForm, kwargs={
 'initial': {'street': 'Stairway to Heaven 1'}
 })

But you can also use nested initial values which you pass into the
superform:

RegistrationForm(initial={
 'address': {'street': 'Highway to Hell 666'}
})

The first method (using kwargs) will take precedence.

	
get_form(form, name)[source]

	Get an instance of the form.

	
get_form_class(form, name)[source]

	Return the form class that will be used for instantiation in
get_form. You can override this method in subclasses to change
the behaviour of the given form class.

ModelFormField

	
class django_superform.fields.ModelFormField(form_class, kwargs=None, **field_kwargs)[source]

	This class is the to FormField what
Django’s ModelForm is to Form. It has the same behaviour
as FormField but will also save the
nested form if the super form is saved. Here is an example:

from django_superform import ModelFormField

class EmailForm(forms.ModelForm):
 class Meta:
 model = EmailAddress
 fields = ('email',)

class UserForm(SuperModelForm):
 email = ModelFormField(EmailForm)

 class Meta:
 model = User
 fields = ('username',)

user_form = UserForm(
 {'username': 'john', 'form-email-email': 'john@example.com'})
if user_form.is_valid():
 user_form.save()

This will save the user_form and create a new instance of User
model and it will also save the EmailForm and therefore create an
instance of EmailAddress!

However you usually want to use one of the exsting subclasses, like
ForeignKeyFormField or extend from
ModelFormField class and override the
get_instance() method.

Note

Usually the ModelFormField is used
inside a SuperModelForm. You actually
can use it within a SuperForm, but
since this form type does not have a save() method, you will need
to take care of saving the nested model form yourself.

	
get_instance(form, name)[source]

	Provide an instance that shall be used when instantiating the
modelform. The form argument is the super-form instance that this
ModelFormField is used in. name is the name of this field on
the super-form.

This returns None by default. So you usually want to override this
method in a subclass.

	
get_kwargs(form, name)[source]

	Return the keyword arguments that are used to instantiate the formset.

The instance kwarg will be set to the value returned by
get_instance(). The
empty_permitted kwarg will be set to the inverse of the
required argument passed into the constructor of this field.

	
save(form, name, composite_form, commit)[source]

	This method is called by
django_superform.forms.SuperModelForm.save() in order to save the
modelform that this field takes care of and calls on the nested form’s
save() method. But only if
shall_save() returns
True.

	
shall_save(form, name, composite_form)[source]

	Return True if the given composite_form (the nested form of
this field) shall be saved. Return False if the form shall not be
saved together with the super-form.

By default it will return False if the form was not changed and the
empty_permitted argument for the form was set to True. That way
you can allow empty forms.

ForeignKeyFormField

	
class django_superform.fields.ForeignKeyFormField(form_class, kwargs=None, field_name=None, blank=None, **field_kwargs)[source]

	

FormSetField

	
class django_superform.fields.FormSetField(formset_class, kwargs=None, **field_kwargs)[source]

	First argument is a formset class that is instantiated by this
FormSetField.

You can pass the kwargs argument to specify kwargs values that
are used when the formset_class is instantiated.

ModelFormSetField

	
class django_superform.fields.ModelFormSetField(formset_class, kwargs=None, **field_kwargs)[source]

	

InlineFormSetField

	
class django_superform.fields.InlineFormSetField(parent_model=None, model=None, formset_class=None, kwargs=None, **factory_kwargs)[source]

	The InlineFormSetField helps when you want to use a inline formset.

You can pass in either the keyword argument formset_class which is a
ready to use formset that inherits from BaseInlineFormSet or was
created by the inlineformset_factory.

The other option is to provide the arguments that you would usually pass
into the inlineformset_factory. The required arguments for that are:

	model

	The model class which should be represented by the forms in the
formset.

	parent_model

	The parent model is the one that is referenced by the model in a
foreignkey.

	form (optional)

	The model form that is used as a baseclass for the forms in the inline
formset.

You can use the kwargs keyword argument to pass extra arguments for the
formset that are passed through when the formset is instantiated.

All other not mentioned keyword arguments, like extra, max_num etc.
will be passed directly to the inlineformset_factory.

