

Welcome to django-rules-light’s documentation!

[image: _images/django-rules-light.png]
 [http://travis-ci.org/yourlabs/django-rules-light][image: _images/django-rules-light.svg]
 [https://crate.io/packages/django-rules-light][image: _images/django-rules-light1.svg]
 [https://crate.io/packages/django-rules-light]This is a simple alternative to django-rules. The core difference is that
it uses as registry that can be modified on runtime, instead of database
models.

One of the goal is to enable developpers of external apps to make rules, depend
on it, while allowing a project to override rules.

Example your_app/rules_light_registry.py:

Everybody can read a blog post (for now!):
rules_light.registry['blog.post.read'] = True

Require authentication to create a blog post, using a shortcut:
rules_light.registry['blog.post.create'] = rules_light.is_authenticated

def is_staff_or_mine(user, rule, obj):
 return user.is_staff or obj.author == user

But others shouldn't mess with my posts !
rules_light.registry['blog.post.update'] = is_staff_or_mine
rules_light.registry['blog.post.delete'] = is_staff_or_mine

Example your_app/views.py:

@rules_light.class_decorator
class PostDetailView(generic.DetailView):
 model = Post

@rules_light.class_decorator
class PostCreateView(generic.CreateView):
 model = Post

@rules_light.class_decorator
class PostUpdateView(generic.UpdateView):
 model = Post

@rules_light.class_decorator
class PostDeleteView(generic.DeleteView):
 model = Post

You might want to read the tutorial [https://django-rules-light.readthedocs.org/en/latest/tutorial.html] for
more.

What’s the catch ?

The catch is that this approach does not offer any feature to get secure
querysets.

This means that the developper has to:

	think about security when making querysets,

	override [http://blog.yourlabs.org/post/19777151073/how-to-override-a-view-from-an-external-django-app]
eventual external app ListViews,

Requirements

	Python 2.7+ (Python 3 supported)

	Django 1.4+

Quick Install

	Install module: pip install django-rules-light,

	Add to settings.INSTALLED_APPS: rules_light,

	Add in settings.MIDDLEWARE_CLASSES: rules_light.middleware.Middleware,

	Add in urls.py: rules_light.autodiscover() if you have
admin.autodiscover() in there too (Django < 1.7),

You might want to read the tutorial [https://django-rules-light.readthedocs.org/en/latest/tutorial.html].

There is also a lot of documentation, from the core to the tools, including
pointers to debug, log and test your security.

Contributing

Run tests with the tox [https://pypi.python.org/pypi/tox] command. Documented patches passing all
tests have more chances getting merged in, see community guidelines [http://docs.yourlabs.org] for details.

Resources

You could subscribe to the mailing list ask questions or just be informed of
package updates.

	Mailing list graciously hosted [http://groups.google.com/group/yourlabs] by Google [http://groups.google.com]

	Git graciously hosted [https://github.com/yourlabs/django-rules-light/] by GitHub [http://github.com],

	Documentation graciously hosted [http://django-rules-light.rtfd.org] by RTFD [http://rtfd.org],

	Package graciously hosted [http://pypi.python.org/pypi/django-rules-light/] by PyPi [http://pypi.python.org/pypi],

	Continuous integration graciously hosted [http://travis-ci.org/yourlabs/django-rules-light] by Travis-ci [http://travis-ci.org]

Contents:

	Tutorial
	Install

	Creating Rules

	Using rules

	Tips and tricks

	Rule registry
	API

	Examples

	Class decorator
	API

	Examples

	Middleware
	Template

	Shortcuts

	Logging
	Install

	Debugging
	The registry browser

	Security testing

Indices and tables

	Index

	Module Index

	Search Page

Tutorial

Install

Either install the last release:

pip install django-rules-light

Either install a development version:

pip install -e git+https://github.com/yourlabs/django-rules-light.git#egg=django-rules-light

That should be enough to work with the registry.

Middleware

To enable the middleware that processes rules_light.Denied
exception, add to setings.MIDDLEWARE_CLASSES:

MIDDLEWARE_CLASSES = (
 # ...
 'rules_light.middleware.Middleware',
)

See docs on middleware for more details.

Autodiscovery

To enable autodiscovery of rules in the various apps installed
in your project, add to urls.py (as early as possible):

import rules_light
rules_light.autodiscover()

See docs on registry for more details.

Logging

To enable logging, add a rules_light logger for example:

LOGGING = {
 # ...
 'handlers': {
 # ...
 'console':{
 'level':'DEBUG',
 'class':'logging.StreamHandler',
 },
 },
 'loggers': {
 'rules_light': {
 'handlers': ['console'],
 'propagate': True,
 'level': 'DEBUG',
 }
 }
}

See docs on logging for more details on logging.

