

django-selectable

Tools and widgets for using/creating auto-complete selection widgets using Django and jQuery UI.

[image: _images/django-selectable.svg]
 [https://travis-ci.org/mlavin/django-selectable][image: _images/coverage.svg]
 [https://codecov.io/github/mlavin/django-selectable?branch=master]
Note

This project is looking for additional maintainers to help with Django/jQuery compatibility
issues as well as addressing support issues/questions. If you are looking to help out
on this project and take a look at the open
help-wanted [https://github.com/mlavin/django-selectable/issues?q=is%3Aissue+is%3Aopen+label%3Ahelp-wanted]
or question [https://github.com/mlavin/django-selectable/issues?q=is%3Aissue+is%3Aopen+label%3Aquestion]
and see if you can contribute a fix. Be bold! If you want to take a larger role on
the project, please reach out on the
mailing list [http://groups.google.com/group/django-selectable]. I’m happy to work
with you to get you going on an issue.

Features

	Works with the latest jQuery UI Autocomplete library

	Auto-discovery/registration pattern for defining lookups

Installation Requirements

	Python 2.7, 3.4+

	Django [http://www.djangoproject.com/] >= 1.11, <= 3.0

	jQuery [http://jquery.com/] >= 1.9, < 3.0

	jQuery UI [http://jqueryui.com/] >= 1.10, < 1.12

To install:

pip install django-selectable

Next add selectable to your INSTALLED_APPS to include the related css/js:

INSTALLED_APPS = (
 'contrib.staticfiles',
 # Other apps here
 'selectable',
)

The jQuery and jQuery UI libraries are not included in the distribution but must be included
in your templates. See the example project for an example using these libraries from the
Google CDN.

Once installed you should add the urls to your root url patterns:

urlpatterns = [
 # Other patterns go here
 url(r'^selectable/', include('selectable.urls')),
]

Documentation

Documentation for django-selectable is available on Read The Docs [http://django-selectable.readthedocs.io/en/latest/].

Additional Help/Support

You can find additional help or support on the mailing list: http://groups.google.com/group/django-selectable

Contributing

If you think you’ve found a bug or are interested in contributing to this project
check out our contributing guide [http://readthedocs.org/docs/django-selectable/en/latest/contribute.html].

If you are interested in translating django-selectable into your native language
you can join the Transifex project [https://www.transifex.com/projects/p/django-selectable/].

Contents:

	Overview
	Motivation

	Related Projects

	Getting Started
	Including jQuery & jQuery UI

	Defining a Lookup

	Defining Forms

	Defining Lookups
	What are Lookups?

	Defining a Lookup

	Lookup API

	Lookups Based on Models

	User Lookup Example

	Lookup Decorators

	Advanced Usage
	Additional Parameters

	Chained Selection

	Submit On Selection

	Dynamically Added Forms

	Label Formats on the Client Side

	Using with Twitter Bootstrap

	Admin Integration
	Overview

	Including jQuery & jQuery UI

	Using Grappelli

	Basic Example

	Inline Example

	Testing Forms and Lookups
	Testing Forms with django-selectable

	Testing Lookup Results

	Fields
	AutoCompleteSelectField

	AutoCompleteSelectMultipleField

	Widgets
	AutoCompleteWidget

	AutoComboboxWidget

	AutoCompleteSelectWidget

	AutoComboboxSelectWidget

	AutoCompleteSelectMultipleWidget

	AutoComboboxSelectMultipleWidget

	Settings
	SELECTABLE_MAX_LIMIT

	SELECTABLE_ESCAPED_KEYS

	Javascript Plugin Options

	Contributing
	Getting the Source

	Submit an Issue

	Submit a Translation

	Running the Test Suite

	Building the Documentation

	Release Notes
	v1.2.0 (Released 2018-10-13)

	v1.1.0 (Released 2018-01-12)

	v1.0.0 (Released 2017-04-14)

	v0.9.0 (Released 2014-10-21)

	v0.8.0 (Released 2014-01-20)

	v0.7.0 (Released 2013-03-01)

	v0.6.2 (Released 2012-11-07)

	v0.6.1 (Released 2012-10-13)

	v0.6.0 (Released 2012-10-09)

	v0.5.2 (Released 2012-06-27)

	v0.5.1 (Released 2012-06-08)

	v0.4.2 (Released 2012-06-08)

	v0.5.0 (Released 2012-06-02)

	v0.4.1 (Released 2012-03-11)

	v0.4.0 (Released 2012-02-25)

	v0.3.1 (Released 2012-02-23)

	v0.3.0 (Released 2012-02-15)

	v0.2.0 (Released 2011-08-13)

	v0.1.2 (Released 2011-05-25)

	v0.1.1 (Release 2011-03-21)

	v0.1 (Released 2011-03-13)

Indices and tables

	Index

	Module Index

	Search Page

Overview

Motivation

There are many Django apps related to auto-completion why create another? One problem
was varying support for the jQuery UI auto-complete plugin [http://jqueryui.com/demos/autocomplete/]
versus the now deprecated bassistance version [http://bassistance.de/jquery-plugins/jquery-plugin-autocomplete/].
Another was support for combo-boxes and multiple selects. And lastly was a simple syntax for
defining the related backend views for the auto-completion.

	This library aims to meet all of these goals:

	
	Built on jQuery UI auto-complete

	
	Fields and widgets for a variety of use-cases:

	
	Text inputs and combo-boxes

	Text selection

	Value/ID/Foreign key selection

	Multiple object selection

	Allowing new values

	Simple and extendable syntax for defining backend views

Related Projects

Much of the work here was inspired by things that I like (and things I don’t like) about
django-ajax-selects [http://code.google.com/p/django-ajax-selects/]. To see some of the
other Django apps for handling auto-completion see Django-Packages [http://djangopackages.com/grids/g/auto-complete/].

Getting Started

	The workflow for using django-selectable involves two main parts:

	
	Defining your lookups

	Defining your forms

This guide assumes that you have a basic knowledge of creating Django models and
forms. If not you should first read through the documentation on
defining models [http://docs.djangoproject.com/en/stable/topics/db/models/]
and using forms [http://docs.djangoproject.com/en/stable/topics/forms/].

Including jQuery & jQuery UI

The widgets in django-selectable define the media they need as described in the
Django documentation on Form Media [https://docs.djangoproject.com/en/stable/topics/forms/media/].
That means to include the javascript and css you need to make the widgets work you
can include {{ form.media.css }} and {{ form.media.js }} in your template. This is
assuming your form is called form in the template context. For more information
please check out the Django documentation [https://docs.djangoproject.com/en/stable/topics/forms/media/].

The jQuery and jQuery UI libraries are not included in the distribution but must be included
in your templates. However there is a template tag to easily add these libraries from
the from the Google CDN [http://code.google.com/apis/libraries/devguide.html#jquery].

{% load selectable_tags %}
{% include_jquery_libs %}

By default these will use jQuery v1.11.2 and jQuery UI v1.11.3. You can customize the versions
used by pass them to the tag. The first version is the jQuery version and the second is the
jQuery UI version.

{% load selectable_tags %}
{% include_jquery_libs '1.11.2' '1.11.3' %}

Django-Selectable should work with jQuery [http://jquery.com/] >= 1.9 and
jQuery UI [http://jqueryui.com/] >= 1.10.

You must also include a jQuery UI theme [http://jqueryui.com/themeroller/] stylesheet. There
is also a template tag to easily add this style sheet from the Google CDN.

{% load selectable_tags %}
{% include_ui_theme %}

By default this will use the base [http://jqueryui.com/themeroller/] theme for jQuery UI v1.11.4.
You can configure the theme and version by passing them in the tag.