Example:

	class Gallery(models.Model):

	name = models.CharField(max_length=50)

	class Image(models.Model):

	gallery = models.ForeignKey(Gallery)
image = models.ImageField(...)

	class GalleryForm(ModelFormWithFormSets):

	
	class Meta:

	model = Gallery
fields = (‘name’,)

	images = InlineFormSetField(

	parent_model=Gallery,
model=Image,
extra=1)

 Copyright 2014, Gregor Müllegger.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-superform 0.4.0.dev1 documentation

 TODO: This document is quite raw. Needs improvement.

Form class needs to subclass from SuperForm
or SuperModelForm.

During instantiation:

	composite fields get initialized

	The fields get_form and get_formsets methods are called which
instantiate the nested form/formset. They get the same data/files that are
passed into the super form. Initial values are passed through. EXAMPLE.

	Those get attached into form.forms and form.formsets.

In template you can get a bound field (like with django’s normal form fields) with
{{ form.composite_field_name }}. Or you can get the real form instance with
{{ form.forms.composite_field_name }}, or the formset: {{
form.formsets.composite_field_name }}.

Then when it gets to validation, the super form’s full_clean() and
is_valid() methods will clean and validate the nested forms/formsets as
well. So is_valid() will return False when the super form’s fields are
valid but any of the nested forms/formsets is not.

Errors will be attached to form.errors. For forms it will be a error dict,
for formsets it will be a list of the errors of the formset’s forms.

On saving SuperModelForm

The super form’s save() method will first save the model that it takes
care of. Then the nested forms and then the nested formsets. It will only
return the saved model from the super form, but none of the objects from
nested forms/formsets. This is to keep the API to the normal model forms the
same.

The commit argument is respected and passed down. So nothing is saved to
the DB if you don’t want it to. In that case, django forms will get a
dynamically created save_m2m method that can be called later on to then
save all the related stuff. The super form hooks in there to also save the
nested forms and formsets then (TODO: check, really?). And ofcourse it calls
their save_m2m methods :)

 Copyright 2014, Gregor Müllegger.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 previous |

 	django-superform 0.4.0.dev1 documentation

Changelog

0.3.1

	SuperForm.composite_fields dict is not longer shared between form
instances. Every new form instances get’s a deep copy. So changes to it
won’t leak into other instances of the same form class.

0.3.0

	#11 [https://github.com/gregmuellegger/django-superform/issues/11]: Fix CompositeBoundField to allow direct access to nested form
fields via form['nested_form']['field'].

	Support for Django’s Media handling in nested forms. See #3 [https://github.com/gregmuellegger/django-superform/issues/3] and #5 [https://github.com/gregmuellegger/django-superform/pull/5].

	Do not populate errorlist representations without any errors of nested
formsets into the errors of the super form. See #5 [https://github.com/gregmuellegger/django-superform/pull/5] for details.

0.2.0

	Django 1.8 support.

	Initial values given to the __init__ method of the super-form will get
passed through to the nested forms.

	The empty_permitted argument for modelforms used in a ModelFormField
is set depending on the required attribute given to the field.

0.1.0

	Initial release with proof of concept.

 Copyright 2014, Gregor Müllegger.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	django-superform 0.4.0.dev1 documentation

Index

 C
 | F
 | G
 | I
 | M
 | S

C

 	

 	CompositeField (class in django_superform.fields)

F

 	

 	ForeignKeyFormField (class in django_superform.fields)

 	FormField (class in django_superform.fields)

 	

 	FormSetField (class in django_superform.fields)

G

 	

 	get_form() (django_superform.fields.FormField method)

 	get_form_class() (django_superform.fields.FormField method)

 	get_initial() (django_superform.fields.CompositeField method)

 	

 	get_instance() (django_superform.fields.ModelFormField method)

 	get_kwargs() (django_superform.fields.CompositeField method)

 	

 	(django_superform.fields.ModelFormField method)

 	get_prefix() (django_superform.fields.CompositeField method)

I

 	

 	InlineFormSetField (class in django_superform.fields)

M

 	

 	ModelFormField (class in django_superform.fields)

 	

 	ModelFormSetField (class in django_superform.fields)

S

 	

 	save() (django_superform.fields.ModelFormField method)

 	shall_save() (django_superform.fields.ModelFormField method)

 	SuperForm (class in django_superform.forms)

 	

 	SuperFormMixin (class in django_superform.forms)

 	SuperModelForm (class in django_superform.forms)

 	SuperModelFormMixin (class in django_superform.forms)

 Copyright 2014, Gregor Müllegger.
 Created using Sphinx 1.3.4.