Debug view

Add to settings.INSTALLED_APPS:

INSTALLED_APPS = (
 'rules_light',
 #
)

Then the view should be usable, install it as such:

url(r'^rules/', include('rules_light.urls')),

See docs on debugging for more details on debugging rules.

Creating Rules

Declare rules

Declaring rules consist of filling up the rules_light.registry dict. This
dict uses rule “names” as keys, ie. do_something,
some_app.some_model.create, etc, etc … For values, it can use booleans:

Enable read for everybody
rules_light.registry['your_app.your_model.read'] = True

Disable delete for everybody
rules_light.registry['your_app.your_model.delete'] = False

Optionnaly, use the Python dict method setdefault() in default rules. For
example:

Only allow everybody if another (project-specific) callback was not set
rules_light.registry.setdefault('your_app.your_model.read', True)

It can also use callbacks:

def your_custom_rule(user, rule_name, model, *args, **kwargs):
 if user in model.your_custom_stuff:
 return True # Allow user !

rules_light.registry['app.model.read'] = your_custom_rule

See docs on registry for more details.

Mix rules, DRY security

Callbacks may also be used to decorate each other, using
rules_light.make_decorator() will transform a simple rule callback, into a
rule callback that can also be used as decorator for another callback.

Just decorate a callback with make_decorator() to make it reusable as
decorator:

@rules_light.make_decorator
def some_condition(user, rule, *args, **kwargs):
 # do stuff

rules_light.registry.setdefault('your_app.your_model.create', some_condition)

@some_condition
def extra_condition(user, rule, *args, **kwargs):
 # do extra stuff

rules_light.registry.setdefault('your_app.your_model.update', extra_condition)

This will cause some_condition() to be evaluated first, and if it passes,
extra_condition() will be evaluated to, for the update rule.

See docs on decorator for more details.

Using rules

The rule registry is in charge of using rules, using the run() method. It
should return True or False.

Run

For example with this:

def some_condition(user, rulename, *args, **kwargs):
 # ...

rules_light.registry['your_app.your_model.create'] = some_condition

Doing:

rules_light.run(request.user, 'your_app.your_model.create')

Will call:

some_condition(request.user, 'your_app.your_model.create')

Kwargs are forwarded, for example:

rules_light.run(request.user, 'your_app.your_model.create',
 with_widget=request.GET['widget'])

Will call:

some_condition(request.user, 'your_app.your_model.create',
 with_widget=request.GET['widget'])

See docs on registry for more details.

Require

The require() method is useful too, it does the same as run() except
that it will raise rules_light.Denied. This will block the request process
and will be catched by the middleware if installed.

See docs on registry for more details.

Decorator

You can decorate a class based view as such:

@rules_light.class_decorator
class SomeCreateView(views.CreateView):
 model=SomeModel

This will automatically require 'some_app.some_model.create'.

See docs on class decorator for more usages of the decorator.

Template

In templates, you can run rules using ‘{% rule %}’ templatetag.

Usage:

{% rule rule_name [args] [kwargs] as var_name %}

This is an example from the test project:

{% load rules_light_tags %}

{% for user in object_list %}
 {% rule 'auth.user.read' user as can_read %}
 {% rule 'auth.user.update' user as can_update %}

 {{ user }} (has perm: {{ can_read|yesno:'Yes,No' }})
 update (has perm: {{ can_update|yesno:'Yes,No'}})

{% endfor %}

Tips and tricks

Override rules

If your project wants to change the behaviour of your_app to allows users
to create models and edit the models they have created, you could add after
rules_light.autodiscover():

def my_model_or_staff(user, rulename, obj):
 return user.is_staff or user == obj.author

rules_light.registry['your_app.your_model.create'] = True
rules_light.registry['your_app.your_model.update'] = my_model_or_staff
rules_light.registry['your_app.your_model.delete'] = my_model_or_staff

As you can see, a project can completely change the security logic of an
app, which should enpower creative django developers hehe …

See docs on registry for more details.

Take a shortcut

django-rules-light comes with a predefined is_staff rule which you could
use in your_app/rules_light_registry.py:

import rules_light

Allow all users to see your_model
rules_light.registry.setdefault('your_app.your_model.read', True)

Allow admins to create and edit models
rules_light.registry.setdefault('your_app.your_model.create', rules_light.is_staff)
rules_light.registry.setdefault('your_app.your_model.update', rules_light.is_staff)
rules_light.registry.setdefault('your_app.your_model.delete', rules_light.is_staff)

See docs on shortcuts.

Test security

See security testing docs.