{% load selectable_tags %}
{% include_ui_theme 'ui-lightness' '1.11.4' %}

Or only change the theme.

{% load selectable_tags %}
{% include_ui_theme 'ui-lightness' %}

See the the jQuery UI documentation for a full list of available stable themes: http://jqueryui.com/download#stable-themes

Of course you can choose to include these rescources manually:

.. code-block:: html

 <link rel="stylesheet" href="//ajax.googleapis.com/ajax/libs/jqueryui/1.11.3/themes/base/jquery-ui.css" type="text/css">
 <link href="{% static 'selectable/css/dj.selectable.css' %}" type="text/css" media="all" rel="stylesheet">
 <script src="//ajax.googleapis.com/ajax/libs/jquery/1.11.2/jquery.min.js"></script>
 <script src="//ajax.googleapis.com/ajax/libs/jqueryui/1.11.3/jquery-ui.js"></script>
 <script type="text/javascript" src="{% static 'selectable/js/jquery.dj.selectable.js' %}"></script>

Note

jQuery UI shares a few plugin names with the popular Twitter Bootstrap framework. There
are notes on using Bootstrap along with django-selectable in the advanced usage
section.

Defining a Lookup

The lookup classes define the backend views. The most common case is defining a
lookup which searchs models based on a particular field. Let’s define a simple model:

from __future__ import unicode_literals

from django.db import models
from django.utils.encoding import python_2_unicode_compatible

@python_2_unicode_compatible
class Fruit(models.Model):
 name = models.CharField(max_length=200)

 def __str__(self):
 return self.name

In a lookups.py we will define our lookup:

from __future__ import unicode_literals

from selectable.base import ModelLookup
from selectable.registry import registry

from .models import Fruit

class FruitLookup(ModelLookup):
 model = Fruit
 search_fields = ('name__icontains',)

This lookups extends selectable.base.ModelLookup and defines two things: one is
the model on which we will be searching and the other is the field which we are searching.
This syntax should look familiar as it is the same as the field lookup syntax [http://docs.djangoproject.com/en/stable/ref/models/querysets/#field-lookups]
for making queries in Django.

Below this definition we will register our lookup class.

registry.register(FruitLookup)

Note

You should only register your lookup once. Attempting to register the same lookup class
more than once will lead to LookupAlreadyRegistered errors. A common problem related to the
LookupAlreadyRegistered error is related to inconsistant import paths in your project.
Prior to Django 1.4 the default manage.py allows for importing both with and without
the project name (i.e. from myproject.myapp import lookups or from myapp import lookups).
This leads to the lookup.py file being imported twice and the registration code
executing twice. Thankfully this is no longer the default in Django 1.4. Keeping
your import consistant to include the project name (when your app is included inside the
project directory) will avoid these errors.

Defining Forms

Now that we have a working lookup we will define a form which uses it:

from django import forms

from selectable.forms import AutoCompleteWidget

from .lookups import FruitLookup

class FruitForm(forms.Form):
 autocomplete = forms.CharField(
 label='Type the name of a fruit (AutoCompleteWidget)',
 widget=AutoCompleteWidget(FruitLookup),
 required=False,
)

This replaces the default widget for the CharField with the AutoCompleteWidget.
This will allow the user to fill this field with values taken from the names of
existing Fruit models.

And that’s pretty much it. Keep on reading if you want to learn about the other
types of fields and widgets that are available as well as defining more complicated
lookups.

Defining Lookups

What are Lookups?

Lookups define the corresponding ajax views used by the auto-completion
fields and widgets. They take in the current request and return the JSON
needed by the jQuery auto-complete plugin.

Defining a Lookup

django-selectable uses a registration pattern similar to the Django admin.
Lookups should be defined in a lookups.py in your application’s module. Once defined
you must register in with django-selectable. All lookups must extend from
selectable.base.LookupBase which defines the API for every lookup.

from selectable.base import LookupBase
from selectable.registry import registry

class MyLookup(LookupBase):
 def get_query(self, request, term):
 data = ['Foo', 'Bar']
 return [x for x in data if x.startswith(term)]

registry.register(MyLookup)

Lookup API

	
LookupBase.get_query(request, term)

	This is the main method which takes the current request
from the user and returns the data which matches their search.

	Parameters

	
	request – The current request object.

	term – The search term from the widget input.

	Returns

	An iterable set of data of items matching the search term.

	
LookupBase.get_item_label(item)

	This is first of three formatting methods. The label is shown in the
drop down menu of search results. This defaults to item.__unicode__.

	Parameters

	item – An item from the search results.

	Returns

	A string representation of the item to be shown in the search results.
The label can include HTML. For changing the label format on the client side
see Advanced Label Formats.

	
LookupBase.get_item_id(item)

	This is second of three formatting methods. The id is the value that will eventually
be returned by the field/widget. This defaults to item.__unicode__.

	Parameters

	item – An item from the search results.

	Returns

	A string representation of the item to be returned by the field/widget.

	
LookupBase.split_term(term)

	
Split searching term into array of subterms that will be searched separately.
You can override this function to achieve different splitting of the term.

	Parameters

	term – The search term.

	Returns

	Array with subterms

	
LookupBase.get_item_value(item)

	This is last of three formatting methods. The value is shown in the
input once the item has been selected. This defaults to item.__unicode__.

	Parameters

	item – An item from the search results.

	Returns

	A string representation of the item to be shown in the input.

	
LookupBase.get_item(value)

	get_item is the reverse of get_item_id. This should take the value
from the form initial values and return the current item. This defaults
to simply return the value.

	Parameters

	value – Value from the form inital value.

	Returns

	The item corresponding to the initial value.

	
LookupBase.create_item(value)

	If you plan to use a lookup with a field or widget which allows the user
to input new values then you must define what it means to create a new item
for your lookup. By default this raises a NotImplemented error.

	Parameters

	value – The user given value.

	Returns

	The new item created from the item.

	
LookupBase.format_item(item)

	By default format_item creates a dictionary with the three keys used by
the UI plugin: id, value, label. These are generated from the calls to
get_item_id, get_item_value and get_item_label. If you want to
add additional keys you should add them here.

The results of get_item_label is conditionally escaped to prevent
Cross Site Scripting (XSS) similar to the templating language.
If you know that the content is safe and you want to use these methods
to include HTML should mark the content as safe with django.utils.safestring.mark_safe
inside the get_item_label method.

get_item_id and get_item_value are not escapted by default. These are
not a XSS vector with the built-in JS. If you are doing additional formating using
these values you should be conscience of this fake and be sure to escape these
values.

	Parameters

	item – An item from the search results.

	Returns

	A dictionary of information for this item to be sent back to the client.

There are also some additional methods that you could want to use/override. These
are for more advanced use cases such as using the lookups with JS libraries other
than jQuery UI. Most users will not need to override these methods.

	
LookupBase.format_results(self, raw_data, options)

	Returns a python structure that later gets serialized. This makes a call to
paginate_results prior to calling
format_item on each item in the current page.

	Parameters

	
	raw_data – The set of all matched results.

	options – Dictionary of cleaned_data from the lookup form class.

	Returns

	A dictionary with two keys meta and data.
The value of data is an iterable extracted from page_data.
The value of meta is a dictionary. This is a copy of options with one additional element
more which is a translatable “Show more” string
(useful for indicating more results on the javascript side).

	
LookupBase.paginate_results(results, options)

	If SELECTABLE_MAX_LIMIT is defined or limit is passed in request.GET
then paginate_results will return the current page using Django’s
built in pagination. See the Django docs on
pagination [https://docs.djangoproject.com/en/stable/topics/pagination/]
for more info.

