

Django-ratelimit-backend

Django-ratelimit-backend is an app that allows rate-limiting of login attempts
at the authentication backend level. Login attempts are stored in the cache so
you need a properly configured cache setup.

By default, it blocks any IP that has more than 30 failed login attempts in
the past 5 minutes. The IP can still browse your site, only login attempts are
blocked.

Note

If you use a custom authentication backend, there is an additional
configuration step. Check the custom backends
section.

	Usage
	Installation

	Quickstart

	Customizing rate-limiting criteria

	Using with other backends

	Reference
	Authentication backends

	Exceptions

	Admin

	Middleware

	Views

	Forms

	Logging

Get involved, submit issues and pull requests on the code repository [https://github.com/brutasse/django-ratelimit-backend]!

Changes

	2.0 (2018-08-27):

	Add support for Django 2.0 and 2.1, and drop support for Django < 1.11.

	1.2 (2017-09-13):

	Add no_username attribute on authentication backend for token-based
authentication (Jody McIntyre).

	Fix Travis build for Python 3.3 (Jody McIntyre).

	1.1.1 (2017-03-30):

	Run tests on Python 3.6.

	Run without warnings on supported Django versions.

	1.1 (2017-03-16):

	Exclude tests from being installed from the wheel file.

	Add support for Django 1.10 and 1.11.

	1.0 (2015-07-10):

	Silence warnings with Django 1.8.

	0.6.4 (2015-03-31):

	Only set the redirect field to the value of request.get_full_path() if
the field does not already have a value. Patch by Michael Blatherwick.

	0.6.3 (2015-02-12):

	Add RatelimitMixin.get_ip.

	0.6.2 (2014-07-28):

	Django 1.7 support. Patch by Mathieu Agopian.

	0.6.1 (2014-01-21):

	Removed calls to deprecated check_test_cookie().

	0.6 (2013-04-18):

The RatelimitBackend now allows arbitrary kwargs for authentication,
not just username and password. Patch by Trey Hunner.

	0.5 (2013-02-14):

	Python 3 compatibility.

	The backend now issues a warning (warnings.warn()) instead of a logging
call when no request is passed to the backend. This is because such cases
are developer errors so a warning is more appropriate.

	0.4 (2013-01-20):

	Automatically re-register models which have been registered in
Django’s default admin site instance. There is no need to register
3rd-party models anymore.

	Fixed a couple of deprecation warnings.

	0.3 (2012-11-22):

	Removed the part where the admin login form looked up a User object
when an email was used to login. This brings support for Django 1.5’s
swappable user models.

	0.2 (2012-07-31):

	Added a logging call when a user reaches its rate-limit.

	0.1:

	Initial version.

Indices and tables

	Index

	Module Index

	Search Page

Usage

Installation

pip install django-ratelimit-backend

There’s nothing to add to your INSTALLED_APPS, unless you want to run the
tests. In which case, add 'ratelimitbackend'.

Quickstart

	Set your AUTHENTICATION_BACKENDS to:

AUTHENTICATION_BACKENDS = (
 'ratelimitbackend.backends.RateLimitModelBackend',
)

If you have a custom backend, see the backends reference.

	Everytime you use django.contrib.auth.views.login, use
ratelimitbackend.views.login instead.

	Register ratelimitbackend’s admin URLs in your URLConf instead of the
default admin URLs.

In your urls.py:

from ratelimitbackend import admin

urlpatterns += [
 (r'^admin/', include(admin.site.urls)),
]

Ratelimitbackend’s admin site overrides the default admin login view to add
rate-limiting. You can keep registering your models to the default admin
site and they will show up in the ratelimitbackend-enabled admin.

	Add 'ratelimitbackend.middleware.RateLimitMiddleware' to your
MIDDLEWARE_CLASSES, or create you own middleware to handle rate limits.
See the middleware reference.

	If you use django.contrib.auth.forms.AuthenticationForm directly,
replace it with ratelimitbackend.forms.AuthenticationForm and always
pass it the request object. For instance:

if request.method == 'POST':
 form = AuthenticationForm(data=request.POST, request=request)
 # etc. etc.

If you use django.contrib.auth.authenticate, pass it the request object
as well.

Customizing rate-limiting criteria

By default, rate limits are based on the IP of the client. An IP that submits
a form too many times gets rate-limited, whatever it submits. For custom
rate-limiting you can subclass the backend and implement your own logic.

