
django-registration-redux
Documentation

Release 2.1

James Bennett

Jan 18, 2018

Contents

1 Quick start guide 3

2 Release notes 9

3 Upgrade guide 11

4 The default backend 13

5 The “simple” (one-step) backend 17

6 The admin approval backend 19

7 Forms for user registration 21

8 Registration views 23

9 Custom signals used by django-registration-redux 25

10 Frequently-asked questions 27

Python Module Index 31

i

ii

django-registration-redux Documentation, Release 2.1

This documentation covers the 2.1 release of django-registration-redux, a simple but extensible application providing
user registration functionality for Django powered websites.

Although nearly all aspects of the registration process are customizable, out-of-the-box support is provided for the
following use cases:

• One-phase registration, where a user signs up and is immediately active and logged in.

• Two-phase registration, consisting of initial signup followed by a confirmation email with instructions for acti-
vating the new account.

• Three-phase registration, where a user signs up, confirms their account via email, and then an admin approves
the account allowing the user to login.

To get up and running quickly, consult the quick-start guide, which describes all the necessary steps to install django-
registration-redux and configure it for the default workflow. For more detailed information, including how to customize
the registration process (and support for alternate registration systems), read through the documentation listed below.

If you are upgrading from a previous release, please read the CHANGELOG for information on what’s changed.

Contents:

Contents 1

http://www.djangoproject.com
https://github.com/macropin/django-registration/blob/master/CHANGELOG

django-registration-redux Documentation, Release 2.1

2 Contents

CHAPTER 1

Quick start guide

Before installing django-registration-redux, you’ll need to have a copy of Django already installed. For the 2.1 release,
Django 1.11 or newer is required.

For further information, consult the Django download page, which offers convenient packaged downloads and instal-
lation instructions.

1.1 Installing django-registration-redux

There are several ways to install django-registration-redux:

• Automatically, via a package manager.

• Manually, by downloading a copy of the release package and installing it yourself.

• Manually, by performing a Git checkout of the latest code.

It is also highly recommended that you learn to use virtualenv for development and deployment of Python software;
virtualenv provides isolated Python environments into which collections of software (e.g., a copy of Django,
and the necessary settings and applications for deploying a site) can be installed, without conflicting with other in-
stalled software. This makes installation, testing, management and deployment far simpler than traditional site-wide
installation of Python packages.

1.1.1 Automatic installation via a package manager

Several automatic package-installation tools are available for Python; the recommended one is pip.

Using pip, type:

pip install django-registration-redux

It is also possible that your operating system distributor provides a packaged version of django-registration-redux.
Consult your operating system’s package list for details, but be aware that third-party distributions may be providing

3

http://www.djangoproject.com
http://www.djangoproject.com/download/
http://pypi.python.org/pypi/virtualenv
https://pip.pypa.io/

django-registration-redux Documentation, Release 2.1

older versions of django-registration-redux, and so you should consult the documentation which comes with your
operating system’s package.

1.1.2 Manual installation from a downloaded package

If you prefer not to use an automated package installer, you can download a copy of django-registration-redux and
install it manually. The latest release package can be downloaded from django-registration-redux’s listing on the
Python Package Index.

Once you’ve downloaded the package, unpack it (on most operating systems, simply double-click; alternately, type
tar zxvf django-registration-redux-x.x.tar.gz at a command line on Linux, Mac OS X or other
Unix-like systems). This will create the directory django-registration-redux-x.x, which contains the
setup.py installation script. From a command line in that directory, type:

python setup.py install

Note that on some systems you may need to execute this with administrative privileges (e.g., sudo python
setup.py install).

1.1.3 Manual installation from a Git checkout

If you’d like to try out the latest in-development code, you can obtain it from the django-registration-redux repository,
which is hosted at Github and uses Git for version control. To obtain the latest code and documentation, you’ll need
to have Git installed, at which point you can type:

git clone https://github.com/macropin/django-registration.git

You can also obtain a copy of a particular release of django-registration-redux by specifying the -b argument to git
clone; each release is given a tag of the form vX.Y, where “X.Y” is the release number. So, for example, to check
out a copy of the 2.1 release, type:

git clone -b v1.0 https://github.com/macropin/django-registration.git

In either case, this will create a copy of the django-registration-redux Git repository on your computer; you can
then add the django-registration-redux directory inside the checkout your Python import path, or use the
setup.py script to install as a package.

1.2 Basic configuration and use

Once installed, you can add django-registration-redux to any Django-based project you’re developing. The default
setup will enable user registration with the following workflow:

1. A user signs up for an account by supplying a username, email address and password.

2. From this information, a new User object is created, with its is_active field set to False. Additionally,
an activation key is generated and stored, and an email is sent to the user containing a link to click to activate
the account.

3. Upon clicking the activation link, the new account is made active (the is_active field is set to True); after
this, the user can log in.

Note that the default workflow requires django.contrib.auth to be installed, and it is recommended that
django.contrib.sites be installed as well. You will also need to have a working mail server (for sending

4 Chapter 1. Quick start guide

http://pypi.python.org/pypi/django-registration-redux/
http://pypi.python.org/pypi/django-registration-redux/
http://github.com/
http://git-scm.com/

django-registration-redux Documentation, Release 2.1

activation emails), and provide Django with the necessary settings to make use of this mail server (consult Django’s
email-sending documentation for details).

1.2.1 Settings

Begin by adding registration to the INSTALLED_APPS setting of your project, and specifying one additional
setting:

ACCOUNT_ACTIVATION_DAYS This is the number of days users will have to activate their accounts after regis-
tering. If a user does not activate within that period, the account will remain permanently inactive and may be
deleted by maintenance scripts provided in django-registration-redux.

