

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	django-sitemapper 1.0.0 documentation

Welcome to django-sitemapper’s documentation!

Sitemapper is a Django app to manage sitemap.xml overrides on a
per-object basis.

Migrations are provided for both Django 1.7+ and earlier versions using
South [http://south.aeracode.org/].

Getting started

The first thing you’ll need to do is check out the
installation guide and requirements.

If you’re familiar with installing Django apps then the installation is totally
standard, with no additional dependencies.

Contribute

	Issue Tracker: https://bitbucket.org/mhurt/django-sitemapper/issues

	Source Code: https://bitbucket.org/mhurt/django-sitemapper/

License

The project is licensed under the MIT license.

Indices and tables

	Index

	Module Index

 Copyright 2014, Mike Hurt.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-sitemapper 1.0.0 documentation

Installation

This part covers installing django-sitemapper and configuring your Django
project to use it.

Requirements

Sitemapper currently requires Django 1.4.2 or greater and Python 2.7 or greater.

South migrations [http://south.aeracode.org/] are provided for Django
versions prior to 1.7, so if you’d like to use these please make sure you have
South installed before continuing.

Get the code

Installing Sitemapper is simple with pip (or, if you must, with easy_install [http://pypi.python.org/pypi/setuptools]), just run this in your terminal:

$ pip install django-sitemapper
or
$ easy_install django-sitemapper

Sitemapper is actively developed on Bitbucket, where you can grab
the latest code [https://bitbucket.org/mhurt/django-sitemapper].

Either clone the repository:

$ hg clone https://bitbucket.org/mhurt/django-sitemapper

or download and unpack the
tar-ball or zip-ball of your choice [https://bitbucket.org/mhurt/django-sitemapper/downloads].

Once you have a copy of the source, you can install it into
your site packages easily:

$ cd django-sitemapper
$ python setup.py install

Configuring your Django project

Add "sitemapper" to your INSTALLED_APPS setting like this:

INSTALLED_APPS = {
 ...
 'sitemapper'
}

	For Django 1.7 users, run python manage.py migrate to create the

models.

	If you’re using South, please see Using Sitemapper with South.

	Otherwise simply run python manage.py syncdb.

Using Sitemapper with South

If you’re using Django 1.7 you won’t need to use South as migrations are built in.

If you’re using an earlier version of Django with South 1.0 the provided
south_migrations will be automatically detected.

For earlier versions of South you’ll need to tell explicitly define which
migrations to use by adding to, or creating, the SOUTH_MIGRATION_MODULES in
your settings file:

settings.py
...
SOUTH_MIGRATION_MODULES = {
 'sitemapper': 'sitemapper.south_migrations',
}

Don’t worry, though, as running running a migrate will complain loudly if
you’ve forgotten this step.

 Copyright 2014, Mike Hurt.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-sitemapper 1.0.0 documentation

Setting up a sitemap

This section details all of the steps from a minimum working example, through
to a fully configured Sitemapper sitemap. In general this process is very
simple, and mirrors Django’s own sitemaps, with only minor differences which
are explained below.

Getting Started

Create a sitemaps.py file within your app directory and add the following
(replacing MyModel with whatever you called yours):

project/myapp/sitemaps.py
from sitemapper.sitemaps import Sitemap
from .models import MyModel

class MyModelSitemap(Sitemap):

 # You'll need a queryset...
 queryset = MyModel.objects.all()

From this point onwards you can use MyModelSitemap as you would any other
sitemaps instance.

In your root urls.py set up the sitemap as you would normally:

project/urls.py
...
...
from django.contrib.sitemaps.views import sitemap
from myapp.sitemaps import MyModelSitemap

sitemaps = {
 'mymodel': MyModelSitemap,
 }

urlpatterns = [
 # Your other patterns here
 ...
 ...

 url(r'^sitemap\.xml', sitemap, {'sitemaps': sitemaps},
 name='django.sitemaps.views.sitemap')

]

As you can see, the URL configuration is exactly the same as for Django’s
built-in sitemaps. If you need more information on those see
Django’s sitemaps documentation [https://docs.djangoproject.com/en/dev/ref/contrib/sitemaps/]
for lots more details.

Note

For this simplistic configuration the output of /sitemaps.xml will
contain the <loc> URL for each object in your queryset.

It will only show <changefreq> and <priority> if these have been
assigned via a SitemapEntry.