 _static/down-pressed.png

_static/up.png

_static/minus.png

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

_static/up-pressed.png

_static/comment-close.png

_static/comment.png

_modules/django_superform/fields.html

 Navigation

 		
 index

 		django-superform 0.4.0.dev1 documentation »

 		Module code »

 Source code for django_superform.fields

from django.forms.models import inlineformset_factory

from .widgets import FormWidget, FormSetWidget

class BaseCompositeField(object):
 """
 The ``BaseCompositeField`` takes care of keeping some kind of compatibility
 with the ``django.forms.Field`` class.
 """

 widget = None
 show_hidden_initial = False

 # Tracks each time a FormSetField instance is created. Used to retain
 # order.
 creation_counter = 0

 def __init__(self, required=True, widget=None, label=None, help_text='',
 localize=False):
 self.required = required
 self.label = label
 self.help_text = help_text

 widget = widget or self.widget
 if isinstance(widget, type):
 widget = widget()

 # Trigger the localization machinery if needed.
 self.localize = localize
 if self.localize:
 widget.is_localized = True

 # Let the widget know whether it should display as required.
 widget.is_required = self.required

 # We do not call self.widget_attrs() here as the original field is
 # doing it.

 self.widget = widget

 # Increase the creation counter, and save our local copy.
 self.creation_counter = BaseCompositeField.creation_counter
 BaseCompositeField.creation_counter += 1

[docs]class CompositeField(BaseCompositeField):
 """
 Implements the base structure that is relevant for all composite fields.
 This field cannot be used directly, use a subclass of it.
 """

 prefix_name = 'composite'

 def __init__(self, *args, **kwargs):
 super(CompositeField, self).__init__(*args, **kwargs)

 # Let the widget know about the field for easier complex renderings in
 # the template.
 self.widget.field = self

[docs] def get_prefix(self, form, name):
 """
 Return the prefix that is used for the formset.
 """
 return '{form_prefix}{prefix_name}-{field_name}'.format(
 form_prefix=form.prefix + '-' if form.prefix else '',
 prefix_name=self.prefix_name,
 field_name=name)

[docs] def get_initial(self, form, name):
 """
 Get the initial data that got passed into the superform for this
 composite field. It should return ``None`` if no initial values where
 given.
 """

 if hasattr(form, 'initial'):
 return form.initial.get(name, None)
 return None

[docs] def get_kwargs(self, form, name):
 """
 Return the keyword arguments that are used to instantiate the formset.
 """
 kwargs = {
 'prefix': self.get_prefix(form, name),
 'initial': self.get_initial(form, name),
 }
 kwargs.update(self.default_kwargs)
 return kwargs

[docs]class FormField(CompositeField):
 """
 A field that can be used to nest a form inside another form::

 from django import forms
 from django_superform import SuperForm

 class AddressForm(forms.Form):
 street = forms.CharField()
 city = forms.CharField()

 class RegistrationForm(SuperForm):
 first_name = forms.CharField()
 last_name = forms.CharField()
 address = FormField(AddressForm)

 You can then display the fields in the template with (given that
 ``registration_form`` is an instance of ``RegistrationForm``)::

 {{ registration_form.address.street }}
 {{ registration_form.address.street.errors }}
 {{ registration_form.address.city }}
 {{ registration_form.address.city.errors }}

 The fields will all have a prefix in their name so that the naming does not
 clash with other fields on the page. The name attribute of the input tag
 for the ``street`` field in this example will be: ``form-address-street``.
 The name will change if you set a prefix on the superform::

 form = RegistrationForm(prefix='registration')

 Then the field name will be ``registration-form-address-street``.