Rule registry

API

The rule registry is in charge of keeping and executing security rules.

It is the core of this app, everything else is optionnal.

This module provides a variable, registry, which is just a module-level,
default RuleRegistry instance.

A rule can be a callback or a variable that will be evaluated as bool.

	
class rules_light.registry.RuleRegistry

	Dict subclass to manage rules.

	logger

	The standard logging logger instance to use.

	
as_text(user, name, *args, **kwargs)

	Format a rule to be human readable for logging

	
require(user, name, *args, **kwargs)

	Run a rule, raise rules_light.Denied if returned False.

Log denials with warn-level.

	
run(user, name, *args, **kwargs)

	Run a rule, return True if whatever it returns evaluates to True.

Also logs calls with the info-level.

	
rules_light.registry.require(user, name, *args, **kwargs)

	Proxy rules_light.registry.require().

	
rules_light.registry.run(user, name, *args, **kwargs)

	Proxy rules_light.registry.run().

	
rules_light.registry.autodiscover()

	Check all apps in INSTALLED_APPS for stuff related to rules_light.

For each app, autodiscover imports app.rules_light_registry if
available, resulting in execution of rules_light.registry[...] = ...
statements in that module, filling registry.

Consider a standard app called ‘cities_light’ with such a structure:

cities_light/
 __init__.py
 models.py
 urls.py
 views.py
 rules_light_registry.py

With such a rules_light_registry.py:

import rules_light

rules_light.register('cities_light.city.read', True)
rules_light.register('cities_light.city.update',
 lambda user, rulename, country: user.is_staff)

When autodiscover() imports cities_light.rules_light_registry, both
‘cities_light.city.read’ and ‘cities_light.city.update’ will be
registered.

Examples

import rules_light

rules_light.registry['auth.user.read'] = True
rules_light.registry['auth.user.update'] = lambda user, *args: user.is_staff

Even django-rules-light’s view uses a permission, it is registered in
rules_light/rules_light_registry.py and thus is picked up by
rules_light.autodiscover():

from __future__ import unicode_literals

import rules_light

rules_light.registry['rules_light.rule.read'] = rules_light.is_staff

Of course, you could use any callable instead of the lambda function.

Class decorator

API

	
class rules_light.class_decorator.class_decorator

	Can be used to secure class based views.

If the view has model=YourModel, it will support:

	CreateView, it will decorate get_form(), to run
rules_light.require('yourapp.yourmodel.create'),

	UpdateView, it will decorate get_object(), to run
rules_light.require('yourapp.yourmodel.update', obj),

	DeleteView, it will decorate get_object(), to run
rules_light.require('yourapp.yourmodel.delete', obj),

	DetailView, it will decorate get_object(), to run
rules_light.require('yourapp.yourmodel.read', obj),

	others views, if the rule name is specified in the decorator for example
@class_decorator('some_rule'), then it will decorate dispatch(),

	Else it raises an exception.

Examples

Middleware

The role of the middleware is to present a user friendly error page when a rule
denied process of the request by raising Denied.

	
class rules_light.middleware.Middleware

	Install this middleware by adding rules_light.middleware.Middleware` to
settings.MIDDLEWARE_CLASSES.

	
process_exception(request, exception)

	Render rules_light/exception.html when a Denied exception was
raised.

Template

{% extends 'rules_light/base.html' %}

{% load i18n %}

{% block body %}
	<div class='rules_light' >
		{% trans 'You do not have permission to do that.' %}

		{% if settings.LOGIN_URL %}
		{% trans 'Try logging in' %} {% if request.user.is_authenticated %}{% trans 'with other credentials' %}{% endif %}
		{% endif %}
	</div>
{% endblock %}

Shortcuts

It is trivial to take shortcuts because the rule registry is a simple dict.

You can reuse your rules several times in standard python:

def my_model_or_is_staff(user, rule, model, obj=None):
 return user.is_staff or (obj and obj.author == user)

rules_light.registry.setdefault('your_app.your_model.create',
 my_model_or_is_staff)
rules_light.registry.setdefault('your_app.your_model.update',
 my_model_or_is_staff)
rules_light.registry.setdefault('your_app.your_model.delete',
 my_model_or_is_staff)

This module provides some shortcut(s). Shortcuts are also usable as decorators
too (see make_decorator):

@rules_light.is_authenticated
def my_book(user, rule, book):
 return book.author == user

rules_light.registry.setdefault('your_app.your_model.update', my_book)

Logging

Everything is logged in the rules_light logger:

	rule registered is logged with DEBUG level,

	rule run() is logged with INFO level,

	require() failure is logged with WARN level.