	Parameters

	
	results – The set of all matched results.

	options – Dictionary of cleaned_data from the lookup form class.

	Returns

	The current Page object [https://docs.djangoproject.com/en/stable/topics/pagination/#page-objects]
of results.

Lookups Based on Models

Perhaps the most common use case is to define a lookup based on a given Django model.
For this you can extend selectable.base.ModelLookup. To extend ModelLookup you
should set two class attributes: model and search_fields.

from __future__ import unicode_literals

from selectable.base import ModelLookup
from selectable.registry import registry

from .models import Fruit

class FruitLookup(ModelLookup):
 model = Fruit
 search_fields = ('name__icontains',)

registry.register(FruitLookup)

The syntax for search_fields is the same as the Django
field lookup syntax [http://docs.djangoproject.com/en/stable/ref/models/querysets/#field-lookups].
Each of these lookups are combined as OR so any one of them matching will return a
result. You may optionally define a third class attribute filters which is a dictionary of
filters to be applied to the model queryset. The keys should be a string defining a field lookup
and the value should be the value for the field lookup. Filters on the other hand are
combined with AND.

User Lookup Example

Below is a larger model lookup example using multiple search fields, filters
and display options for the auth.User [https://docs.djangoproject.com/en/stable/topics/auth/#users]
model.

from django.contrib.auth.models import User
from selectable.base import ModelLookup
from selectable.registry import registry

class UserLookup(ModelLookup):
 model = User
 search_fields = (
 'username__icontains',
 'first_name__icontains',
 'last_name__icontains',
)
 filters = {'is_active': True, }

 def get_item_value(self, item):
 # Display for currently selected item
 return item.username

 def get_item_label(self, item):
 # Display for choice listings
 return u"%s (%s)" % (item.username, item.get_full_name())

registry.register(UserLookup)

Lookup Decorators

Registering lookups with django-selectable creates a small API for searching the
lookup data. While the amount of visible data is small there are times when you want
to restrict the set of requests which can view the data. For this purpose there are
lookup decorators. To use them you simply decorate your lookup class.

from django.contrib.auth.models import User
from selectable.base import ModelLookup
from selectable.decorators import login_required
from selectable.registry import registry

@login_required
class UserLookup(ModelLookup):
 model = User
 search_fields = ('username__icontains',)
 filters = {'is_active': True, }

registry.register(UserLookup)

Note

The class decorator syntax was introduced in Python 2.6. If you are using
django-selectable with Python 2.5 you can still make use of these decorators
by applying the without the decorator syntax.

class UserLookup(ModelLookup):
 model = User
 search_fields = ('username__icontains',)
 filters = {'is_active': True, }

UserLookup = login_required(UserLookup)

registry.register(UserLookup)

Below are the descriptions of the available lookup decorators.

ajax_required

The django-selectable javascript will always request the lookup data via
XMLHttpRequest (AJAX) request. This decorator enforces that the lookup can only
be accessed in this way. If the request is not an AJAX request then it will return
a 400 Bad Request response.

login_required

This decorator requires the user to be authenticated via request.user.is_authenticated.
If the user is not authenticated this will return a 401 Unauthorized response.
request.user is set by the django.contrib.auth.middleware.AuthenticationMiddleware
which is required for this decorator to work. This middleware is enabled by default.

staff_member_required

This decorator builds from login_required and in addition requires that
request.user.is_staff is True. If the user is not authenticatated this will
continue to return at 401 response. If the user is authenticated but not a staff member
then this will return a 403 Forbidden response.

Advanced Usage

We’ve gone through the most command and simple use cases for django-selectable. Now
we’ll take a look at some of the more advanced features of this project. This assumes
that you are comfortable reading and writing a little bit of Javascript making
use of jQuery.

Additional Parameters

The basic lookup is based on handling a search based on a single term string.
If additional filtering is needed it can be inside the lookup get_query but
you would need to define this when the lookup is defined. While this fits a fair
number of use cases there are times when you need to define additional query
parameters that won’t be known until either the form is bound or until selections
are made on the client side. This section will detail how to handle both of these
cases.

How Parameters are Passed

As with the search term, the additional parameters you define will be passed in
request.GET. Since get_query gets the current request, you will have access to
them. Since they can be manipulated on the client side, these parameters should be
treated like all user input. It should be properly validated and sanitized.

Limiting the Result Set

The number of results are globally limited/paginated by the SELECTABLE_MAX_LIMIT
but you can also lower this limit on the field or widget level. Each field and widget
takes a limit argument in the __init__ that will be passed back to the lookup
through the limit query parameter. The result set will be automatically paginated
for you if you use either this parameter or the global setting.

Adding Parameters on the Server Side

Each of the widgets define update_query_parameters which takes a dictionary. The
most common way to use this would be in the form __init__.

class FruitForm(forms.Form):
 autocomplete = forms.CharField(
 label='Type the name of a fruit (AutoCompleteWidget)',
 widget=selectable.AutoCompleteWidget(FruitLookup),
 required=False,
)

 def __init__(self, *args, **kwargs):
 super(FruitForm, self).__init__(*args, **kwargs)
 self.fields['autocomplete'].widget.update_query_parameters({'foo': 'bar'})

You can also pass the query parameters into the widget using the query_params
keyword argument. It depends on your use case as to whether the parameters are
known when the form is defined or when an instance of the form is created.

Adding Parameters on the Client Side

There are times where you want to filter the result set based other selections
by the user such as a filtering cities by a previously selected state. In this
case you will need to bind a prepareQuery to the field. This function should accept the query dictionary.
You are free to make adjustments to the query dictionary as needed.

<script type="text/javascript">
 function newParameters(query) {
 query.foo = 'bar';
 }

 $(document).ready(function() {
 $('#id_autocomplete').djselectable('option', 'prepareQuery', newParameters);
 });
</script>

Note

In v0.7 the scope of prepareQuery was updated so that this refers to the
current djselectable plugin instance. Previously this refered to the
plugin options instance.

Chained Selection

It’s a fairly common pattern to have two or more inputs depend one another such City/State/Zip.
In fact there are other Django apps dedicated to this purpose such as
django-smart-selects [https://github.com/digi604/django-smart-selects] or
django-ajax-filtered-fields [http://code.google.com/p/django-ajax-filtered-fields/].
It’s possible to handle this kind of selection with django-selectable if you are willing
to write a little javascript.

Suppose we have city model

from __future__ import unicode_literals

from django.db import models
from django.utils.encoding import python_2_unicode_compatible

from localflavor.us.models import USStateField

@python_2_unicode_compatible
class City(models.Model):
 name = models.CharField(max_length=200)
 state = USStateField()

 def __str__(self):
 return self.name

Then in our lookup we will grab the state value and filter our results on it:

from __future__ import unicode_literals

from selectable.base import ModelLookup
from selectable.registry import registry

from .models import City

class CityLookup(ModelLookup):
 model = City
 search_fields = ('name__icontains',)

 def get_query(self, request, term):
 results = super(CityLookup, self).get_query(request, term)
 state = request.GET.get('state', '')
 if state:
 results = results.filter(state=state)
 return results

 def get_item_label(self, item):
 return "%s, %s" % (item.name, item.state)

registry.register(CityLookup)

and a simple form

from django import forms

from localflavor.us.forms import USStateField, USStateSelect

from selectable.forms import AutoCompleteSelectField, AutoComboboxSelectWidget

from .lookups import CityLookup

class ChainedForm(forms.Form):
 city = AutoCompleteSelectField(
 lookup_class=CityLookup,
 label='City',
 required=False,
 widget=AutoComboboxSelectWidget
)
 state = USStateField(widget=USStateSelect, required=False)

We want our users to select a city and if they choose a state then we will only
show them cities in that state. To do this we will pass back chosen state as
addition parameter with the following javascript:

<script type="text/javascript">
 $(document).ready(function() {
 function newParameters(query) {
 query.state = $('#id_state').val();
 }
 $('#id_city_0').djselectable('option', 'prepareQuery', newParameters);
 });
</script>

And that’s it! We now have a working chained selection example. The full source
is included in the example project.