REGISTRATION_DEFAULT_FROM_EMAIL Optional. If set, emails sent through the registration app will use this
string. Falls back to using Django’s built-in DEFAULT_FROM_EMAIL setting.

REGISTRATION_EMAIL_HTML Optional. If this is False, registration emails will be send in plain text. If this is
True, emails will be sent as HTML. Defaults to True.

REGISTRATION_AUTO_LOGIN Optional. If this is True, your users will automatically log in when they click on
the activation link in their email. Defaults to False.

ACCOUNT_AUTHENTICATED_REGISTRATION_REDIRECTS Optional. If this is True, your users will automati-
cally be redirected to LOGIN_REDIRECT_URL when trying to access the RegistrationView. Defaults to
True.

REGISTRATION_USE_SITE_EMAIL Optional. If this is True, the Site object will determine the domain that
emails are sent. The REGISTRATION_SITE_USER_EMAIL setting must be set if this is True. Defaults to
False.

REGISTRATION_SITE_USER_EMAIL Required if REGISTRATION_USE_SITE_EMAIL is set. Determines
the user that emails are sent by. For example, if this is set to admin emails will be sent from
admin@<your-site-domain.com>.

For example, you might have something like the following in your Django settings file:

INSTALLED_APPS = (
'django.contrib.sites',
'registration', #should be immediately above 'django.contrib.auth'
'django.contrib.auth',
...other installed applications...

)

ACCOUNT_ACTIVATION_DAYS = 7 # One-week activation window; you may, of course, use a
→˓different value.
REGISTRATION_AUTO_LOGIN = True # Automatically log the user in.

Once you’ve done this, run python manage.py migrate to install the model used by the default setup. Note, in
order for the templates to properly work, the registration app must appear above django.contrib.auth.

1.2.2 Setting up URLs

The default backend includes a Django URLconf which sets up URL patterns for the views in django-registration-
redux, as well as several useful views in django.contrib.auth (e.g., login, logout, password change/reset). This
URLconf can be found at registration.backends.default.urls, and so can simply be included in your
project’s root URL configuration. For example, to place the URLs under the prefix /accounts/, you could add the
following to your project’s root URLconf:

1.2. Basic configuration and use 5

http://docs.djangoproject.com/en/dev/topics/email/
http://docs.djangoproject.com/en/dev/topics/email/

django-registration-redux Documentation, Release 2.1

url(r'^accounts/', include('registration.backends.default.urls')),

Users would then be able to register by visiting the URL /accounts/register/, login (once activated) at /
accounts/login/, etc.

Another URLConf is also provided – at registration.auth_urls – which just handles the Django auth views,
should you want to put those at a different location.

1.2.3 Templates

The templates in django-registration-redux assume you have a base.html template in your project’s template di-
rectory. This base template should include a title, meta, and content block. The title block should allow
customization of the <title> tag. The meta block should appear within the <head> tag to allow for custom
<meta tags for security reasons. The content block should be within the <body> tag. Other than that, every tem-
plate needed is included. You can extend and customize the included templates as needed. To customize the templates,
create a registration folder where the template loader is configured to find templates. Copy the existing tem-
plates from the installed package or for your version on Github and modify them as necessary. Some of the templates
you’ll probably want to customize are covered here:

Note that, with the exception of the templates used for account activation emails, all of these are rendered using a
RequestContext and so will also receive any additional variables provided by context processors.

registration/registration_form.html

Used to show the form users will fill out to register. By default, has the following context:

form The registration form. This will be an instance of some subclass of django.forms.Form; consult Django’s
forms documentation for information on how to display this in a template.

registration/registration_complete.html

Used after successful completion of the registration form. This template has no context variables of its own, and
should simply inform the user that an email containing account-activation information has been sent.

registration/activate.html

Used if account activation fails. With the default setup, has the following context:

activation_key The activation key used during the activation attempt.

registration/activation_complete.html

Used after successful account activation. This template has no context variables of its own, and should simply inform
the user that their account is now active.

registration/activation_email_subject.txt

Used to generate the subject line of the activation email. Because the subject line of an email must be a single line of
text, any output from this template will be forcibly condensed to a single line before being used. This template has the
following context:

activation_key The activation key for the new account.

expiration_days The number of days remaining during which the account may be activated.

site An object representing the site on which the user registered; depending on whether django.contrib.
sites is installed, this may be an instance of either django.contrib.sites.models.Site (if the
sites application is installed) or django.contrib.sites.models.RequestSite (if not). Consult the
documentation for the Django sites framework for details regarding these objects’ interfaces.

6 Chapter 1. Quick start guide

https://docs.djangoproject.com/en/dev/topics/templates/#configuration
https://github.com/macropin/django-registration/releases
http://docs.djangoproject.com/en/dev/ref/templates/api/#id1
http://docs.djangoproject.com/en/dev/topics/forms/
http://docs.djangoproject.com/en/dev/topics/forms/
http://docs.djangoproject.com/en/dev/ref/contrib/sites/
http://docs.djangoproject.com/en/dev/ref/contrib/sites/

django-registration-redux Documentation, Release 2.1

registration/activation_email.txt

IMPORTANT: If you override this template, you must also override the HTML version (below), or disable HTML
emails by adding REGISTRATION_EMAIL_HTML = False to your settings.py.

