

Welcome to django-responsive2’s documentation!

Contents:

	django-responsive2
	Why would you use django-responsive2?

	Using django-responsive2 in your views

	Quickstart

	Configuration

	Documentation

	Credits

	Installation

	Usage

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	History
	0.1.0 (2014-10-15)

django-responsive2

[image: http://img.shields.io/travis/mishbahr/django-responsive2.svg?style=flat-square]
 [https://travis-ci.org/mishbahr/django-responsive2/][image: Latest Version]
 [https://pypi.python.org/pypi/django-responsive2/][image: Downloads]
 [https://pypi.python.org/pypi/django-responsive2/][image: License]
 [https://pypi.python.org/pypi/django-responsive2/][image: http://img.shields.io/coveralls/mishbahr/django-responsive2.svg?style=flat-square]
 [https://coveralls.io/r/mishbahr/django-responsive2?branch=master]django-responsive2 is an experimental Django app that gives web designers tools for building
responsive websites. It can dynamically swap content based on breakpoints. Tested on Django>=1.8.

Why would you use django-responsive2?

This project was inspired by Twitter Bootstrap’s Responsive Utilities [http://getbootstrap.com/css/#responsive-utilities]. Bootstrap provides some handful helper classes, for faster mobile-friendly development. These
can be used for showing and hiding content by device via media query combined with large, small,
and medium devices.

Similarly django-responsive2 can be used to render different content based on device screen sizes and pixel ratios.
However, while it is very useful to show/hide content using css display property, Bootstrap Responsive Utilities does not actually prevent the content from being loaded on to the page. It is best explained through examples.

Sample example template using django-responsive2:

<div class="container">
 <div class="row">
 {% if device.is_xsmall or device.is_small %}
 <div class="col-sm">
 {# Rendered for x-small/small screen devices #}

 </div>
 {% elif device.is_medium %}
 <div class="col-md">
 {# Rendered for medium screen devices #}

 </div>
 {% else %}
 <div class="col-lg">
 {# Rendered for large/xlarge screen devices #}

 </div>
 {% endif %}
 </div>
</div>

In this very simple example, using the Bootstrap Responsive Utilities, all 3 images would have been loaded on to the page, wasting precious bandwidth, together with increase in page load time.

In comparison, using django-responsive2, only col-sm will be rendered for small screen devices (e.g. an iPhone), col-m will be displayed for medium screen devices (e.g. an iPad) and lastly col-lg will be visible for large screen devices or any devices that do not match the rules for small/medium devices.

Using django-responsive2 in your views

You can also use the django-responsive2 in your Django views to do particular things based on the matched media queries for the visitors device.

The ResponsiveMiddleware middleware sets the device attribute on every request object, so you can use request.device to get the device information for your visitors:

MIDDLEWARE_CLASSES=(
 ...
 'responsive.middleware.ResponsiveMiddleware'
 ...
)

Here’s an (verbose) example of what the a view could look like, request.device.matched returns a list of matched media queries for the visitors device.

e.g. ['small', 'retina']

def home(request):

if 'retina' in request.device.matched:
 thumbnail_high_resolution = True
else:
 thumbnail_high_resolution = False

if request.device.is_small:
 hide_ads = True
else:
 hide_ads = False

...
context = {
 'thumbnail_high_resolution': thumbnail_high_resolution,
 'hide_ads': hide_ads
}

...

Quickstart

	Install django-responsive2:

pip install django-responsive2

	Add responsive to INSTALLED_APPS:

INSTALLED_APPS = (
 ...
 'responsive',
 ...
)

	Add django.core.context_processors.request and responsive.context_processors.device to your TEMPLATE_CONTEXT_PROCESSORS:

TEMPLATE_CONTEXT_PROCESSORS = (
 ...
 'django.core.context_processors.request',
 'responsive.context_processors.device',
 ...
)

	Add the ResponsiveMiddleware to MIDDLEWARE_CLASSES:

MIDDLEWARE_CLASSES = (
 ...
 'responsive.middleware.ResponsiveMiddleware',
 ...
)

Configuration

django-responsive2 lets you to define the breakpoints at which your layout will change,
adapting to different screen sizes. Here’s the default breakpoints:

RESPONSIVE_MEDIA_QUERIES = {
 'small': {
 'verbose_name': _('Small screens'),
 'min_width': None,
 'max_width': 640,
 },
 'medium': {
 'verbose_name': _('Medium screens'),
 'min_width': 641,
 'max_width': 1024,
 },
 'large': {
 'verbose_name': _('Large screens'),
 'min_width': 1025,
 'max_width': 1440,
 },
 'xlarge': {
 'verbose_name': _('XLarge screens'),
 'min_width': 1441,
 'max_width': 1920,
 },
 'xxlarge': {
 'verbose_name': _('XXLarge screens'),
 'min_width': 1921,
 'max_width': None,
 }
}

** Borrowed from ZURB Foundation framework, see http://foundation.zurb.com/docs/media-queries.html

While there are several different items we can query on, the ones used for django-responsive2
are min-width, max-width, min-height and max-height.

	min_width — Rules applied for any device width over the value defined in the config.

	max_width — Rules applied for any device width under the value defined in the config.

	min_height — Rules applied for any device height over the value defined in the config.

	max_height — Rules applied for any device height under the value defined in the config.

	pixel_ratio — Rules applied for any device with devicePixelRatio defined in the config.