Install

Example settings.LOGGING that will display all logged events in the
console, as well as denials in malicious.log.

See http://docs.djangoproject.com/en/dev/topics/logging for
more details on how to customize your logging configuration.

LOGGING = {
 'version': 1,
 'disable_existing_loggers': False,
 'filters': {
 'require_debug_false': {
 '()': 'django.utils.log.RequireDebugFalse'
 }
 },
 'handlers': {
 'mail_admins': {
 'level': 'ERROR',
 'filters': ['require_debug_false'],
 'class': 'django.utils.log.AdminEmailHandler'
 },
 'console': {
 'level': 'DEBUG',
 'class': 'logging.StreamHandler',
 },
 'malicious': {
 'level': 'WARN',
 'class': 'logging.FileHandler',
 'filename': 'malicious.log',
 },
 },
 'loggers': {
 'django.request': {
 'handlers': ['mail_admins'],
 'level': 'ERROR',
 'propagate': True,
 },
 'rules_light': {
 'handlers': ['console', 'malicious'],
 'propagate': True,
 'level': 'DEBUG',
 },
 }
}

Debugging

Two tools are provided to debug issues with your registry:

	the logger logs everything (and it likes to log malicious
users too),

	the url provides a live rule registry browser (see below).

As usual, resort to ipdb, for example in
rules_light.RuleRegistry.run() place:

import ipdb; ipdb.set_trace()

The registry browser

	
class rules_light.views.RegistryView(**kwargs)

	Expose the rule registry for debug purposes.

Install it as such:

url(r'^rules/$', RegistryView.as_view(), name='rules_light_registry'),

Or just:

url(r'^rules/', include('rules_light.urls')),

Note: view requires 'rules_light.rule.read' which is enabled for admins
by default.

Constructor. Called in the URLconf; can contain helpful extra
keyword arguments, and other things.

	
get_context_data()

	Add the registry to the context.

Security testing

It is important to test your security. Here is an example:

 Python Module Index

 r

 		 	

 		
 r	

 	[image: -]
 	
 rules_light	

 	
 	
 rules_light.class_decorator	

 	
 	
 rules_light.decorators	

 	
 	
 rules_light.middleware	

 	
 	
 rules_light.registry	

 	
 	
 rules_light.shortcuts	

 	
 	
 rules_light.views	

Index

 A
 | C
 | G
 | M
 | P
 | R

A

 	
 	as_text() (rules_light.registry.RuleRegistry method)

 	
 	autodiscover() (in module rules_light.registry)

C

 	
 	class_decorator (class in rules_light.class_decorator)

G

 	
 	get_context_data() (rules_light.views.RegistryView method)

M

 	
 	Middleware (class in rules_light.middleware)

P

 	
 	process_exception() (rules_light.middleware.Middleware method)

R

 	
 	RegistryView (class in rules_light.views)

 	require() (in module rules_light.registry)

 	(rules_light.registry.RuleRegistry method)

 	RuleRegistry (class in rules_light.registry)

 	rules_light.class_decorator (module)

 	rules_light.decorators (module)

 	
 	rules_light.middleware (module)

 	rules_light.registry (module)

 	rules_light.shortcuts (module)

 	rules_light.views (module)

 	run() (in module rules_light.registry)

 	(rules_light.registry.RuleRegistry method)

Make your decorators

This module enables piling rules on each others.

Consider this simple rule:

def is_authenticated(user, *args, **kwargs):
 return user and user.is_authenticated()

It can of course be used directly:

rules_light.registry['do_something'] = is_authenticated

But if defined using make_decorator as such:

@rules_light.make_decorator
def is_authenticated(user, *args, **kwargs):
 return user and user.is_authenticated()

Then you can use it to decorate other rules too:

@is_authenticated
def my_book(user, rule, book):
 return user == book.author

rules_light.registry['do_something'] = my_book

 _images/django-rules-light.png
“build passing

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to django-rules-light’s documentation!

 		
 Tutorial

 		
 Install

 		
 Middleware

 		
 Autodiscovery

 		
 Logging

 		
 Debug view

 		
 Creating Rules

 		
 Declare rules

 		
 Mix rules, DRY security

 		
 Using rules

 		
 Run

 		
 Require

 		
 Decorator

 		
 Template

 		
 Tips and tricks

 		
 Override rules

 		
 Take a shortcut

 		
 Test security

 		
 Rule registry

 		
 API

 		
 Examples

 		
 Class decorator

 		
 API

 		
 Examples

 		
 Middleware

 		
 Template

 		
 Shortcuts

 		
 Logging

 		
 Install

 		
 Debugging

 		
 The registry browser

 		
 Security testing

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