Used to generate the text body of the activation email. Should display a link the user can click to activate the account.
This template has the following context:

activation_key The activation key for the new account.

expiration_days The number of days remaining during which the account may be activated.

site An object representing the site on which the user registered; depending on whether django.contrib.
sites is installed, this may be an instance of either django.contrib.sites.models.Site (if the
sites application is installed) or django.contrib.sites.models.RequestSite (if not). Consult the
documentation for the Django sites framework for details regarding these objects’ interfaces.

user The new user account

registration/activation_email.html

This template is used to generate the html body of the activation email. Should display the same content as the text
version of the activation email.

The context available is the same as the text version of the template.

registration/admin_approve_email_subject.txt

Used to generate the subject line of the approval email sent to the admin. Because the subject line of an email must be
a single line of text, any output from this template will be forcibly condensed to a single line before being used. This
template has the following context:

site An object representing the site on which the user registered; depending on whether django.contrib.
sites is installed, this may be an instance of either django.contrib.sites.models.Site (if the
sites application is installed) or django.contrib.sites.models.RequestSite (if not). Consult the
documentation for the Django sites framework for details regarding these objects’ interfaces.

registration/admin_approve_email.txt

IMPORTANT: If you override this template, you must also override the HTML version (below), or disable HTML
emails by adding REGISTRATION_EMAIL_HTML = False to your settings.py.

Used to generate the text body of the approval email sent to the admin. Should display a link the user can click to
activate the account. This template has the following context:

user The username of the user that requests approval for the new account.

site An object representing the site on which the user registered; depending on whether django.contrib.
sites is installed, this may be an instance of either django.contrib.sites.models.Site (if the
sites application is installed) or django.contrib.sites.models.RequestSite (if not). Consult the
documentation for the Django sites framework for details regarding these objects’ interfaces.

registration/admin_approve_email.html

This template is used to generate the html body of the approval email sent to the admin. Should display the same
content as the text version of the approval email.

The context available is the same as the text version of the template.

registration/admin_approve_complete.html

Used after successful account approval. This template has no context variables of its own, and should simply inform
the admin that the user account is now approved.

registration/admin_approve_complete_email_subject.txt

1.2. Basic configuration and use 7

http://docs.djangoproject.com/en/dev/ref/contrib/sites/
http://docs.djangoproject.com/en/dev/ref/contrib/sites/
http://docs.djangoproject.com/en/dev/ref/contrib/sites/
http://docs.djangoproject.com/en/dev/ref/contrib/sites/
http://docs.djangoproject.com/en/dev/ref/contrib/sites/
http://docs.djangoproject.com/en/dev/ref/contrib/sites/

django-registration-redux Documentation, Release 2.1

Used to generate the subject line of the admin approval complete email. Because the subject line of an email must be
a single line of text, any output from this template will be forcibly condensed to a single line before being used. This
template has the following context:

site An object representing the site on which the user registered; depending on whether django.contrib.
sites is installed, this may be an instance of either django.contrib.sites.models.Site (if the
sites application is installed) or django.contrib.sites.requests.RequestSite (if not). Consult
the documentation for the Django sites framework for details regarding these objects’ interfaces.

registration/admin_approve_complete_email.txt

IMPORTANT: If you override this template, you must also override the HTML version (below), or disable HTML
emails by adding REGISTRATION_EMAIL_HTML = False to your settings.py.

Used after successful account activation. This template has the following context:

site An object representing the site on which the user registered; depending on whether django.contrib.
sites is installed, this may be an instance of either django.contrib.sites.models.Site (if the
sites application is installed) or django.contrib.sites.requests.RequestSite (if not). Consult
the documentation for the Django sites framework for details regarding these objects’ interfaces.

registration/admin_approve_complete_email.html

This template is used to generate the html body of the approval complete email sent to the user. Should display the
same content as the text version of the approval complete email.

The context available is the same as the text version of the template.

8 Chapter 1. Quick start guide

http://docs.djangoproject.com/en/dev/ref/contrib/sites/
http://docs.djangoproject.com/en/dev/ref/contrib/sites/

CHAPTER 2

Release notes

The 2.1 release of django-registration-redux supports Python 2.7, 3.4, 3.5, 3.6 and Django 1.11 and 2.0.

9

django-registration-redux Documentation, Release 2.1

10 Chapter 2. Release notes

CHAPTER 3

Upgrade guide

The 2.1 release of django-registration-redux is not compatible with the legacy django-registration (previously main-
tained by James Bennett). Major backwards incompatible changes will be recorded here, but for a full list of changes
between versions you should refer to the CHANGELOG.

3.1 Django version requirement

As of 2.1, django-registration-redux requires Django 1.11 or newer; older Django releases may work, but are officially
unsupported. Additionally, django-registration-redux officially supports Python 2.7, 3.4, and 3.5, 3.6.

3.2 Backwards-incompatible changes

3.2.1 Version 2.1

• None

3.2.2 Version 2.0

• Removed support for Django < 1.11.

• Removed registration/urls.py in favor of registration/backends/default/urls.py

3.2.3 Version 1.9

• Change of return signature of RegistrationProfileManager.activate_user. A tuple containing
the User instance and a boolean of whether or not said user was activated is now returned.

11

https://github.com/macropin/django-registration/blob/master/CHANGELOG

django-registration-redux Documentation, Release 2.1

3.2.4 Version 1.8

• None

3.2.5 Version 1.7

• None

3.2.6 Version 1.6

• None

3.2.7 Version 1.5

• Support for Django 1.7 is removed, and Django 1.8 or newer is required.

• Change signature of RegistrationProfileManager.activate_user. site is now a required po-
sitional argument. See #244.

3.2.8 Version 1.4

• Remove unnecessary _RequestPassingFormView. See #56. Please ensure that you update any subclassed views
to reference self.request instead of accepting request as an argument.