Let’s see with an example: instead of checking the client’s IP, we will use a
combination of the IP and the tried username. This way after 30 failed
attempts with one username, people can start brute-forcing a new username.
Yay! More seriously, it can become useful if you have lots of users logging in
at the same time from the same IP.

While we’re at it, we’ll also allow 50 login attempts every 10 minutes.

To do this, simply subclass
ratelimitbackend.backends.RateLimitModelBackend:

from ratelimitbackend.backends import RateLimitModelBackend

class MyBackend(RateLimitModelBackend):
 minutes = 10
 requests = 50

 def key(self, request, dt):
 return '%s%s-%s-%s' % (
 self.cache_prefix,
 self.get_ip(request),
 request.POST['username'],
 dt.strftime('%Y%m%d%H%M'),
)

The key() method is used to build the cache keys storing the login
attempts. The default implementation doesn’t use POST data, here we’re adding
another part to the cache key.

Note that we’re not sanitizing anything, so we may end up with a rather long
cache key. Be careful.

For all the details about the rate-limiting implementation, see the
backend reference.

Using with other backends

The way django-ratelimit-backend is implemented requires the authentication
backends to have an authenticate() that takes an additional request
keyword argument.

While django-ratelimit-backend works fine with the default ModelBackend by
providing a replacement class, it’s obviously not possible to do that for every
single backend.

The way to deal with this is to create a custom class using the
RateLimitMixin class before registering the backend in your settings. For
instance, for the LdapAuthBackend:

from django_auth_ldap.backend import LDAPBackend
from ratelimitbackend.backends import RateLimitMixin

class RateLimitedLDAPBackend(RateLimitMixin, LDAPBackend):
 pass

AUTHENTICATION_BACKENDS = (
 'path.to.settings.RateLimitedLDAPBackend',
)

RateLimitMixin lets you simply add rate-limiting capabilities to any
authentication backend.

RateLimitMixin throws a warning when no request is passed to its
authenticate() method. This warning also contains the username that was
passed. If you use an authentication backend that doesn’t take the traditional
username and password arguments, set the username_key attribute on the backend class to the proper keyword argument name. For instance, if your
backend authenticates with an email:

class CustomBackend(BaseBackend):
 def authenticate(self, email, password):
 ...

class RateLimitedLCustomBackend(RateLimitMixin, CustomBackend):
 username_key = 'email'

If your backend does not have the concept of a username at all,
for example with OAuth 2 bearer token authentication, set the
no_username attribute on the backend class to True.

The RateLimitNoUsernameModelBackend can be used for this purpose
if you don’t need any additional customization.

Reference

Authentication backends

	
class ratelimitbackend.backends.RateLimitMixin

	This is where the rate-limiting logic is implemented. Failed login
attempts are cached for 5 minutes and when the treshold is reached, the
remote IP is blocked whether its attempts are valid or not.

	
RateLimitMixin.cache_prefix

	The prefix to use for cache keys. Defaults to 'ratelimitbackend-'

	
RateLimitMixin.minutes

	Number of minutes after which login attempts are not taken into account.
Defaults to 5.

	
RateLimitMixin.requests

	Number of login attempts to allow during minutes. Defaults to 30.

	
RateLimitMixin.authenticate(username, password, request)

	Tries to authenticate(username, password) on the parent backend and
use the request for rate-limiting.

	
RateLimitMixin.get_counters(request)

	Fetches the previous failed login attempts from the cache. There is one
cache key per minute slot.

	
RateLimitMixin.keys_to_check(request)

	Returns the list of keys to try to fetch from the cache for previous login
attempts. For a 5-minute limit, this returns the 5 relevant cache keys.

	
RateLimitMixin.get_cache_key(request)

	Returns the cache key for the current time. This is the key to increment
if the login attempt has failed.

	
RateLimitMixin.key(request, dt)

	Derives a cache key from the request and a datetime object. The datetime
object can be present (for the current request) or past (for the previous
cache keys).

	
RateLimitMixin.get_ip(request)

	Extracts the client IP address from the request. By defaults the IP is
read from request.META[‘REMOTE_ADDR’] but you can override this if you
have a proxy that uses a custom header such as X-Forwarded-For.

