

Welcome to django-redis-metrics’s documentation!

This app allows you do define various named metrics (such as ‘New Users’,
‘Downloads’, or ‘Purchases’), record when they happen, and quickly and easily
view that information.

Each metric can be assigned to an arbitrary category or given an optional
expiration time. Granularity for metrics are saved daily, weekly, monthly, and
yearly by default, but this libary gives you the ability to store event data
down to the second, minute, and hour.

Here’s a sneak peak at how it works:

>>> from redis_metrics.utils import metric
>>> metric("Downloads", category="User Metrics")

See the usage section for more examples.

Inspiration

This app was inspired by Frank Wiles django-app-metrics. It offers a
similar feature set but:

	It is only backed by Redis

	Does not require Celery

	Does not include any Timing

License

This code is distributed under the terms of the MIT license. See the project’s
LICENSE.txt file for the full content of the license.

Learn More

	Installation
	Requirements

	Additional Installation

	Settings

	Upgrading versions prior to 0.8.x

	Usage
	Gauges

	The R class

	Templatetags

	Contributing

Indices and tables

	Index

	Module Index

	Search Page

Installation

To get started quickly:

	Run pip install django-redis-metrics.

	Adding redis_metrics to your INSTALLED_APPS.

	Include url(r'^metrics/', include('redis_metrics.urls')) in your URLConf.

Requirements

This app works with Python 3.6+ and is tested with Django 2.x. It also
requires redis-py [https://github.com/andymccurdy/redis-py]. For support for older versions of Django, see the
1.7.0 release [https://github.com/bradmontgomery/django-redis-metrics/releases/tag/v1.7.0].

If you’d like to run the tests, install the packages listed in
requirements/test.txt, which includes coverage and mock.

Additional Installation

To install the current version, run pip install django-redis-metrics.

You can also install the development version with
pip install -e git://github.com/bradmontgomery/django-redis-metrics.git#egg=redis_metrics-dev

To use the built-in views, add redis_metrics to your INSTALLED_APPS,
and include the following in your Root URLconf:

from django.urls import re_path, include

re_path(r'^metrics/', include('redis_metrics.urls')),

Then, to view your metrics, visit the /metrics/ url, (i.e. run the development
server and go to http://127.0.0.1:8000/metrics/)

Settings

Starting with version 1.0, this app contains a single setting, REDIS_METRICS,
which includes a number of options, all wich have the following defaults:

REDIS_METRICS = {
 'CONNECTION_CLASS': None,
 'HOST': 'localhost',
 'PORT': 6379,
 'DB': 0,
 'PASSWORD': None,
 'SOCKET_TIMEOUT': None,
 'SOCKET_CONNECTION_POOL': None,
 'MIN_GRANULARITY': 'daily',
 'MAX_GRANULARITY': 'yearly',
 'MONDAY_FIRST_DAY_OF_WEEK': False,
 'USE_ISO_WEEK_NUMBER': False,
}

Formerly, each of these were separate settings with a REDIS_METRICS_ prefix.

	
	CONNECTION_CLASS: Optional name of a function which returns an instance of a Redis client.

	
	If you are using django-redis [https://github.com/niwinz/django-redis] for caching, for example, then you can set this to 'django_redis.get_redis_connection' to automatically use whatever django-redis [https://github.com/niwinz/django-redis] is using to get its Redis client instances (django-redis [https://github.com/niwinz/django-redis] supports pluggable back ends for Redis).

	This can also be used to enable the use of Redis clients that support Redis Sentinel (e.g. use django-redis-sentinel [https://github.com/KabbageInc/django-redis-sentinel] along with django-redis [https://github.com/niwinz/django-redis]), Redis Clustering or Hiredis, for example.

	You can also create your own class/function that returns a valid Redis client.

	Note that if you specify this setting, then all other Redis-related settings will be ignored (namely HOST, PORT, DB, PASSWORD, SOCKET_TIMEOUT and SOCKET_CONNECTION_POOL).

	HOST: Hostname of redis server that will contain your metrics data; defaults to ‘localhost’

	PORT: Port of your redis server; defaults to ‘6379’

	DB: Your redis database number to use, defaults to 0

	PASSWORD: Your redis password if needed; defaults to None

	SOCKET_TIMEOUT: Your redis database socket timeout; defaults to None

	SOCKET_CONNECTION_POOL: Your redis database socket connection pool; defaults to None

	MIN_GRANULARITY: The minimum-time granularity for your metrics; default is ‘daily’.

	MAX_GRANULARITY: The maximum-time granularity for your metrics; default is ‘yearly’

	MONDAY_FIRST_DAY_OF_WEEK: Set to True if week should start on Monday; default is False

	USE_ISO_WEEK_NUMBER: Set to True to use ISO calendar weeks (see the isocalendar [https://docs.python.org/3/library/datetime.html#datetime.date.isocalendar] docs).

Upgrading versions prior to 0.8.x

If you used a version of this app prior to 0.8.0, it’s likely that
you’ll run into this error:

WRONGTYPE Operation against a key holding the wrong kind of value

To fix this, run the fix_redis_metrics_keys command, which should migrate
data for metrics, gauges, and categories into the format used by the current
version of the app.

