

Welcome to django-smartfields’s documentation!

Django Model Fields that are smart

This application introduces a totally new way of handling field’s values through
unique ways they are assigned and processed. It is so simple that nothing needs
to be done in order to start using it, yet it is so powerful, that it can handle
automatic image and video file conversions with a simple specification of a
conversion function. Check it out, and it will forever change the way you handle
Model Fields.

Installation

pip install django-smartfields

Latest build

Forkme on Github: django-smartfields [https://github.com/lehins/django-smartfields]

Introduction

Here is a short introduction of how this app works and a simple example how it
can be used.

First of all, as name suggests, it mainly deals with Model Fields, hence it is
supplied with a custom version of every Django’s Field. There is no difference
form original versions of fields in terms of interaction with database, forms or
with any other Django codebase, so both kinds of fields can be used together
safely and interchangeably. Main distinction form Django’s fields is that all
smartfields accept a keyword argument dependencies, which should be a list
of Dependency's or
FileDependency's.

Dependency is a concept that allows you to change the value of any field or an
attribute attached to the model instance, including the field Dependency which
it is specified for. Each Dependency handles the value from a field through
Processors which are functions that can be accepted as default,
pre_processor and processor kwargs. An actual model attribute or a field
which a processed value will be assigned to is specified by one or none of the
kwargs suffix and attname. More details on those see documentation in
Dependencies and Processors sections,
but for now let’s see a couple of simple examples.

Example

Let’s say we have a Product model where a slug needs to be automatically
generated from product’s name and also properly modified to look like a slug.

from django.db.models import models
from django.utils.text import slugify
from smartfields import fields
from smartfields.dependencies import Dependency

def name_getter(value, instance, **kwargs):
 return instance.name

class Product(models.Model):
 name = models.CharField(max_length=255)
 slug = fields.SlugField(dependencies=[
 Dependency(default=name_getter, processor=slugify)
])

Here is what will happen in above example whenever an instance of Product
is created:

	Whenever Product is initilized and slug field is empty, it will
attempt to get a value from name field. In case when it is still empty
before model is being saved it will attempt to get the value again, all
because of default function name_getter.

	Right before the model is saved processor function slugify will be
invoked, and value of the field from name will be modified to look like
a slug. Important part is, processor will be invoked only whenever the
value of slug field has changed.

Important Perculiarities

	Fields are processed in order they are specified in a Model.

	Dependencies are processed in the order they are speciefied in the
dependencies list, except the ones with async flag, these are
processed last, but also in the order they were specified.

More Details

	Dependencies

	Processors

Project Info

	Changelog

	Authors

	License

Indices and tables

	Index

	Module Index

Dependencies

	
class smartfields.dependencies.Dependency

	
	
__init__(attname=None, suffix=None, processor=None, pre_processor=None, async=False, default=NOT_PROVIDED, processor_params=None, uid=None)

	

	Parameters

	
	attname (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of an attribute or an existing field that
dependecy will assign a value to. Cannot be used together with
suffix.

	suffix (str [https://docs.python.org/3/library/stdtypes.html#str]) – Will be used together with a field name in generating
an attname in format field_name_suffix. Generated name can refer to
an attribute or an existing field that dependecy will assign a value
to. Cannot be used together with attname.

	processor – A function that takes field’s value as an argument or an
instance of a class derived from
BaseProcessor. In a latter case it will
receive all arguments: value, instance, field,
field_value, dependee, stashed_value plus any custom
kwargs. If a class is passed instead of it’s instance it will be
instantiated, to prevent a common mistake.

	pre_processor –

	async –

	default –

	processor_params –

	uid –

	
class smartfields.dependencies.FileDependency

	Because FileFields are handled in a different way then regular fields we need
a different type of dependecy too.

	
__init__(upload_to='', storage=None, keep_orphans=KEEP_ORPHANS, **kwargs)

	

	keyword upload_to

	

	keyword storage

	

	keyword keep_orphans

	

Processors

	
class smartfields.processors.BaseProcessor

	
	
__init__(**kwargs)

	

	
process(value, instance=None, field=None, dependee=None, stashed_value=None, **kwargs)

	

	Parameters

	
	value – New value that is being assigned to the parent field.

	instance – Model instance that a field is attached to.

	field – Parent field instance.

	dependee – Instance of a field that depends on the field. It is
decided by the attname or suffix argument to the

	stashed_value – This is a previous value that a dependee field was
holding. Very useful for comparing it to new values.

	
class smartfields.processors.BaseFileProcessor

	
	
get_ext(format=None, **kwargs)

	

	
class smartfields.processors.RenameFileProcessor

	

	
class smartfields.processors.ExternalFileProcessor

	

	
class smartfields.processors.FFMPEGProcessor

	
	
__init__()

	

	
process(value, **kwargs)

	