 You can pass the ``kwargs`` argument to the ``__init__`` method in order to
 give keyword arguments that you want to pass through to the form when it is
 instaniated. So you could use this to pass in initial values::

 class RegistrationForm(SuperForm):
 address = FormField(AddressForm, kwargs={
 'initial': {'street': 'Stairway to Heaven 1'}
 })

 But you can also use nested initial values which you pass into the
 superform::

 RegistrationForm(initial={
 'address': {'street': 'Highway to Hell 666'}
 })

 The first method (using ``kwargs``) will take precedence.
 """

 prefix_name = 'form'
 widget = FormWidget

 def __init__(self, form_class, kwargs=None, **field_kwargs):
 super(FormField, self).__init__(**field_kwargs)

 self.form_class = form_class
 if kwargs is None:
 kwargs = {}
 self.default_kwargs = kwargs

[docs] def get_form_class(self, form, name):
 """
 Return the form class that will be used for instantiation in
 ``get_form``. You can override this method in subclasses to change
 the behaviour of the given form class.
 """
 return self.form_class

[docs] def get_form(self, form, name):
 """
 Get an instance of the form.
 """
 kwargs = self.get_kwargs(form, name)
 form_class = self.get_form_class(form, name)
 composite_form = form_class(
 data=form.data if form.is_bound else None,
 files=form.files if form.is_bound else None,
 **kwargs)
 return composite_form

[docs]class ModelFormField(FormField):
 """
 This class is the to :class:`~django_superform.fields.FormField` what
 Django's :class:`ModelForm` is to :class:`Form`. It has the same behaviour
 as :class:`~django_superform.fields.FormField` but will also save the
 nested form if the super form is saved. Here is an example::

 from django_superform import ModelFormField

 class EmailForm(forms.ModelForm):
 class Meta:
 model = EmailAddress
 fields = ('email',)

 class UserForm(SuperModelForm):
 email = ModelFormField(EmailForm)

 class Meta:
 model = User
 fields = ('username',)

 user_form = UserForm(
 {'username': 'john', 'form-email-email': 'john@example.com'})
 if user_form.is_valid():
 user_form.save()

 This will save the ``user_form`` and create a new instance of ``User``
 model and it will also save the ``EmailForm`` and therefore create an
 instance of ``EmailAddress``!

 However you usually want to use one of the exsting subclasses, like
 :class:`~django_superform.fields.ForeignKeyFormField` or extend from
 ``ModelFormField`` class and override the
 :meth:`~django_superform.fields.ModelFormField.get_instance` method.

 .. note::
 Usually the :class:`~django_superform.fields.ModelFormField` is used
 inside a :class:`~django_superform.forms.SuperModelForm`. You actually
 can use it within a :class:`~django_superform.forms.SuperForm`, but
 since this form type does not have a ``save()`` method, you will need
 to take care of saving the nested model form yourself.
 """

[docs] def get_instance(self, form, name):
 """
 Provide an instance that shall be used when instantiating the
 modelform. The ``form`` argument is the super-form instance that this
 ``ModelFormField`` is used in. ``name`` is the name of this field on
 the super-form.

 This returns ``None`` by default. So you usually want to override this
 method in a subclass.
 """
 return None

[docs] def get_kwargs(self, form, name):
 """
 Return the keyword arguments that are used to instantiate the formset.

 The ``instance`` kwarg will be set to the value returned by
 :meth:`~django_superform.fields.ModelFormField.get_instance`. The
 ``empty_permitted`` kwarg will be set to the inverse of the
 ``required`` argument passed into the constructor of this field.
 """
 kwargs = super(ModelFormField, self).get_kwargs(form, name)
 instance = self.get_instance(form, name)
 kwargs.setdefault('instance', instance)
 kwargs.setdefault('empty_permitted', not self.required)
 return kwargs

[docs] def shall_save(self, form, name, composite_form):
 """
 Return ``True`` if the given ``composite_form`` (the nested form of
 this field) shall be saved. Return ``False`` if the form shall not be
 saved together with the super-form.