Detecting Client Side Changes

The previous example detected selection changes on the client side to allow passing
parameters to the lookup. Since django-selectable is built on top of the jQuery UI
Autocomplete plug-in [http://jqueryui.com/demos/autocomplete/], the widgets
expose the events defined by the plugin.

	djselectablecreate

	djselectablesearch

	djselectableopen

	djselectablefocus

	djselectableselect

	djselectableclose

	djselectablechange

For the most part these event names should be self-explanatory. If you need additional
detail you should refer to the jQuery UI docs on these events [http://jqueryui.com/demos/autocomplete/#events].

The multiple select widgets include additional events which indicate when a new item is added
or removed from the current list. These events are djselectableadd and djselectableremove.
These events pass a dictionary of data with the following keys

	element: The original text input

	input: The hidden input to be added for the new item

	wrapper: The element to be added to the deck

	deck: The outer deck element

You can use these events to prevent items from being added or removed from the deck by
returning false in the handling function. A simple example is given below:

<script type="text/javascript">
 $(document).ready(function() {
 $(':input[name=my_field_0]').bind('djselectableadd', function(event, item) {
 // Don't allow foo to be added
 if ($(item.input).val() === 'foo') {
 return false;
 }
 });
 });
</script>

Submit On Selection

You might want to help your users by submitting the form once they have selected a valid
item. To do this you simply need to listen for the djselectableselect event. This
event is fired by the text input which has an index of 0. If your field is named my_field
then input to watch would be my_field_0 such as:

<script type="text/javascript">
 $(document).ready(function() {
 $(':input[name=my_field_0]').bind('djselectableselect', function(event, ui) {
 $(this).parents("form").submit();
 });
 });
</script>

Dynamically Added Forms

django-selectable can work with dynamically added forms such as inlines in the admin.
To make django-selectable work in the admin there is nothing more to do than include
the necessary static media as described in the
Admin Integration section.

If you are making use of the popular django-dynamic-formset [http://code.google.com/p/django-dynamic-formset/]
then you can make django-selectable work by passing bindSelectables to the
added [http://code.google.com/p/django-dynamic-formset/source/browse/trunk/docs/usage.txt#259] option:

<script type="text/javascript">
 $(document).ready(function() {
 $('#my-formset').formset({
 added: bindSelectables
 });
 });
</script>

Currently you must include the django-selectable javascript below this formset initialization
code for this to work. See django-selectable issue #31 [https://github.com/mlavin/django-selectable/issues/31]
for some additional detail on this problem.

Label Formats on the Client Side

The lookup label is the text which is shown in the list before it is selected.
You can use the get_item_label method in your lookup
to do this on the server side. This works for most applications. However if you don’t
want to write your HTML in Python or need to adapt the format on the client side you
can use the formatLabel option.

formatLabel takes two paramaters the current label and the current selected item.
The item is a dictionary object matching what is returned by the lookup’s
format_item. formatLabel should return the string
which should be used for the label.

Going back to the CityLookup we can adjust the label to wrap the city and state
portions with their own classes for additional styling:

<script type="text/javascript">
 $(document).ready(function() {
 function formatLabel(label, item) {
 var data = label.split(',');
 return '' + data[0] + ', ' + data[1] + '';
 }
 $('#id_city_0').djselectable('option', 'formatLabel', formatLabel);
 });
</script>

This is a rather simple example but you could also pass additional information in format_item
such as a flag of whether the city is the capital and render the state captials differently.

Using with Twitter Bootstrap

django-selectable can work along side with Twitter Bootstrap but there are a few things to
take into consideration. Both jQuery UI and Bootstrap define a $.button plugin. This
plugin is used by default by django-selectable and expects the UI version. If the jQuery UI
JS is included after the Bootstrap JS then this will work just fine but the Bootstrap
button JS will not be available. This is the strategy taken by the jQuery UI Bootstrap [http://addyosmani.github.com/jquery-ui-bootstrap/] theme.

Another option is to rename the Bootstrap plugin using the noConflict option.

<!-- Include Bootstrap JS -->
<script>$.fn.bootstrapBtn = $.fn.button.noConflict();</script>
<!-- Include jQuery UI JS -->

Even with this some might complain that it’s too resource heavy to include all of
jQuery UI when you just want the autocomplete to work with django-selectable. For
this you can use the Download Builder [http://jqueryui.com/download/] to build
a minimal set of jQuery UI widgets. django-selectable requires the UI core, autocomplete,
menu and button widgets. None of the effects or interactions are needed. Minified
this totals around 100 kb of JS, CSS and images (based on jQuery UI 1.10).

Note

For a comparison this is smaller than the minified Bootstrap 2.3.0 CSS
which is 105 kb not including the responsive CSS or the icon graphics.

It is possible to remove the dependency on the UI button plugin and instead
use the Bootstrap button styles. This is done by overriding
the _comboButtonTemplate and _removeButtonTemplate functions used to
create the buttons. An example is given below.

<script>
 $.ui.djselectable.prototype._comboButtonTemplate = function (input) {
 var icon = $("<i>").addClass("icon-chevron-down");
 // Remove current classes on the text input
 $(input).attr("class", "");
 // Wrap with input-append
 $(input).wrap('<div class="input-append" />');
 // Return button link with the chosen icon
 return $("<a>").append(icon).addClass("btn btn-small");
 };
 $.ui.djselectable.prototype._removeButtonTemplate = function (item) {
 var icon = $("<i>").addClass("icon-remove-sign");
 // Return button link with the chosen icon
 return $("<a>").append(icon).addClass("btn btn-small pull-right");
 };
</script>

Admin Integration

Overview

Django-Selectables will work in the admin. To get started on integrated the
fields and widgets in the admin make sure you are familiar with the Django
documentation on the ModelAdmin.form [http://docs.djangoproject.com/en/stable/ref/contrib/admin/#django.contrib.admin.ModelAdmin.form]
and ModelForms [http://docs.djangoproject.com/en/stable/topics/forms/modelforms/] particularly
on overriding the default widgets [http://docs.djangoproject.com/en/stable/topics/forms/modelforms/#overriding-the-default-field-types-or-widgets].
As you will see integrating django-selectable in the adminis the same as working with regular forms.

Including jQuery & jQuery UI

As noted in the quick start guide, the jQuery and jQuery UI libraries
are not included in the distribution but must be included in your templates. For the
Django admin that means overriding
admin/base_site.html [https://code.djangoproject.com/browser/django/trunk/django/contrib/admin/templates/admin/base_site.html].
You can include this media in the block name extrahead which is defined in
admin/base.html [https://code.djangoproject.com/browser/django/trunk/django/contrib/admin/templates/admin/base.html].

{% block extrahead %}
 {% load selectable_tags %}
 {% include_ui_theme %}
 {% include_jquery_libs %}
 {{ block.super }}
{% endblock %}

See the Django documentation on
overriding admin templates [https://docs.djangoproject.com/en/stable/ref/contrib/admin/#overriding-admin-templates].
See the example project for the full template example.

Using Grappelli

Grappelli [https://django-grappelli.readthedocs.org] is a popular customization of the Django
admin interface. It includes a number of interface improvements which are also built on top of
jQuery UI. When using Grappelli you do not need to make any changes to the admin/base_site.html
template. django-selectable will detect jQuery and jQuery UI versions included by Grappelli
and make use of them.