The <lastmod> field will not be displayed since we haven’t, yet, defined
how to find it.

Setting Defaults

So, lets make our sitemap a little more informative. We’ll keep using our
basic urlconf for the moment:

project/myapp/sitemaps.py
from sitemapper.sitemaps import Sitemap
from .models import MyModel

class MyModelSitemap(Sitemap):

 # You'll need a queryset...
 queryset = MyModel.objects.all()

 # Assign some sensible defaults...
 default_changefreq = 'weekly'
 default_priority = 0.5

Here we’ve defined two new attributes: default_changefreq and
default_priority. Like Django’s own Sitemap class these, as you might
guess, allow you define the default values to use. But, unlike Django’s Sitemap
class these will be overridden if a model instance has a changefreq or
priority value assigned via a SitemapEntry.

Caution

Make sure you don’t accidentally override the changefreq or priority
attributes, as doing so will prevent that data being picked up from the
SitemapEntry.

Getting the Timestamp

The final stage of fully configuring our sitemap is to get the last-modfied date or time:

project/myapp/sitemaps.py
from sitemapper.sitemaps import Sitemap
from .models import MyModel

class MyModelSitemap(Sitemap):

 # You'll need a queryset...
 queryset = MyModel.objects.all()

 # Assign some sensible defaults...
 default_changefreq = 'weekly'
 default_priority = 0.5

 # Get the date-/time-stamp
 def lastmod(self, item):
 return item.lastmodified

 Copyright 2014, Mike Hurt.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	django-sitemapper 1.0.0 documentation

API

sitemapper.sitemaps

	
class sitemapper.sitemaps.SitemapBase

	Bases: django.contrib.sitemaps.Sitemap

The root class for sitemapper.Sitemaps.

Inherits from django.contrib.sitemaps.Sitemap and overrides the
Sitemap.items() method.

In this class calling items() does two things:

	It creates a private attribute _entries containing a dictionary of
sitemapper.SitemapEntry objects having the same ContentType as the
supplied queryset’s model. This dictionary is keyed to the object_id of
each SitemapEntry instance.

	It then returns the queryset.

Attributes:

	queryset (queryset): A queryset containing the objects to appear in

	the sitemap.

	_entries (dict): A private variable populated by the items() method and

	containing SitemapEntries matching the ContentType and object_id of the
queryset above.

	
items()

	Assign the result of _get_entries_for_model(model) to the private
attribute _entries, and return the queryset attribute.

	
class sitemapper.sitemaps.Sitemap

	Bases: sitemapper.sitemaps.SitemapBase

	
changefreq(item)

	Return one of three values:

	the SitemapEntry.changefreq related to item, if set;

	or, the default_changefreq, if set;

	or, None

	Args:

	item (model instance): An member instance of self.queryset.

	
priority(item)

	Return one of three values:

	the SitemapEntry.priority related to item, if set;

	or, the default_priority, if set;

	or, None

	Args:

	item (model instance): An member instance of self.queryset.

sitemapper.models

	
class sitemapper.models.SitemapEntry(*args, **kwargs)

	SitemapEntry(id, content_type_id, object_id, changefreq, priority)

 Copyright 2014, Mike Hurt.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	django-sitemapper 1.0.0 documentation

 Python Module Index

 s

 			

 		
 s	

 	[image: -]
 	
 sitemapper	

 	
 	
 sitemapper.models	

 Copyright 2014, Mike Hurt.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	django-sitemapper 1.0.0 documentation

Index

 C
 | I
 | P
 | S

C

 	

 	changefreq() (sitemapper.sitemaps.Sitemap method)

I

 	

 	items() (sitemapper.sitemaps.SitemapBase method)

P

 	

 	priority() (sitemapper.sitemaps.Sitemap method)

S

 	

 	Sitemap (class in sitemapper.sitemaps)

 	SitemapBase (class in sitemapper.sitemaps)

 	

 	SitemapEntry (class in sitemapper.models)

 	sitemapper.models (module)

 Copyright 2014, Mike Hurt.
 Created using Sphinx 1.2.2.

 _static/down-pressed.png

search.html

 Navigation

 		
 index

 		
 modules |

 		django-sitemapper 1.0.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Mike Hurt.
 Created using Sphinx 1.2.2.

_static/plus.png

_static/minus.png

_static/comment.png

_static/up.png

_static/down.png

_static/ajax-loader.gif

_static/comment-close.png

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