 By default it will return ``False`` if the form was not changed and the
 ``empty_permitted`` argument for the form was set to ``True``. That way
 you can allow empty forms.
 """
 if composite_form.empty_permitted and not composite_form.has_changed():
 return False
 return True

[docs] def save(self, form, name, composite_form, commit):
 """
 This method is called by
 :meth:`django_superform.forms.SuperModelForm.save` in order to save the
 modelform that this field takes care of and calls on the nested form's
 ``save()`` method. But only if
 :meth:`~django_superform.fields.ModelFormField.shall_save` returns
 ``True``.
 """
 if self.shall_save(form, name, composite_form):
 return composite_form.save(commit=commit)
 return None

[docs]class ForeignKeyFormField(ModelFormField):
 def __init__(self, form_class, kwargs=None, field_name=None, blank=None,
 **field_kwargs):
 super(ForeignKeyFormField, self).__init__(form_class, kwargs,
 **field_kwargs)
 self.field_name = field_name
 self.blank = blank

 def get_kwargs(self, form, name):
 kwargs = super(ForeignKeyFormField, self).get_kwargs(form, name)
 if 'instance' not in kwargs:
 kwargs.setdefault('instance', self.get_instance(form, name))
 if 'empty_permitted' not in kwargs:
 if self.allow_blank(form, name):
 kwargs['empty_permitted'] = True
 return kwargs

 def get_field_name(self, form, name):
 return self.field_name or name

 def allow_blank(self, form, name):
 """
 Allow blank determines if the form might be completely empty. If it's
 empty it will result in a None as the saved value for the ForeignKey.
 """
 if self.blank is not None:
 return self.blank
 model = form._meta.model
 field = model._meta.get_field(self.get_field_name(form, name))
 return field.blank

 def get_form_class(self, form, name):
 form_class = self.form_class
 return form_class

 def get_instance(self, form, name):
 field_name = self.get_field_name(form, name)
 return getattr(form.instance, field_name)

 def save(self, form, name, composite_form, commit):
 # Support the ``empty_permitted`` attribute. This is set if the field
 # is ``blank=True`` .
 if composite_form.empty_permitted and not composite_form.has_changed():
 saved_obj = composite_form.instance
 else:
 saved_obj = super(ForeignKeyFormField, self).save(form, name,
 composite_form,
 commit)
 setattr(form.instance, self.get_field_name(form, name), saved_obj)
 if commit:
 form.instance.save()
 else:
 raise NotImplementedError(
 'ForeignKeyFormField cannot yet be used with non-commiting '
 'form saves.')
 return saved_obj

[docs]class FormSetField(CompositeField):
 """
 First argument is a formset class that is instantiated by this
 FormSetField.

 You can pass the ``kwargs`` argument to specify kwargs values that
 are used when the ``formset_class`` is instantiated.
 """

 prefix_name = 'formset'
 widget = FormSetWidget

 def __init__(self, formset_class, kwargs=None, **field_kwargs):
 super(FormSetField, self).__init__(**field_kwargs)

 self.formset_class = formset_class
 if kwargs is None:
 kwargs = {}
 self.default_kwargs = kwargs

 def get_formset_class(self, form, name):
 """
 Return the formset class that will be used for instantiation in
 ``get_formset``. You can override this method in subclasses to change
 the behaviour of the given formset class.
 """
 return self.formset_class

 def get_formset(self, form, name):
 """
 Get an instance of the formset.
 """
 kwargs = self.get_kwargs(form, name)
 formset_class = self.get_formset_class(form, name)
 formset = formset_class(
 form.data if form.is_bound else None,
 form.files if form.is_bound else None,
 **kwargs)
 return formset

[docs]class ModelFormSetField(FormSetField):
 def shall_save(self, form, name, formset):
 return True

 def save(self, form, name, formset, commit):
 if self.shall_save(form, name, formset):
 return formset.save(commit=commit)
 return None

[docs]class InlineFormSetField(ModelFormSetField):
 """
 The ``InlineFormSetField`` helps when you want to use a inline formset.

 You can pass in either the keyword argument ``formset_class`` which is a
 ready to use formset that inherits from ``BaseInlineFormSet`` or was
 created by the ``inlineformset_factory``.

 The other option is to provide the arguments that you would usually pass
 into the ``inlineformset_factory``. The required arguments for that are:

 ``model``
 The model class which should be represented by the forms in the
 formset.
 ``parent_model``
 The parent model is the one that is referenced by the model in a
 foreignkey.
 ``form`` (optional)
 The model form that is used as a baseclass for the forms in the inline
 formset.

 You can use the ``kwargs`` keyword argument to pass extra arguments for the
 formset that are passed through when the formset is instantiated.

 All other not mentioned keyword arguments, like ``extra``, ``max_num`` etc.
 will be passed directly to the ``inlineformset_factory``.