Basic Example

For example, we may have a Farm model with a foreign key to auth.User and
a many to many relation to our Fruit model.

from __future__ import unicode_literals

from django.db import models
from django.utils.encoding import python_2_unicode_compatible

@python_2_unicode_compatible
class Fruit(models.Model):
 name = models.CharField(max_length=200)

 def __str__(self):
 return self.name

@python_2_unicode_compatible
class Farm(models.Model):
 name = models.CharField(max_length=200)
 owner = models.ForeignKey('auth.User', related_name='farms', on_delete=models.CASCADE)
 fruit = models.ManyToManyField(Fruit)

 def __str__(self):
 return "%s's Farm: %s" % (self.owner.username, self.name)

In admin.py we will define the form and associate it with the FarmAdmin.

from django.contrib import admin
from django.contrib.auth.admin import UserAdmin
from django.contrib.auth.models import User
from django import forms

from selectable.forms import AutoCompleteSelectField, AutoCompleteSelectMultipleWidget

from .models import Fruit, Farm
from .lookups import FruitLookup, OwnerLookup

class FarmAdminForm(forms.ModelForm):
 owner = AutoCompleteSelectField(lookup_class=OwnerLookup, allow_new=True)

 class Meta(object):
 model = Farm
 widgets = {
 'fruit': AutoCompleteSelectMultipleWidget(lookup_class=FruitLookup),
 }
 exclude = ('owner',)

 def __init__(self, *args, **kwargs):
 super(FarmAdminForm, self).__init__(*args, **kwargs)
 if self.instance and self.instance.pk and self.instance.owner:
 self.initial['owner'] = self.instance.owner.pk

 def save(self, *args, **kwargs):
 owner = self.cleaned_data['owner']
 if owner and not owner.pk:
 owner = User.objects.create_user(username=owner.username, email='')
 self.instance.owner = owner
 return super(FarmAdminForm, self).save(*args, **kwargs)

class FarmAdmin(admin.ModelAdmin):
 form = FarmAdminForm

admin.site.register(Farm, FarmAdmin)

You’ll note this form also allows new users to be created and associated with the
farm, if no user is found matching the given name. To make use of this feature we
need to add owner to the exclude so that it will pass model validation. Unfortunately
that means we must set the owner manual in the save and in the initial data because
the ModelForm will no longer do this for you. Since fruit does not allow new
items you’ll see these steps are not necessary.

The django-selectable widgets are compatitible with the add another popup in the
admin. It’s that little green plus sign that appears next to ForeignKey or
ManyToManyField items. This makes django-selectable a user friendly replacement
for the ModelAdmin.raw_id_fields [https://docs.djangoproject.com/en/stable/ref/contrib/admin/#django.contrib.admin.ModelAdmin.raw_id_fields]
when the default select box grows too long.

Inline Example

With our Farm model we can also associate the UserAdmin with a Farm
by making use of the InlineModelAdmin [http://docs.djangoproject.com/en/stable/ref/contrib/admin/#inlinemodeladmin-objects].
We can even make use of the same FarmAdminForm.

continued from above

class FarmInline(admin.TabularInline):
 model = Farm
 form = FarmAdminForm

class NewUserAdmin(UserAdmin):
 inlines = [
 FarmInline,
]

admin.site.unregister(User)
admin.site.register(User, NewUserAdmin)

The auto-complete functions will be bound as new forms are added dynamically.

Testing Forms and Lookups

django-selectable has its own test suite for testing the rendering, validation
and server-side logic it provides. However, depending on the additional customizations
you add to your forms and lookups you most likely will want to include tests of your
own. This section contains some tips or techniques for testing your lookups.

This guide assumes that you are reasonable familiar with the concepts of unit testing
including Python’s unittest [http://docs.python.org/2/library/unittest.html] module and
Django’s testing guide [https://docs.djangoproject.com/en/stable/topics/testing/].

Testing Forms with django-selectable

For the most part testing forms which use django-selectable’s custom fields
and widgets is the same as testing any Django form. One point that is slightly
different is that the select and multi-select widgets are
MultiWidgets [https://docs.djangoproject.com/en/stable/ref/forms/widgets/#django.forms.MultiWidget].
The effect of this is that there are two names in the post rather than one. Take the below
form for example.

models.py

from django.db import models

class Thing(models.Model):
 name = models.CharField(max_length=100)
 description = models.CharField(max_length=100)

 def __unicode__(self):
 return self.name

lookups.py

from selectable.base import ModelLookup
from selectable.registry import registry

from .models import Thing

class ThingLookup(ModelLookup):
 model = Thing
 search_fields = ('name__icontains',)

registry.register(ThingLookup)

forms.py

from django import forms

from selectable.forms import AutoCompleteSelectField

from .lookups import ThingLookup

class SimpleForm(forms.Form):
 "Basic form for testing."
 thing = AutoCompleteSelectField(lookup_class=ThingLookup)

This form has a single field to select a Thing. It does not allow
new items. Let’s write some simple tests for this form.

tests.py

from django.test import TestCase

from .forms import SimpleForm
from .models import Thing

class SimpleFormTestCase(TestCase):

 def test_valid_form(self):
 "Submit valid data."
 thing = Thing.objects.create(name='Foo', description='Bar')
 data = {
 'thing_0': thing.name,
 'thing_1': thing.pk,
 }
 form = SimpleForm(data=data)
 self.assertTrue(form.is_valid())

 def test_invalid_form(self):
 "Thing is required but missing."
 data = {
 'thing_0': 'Foo',
 'thing_1': '',
 }
 form = SimpleForm(data=data)
 self.assertFalse(form.is_valid())

Here you will note that while there is only one field thing it requires
two items in the POST the first is for the text input and the second is for
the hidden input. This is again due to the use of MultiWidget for the selection.

There is compatibility code in the widgets to lookup the original name
from the POST. This makes it easier to transition to the the selectable widgets without
breaking existing tests.

Testing Lookup Results

Testing the lookups used by django-selectable is similar to testing your Django views.
While it might be tempting to use the Django
test client [https://docs.djangoproject.com/en/stable/topics/testing/#module-django.test.client],
it is slightly easier to use the
request factory [https://docs.djangoproject.com/en/stable/topics/testing/#the-request-factory].
A simple example is given below.

tests.py

import json

from django.test import TestCase
from django.test.client import RequestFactory

from .lookups import ThingLookup
from .models import Thing

class ThingLookupTestCase(TestCase):

 def setUp(self):
 self.factory = RequestFactory()
 self.lookup = ThingLookup()
 self.test_thing = Thing.objects.create(name='Foo', description='Bar')

 def test_results(self):
 "Test full response."
 request = self.factory.get("/", {'term': 'Fo'})
 response = self.lookup.results(request)
 data = json.loads(response.content)['data']
 self.assertEqual(1, len(data))
 self.assertEqual(self.test_thing.pk, data[1]['id'])

 def test_label(self):
 "Test item label."
 label = self.lookup.get_item_label(self.test_thing)
 self.assertEqual(self.test_thing.name, label)

As shown in the test_label example it is not required to test the full
request/response. You can test each of the methods in the lookup API individually.
When testing your lookups you should focus on testing the portions which have been
customized by your application.

Fields

Django-Selectable defines a number of fields for selecting either single or multiple
lookup items. Item in this context corresponds to the object return by the underlying
lookup get_item. The single select select field AutoCompleteSelectField
allows for the creation of new items. To use this feature the field’s
lookup class must define create_item. In the case of lookups extending from
Lookups Based on Models newly created items have not yet been saved into the database and saving
should be handled by the form. All fields take the lookup class as the first required
argument.