3.2.9 Version 1.3

• Django 1.7 or newer is required. Please ensure you upgrade your Django version before upgrading.

3.2.10 Version 1.2

• Native migration support breaks South compatibility: An initial native migration for Django > 1.7 has been
provided. South users will need to configure a null migration with (SOUTH_MIGRATION_MODULES) in
settings.py as shown below:

SOUTH_MIGRATION_MODULES = {
'registration': 'registration.south_migrations',

• register method in RegistrationView has different parameters: The parameters of the‘register‘ method in
RegistrationView have changed.

3.2.11 Version 1.1

• base.html template required: A base.html template is now assumed to exist. Please ensure that your project
provides one for django-registration-redux to inherit from.

• HTML email templates: django-registration-redux now uses HTML email templates. If you previously cus-
tomized text email templates, you need to do the same with the new HTML templates.

12 Chapter 3. Upgrade guide

https://github.com/macropin/django-registration/pull/244
https://github.com/macropin/django-registration/pull/56

CHAPTER 4

The default backend

A default registration backend‘ is bundled with django-registration-redux, as the module registration.
backends.default, and implements a simple two-step workflow in which a new user first registers, then confirms
and activates the new account by following a link sent to the email address supplied during registration.

4.1 Default behavior and configuration

To make use of this backend, simply include the URLConf registration.backends.default.urls at what-
ever location you choose in your URL hierarchy.

This backend makes use of the following settings:

ACCOUNT_ACTIVATION_DAYS This is the number of days users will have to activate their accounts after register-
ing. Failing to activate during that period will leave the account inactive (and possibly subject to deletion). This
setting is required, and must be an integer.

REGISTRATION_OPEN A boolean (either True or False) indicating whether registration of new accounts is cur-
rently permitted. This setting is optional, and a default of True will be assumed if it is not supplied.

INCLUDE_AUTH_URLS A boolean (either True or False) indicating whether auth urls (mapped to django.
contrib.auth.views) should be included in the urlpatterns of the application backend.

INCLUDE_REGISTER_URL A boolean (either True or False) indicating whether the view for registering ac-
counts should be included in the urlpatterns of the application backend.

REGISTRATION_FORM A string dotted path to the desired registration form.

ACTIVATION_EMAIL_SUBJECT A string slashed path to the desired template for the activation email subject.

ACTIVATION_EMAIL_BODY A string slashed path to the desired template for the activation email body.

ACTIVATION_EMAIL_HTML A string slashed path tot the desired template for the activation email html.

By default, this backend uses registration.forms.RegistrationForm as its form class for user registra-
tion; this can be overridden by passing the keyword argument form_class to the register() view.

13

django-registration-redux Documentation, Release 2.1

Two views are provided: registration.backends.default.views.RegistrationView and
registration.backends.default.views.ActivationView. These views subclass django-
registration-redux’s base RegistrationView and ActivationView , respectively, and implement the
two-step registration/activation process.

Upon successful registration – not activation – the default redirect is to the URL pattern named
registration_complete; this can be overridden in subclasses by changing success_url or implementing
get_success_url()

Upon successful activation, the default redirect is to the URL pattern named
registration_activation_complete; this can be overridden in subclasses by implementing
get_success_url().

4.2 How account data is stored for activation

During registration, a new instance of django.contrib.auth.models.User is created to represent the new
account, with the is_active field set to False. An email is then sent to the email address of the account, containing
a link the user must click to activate the account; at that point the is_active field is set to True, and the user may
log in normally.

Activation is handled by generating and storing an activation key in the database, using the following model:

class registration.models.RegistrationProfile
A simple representation of the information needed to activate a new user account. This is not a user profile; it
simply provides a place to temporarily store the activation key and determine whether a given account has been
activated.

Has the following fields:

user
A ForeignKey to django.contrib.auth.models.User, representing the user account for
which activation information is being stored.

activation_key
A 40-character CharField, storing the activation key for the account. The activation key is the hexdigest
of a SHA1 hash.

activated
A BooleanField, storing whether or not the the User has activated their account. Storing this inde-
pendent from self.user.is_active allows accounts to be deactivated and prevent being reactivated
without authorization.

And the following methods:

activation_key_expired()
Determines whether this account’s activation key has expired, and returns a boolean (True if expired,
False otherwise). Uses the following algorithm:

1. If activated is True, the account has already been activated and so the key is considered to have
expired.

2. Otherwise, the date of registration (obtained from the date_joined field of user) is com-
pared to the current date; if the span between them is greater than the value of the setting
ACCOUNT_ACTIVATION_DAYS, the key is considered to have expired.

Return type bool

14 Chapter 4. The default backend

django-registration-redux Documentation, Release 2.1

send_activation_email(site[, request])
Sends an activation email to the address of the account.

The activation email will make use of two templates: registration/
activation_email_subject.txt and registration/activation_email.txt, which
are used for the subject of the email and the body of the email, respectively. Each will receive the
following context:

activation_key The value of activation_key .

expiration_days The number of days the user has to activate, taken from the setting
ACCOUNT_ACTIVATION_DAYS.

site An object representing the site on which the account was registered; depending on whether
django.contrib.sites is installed, this may be an instance of either django.contrib.
sites.models.Site (if the sites application is installed) or django.contrib.sites.
models.RequestSite (if not). Consult the documentation for the Django sites framework for
details regarding these objects’ interfaces.

request Django’s HttpRequest object for better flexibility. When provided, it will also provide all
the data via installed template context processors which can provide even more flexibility by using
many Django’s provided and custom template context processors to provide more variables to the
template.