 Example:

 class Gallery(models.Model):
 name = models.CharField(max_length=50)

 class Image(models.Model):
 gallery = models.ForeignKey(Gallery)
 image = models.ImageField(...)

 class GalleryForm(ModelFormWithFormSets):
 class Meta:
 model = Gallery
 fields = ('name',)

 images = InlineFormSetField(
 parent_model=Gallery,
 model=Image,
 extra=1)
 """

 def __init__(self, parent_model=None, model=None, formset_class=None,
 kwargs=None, **factory_kwargs):
 """
 You need to either provide the ``formset_class`` or the ``model``
 argument.

 If the ``formset_class`` argument is not given, the ``model`` argument
 is used to create the formset_class on the fly when needed by using the
 ``inlineformset_factory``.
 """

 # Make sure that all standard arguments will get passed through to the
 # parent's __init__ method.
 field_kwargs = {}
 for arg in ['required', 'widget', 'label', 'help_text', 'localize']:
 if arg in factory_kwargs:
 field_kwargs[arg] = factory_kwargs.pop(arg)

 self.parent_model = parent_model
 self.model = model
 self.formset_factory_kwargs = factory_kwargs
 super(InlineFormSetField, self).__init__(formset_class, kwargs=kwargs,
 **field_kwargs)
 if (
 self.formset_class is None and
 'form' not in self.formset_factory_kwargs and
 'fields' not in self.formset_factory_kwargs and
 'exclude' not in self.formset_factory_kwargs):
 raise ValueError(
 'You need to either specify the `formset_class` argument or '
 'one of `form`/`fields`/`exclude` arguments '
 'when creating a {0}.'
 .format(self.__class__.__name__))

 def get_model(self, form, name):
 return self.model

 def get_parent_model(self, form, name):
 if self.parent_model is not None:
 return self.parent_model
 return form._meta.model

 def get_formset_class(self, form, name):
 """
 Either return the formset class that was provided as argument to the
 __init__ method, or build one based on the ``parent_model`` and
 ``model`` attributes.
 """
 if self.formset_class is not None:
 return self.formset_class
 formset_class = inlineformset_factory(
 self.get_parent_model(form, name),
 self.get_model(form, name),
 **self.formset_factory_kwargs)
 return formset_class

 def get_kwargs(self, form, name):
 kwargs = super(InlineFormSetField, self).get_kwargs(form, name)
 kwargs.setdefault('instance', form.instance)
 return kwargs

 © Copyright 2014, Gregor Müllegger.
 Created using Sphinx 1.3.4.

_modules/django_superform/forms.html

 Navigation

 		
 index

 		django-superform 0.4.0.dev1 documentation »

 		Module code »

 Source code for django_superform.forms

"""
This is awesome. And needs more documentation.

To bring some light in the big number of classes in this file:

First there are:

* ``SuperForm``
* ``SuperModelForm``

They are the forms that you probably want to use in your own code. They are
direct base classes of ``django.forms.Form`` and ``django.forms.ModelForm``
and have the formset functionallity of this module backed in. They are ready
to use. Subclass them and be happy.

Then there are:

* ``SuperFormMixin``
* ``SuperModelFormMixin``

These are the mixins you can use if you don't want to subclass from
``django.forms.Form`` for whatever reason. The ones with Base at the beginning
don't have a metaclass attached. The ones without the Base in the name have
the relevant metaclass in place that handles the search for
``FormSetField``s.

Here is an example on how you can use this module::

 from django import forms
 from django_superform import SuperModelForm, FormSetField
 from .forms import CommentFormSet

 class PostForm(SuperModelForm):
 title = forms.CharField()
 text = forms.CharField()
 comments = FormSetField(CommentFormSet)

 # Now you can use the form in the view:

 def post_form(request):
 if request.method == 'POST':
 form = PostForm(request.POST, request.FILES)
 if form.is_valid():
 obj = form.save()
 return HttpResponseRedirect(obj.get_absolute_url())
 else:
 form = PostForm()
 return render_to_response('post_form.html', {
 'form',
 }, context_instance=RequestContext(request))

And yes, thanks for asking, the ``form.is_valid()`` and ``form.save()`` calls
transparantly propagate to the defined comments formset and call their
``is_valid()`` and ``save()`` methods. So you don't have to do anything
special in your view!