AutoCompleteSelectField

Field tied to AutoCompleteSelectWidget to bind the selection to the form and
create new items, if allowed. The allow_new keyword argument (default: False)
which determines if the field allows new items. This field cleans to a single item.

from django import forms

from selectable.forms import AutoCompleteSelectField

from .lookups import FruitLookup

class FruitSelectionForm(forms.Form):
 fruit = AutoCompleteSelectField(lookup_class=FruitLookup, label='Select a fruit')

lookup_class` may also be a dotted path.

AutoCompleteSelectMultipleField

Field tied to AutoCompleteSelectMultipleWidget to bind the selection to the form.
This field cleans to a list of items. AutoCompleteSelectMultipleField does not
allow for the creation of new items.

from django import forms

from selectable.forms import AutoCompleteSelectMultipleField

from .lookups import FruitLookup

class FruitsSelectionForm(forms.Form):
 fruits = AutoCompleteSelectMultipleField(lookup_class=FruitLookup,
 label='Select your favorite fruits')

Widgets

Below are the custom widgets defined by Django-Selectable. All widgets take the
lookup class as the first required argument.

These widgets all support a query_params keyword argument which is used to pass
additional query parameters to the lookup search. See the section on
Adding Parameters on the Server Side for more
information.

You can configure the plugin options by passing the configuration dictionary in the data-selectable-options
attribute. The set of options availble include those define by the base
autocomplete plugin [http://api.jqueryui.com/1.9/autocomplete/] as well as the
removeIcon, comboboxIcon, and highlightMatch options
which are unique to django-selectable.

attrs = {'data-selectable-options': {'highlightMatch': True, 'minLength': 5}}
selectable.AutoCompleteSelectWidget(lookup_class=FruitLookup, attrs=attrs)

AutoCompleteWidget

Basic widget for auto-completing text. The widget returns the item value as defined
by the lookup get_item_value. If the allow_new keyword argument is passed as
true it will allow the user to type any text they wish.

AutoComboboxWidget

Similar to AutoCompleteWidget but has a button to reveal all options.

AutoCompleteSelectWidget

Widget for selecting a value/id based on input text. Optionally allows selecting new items to be created.
This widget should be used in conjunction with the AutoCompleteSelectField as it will
return both the text entered by the user and the id (if an item was selected/matched).

AutoCompleteSelectWidget works directly with Django’s
ModelChoiceField [https://docs.djangoproject.com/en/stable/ref/forms/fields/#modelchoicefield].
You can simply replace the widget without replacing the entire field.

class FarmAdminForm(forms.ModelForm):

 class Meta(object):
 model = Farm
 widgets = {
 'owner': selectable.AutoCompleteSelectWidget(lookup_class=FruitLookup),
 }

The one catch is that you must use allow_new=False which is the default.

lookup_class may also be a dotted path.

widget = selectable.AutoCompleteWidget(lookup_class='core.lookups.FruitLookup')

AutoComboboxSelectWidget

Similar to AutoCompleteSelectWidget but has a button to reveal all options.

AutoComboboxSelectWidget works directly with Django’s
ModelChoiceField [https://docs.djangoproject.com/en/stable/ref/forms/fields/#modelchoicefield].
You can simply replace the widget without replacing the entire field.

class FarmAdminForm(forms.ModelForm):

 class Meta(object):
 model = Farm
 widgets = {
 'owner': selectable.AutoComboboxSelectWidget(lookup_class=FruitLookup),
 }

The one catch is that you must use allow_new=False which is the default.

AutoCompleteSelectMultipleWidget

Builds a list of selected items from auto-completion. This widget will return a list
of item ids as defined by the lookup get_item_id. Using this widget with the
AutoCompleteSelectMultipleField will clean the items to the item objects. This does
not allow for creating new items. There is another optional keyword argument postion
which can take four possible values: bottom, bottom-inline, top or top-inline.
This determine the position of the deck list of currently selected items as well as
whether this list is stacked or inline. The default is bottom.

AutoComboboxSelectMultipleWidget

Same as AutoCompleteSelectMultipleWidget but with a combobox.

Settings

SELECTABLE_MAX_LIMIT

This setting is used to limit the number of results returned by the auto-complete fields.
Each field/widget can individually lower this maximum. The result sets will be
paginated allowing the client to ask for more results. The limit is passed as a
query parameter and validated against this value to ensure the client cannot manipulate
the query string to retrive more values.

Default: 25

SELECTABLE_ESCAPED_KEYS

The LookupBase.format_item will conditionally escape result keys based on this
setting. The label is escaped by default to prevent a XSS flaw when using the
jQuery UI autocomplete. If you are using the lookup responses for a different
autocomplete plugin then you may need to esacpe more keys by default.

Default: ('label',)

Note

You probably don’t want to include id in this setting.

Javascript Plugin Options

Below the options for configuring the Javascript behavior of the django-selectable
widgets.

removeIcon

This is the class name used for the remove buttons for the multiple select widgets.
The set of icon classes built into the jQuery UI framework can be found here:
http://jqueryui.com/themeroller/

Default: ui-icon-close

comboboxIcon

This is the class name used for the combobox dropdown icon. The set of icon classes built
into the jQuery UI framework can be found here: http://jqueryui.com/themeroller/

Default: ui-icon-triangle-1-s

prepareQuery

prepareQuery is a function that is run prior to sending the search request to
the server. It is an oppotunity to add additional parameters to the search query.
It takes one argument which is the current search parameters as a dictionary. For
more information on its usage see Adding Parameters on the Client Side.

Default: null

highlightMatch

If true the portions of the label which match the current search term will be wrapped
in a span with the class highlight.

Default: true

formatLabel

formatLabel is a function that is run prior to rendering the search results in
the dropdown menu. It takes two arguments: the current item label and the item data
dictionary. It should return the label which should be used. For more information
on its usage see Label Formats on the Client Side.

Default: null

Contributing

There are plenty of ways to contribute to this project. If you think you’ve found
a bug please submit an issue. If there is a feature you’d like to see then please
open an ticket proposal for it. If you’ve come up with some helpful examples then
you can add to our example project.

Getting the Source

The source code is hosted on Github [https://github.com/mlavin/django-selectable].
You can download the full source by cloning the git repo:

git clone git://github.com/mlavin/django-selectable.git

Feel free to fork the project and make your own changes. If you think that it would
be helpful for other then please submit a pull request to have it merged in.

Submit an Issue

The issues are also managed on Github issue page [https://github.com/mlavin/django-selectable/issues].
If you think you’ve found a bug it’s helpful if you indicate the version of django-selectable
you are using the ticket version flag. If you think your bug is javascript related it is
also helpful to know the version of jQuery, jQuery UI, and the browser you are using.

Issues are also used to track new features. If you have a feature you would like to see
you can submit a proposal ticket. You can also see features which are planned here.

Submit a Translation

We are working towards translating django-selectable into different languages. There
are not many strings to be translated so it is a reasonably easy task and a great way
to be involved with the project. The translations are managed through
Transifex [https://www.transifex.com/projects/p/django-selectable/].

Running the Test Suite

There are a number of tests in place to test the server side code for this
project. To run the tests you need Django and mock [http://www.voidspace.org.uk/python/mock/]
installed and run:

python runtests.py

tox [http://tox.readthedocs.org/en/latest/index.html] is used to test django-selectable
against multiple versions of Django/Python. With tox installed you can run:

tox

to run all the version combinations. You can also run tox against a subset of supported
environments:

tox -e py27-django15

For more information on running/installing tox please see the
tox documentation: http://tox.readthedocs.org/en/latest/index.html

Client side tests are written using QUnit [http://docs.jquery.com/QUnit]. They
can be found in selectable/tests/qunit/index.html. The test suite also uses
PhantomJS [http://phantomjs.org/] to
run the tests. You can install PhantomJS from NPM:

Install requirements
npm install -g phantomjs jshint
make test-js

Building the Documentation

The documentation is built using Sphinx [http://sphinx.pocoo.org/]
and available on Read the Docs [http://django-selectable.readthedocs.io/]. With
Sphinx installed you can build the documentation by running:

make html

inside the docs directory. Documentation fixes and improvements are always welcome.