Because email subjects must be a single line of text, the rendered output of registration/
activation_email_subject.txt will be forcibly condensed to a single line.

Parameters

• site (django.contrib.sites.models.Site or django.contrib.
sites.models.RequestSite) – An object representing the site on which account
was registered.

• request (django.http.request.HttpRequest) – Optional Django’s
HttpRequest object from view which if supplied will be passed to
the template via RequestContext. As a consequence, all installed
TEMPLATE_CONTEXT_PROCESSORS will be used to populate context.

Return type None

Additionally, RegistrationProfile has a custom manager (accessed as RegistrationProfile.
objects):

class registration.models.RegistrationManager
This manager provides several convenience methods for creating and working with instances of
RegistrationProfile:

activate_user(activation_key, site)
Validates activation_key and, if valid, activates the associated account by setting its is_active
field to True. To prevent re-activation of accounts, the activated of the RegistrationProfile
for the account will be set to True after successful activation.

Returns a tuple of (User, activated) representing the account if activation is successful and whether
the User was activated or not.

Parameters activation_key (string, a 40-character SHA1 hexdigest) –
The activation key to use for the activation.

Return type (User, ‘‘bool)

delete_expired_users()
Removes expired instances of RegistrationProfile, and their associated user accounts, from the

4.2. How account data is stored for activation 15

http://docs.djangoproject.com/en/dev/ref/contrib/sites/

django-registration-redux Documentation, Release 2.1

database. This is useful as a periodic maintenance task to clean out accounts which registered but never
activated.

Accounts to be deleted are identified by searching for instances of RegistrationProfile with
expired activation keys and with associated user accounts which are inactive (have their is_active
field set to False). To disable a user account without having it deleted, simply delete its associated
RegistrationProfile; any User which does not have an associated RegistrationProfile
will not be deleted.

A custom management command is provided which will execute this method, suitable for use in cron jobs
or other scheduled maintenance tasks: manage.py cleanupregistration.

Return type None

create_inactive_user(site[, new_user=None, send_email=True, request=None, **user_info])
Creates a new, inactive user account and an associated instance of RegistrationProfile, sends the
activation email and returns the new User object representing the account.

Parameters

• new_user (django.contrib.auth.models.AbstractBaseUser`) – The
user instance.

• user_info (dict) – The fields to use for the new account.

• site (django.contrib.sites.models.Site or django.contrib.
sites.models.RequestSite) – An object representing the site on which the
account is being registered.

• send_email (bool) – If True, the activation email will be sent to the account (by
calling RegistrationProfile.send_activation_email()). If False, no
email will be sent (but the account will still be inactive)

• request (django.http.request.HttpRequest) – If send_email parameter
is True and if request is supplied, it will be passed to the email templates for better
flexibility. Please take a look at the sample email templates for better explanation how it
can be used.

Return type User

create_profile(user)
Creates and returns a RegistrationProfile instance for the account represented by user.

The RegistrationProfile created by this method will have its activation_key set to a SHA1
hash generated from a combination of the account’s username and a random salt.

Parameters user (User) – The user account; an instance of django.contrib.auth.
models.User.

Return type RegistrationProfile

16 Chapter 4. The default backend

CHAPTER 5

The “simple” (one-step) backend

As an alternative to the default backend, and an example of writing alternate workflows, django-registration-redux
bundles a one-step registration system in registration.backend.simple. This backend’s workflow is delib-
erately as simple as possible:

1. A user signs up by filling out a registration form.

2. The user’s account is created and is active immediately, with no intermediate confirmation or activation step.

3. The new user is logged in immediately.

5.1 Configuration

To use this backend, simply include the URLconf registration.backends.simple.urls somewhere in
your site’s own URL configuration. For example:

url(r'^accounts/', include('registration.backends.simple.urls')),

No additional settings are required, but one optional setting is supported:

REGISTRATION_OPEN A boolean (either True or False) indicating whether registration of new accounts is cur-
rently permitted. A default of True will be assumed if this setting is not supplied.

SIMPLE_BACKEND_REDIRECT_URL Redirection url after successful registration. Default value is /

The default form class used for account registration will be registration.forms.RegistrationForm,
although this can be overridden by supplying a custom URL pattern for the registration view and pass-
ing the keyword argument form_class, or by subclassing registration.backends.simple.views.
RegistrationView and either overriding form_class or implementing get_form_class().

17

django-registration-redux Documentation, Release 2.1

18 Chapter 5. The “simple” (one-step) backend

CHAPTER 6

The admin approval backend

As an alternative to the default backend, and an example of writing alternate workflows, django-registration-redux
bundles an approval-needed registration system in registration.backend.admin_approval. This back-
end’s workflow is similar to the default with one extra step of approval from an admin. Specifically the steps are the
following:

1. A user signs up by filling out a registration form.

2. The user confirms the account by following the link sent to the email address supplied during registration.

3. An admin receives an email with a link that will approve the user registration.

4. When the admin approves the request, the user receives an email informing them that they can now login.

6.1 Configuration

To make use of this backend, simply include the URLConf registration.backends.admin_approval.
urls at whatever location you choose in your URL hierarchy.

This backend makes use of the same settings documented in the default backend plus the following settings:

REGISTRATION_ADMINS A list with the same structure as the ADMINS Django setting containing names and
emails. Approval emails will be sent to the emails defined here. If this setting is not set (or is empty), emails
defined in ADMINS will be used.