Here is an example of how to convert a video to MP4 format. In this example
every time MediaModel is instantiated
FileDependency will automatically attach
another field like attribute to the model video_mp4. Moreover, whenever a
new video file is uploaded or simply assigned to a video field, it will use
FFMPEGProcessor and ffmpeg to convert
that video file to mp4 format and will assign it the same name as original video
with mp4 suffix and file extension. While converting a video file it will
set progress between 0.0 and 1.0, which can be retrieved from field’s status.

from django.db import models
from smartfields import fields, dependencies
from smartfields.processors import FFMPEGProcessor

class MediaModel(models.Model):
 video = fields.FileField(dependencies=[
 dependencies.FileDependency(suffix='mp4', processor=FFMPEGProcessor(
 vbitrate = '1M',
 maxrate = '1M',
 bufsize = '2M',
 width = 'trunc(oh*a/2)*2', # http://ffmpeg.org/ffmpeg-all.html#scale
 height = 720,
 threads = 0, # use all cores
 abitrate = '96k',
 format = 'mp4',
 vcodec = 'libx264',
 acodec = 'libfdk_aac'))])

	
class smartfields.processors.CloudFFMEGPRocessor

	
	
__init__()

	

	
process(value, **kwargs)

	

Here is an example of how to upload file in custom storage use django-storages.
Each storage backend has its own unique settings you will need to add to your settings.py file.

DEFAULT_FILE_STORAGE = 'storages.backends.s3boto3.S3Boto3Storage'
STATICFILES_STORAGE = 'storages.backends.s3boto3.S3Boto3Storage'

from django.db import models
from smartfields import fields, dependencies
from smartfields.processors import CloudFFMEGPRocessor

class MediaModel(models.Model):
 video = fields.FileField(dependencies=[
 dependencies.FileDependency(suffix='mp4', processor=CloudFFMEGPRocessor(
 vbitrate = '1M',
 maxrate = '1M',
 bufsize = '2M',
 width = 'trunc(oh*a/2)*2', # http://ffmpeg.org/ffmpeg-all.html#scale
 height = 720,
 threads = 0, # use all cores
 abitrate = '96k',
 format = 'mp4',
 vcodec = 'libx264',
 acodec = 'libfdk_aac'))])

Changelog

1.1.3

	Addition of CloudImageProcessor and CloudFFMEGPRocessor

1.1.2

	Support for Django=3.1.*

1.1.1

	Support for Django=3.0.*

1.1.0

	renamed Dependency.async to Dependency.async_.
Fix for #16 [https://github.com/lehins/django-smartfields/issues/16].
Thanks @zglennie [https://github.com/zglennie]

	Fix compatibility with Django=2.x:

	Added app_name='smartifelds' to urls.py file

	Stop using _size and _set_size() attributes in NamedTemporaryFile,
since those where only available in Django=1.x

1.0.7

	added gis fields.

	made lxml a default parser for HTMLProcessor.

1.0.6

	added RenameFileProcessor

1.0.5

	minor bug fixes.

1.0.4

	Switched to MIT License

	Added stashed_value to processors.

1.0.3

	Added support for Wand with WandImageProcessor.

	Made it compatible with Django 1.8

	Updated compiled JavaScript file.

1.0.2

	Introduced pre_processor.

	Made UploadTo serializible.

	Got rid of custom handlers.

	Minor bugfixes.

1.0.0

	Initial release

Authors

	Alexey Kuleshevich <lehins@yandex.ru> @lehins [https://github.com/lehins]

License

The MIT License (MIT)

Copyright (c) 2015 Alexey Kuleshevich

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Index

 _
 | G
 | P
 | S

_

 	
 	__init__() (smartfields.dependencies.Dependency method)

 	(smartfields.dependencies.FileDependency method)

 	(smartfields.processors.BaseProcessor method)

 	(smartfields.processors.CloudFFMEGPRocessor method)

 	(smartfields.processors.FFMPEGProcessor method)

G

 	
 	get_ext() (smartfields.processors.BaseFileProcessor method)

P

 	
 	process() (smartfields.processors.BaseProcessor method)

 	(smartfields.processors.CloudFFMEGPRocessor method)

 	(smartfields.processors.FFMPEGProcessor method)

S

 	
 	smartfields.dependencies.Dependency (built-in class)

 	smartfields.dependencies.FileDependency (built-in class)

 	smartfields.processors.BaseFileProcessor (built-in class)

 	smartfields.processors.BaseProcessor (built-in class)

 	
 	smartfields.processors.CloudFFMEGPRocessor (built-in class)

 	smartfields.processors.ExternalFileProcessor (built-in class)

 	smartfields.processors.FFMPEGProcessor (built-in class)

 	smartfields.processors.RenameFileProcessor (built-in class)

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to django-smartfields’s documentation!

 		
 Dependencies

 		
 Processors

 		
 Changelog

 		
 1.1.3

 		
 1.1.2

 		
 1.1.1

 		
 1.1.0

 		
 1.0.7

 		
 1.0.6

 		
 1.0.5

 		
 1.0.4

 		
 1.0.3

 		
 1.0.2

 		
 1.0.0

 		
 Authors

 		
 License

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