Release Notes

v1.2.0 (Released 2018-10-13)

Primarily a Django support related release. This version adds support for Django 2.0 and 2.1 while
dropping support for Django versions below 1.11. A number of deprecation warnings for future Django
versions have also been addressed.

Added the ability to search on multiple terms split by whitespace.

Backwards Incompatible Changes

	Dropped support for Django versions below 1.11

v1.1.0 (Released 2018-01-12)

	Updated admin docs.

	Added support for Django 1.11

Special thanks to Luke Plant for contributing the fixes to support Django 1.11.

v1.0.0 (Released 2017-04-14)

This project has been stable for quite some time and finally declaring a 1.0 release. With
that comes new policies on official supported versions for Django, Python, jQuery, and jQuery UI.

	New translations for German and Czech.

	Various bug and compatibility fixes.

	Updated example project.

Special thanks to Raphael Merx for helping track down issues related to this release
and an updating the example project to work on Django 1.10.

Backwards Incompatible Changes

	Dropped support Python 2.6 and 3.2

	Dropped support for Django < 1.7. Django 1.11 is not yet supported.

	LookupBase.serialize_results had been removed. This is now handled by the built-in JsonResponse in Django.

	jQuery and jQuery UI versions for the include_jquery_libs and include_ui_theme template tags have been increased to 1.12.4 and 1.11.4 respectively.

	Dropped testing support for jQuery < 1.9 and jQuery UI < 1.10. Earlier versions may continue to work but it is recommended to upgrade.

v0.9.0 (Released 2014-10-21)

This release primarily addresses incompatibility with Django 1.7. The app-loading refactor both
broke the previous registration and at the same time provided better utilities in Django core to
make it more robust.

	Compatibility with Django 1.7. Thanks to Calvin Spealman for the fixes.

	Fixes for Python 3 support.

Backwards Incompatible Changes

	Dropped support for jQuery < 1.7

v0.8.0 (Released 2014-01-20)

	Widget media references now include a version string for cache-busting when upgrading django-selectable. Thanks to Ustun Ozgur.

	Added compatibility code for *SelectWidgets to handle POST data for the default SelectWidget. Thanks to leo-the-manic.

	Development moved from Bitbucket to Github.

	Update test suite compatibility with new test runner in Django 1.6. Thanks to Dan Poirier for the report and fix.

	Tests now run on Travis CI.

	Added French and Chinese translations.

Backwards Incompatible Changes

	Support for Django < 1.5 has been dropped. Most pieces should continue to work but there was an ugly JS hack to make django-selectable work nicely in the admin which too flakey to continue to maintain. If you aren’t using the selectable widgets in inline-forms in the admin you can most likely continue to use Django 1.4 without issue.

v0.7.0 (Released 2013-03-01)

This release features a large refactor of the JS plugin used by the widgets. While this
over makes the plugin more maintainable and allowed for some of the new features in this
release, it does introduce a few incompatible changes. For the most part places where you
might have previously used the autocomplete namespace/plugin, those references should
be updated to reference the djselectable plugin.

This release also adds experimental support for Python 3.2+ to go along with Django’s support in 1.5.
To use Python 3 with django-selectable you will need to use Django 1.5+.

	Experimental Python 3.2+ support

	Improved the scope of prepareQuery and formatLabel options. Not fully backwards compatible. Thanks to Augusto Men.

	Allow passing the Python path string in place of the lookup class to the fields and widgets. Thanks to Michael Manfre.

	Allow passing JS plugin options through the widget attrs option. Thanks to Felipe Prenholato.

	Tests for compatibility with jQuery 1.6 through 1.9 and jQuery UI 1.8 through 1.10.

	Added notes on Bootstrap compatibility.

	Added compatibility with Grappelli in the admin.

	Added Spanish translation thanks to Manuel Alvarez.

	Added documentation notes on testing.

Bug Fixes

	Fixed bug with matching hidden input when the name contains ‘_1’. Thanks to Augusto Men for the report and fix.

	Fixed bug where the enter button would open the combobox options rather than submit the form. Thanks to Felipe Prenholato for the report.

	Fixed bug with using allow_new=True creating items when no data was submitted. See #91.

	Fixed bug with widget has_changed when there is no initial data. See #92.

Backwards Incompatible Changes

	The JS event namespace has changed from autocomplete to djselectable.

	data('autocomplete') is no longer available on the widgets on the client-side. Use data('djselectable') instead.

	Combobox button was changed from a <button> to <a>. Any customized styles you may have should be updated.

	Combobox no longer changes the minLength or delay options.

v0.6.2 (Released 2012-11-07)

Bug Fixes

	Fixed bug with special characters when highlighting matches. Thanks to Chad Files for the report.

	Fixed javascript bug with spaces in item.id. Thanks to @dc for the report and fix.

v0.6.1 (Released 2012-10-13)

Features

	Added Polish translation. Thanks to Sławomir Ehlert.

Bug Fixes

	Fixed incompatibility with jQuery UI 1.9.

v0.6.0 (Released 2012-10-09)

This release continues to clean up the API and JS. This was primarily motivated by
Sławomir Ehlert (@slafs) who is working on an alternate implementation which
uses Select2 rather than jQuery UI. This opens the door for additional apps
which use the same lookup declaration API with a different JS library on the front
end.

Python 2.5 support has been dropped to work towards Python 3 support.
This also drops Django 1.2 support which is no longer receiving security fixes.

Features

	Initial translations (pt_BR). Thanks to Felipe Prenholato for the patch.

	Upgraded default jQuery UI version included by the template tags from 1.8.18 to 1.8.23

	Added djselectableadd and djselectableremove events fired when items are added or removed from a mutliple select

Bug Fixes

	Cleaned up JS scoping problems when multiple jQuery versions are used on the page. Thanks Antti Kaihola for the report.

	Fixed minor JS bug where text input was not cleared when selected via the combobox in the multiselect. Thanks Antti Kaihola for the report and Lukas Pirl for a hotfix.

Backwards Incompatible Changes

	get_item_value and get_item_id are no longer marked as safe by default.

	Removed AutoComboboxSelectField and AutoComboboxSelectMultipleField. These were deprecated in 0.5.

	Dropping official Python 2.5 support.

	Dropping official Django 1.2 support.

	paginate_results signature changed as part of the lookup refactor.

	SELECTABLE_MAX_LIMIT can no longer be None.

v0.5.2 (Released 2012-06-27)

Bug Fixes

	Fixed XSS flaw with lookup get_item_* methods. Thanks slafs for the report.

	Fixed bug when passing widget instance rather than widget class to AutoCompleteSelectField or AutoCompleteSelectMultipleField.

v0.5.1 (Released 2012-06-08)

Bug Fixes

	Fix for double autocompleteselect event firing.

	Fix for broken pagination in search results. Thanks David Ray for report and fix.

v0.4.2 (Released 2012-06-08)

Bug Fixes

	Backported fix for double autocompleteselect event firing.