19

django-registration-redux Documentation, Release 2.1

20 Chapter 6. The admin approval backend

CHAPTER 7

Forms for user registration

Several form classes are provided with django-registration-redux, covering common cases for gathering account in-
formation and implementing common constraints for user registration. These forms were designed with django-
registration-redux’s default backend in mind, but may also be useful in other situations.

class registration.forms.RegistrationForm
A simple form for registering an account. Has the following fields, all of which are required:

username The username to use for the new account. This is represented as a text input which validates that
the username is unique, consists entirely of alphanumeric characters and underscores and is at most 30
characters in length.

email The email address to use for the new account. This is represented as a text input which accepts email
addresses up to 75 characters in length.

password1 The password to use for the new account. This represented as a password input (input
type="password" in the rendered HTML).

password2 The password to use for the new account. This represented as a password input (input
type="password" in the rendered HTML). Password mismatches are recorded as errors of
password2.

The constraints on usernames and email addresses match those enforced by Django’s default authentication
backend for instances of django.contrib.auth.models.User. The repeated entry of the password
serves to catch typos.

class registration.forms.RegistrationFormTermsOfService
A subclass of RegistrationForm which adds one additional, required field:

tos A checkbox indicating agreement to the site’s terms of service/user agreement.

class registration.forms.RegistrationFormUniqueEmail
A subclass of RegistrationForm which enforces uniqueness of email addresses in addition to uniqueness
of usernames.

class registration.forms.RegistrationFormNoFreeEmail
A subclass of RegistrationForm which disallows registration using addresses from some common free
email providers. This can, in some cases, cut down on automated registration by spambots.

21

django-registration-redux Documentation, Release 2.1

By default, the following domains are disallowed for email addresses:

• aim.com

• aol.com

• email.com

• gmail.com

• googlemail.com

• hotmail.com

• hushmail.com

• msn.com

• mail.ru

• mailinator.com

• live.com

• yahoo.com

• outlook.com

To change this, subclass this form and set the class attribute bad_domains to a list of domains you wish to
disallow.

7.1 Multiple Form Inheritance

Multiple RegistrationForm subclasses can be inherited into one class. For instance, if your project requires a
terms of service and a unique email upon registration, those subclasses can be inherited into a single class. That would
look like this:

myapp/forms.py
class CustomForm(RegistrationFormTermsOfService, RegistrationFormUniqueEmail):
pass

NOTE: If inheriting both RegistrationFormNoFreeEmail and RegistrationFormUniqueEmail.
RegistrationFormNoFreeEmail must be inherited first, like this:

myapp/forms.py
class CustomForm(RegistrationFormNoFreeEmail, RegistrationFormUniqueEmail):
pass

You can also add any customization to the form, to add additional fields for example. Once you have built your form
you must update the REGISTRATION_FORM reflect the string dotted path to the form you wish to use. For our
example in settings.py you would change REGISTRATION_FORM = 'myapp.forms.CustomForm'.

22 Chapter 7. Forms for user registration

CHAPTER 8

Registration views

In order to allow the utmost flexibility in customizing and supporting different workflows, django-registration-redux
makes use of Django’s support for class-based views. Included in django-registration-redux are two base classes which
can be subclassed to implement whatever workflow is required.

class registration.views.RegistrationView
A subclass of Django’s FormView, which provides the infrastructure for supporting user registration.

Useful places to override or customize on a RegistrationView subclass are:

disallowed_url
The URL to redirect to when registration is disallowed. Should be a string, the name of a URL pattern.
Default value is registration_disallowed.

form_class
The form class to use for user registration. Can be overridden on a per-request basis (see below). Should
be the actual class object; by default, this class is registration.forms.RegistrationForm.

success_url
The URL to redirect to after successful registration. Should be a string, the name of a URL pattern, or a
3-tuple of arguments suitable for passing to Django’s redirect shortcut. Can be overridden on a per-request
basis (see below). Default value is None, so that per-request customization is used instead.

template_name
The template to use for user registration. Should be a string. Default value is registration/
registration_form.html.

get_form_class()
Select a form class to use on a per-request basis. If not overridden, will use form_class. Should be the
actual class object.

get_success_url(user)
Return a URL to redirect to after successful registration, on a per-request or per-user basis. If not overrid-
den, will use success_url. Should be a string, the name of a URL pattern, or a 3-tuple of arguments
suitable for passing to Django’s redirect shortcut.

23

https://docs.djangoproject.com/en/dev/topics/class-based-views/
https://docs.djangoproject.com/en/dev/ref/class-based-views/generic-editing/#formview
https://docs.djangoproject.com/en/dev/topics/http/urls/#naming-url-patterns
https://docs.djangoproject.com/en/dev/topics/http/shortcuts/#redirect

django-registration-redux Documentation, Release 2.1

registration_allowed()
Should return a boolean indicating whether user registration is allowed, either in general or for this specific
request.

register(form)
Actually perform the business of registering a new user. Receives the registration form. Should return the
new user who was just registered.

class registration.views.ActivationView
A subclass of Django’s TemplateView which provides support for a separate account-activation step, in work-
flows which require that.

Useful places to override or customize on an ActivationView subclass are:

template_name
The template to use for user activation. Should be a string. Default value is registration/
activate.html.

activate(*args, **kwargs)
Actually perform the business of activating a user account. Receives any positional or keyword arguments
passed to the view. Should return the activated user account if activation is successful, or any value which
evaluates False in boolean context if activation is unsuccessful.

get_success_url(user)
Return a URL to redirect to after successful registration, on a per-request or per-user basis. If not overrid-
den, will use success_url. Should be a string, the name of a URL pattern, or a 3-tuple of arguments
suitable for passing to Django’s redirect shortcut.

class registration.views.ResendActivationView
A subclass of Django’s FormView‘ <https://docs.djangoproject.com/en/1.11/ref/class-based-views/
generic-editing/#formview>‘_ which provides support for resending an activation email to a user.