You can override the default media queries by defining own in your RESPONSIVE_MEDIA_QUERIES
in your settings.py. For example:

RESPONSIVE_MEDIA_QUERIES = {
 'iphone': {
 'verbose_name': _('iPhone Retina'),
 'min_width': 320, # mobile first queries
 'pixel_ratio': 2
 },
 ...
}

For every media queries, the device object will have a is_FOO attribute, where FOO
is the name of the media query. This attribute returns True/False.

Continuing with the example RESPONSIVE_MEDIA_QUERIES settings above, here’s a simple corresponding template:

<div class="container">
 <div class="row">
 {% if device.is_iphone %}
 {# this snippet will only be rendered for retina devices with minimum device width 320 #}
 <div class="app-store">
 Available on the App Store
 </div>
 {% endif %}
 </div>
</div>

Documentation

The full documentation is at https://django-responsive2.readthedocs.org.

Credits

This app started as a clone of django-responsive with some minor modifications to fit my own project requirements. So a big thank you to @mlavin [https://github.com/mlavin] for his hard work.

Shout out to @jezdez [https://github.com/jezdez] for the awesome django-appconf — used by this project to handle default configurations.

Installation

	Install django-responsive2:

pip install django-responsive2

	Add responsive to INSTALLED_APPS:

INSTALLED_APPS = (
 ...
 'responsive',
 ...
)

	Add django.core.context_processors.request and responsive.context_processors.device to your TEMPLATE_CONTEXT_PROCESSORS:

TEMPLATE_CONTEXT_PROCESSORS = (
 ...
 'django.core.context_processors.request',
 'responsive.context_processors.device',
 ...
)

	Add the ResponsiveMiddleware to MIDDLEWARE_CLASSES:

MIDDLEWARE_CLASSES = (
 ...
 'responsive.middleware.ResponsiveMiddleware',
 ...
)

Usage

django-responsive2 lets you to define the breakpoints at which your layout will change,
adapting to different screen sizes. Here’s the default breakpoints:

RESPONSIVE_MEDIA_QUERIES = {
 'small': {
 'verbose_name': _('Small screens'),
 'min_width': None,
 'max_width': 640,
 },
 'medium': {
 'verbose_name': _('Medium screens'),
 'min_width': 641,
 'max_width': 1024,
 },
 'large': {
 'verbose_name': _('Large screens'),
 'min_width': 1025,
 'max_width': 1440,
 },
 'xlarge': {
 'verbose_name': _('XLarge screens'),
 'min_width': 1441,
 'max_width': 1920,
 },
 'xxlarge': {
 'verbose_name': _('XXLarge screens'),
 'min_width': 1921,
 'max_width': None,
 }
}

** Borrowed from ZURB Foundation framework, see http://foundation.zurb.com/docs/media-queries.html

While there are several different items we can query on, the ones used for django-responsive2
are min-width, max-width, min-height and max-height.

	min_width — Rules applied for any device width over the value defined in the config.

	max_width — Rules applied for any device width under the value defined in the config.

	min_height — Rules applied for any device height over the value defined in the config.

	max_height — Rules applied for any device height under the value defined in the config.

	pixel_ratio — Rules applied for any device with devicePixelRatio defined in the config.

You can override the default media queries by defining own in your RESPONSIVE_MEDIA_QUERIES
in your settings.py. For example:

RESPONSIVE_MEDIA_QUERIES = {
 'iphone': {
 'verbose_name': _('iPhone Retina'),
 'min_width': 320,
 'pixel_ratio': 2
 },
 ...
}

For every media queries, the device object will have a is_FOO attribute, where FOO
is the name of the media query. This attribute returns True/False.

Continuing with the example RESPONSIVE_MEDIA_QUERIES settings above, here’s a simple corresponding template:

<div class="container">
 <div class="row">
 {% if device.is_iphone %}
 {# this snippet will only be rendered for retina devices with min_width = 320 #}
 <div class="app-store">
 Available on the App Store
 </div>
 {% endif %}
 </div>
</div>

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/mishbahr/django-responsive2/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

django-responsive2 could always use more documentation, whether as part of the
official django-responsive2 docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/mishbahr/django-responsive2/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up django-responsive2 for local development.

	Fork the django-responsive2 repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/django-responsive2.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv django-responsive2
$ cd django-responsive2/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 responsive tests
$ python setup.py test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, and 3.3, and for PyPy. Check
https://travis-ci.org/mishbahr/django-responsive2/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest tests.test_responsive

Credits

This app started as a clone of django-responsive with some minor modifications to fit my own project requirements. So a big thank you to @mlavin [https://github.com/mlavin] for his hard work.

Shout out to @jezdez [https://github.com/jezdez] for the awesome django-appconf — used by this project to handle default configurations.

Development Lead

	Mishbah Razzaque <mishbahx@gmail.com>

Contributors

	Ashley Wilson <scifilem@gmail.com>

History

0.1.0 (2014-10-15)

	First release on PyPI.

Index

 _static/up.png

nav.xhtml

 Table of Contents

 		Welcome to django-responsive2's documentation!

 		django-responsive2

 		Why would you use django-responsive2?

 		Using django-responsive2 in your views

 		Quickstart

 		Configuration

 		Documentation

 		Credits

 		Installation

 		Usage

 		Contributing

 		Types of Contributions

 		Report Bugs

 		Fix Bugs

 		Implement Features

 		Write Documentation

 		Submit Feedback

 		Get Started!

 		Pull Request Guidelines

 		Tips

 		Credits

 		Development Lead

 		Contributors

 		History

 		0.1.0 (2014-10-15)

_static/minus.png

_static/comment.png

_static/comment-bright.png

_static/up-pressed.png

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