	Backported fix for broken pagination in search results.

v0.5.0 (Released 2012-06-02)

Features

	Template tag to add necessary jQuery and jQuery UI libraries. Thanks to Rick Testore for the initial implementation

	Lookup decorators for requiring user authentication or staff access to use the lookup

	Additional documentation

	Minor updates to the example project

Backwards Incompatible Changes

	Previously the minimal version of jQuery was listed as 1.4.3 when it fact there was a bug a that made django-selectable require 1.4.4. Not a new incompatibility but the docs have now been updated and 1.4.3 compatibility will not be added. Thanks to Rick Testore for the report and the fix

	Started deprecation path for AutoComboboxSelectField and AutoComboboxSelectMultipleField

v0.4.1 (Released 2012-03-11)

Bug Fixes

	Cleaned up whitespace in css/js. Thanks Dan Poirier for the report and fix.

	Fixed issue with saving M2M field data with AutoCompleteSelectMultipleField. Thanks Raoul Thill for the report.

v0.4.0 (Released 2012-02-25)

Features

	Better compatibility with AutoCompleteSelectWidget/AutoComboboxSelectWidget and Django’s ModelChoiceField

	Better compatibility with the Django admin add another popup

	Easier passing of query parameters. See the Additional Parameters section

	Additional documentation

	QUnit tests for JS functionality

Backwards Incompatible Changes

	Support for ModelLookup.search_field string has been removed. You should use the ModelLookup.search_fields tuple instead.

v0.3.1 (Released 2012-02-23)

Bug Fixes

	Fixed issue with media urls when not using staticfiles.

v0.3.0 (Released 2012-02-15)

Features

	Multiple search fields for model based lookups

	Support for highlighting term matches

	Support for HTML in result labels

	Support for client side formatting

	Additional documentation

	Expanded examples in example project

Bug Fixes

	Fixed issue with Enter key removing items from select multiple widgets #24 [https://github.com/mlavin/django-selectable/issues/24]

Backwards Incompatible Changes

	The fix for #24 changed the remove items from a button to an anchor tag. If you were previously using the button tag for additional styling then you will need to adjust your styles.

	The static resources were moved into a selectable sub-directory. This makes the media more in line with the template directory conventions. If you are using the widgets in the admin there is nothing to change. If you are using {{ form.media }} then there is also nothing to change. However if you were including static media manually then you will need to adjust them to include the selectable prefix.

v0.2.0 (Released 2011-08-13)

Features

	Additional documentation

	Positional configuration for multiple select fields/widgets

	Settings/configuration for limiting/paginating result sets

	Compatibility and examples for Admin inlines

	JS updated for jQuery 1.6 compatibility

	JS hooks for updating query parameters

	Chained selection example

v0.1.2 (Released 2011-05-25)

Bug Fixes

	Fixed issue #17 [https://github.com/mlavin/django-selectable/issues/17]

v0.1.1 (Release 2011-03-21)

Bug Fixes

	Fixed/cleaned up multiple select fields and widgets

	Added media definitions to widgets

Features

	Additional documentation

	Added update_query_parameters to widgets

	Refactored JS for easier configuration

v0.1 (Released 2011-03-13)

Initial public release

Index

 C
 | F
 | G
 | P
 | S

C

 	
 	create_item() (LookupBase method)

F

 	
 	format_item() (LookupBase method)

 	
 	format_results() (LookupBase method)

G

 	
 	get_item() (LookupBase method)

 	get_item_id() (LookupBase method)

 	
 	get_item_label() (LookupBase method)

 	get_item_value() (LookupBase method)

 	get_query() (LookupBase method)

P

 	
 	paginate_results() (LookupBase method)

S

 	
 	split_term() (LookupBase method)

 _static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 django-selectable

 		
 Overview

 		
 Motivation

 		
 Related Projects

 		
 Getting Started

 		
 Including jQuery & jQuery UI

 		
 Defining a Lookup

 		
 Defining Forms

 		
 Defining Lookups

 		
 What are Lookups?

 		
 Defining a Lookup

 		
 Lookup API

 		
 Lookups Based on Models

 		
 User Lookup Example

 		
 Lookup Decorators

 		
 ajax_required

 		
 login_required

 		
 staff_member_required

 		
 Advanced Usage

 		
 Additional Parameters

 		
 How Parameters are Passed

 		
 Limiting the Result Set

 		
 Adding Parameters on the Server Side

 		
 Adding Parameters on the Client Side

 		
 Chained Selection

 		
 Detecting Client Side Changes

 		
 Submit On Selection

 		
 Dynamically Added Forms

 		
 Label Formats on the Client Side

 		
 Using with Twitter Bootstrap

 		
 Admin Integration

 		
 Overview

 		
 Including jQuery & jQuery UI

 		
 Using Grappelli

 		
 Basic Example

 		
 Inline Example

 		
 Testing Forms and Lookups

 		
 Testing Forms with django-selectable

 		
 Testing Lookup Results

 		
 Fields

 		
 AutoCompleteSelectField

 		
 AutoCompleteSelectMultipleField

 		
 Widgets

 		
 AutoCompleteWidget

 		
 AutoComboboxWidget

 		
 AutoCompleteSelectWidget

 		
 AutoComboboxSelectWidget

 		
 AutoCompleteSelectMultipleWidget

 		
 AutoComboboxSelectMultipleWidget

 		
 Settings

 		
 SELECTABLE_MAX_LIMIT

 		
 SELECTABLE_ESCAPED_KEYS

 		
 Javascript Plugin Options

 		
 removeIcon

 		
 comboboxIcon

 		
 prepareQuery

 		
 highlightMatch

 		
 formatLabel

 		
 Contributing

 		
 Getting the Source

 		
 Submit an Issue

 		
 Submit a Translation

 		
 Running the Test Suite

 		
 Building the Documentation

 		
 Release Notes

 		
 v1.2.0 (Released 2018-10-13)

 		
 Backwards Incompatible Changes

 		
 v1.1.0 (Released 2018-01-12)

 		
 v1.0.0 (Released 2017-04-14)

 		
 Backwards Incompatible Changes

 		
 v0.9.0 (Released 2014-10-21)

 		
 Backwards Incompatible Changes

 		
 v0.8.0 (Released 2014-01-20)

 		
 Backwards Incompatible Changes

 		
 v0.7.0 (Released 2013-03-01)

 		
 Bug Fixes

 		
 Backwards Incompatible Changes

 		
 v0.6.2 (Released 2012-11-07)

 		
 Bug Fixes

 		
 v0.6.1 (Released 2012-10-13)

 		
 Features

 		
 Bug Fixes

 		
 v0.6.0 (Released 2012-10-09)

 		
 Features

 		
 Bug Fixes

 		
 Backwards Incompatible Changes

 		
 v0.5.2 (Released 2012-06-27)

 		
 Bug Fixes

 		
 v0.5.1 (Released 2012-06-08)

 		
 Bug Fixes

 		
 v0.4.2 (Released 2012-06-08)

 		
 Bug Fixes

 		
 v0.5.0 (Released 2012-06-02)

 		
 Features

 		
 Backwards Incompatible Changes

 		
 v0.4.1 (Released 2012-03-11)

 		
 Bug Fixes

 		
 v0.4.0 (Released 2012-02-25)

 		
 Features

 		
 Backwards Incompatible Changes

 		
 v0.3.1 (Released 2012-02-23)

 		
 Bug Fixes

 		
 v0.3.0 (Released 2012-02-15)

 		
 Features

 		
 Bug Fixes

 		
 Backwards Incompatible Changes

 		
 v0.2.0 (Released 2011-08-13)

 		
 Features

 		
 v0.1.2 (Released 2011-05-25)

 		
 Bug Fixes

 		
 v0.1.1 (Release 2011-03-21)

 		
 Bug Fixes

 		
 Features

 		
 v0.1 (Released 2011-03-13)

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