Now to how you can access the instantiated formsets::

 >>> form = PostForm()
 >>> form.composite_fields['comments']
 <CommetFormSet: ...>

Or in the template::

 {{ form.as_p }}

 {{ form.composite_fields.comments.management_form }}
 {% for fieldset_form in form.composite_fields.comments %}
 {{ fieldset_form.as_p }}
 {% endfor %}

You're welcome.

"""

from functools import reduce
from django import forms
from django.forms.forms import DeclarativeFieldsMetaclass, ErrorDict, ErrorList
from django.forms.models import ModelFormMetaclass
from django.utils import six
import copy

from .boundfield import CompositeBoundField
from .fields import CompositeField

try:
 from collections import OrderedDict
except ImportError:
 from django.utils.datastructures import SortedDict as OrderedDict

class DeclerativeCompositeFieldsMetaclass(type):
 """
 Metaclass that converts FormField and FormSetField attributes to a
 dictionary called `composite_fields`. It will also include all composite
 fields from parent classes.
 """

 def __new__(mcs, name, bases, attrs):
 # Collect composite fields from current class.
 current_fields = []
 for key, value in list(attrs.items()):
 if isinstance(value, CompositeField):
 current_fields.append((key, value))
 attrs.pop(key)
 current_fields.sort(key=lambda x: x[1].creation_counter)
 attrs['declared_composite_fields'] = OrderedDict(current_fields)

 new_class = super(DeclerativeCompositeFieldsMetaclass, mcs).__new__(
 mcs, name, bases, attrs)

 # Walk through the MRO.
 declared_fields = OrderedDict()
 for base in reversed(new_class.__mro__):
 # Collect fields from base class.
 if hasattr(base, 'declared_composite_fields'):
 declared_fields.update(base.declared_composite_fields)

 # Field shadowing.
 for attr, value in base.__dict__.items():
 if value is None and attr in declared_fields:
 declared_fields.pop(attr)

 new_class.base_composite_fields = declared_fields
 new_class.declared_composite_fields = declared_fields

 return new_class

class SuperFormMetaclass(
 DeclerativeCompositeFieldsMetaclass,
 DeclarativeFieldsMetaclass):
 """
 Metaclass for :class:`~django_superform.forms.SuperForm`.
 """

class SuperModelFormMetaclass(
 DeclerativeCompositeFieldsMetaclass,
 ModelFormMetaclass):
 """
 Metaclass for :class:`~django_superform.forms.SuperModelForm`.
 """

[docs]class SuperFormMixin(object):
 """
 The base class for all super forms. It behaves just like a normal django
 form but will also take composite fields, like
 :class:`~django_superform.fields.FormField` and
 :class:`~django_superform.fields.FormSetField`.

 Cleaning, validation, etc. should work totally transparent.
 """

 def __init__(self, *args, **kwargs):
 super(SuperFormMixin, self).__init__(*args, **kwargs)
 self._init_composite_fields()

 def __getitem__(self, name):
 """
 Returns a BoundField for the given field name. It also returns
 CompositeBoundField instances for composite fields.
 """
 if name not in self.fields and name in self.composite_fields:
 field = self.composite_fields[name]
 return CompositeBoundField(self, field, name)
 return super(SuperFormMixin, self).__getitem__(name)

 def add_composite_field(self, name, field):
 """
 Add a dynamic composite field to the already existing ones and
 initialize it appropriatly.
 """
 self.composite_fields[name] = field
 self._init_composite_field(name, field)

 def get_composite_field_value(self, name):
 """
 Return the form/formset instance for the given field name.
 """
 field = self.composite_fields[name]
 if hasattr(field, 'get_form'):
 return self.forms[name]
 if hasattr(field, 'get_formset'):
 return self.formsets[name]

 def _init_composite_field(self, name, field):
 if hasattr(field, 'get_form'):
 form = field.get_form(self, name)
 self.forms[name] = form
 if hasattr(field, 'get_formset'):
 formset = field.get_formset(self, name)
 self.formsets[name] = formset