Usage

Use the metric shortcut to start recording metrics.

from redis_metrics import metric

Increment the metric by one
metric('new-user-signup')

Increment the metric by some other number
metric('new-user-signup', 4)

Metrics can also be categorized. To record a metric and add it to a category,
specify a category keyword parameter

Increment the metric, and add it to a category
metric('new-user-signup', category="User Metrics")

Metrics can also expire after a specified number of seconds

The 'foo' metric will expire in 5 minutes
metric('foo', expire=300)

You can also reset a metric with the set_metric function. This will
replace any existing values for the metric, rather than incrementing them. It’s
api is similar to metric’s.

from redis_metrics import set_metric

Reset the Download count.
set_metric("downloads", 0)

Gauges

There are also gauge’s. A gauge is great for storing a cumulative
value, and when you don’t care about keeping a history for the metric. In other
words, a gauge gives you a snapshot of some current value.

from redis_metrics import gauge

Create a gauge
gauge('total-downloads', 0)

Update the gauge
gauge('total-downloads', 9999)

The R class

There’s also an R class which is a lightweight wrapper around redis.
You can use it directly to set metrics or gauges and to retrieve data.

>>> from redis_metrics.models import R
>>> r = R()
>>> r.metric('new-user-signup')
>>> r.get_metric('new-user-signup')
{
 'second': 0,
 'minute': 0,
 'hour': 1,
 'day': '29',
 'month': '29',
 'week': '29',
 'year': '29'
}

list the slugs you've used to create metrics
>>> r.metric_slugs()
set(['new-user-signup', 'user-logins'])

Get metrics for multiple slugs
>>> r.get_metrics(['new-user-signup', 'user-logins'])
[
 {'new-user-signup': {
 'second': '0', 'minute': '0', 'hour': '1',
 'day': '7', 'month': '7', 'week': '7', 'year': '7'}},
 {'user-logins':
 'second': '0', 'minute': '0', 'hour': '1',
 'day': '7', 'month': '7', 'week': '7', 'year': '7'}},
]

Delete a metric
>>> r.delete_metric("app-errors")

Templatetags

The included templatetags are useful for visualizing your stored metrics.

Load the templatetags in your template::
{% load redis_metric_tags %}

Viewing your data is possible with the built-in views, but these all make use
of a number of templatetags to display metric data and history.

	metrics_since(slugs, years, link_type="detail", granularity=None) Renders
a template with a menu to view a metric (or a list of metrics) for a given
number of years. For example:

{% metrics_since "downloads" 5 %} {# downloads for the last 5 years #}

	gauge(slug, maximum=9000, size=200, coerce='float'): Includes a donut
chart for the specified gauge. The maximum represents the largest possible
value for the gague, while the size is the size of the chart in pixels. The
coerce parameter tells the template tag how to coerce numeric data. By default
values are converted to floats, but you can include coerce='int' to force
values to be listed as integers.:

{% gauge "tasks-completed" 10 size=300 coerce='int' %}

	metric_list generates a list of all metrics.

	metric_detail(slug, with_data_table=False) displays a metric’s current
details. This tag will also generate a table of raw data if the with_data_table
option is True.

	metric_history(slug, granularity="daily", since=None, to=None, with_data_table=False)
displays a given metric’s history. The granularity option defines the
granularity displayed, since is a string or datetime object that specifies
the date and/or time from which we start displaying data, the to argument
indicates to date or time to which we display data, and with_data_table
controls wether or not raw data is displayed in a table. Examples:

{# dainly signups since Jan 1, 2015 #}
{% metric_history "signups" "daily" "2015-01-01" %}

{# daily signups between Jan 1, 2015 & Jan, 1 2016 #}
{% metric_history "signups" "daily" "2015-01-01" "2016-01-01" %}

{# monthly signups for a given year #}
{% metric_history "signups" "monthly" this_year %}

{# monthly signups for a given year, including data #}
{% metric_history "signups" "monthly" this_year with_data_table=True %}

	aggregate_detail(slug_list, with_data_table=False) is much like metric_detail,
but displayes more than one metric on the chart. The slug_list parameter should
be a list of metric slugs that you want to display.

	aggregate_history(slug_list, granularity="daily", since=None, with_data_table=False)
is similarly like metric_history, but for multiple metrics on once chart.
but displayes more than one metric on the chart. The slug_list parameter should
be a list of metric slugs that you want to display.

Contributing

Ideas and pull requests are welcome! Please feel free to submit bug reports or
pull requests on the github repo [https://github.com/bradmontgomery/django-redis-metrics].

If you do submit a pull request, please consider running the tests and (if
applicable) adding test coverage for your changes. This project uses travis [https://travis-ci.org/bradmontgomery/django-redis-metrics]
to automatically run the test suite for all pull requests. There’s also an
AUTHORS.rst file containing all of the people who have contributed code.
Please add yourself.

Thank You in advance!

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to django-redis-metrics’s documentation!

 		
 Installation

 		
 Requirements

 		
 Additional Installation

 		
 Settings

 		
 Upgrading versions prior to 0.8.x

 		
 Usage

 		
 Gauges

 		
 The R class

 		
 Templatetags

 		
 Contributing

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