Useful places to override or customize on an ResendActivationView subclass are:

template_name
The template to use for user activation. Should be a string. Default value is registration/
resend_activation_form.html.

resend_activation(self, form)
Given an email, look up user by email and resend activation key
if user is not already activated or previous activation key has
not expired. Note that if multiple users exist with the given
email, no emails will be sent. Returns True if activation key
was successfully sent, False otherwise.

render_form_submitted_template(self, form)
Renders resend activation complete template with the submitted
email.

24 Chapter 8. Registration views

https://docs.djangoproject.com/en/dev/ref/class-based-views/base/#templateview
https://docs.djangoproject.com/en/1.11/ref/class-based-views/generic-editing/#formview
https://docs.djangoproject.com/en/1.11/ref/class-based-views/generic-editing/#formview

CHAPTER 9

Custom signals used by django-registration-redux

Much of django-registration-redux’s customizability comes through the ability to write and use registration backends
implementing different workflows for user registration. However, there are many cases where only a small bit of addi-
tional logic needs to be injected into the registration process, and writing a custom backend to support this represents
an unnecessary amount of work. A more lightweight customization option is provided through two custom signals
which backends are required to send at specific points during the registration process; functions listening for these
signals can then add whatever logic is needed.

For general documentation on signals and the Django dispatcher, consult Django’s signals documentation. This doc-
umentation assumes that you are familiar with how signals work and the process of writing and connecting functions
which will listen for signals.

registration.signals.user_activated
Sent when a user account is activated (not applicable to all backends). Provides the following arguments:

sender The backend class used to activate the user.

user An instance of django.contrib.auth.models.User representing the activated account.

request The HttpRequest in which the account was activated.

registration.signals.user_registered
Sent when a new user account is registered. Provides the following arguments:

sender The backend class used to register the account.

user An instance of django.contrib.auth.models.User representing the new account.

request The HttpRequest in which the new account was registered.

25

http://docs.djangoproject.com/en/dev/topics/signals/

django-registration-redux Documentation, Release 2.1

26 Chapter 9. Custom signals used by django-registration-redux

CHAPTER 10

Frequently-asked questions

The following are miscellaneous common questions and answers related to installing/using django-registration-redux,
culled from bug reports, emails and other sources.

10.1 General

What license is django-registration-redux under? django-registration-redux is offered under a three-clause BSD-
style license; this is an OSI-approved open-source license, and allows you a large degree of freedom in mod-
ifiying and redistributing the code. For the full terms, see the file LICENSE which came with your copy of
django-registration-redux; if you did not receive a copy of this file, you can view it online.

Why are the forms and models for the default backend not in the default backend? The model and manager
used by the default backend are in registration.models, and the default form class (and various sub-
classes) are in registration.forms; logically, they might be expected to exist in registration.
backends.default, but there are several reasons why that’s not such a good idea:

1. Older versions of django-registration-redux made use of the model and form classes, and moving them
would create an unnecessary backwards incompatibility: import statements would need to be changed,
and some database updates would be needed to reflect the new location of the RegistrationProfile
model.

2. Due to the design of Django’s ORM, the RegistrationProfile model would end up with an
app_label of default, which isn’t particularly descriptive and may conflict with other applications.
By keeping it in registration.models, it retains an app_label of registration, which more
accurately reflects what it does and is less likely to cause problems.

3. Although the RegistrationProfile model and the various form classes are used by the default
backend, they can and are meant to be reused as needed by other backends. Any backend which uses
an activation step should feel free to reuse the RegistrationProfile model, for example, and the
registration form classes are in no way tied to a specific backend (and cover a number of common use
cases which will crop up regardless of the specific backend logic in use).

27

http://www.opensource.org/licenses/bsd-license.php
https://github.com/macropin/django-registration/blob/master/LICENSE

django-registration-redux Documentation, Release 2.1

10.2 Installation and setup

How do I install django-registration-redux? Full instructions are available in the quick start guide.

Do I need to put a copy of django-registration-redux in every project I use it in? No; putting applications in
your project directory is a very bad habit, and you should stop doing it. If you followed the instructions men-
tioned above, django-registration-redux was installed into a location that’s on your Python import path, so you’ll
only ever need to add registration to your INSTALLED_APPS setting (in any project, or in any number
of projects), and it will work.

10.3 Configuration

Do I need to rewrite the views to change the way they behave?

Not always. Any behavior controlled by an attribute on a class-based view can be changed by passing
a different value for that attribute in the URLConf. See Django’s class-based view documentation for
examples of this.

For more complex or fine-grained control, you will likely want to subclass RegistrationView or
ActivationView , or both, add your custom logic to your subclasses, and then create a URLConf
which makes use of your subclasses.

I don’t want to write my own URLconf because I don’t want to write patterns for all the auth views! You’re in
luck, then; django-registration-redux provides a URLconf which only contains the patterns for the auth
views, and which you can include in your own URLconf anywhere you’d like; it lives at registration.
auth_urls.

I don’t like the names you’ve given to the URL patterns! In that case, you should feel free to set up your own
URLconf which uses the names you want.

10.4 Troubleshooting

I’ve got functions listening for the registration/activation signals, but they’re not getting called!