 def _init_composite_fields(self):
 """
 Setup the forms and formsets.
 """
 # The base_composite_fields class attribute is the *class-wide*
 # definition of fields. Because a particular *instance* of the class
 # might want to alter self.composite_fields, we create
 # self.composite_fields here by copying base_composite_fields.
 # Instances should always modify self.composite_fields; they should not
 # modify base_composite_fields.
 self.composite_fields = copy.deepcopy(self.base_composite_fields)
 self.forms = OrderedDict()
 self.formsets = OrderedDict()
 for name, field in self.composite_fields.items():
 self._init_composite_field(name, field)

 def full_clean(self):
 """
 Clean the form, including all formsets and add formset errors to the
 errors dict. Errors of nested forms and formsets are only included if
 they actually contain errors.
 """
 super(SuperFormMixin, self).full_clean()
 for field_name, composite in self.forms.items():
 composite.full_clean()
 if not composite.is_valid() and composite._errors:
 self._errors[field_name] = ErrorDict(composite._errors)
 for field_name, composite in self.formsets.items():
 composite.full_clean()
 if not composite.is_valid() and composite._errors:
 self._errors[field_name] = ErrorList(composite._errors)

 @property
 def media(self):
 """
 Incooperate composite field's media.
 """
 media_list = []
 media_list.append(super(SuperFormMixin, self).media)
 for composite_name in self.composite_fields.keys():
 form = self.get_composite_field_value(composite_name)
 media_list.append(form.media)
 return reduce(lambda a, b: a + b, media_list)

[docs]class SuperModelFormMixin(SuperFormMixin):
 def save(self, commit=True):
 """
 If ``commit=False`` django's modelform implementation will attach a
 ``save_m2m`` method to the form instance, so that you can call it
 manually later. When you call ``save_m2m``, the ``save_formsets``
 method will be executed as well.
 """
 saved_obj = super(SuperModelFormMixin, self).save(commit=commit)
 self.save_forms(commit=commit)
 self.save_formsets(commit=commit)
 return saved_obj

 def _extend_save_m2m(self, name, composites):
 additional_save_m2m = []
 for composite in composites:
 if hasattr(composite, 'save_m2m'):
 additional_save_m2m.append(composite.save_m2m)

 if not additional_save_m2m:
 return

 def additional_saves():
 for save_m2m in additional_save_m2m:
 save_m2m()

 # The save() method was called before save_forms()/save_formsets(), so
 # we will already have save_m2m() available.
 if hasattr(self, 'save_m2m'):
 _original_save_m2m = self.save_m2m
 else:
 def _original_save_m2m():
 return None

 def augmented_save_m2m():
 _original_save_m2m()
 additional_saves()

 self.save_m2m = augmented_save_m2m
 setattr(self, name, additional_saves)

 def save_forms(self, commit=True):
 saved_composites = []
 for name, composite in self.forms.items():
 field = self.composite_fields[name]
 if hasattr(field, 'save'):
 field.save(self, name, composite, commit=commit)
 saved_composites.append(composite)

 self._extend_save_m2m('save_forms_m2m', saved_composites)

 def save_formsets(self, commit=True):
 """
 Save all formsets. If ``commit=False``, it will modify the form's
 ``save_m2m()`` so that it also calls the formsets' ``save_m2m()``
 methods.
 """
 saved_composites = []
 for name, composite in self.formsets.items():
 field = self.composite_fields[name]
 if hasattr(field, 'save'):
 field.save(self, name, composite, commit=commit)
 saved_composites.append(composite)

 self._extend_save_m2m('save_formsets_m2m', saved_composites)

[docs]class SuperModelForm(six.with_metaclass(SuperModelFormMetaclass,
 SuperModelFormMixin, forms.ModelForm)):
 pass

[docs]class SuperForm(six.with_metaclass(SuperFormMetaclass,
 SuperFormMixin, forms.Form)):
 pass

 © Copyright 2014, Gregor Müllegger.
 Created using Sphinx 1.3.4.

_static/down.png

search.html

 Navigation

 		
 index

 		django-superform 0.4.0.dev1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Gregor Müllegger.
 Created using Sphinx 1.3.4.

_modules/index.html

 Navigation

 		
 index

 		django-superform 0.4.0.dev1 documentation »

 All modules for which code is available

		django_superform.fields

		django_superform.forms

 © Copyright 2014, Gregor Müllegger.
 Created using Sphinx 1.3.4.