The most common cause of this is placing django-registration-redux in a sub-directory that’s on your
Python import path, rather than installing it directly onto the import path as normal. Importing from
django-registration-redux in that case can cause various issues, including incorrectly connecting sig-
nal handlers. For example, if you were to place django-registration-redux inside a directory named
django_apps, and refer to it in that manner, you would end up with a situation where your code
does this:

from django_apps.registration.signals import user_registered

But django-registration-redux will be doing:

from registration.signals import user_registered

From Python’s point of view, these import statements refer to two different objects in two different mod-
ules, and so signal handlers connected to the signal from the first import will not be called when the signal
is sent using the second import.

To avoid this problem, follow the standard practice of installing django-registration-redux directly on your
import path and always referring to it by its own module name: registration (and in general, it is
always a good idea to follow normal Python practices for installing and using Django applications).

28 Chapter 10. Frequently-asked questions

https://docs.djangoproject.com/en/dev/topics/class-based-views/#simple-usage-in-your-urlconf

django-registration-redux Documentation, Release 2.1

I want to use custom templates, but django keeps using the admin templates instead of mine!

To fix this, make sure that in the INSTALLED_APPS of your settings.py the entry for the
registration app is placed above django.contrib.admin.

10.5 Tips and tricks

How do I log a user in immediately after registration or activation? Take a look at the implementation of the sim-
ple backend, which logs a user in immediately after registration.

How do I re-send an activation email? Assuming you’re using the default backend, a custom admin action is pro-
vided for this; in the admin for the RegistrationProfile model, simply click the checkbox for the user(s)
you’d like to re-send the email for, then select the “Re-send activation emails” action.

How do I manually activate a user? In the default backend, a custom admin action is provided for this. In the admin
for the RegistrationProfile model, click the checkbox for the user(s) you’d like to activate, then select
the “Activate users” action.

How do I send an email with html content? By default, the email content will only be plain text. To allow HTML
content to be sent, you should add a url pattern before including django-registration’s urls (i.e
registration.backends.default.urls). For example, if your email template is registration/
password_reset_email.html, your urls.py could look like:

from django.conf.urls import url, include
from django.contrib.auth import views as auth_views
from django.urls import reverse_lazy

url(r'^password/reset/$',
auth_views.PasswordResetView.as_view(

success_url=reverse_lazy('auth_password_reset_done'),
html_email_template_name='registration/password_reset_email.html'

), name='auth_password_reset'),

other url patterns

last the default registration backends
url(r'', include('registration.backends.default.urls')),

We provide default HTML templates in the registration/templates/registration directory.

See also:

• Django’s authentication documentation; Django’s authentication system is used by django-registration-redux’s
default configuration.

10.5. Tips and tricks 29

http://docs.djangoproject.com/en/dev/ref/contrib/admin/actions/
http://docs.djangoproject.com/en/dev/topics/auth/

django-registration-redux Documentation, Release 2.1

30 Chapter 10. Frequently-asked questions

Python Module Index

r
registration.backends.admin_approval,

17
registration.backends.default, 12
registration.backends.simple, 16
registration.forms, 19
registration.signals, 24
registration.views, 22

31

django-registration-redux Documentation, Release 2.1

32 Python Module Index

Index

A
activate() (registration.views.ActivationView method), 24
activate_user() (registration.models.RegistrationManager

method), 15
activated (registration.models.RegistrationProfile at-

tribute), 14
activation_key (registration.models.RegistrationProfile

attribute), 14
activation_key_expired() (registra-

tion.models.RegistrationProfile method),
14

ActivationView (class in registration.views), 24

C
create_inactive_user() (registra-

tion.models.RegistrationManager method),
16

create_profile() (registra-
tion.models.RegistrationManager method),
16

D
delete_expired_users() (registra-

tion.models.RegistrationManager method),
15

disallowed_url (registration.views.RegistrationView at-
tribute), 23

F
form_class (registration.views.RegistrationView at-

tribute), 23

G
get_form_class() (registration.views.RegistrationView

method), 23
get_success_url() (registration.views.ActivationView

method), 24
get_success_url() (registration.views.RegistrationView

method), 23

R
register() (registration.views.RegistrationView method),

24
registration.backends.admin_approval (module), 17
registration.backends.default (module), 12
registration.backends.simple (module), 16
registration.forms (module), 19
registration.signals (module), 24
registration.views (module), 22
registration_allowed() (registra-

tion.views.RegistrationView method), 23
RegistrationForm (class in registration.forms), 21
RegistrationFormNoFreeEmail (class in registra-

tion.forms), 21
RegistrationFormTermsOfService (class in registra-

tion.forms), 21
RegistrationFormUniqueEmail (class in registra-

tion.forms), 21
RegistrationManager (class in registration.models), 15
RegistrationProfile (class in registration.models), 14
RegistrationView (class in registration.views), 23
render_form_submitted_template() (registra-

tion.views.ResendActivationView method),
24

resend_activation() (registra-
tion.views.ResendActivationView method),
24

ResendActivationView (class in registration.views), 24

S
send_activation_email() (registra-

tion.models.RegistrationProfile method),
14

success_url (registration.views.RegistrationView at-
tribute), 23

T
template_name (registration.views.ActivationView

attribute), 24

33

django-registration-redux Documentation, Release 2.1

template_name (registration.views.RegistrationView at-
tribute), 23

template_name (registra-
tion.views.ResendActivationView attribute),
24

U
user (registration.models.RegistrationProfile attribute), 14
user_activated (in module registration.signals), 25
user_registered (in module registration.signals), 25

34 Index

	Quick start guide
	Release notes
	Upgrade guide
	The default backend
	The “simple” (one-step) backend
	The admin approval backend
	Forms for user registration
	Registration views
	Custom signals used by django-registration-redux
	Frequently-asked questions
	Python Module Index