	
RateLimitMixin.cache_incr(key)

	Performs an increment operation on key. The implementation is not
atomic. If you have a cache backend that supports atomic increment
operations, you’re advised to override this method.

	
RateLimitMixin.expire_after()

	Returns the cache timeout for keys.

	
class ratelimitbackend.backends.RateLimitModelBackend

	A rate-limited version of django.contrib.auth.backends.ModelBackend.

This is a subclass of django.contrib.auth.backends.ModelBackend that
adds rate-limiting. If you have custom backends, make sure they inherit
from this instead of the default ModelBackend.

If your backend has nothing to do with Django’s auth system, use
RateLimitMixin to inject the rate-limiting functionality in your
backend.

Exceptions

	
class ratelimitbackend.exceptions.RateLimitException

	The exception thrown when a user reaches the limits.

	
RateLimitException.counts

	A dictionnary containing the cache keys for every minute and the
corresponding failed login attempts.

Example:

{
 'ratelimitbackend-127.0.0.1-201110181448': 12,
 'ratelimitbackend-127.0.0.1-201110181449': 18,
}

Admin

	
class ratelimitbackend.admin.RateLimitAdminSite

	Rate-limited version of the default Django admin site. If you use the
default admin site (django.contrib.admin.site), it won’t be
rate-limited.

If you have a custom admin site (inheriting from AdminSite), you need to
make it inherit from ratelimitbackend.RateLimitAdminSite, replacing:

from django.contrib import admin

class AdminSite(admin.AdminSite):
 pass
site = AdminSite()

with:

from ratelimitbackend import admin

class AdminSite(admin.RateLimitAdminSite):
 pass
site = AdminSite()

Make sure your calls to admin.site.register reference the correct admin
site.

	
RateLimitAdminSite.login(request, extra_context=None)

	This method calls django-ratelimit-backend’s version of the login view.

Middleware

	
class ratelimitbackend.middleware.RateLimitMiddleware

	This middleware catches RateLimitException and returns a 403 instead,
with a 'text/plain' mimetype. Use your custom middleware if you need a
different behaviour.

Views

	
ratelimitbackend.views.login(request[, template_name, redirect_field_name, authentication_form])

	This function uses a custom authentication form and passes it the request
object. The external API is the same as Django’s login view [https://docs.djangoproject.com/en/dev/topics/auth/#django.contrib.auth.views.login].

Forms

	
class ratelimitbackend.forms.AuthenticationForm

	A subclass of Django’s authentication form [https://docs.djangoproject.com/en/dev/topics/auth/#django.contrib.auth.forms.AuthenticationForm] that passes the request
object to the authenticate() function, hence to the authentication
backend.

Logging

Failed attempts are logged using a logger named 'ratelimitbackend'. Here
is an example for logging to the standard output:

LOGGING = {
 'formatters': {
 'simple': {
 'format': '%(asctime)s %(levelname)s: %(message)s'
 },
 # other formatters
 },
 'handlers': {
 'console': {
 'level': 'DEBUG',
 'class': 'logging.StreamHandler',
 'formatter': 'simple',
 },
 # other handlers
 },
 'loggers': {
 'ratelimitbackend': {
 'handlers': ['console'],
 'level': 'INFO',
 },
 # other loggers
 },
}

You will see two kinds of messages:

	“No request passed to the backend, unable to rate-limit. Username was…”

This means you’re not using the app correctly, the request object wasn’t
passed to the authentication backend. Double-check the documentation, and if
you make manual calls to login-related functions you may need to pass the
request object manually.

The log level for this message is: WARNING.

	“Login failed: username ‘foo’, IP 127.0.0.1”

This is a failed attempt that has been temporarily cached.

The log level for this message is: INFO.

	“Login rate-limit reached: username ‘foo’, IP 127.0.0.1”

This means someone has used all his quotas and got a
RateLimitException, locking him temporarily until the quota decreases.

The log level for this message is: WARNING.

 Python Module Index

 r

 		 	

 		
 r	

 	[image: -]
 	
 ratelimitbackend	

 	
 	
 ratelimitbackend.admin	
 The admin site with rate limits.

 	
 	
 ratelimitbackend.backends	
 Backend classes for enabling rate-limiting.

 	
 	
 ratelimitbackend.exceptions	
 Exceptions thrown when the limit is reached.

 	
 	
 ratelimitbackend.forms	

 	
 	
 ratelimitbackend.middleware	

 	
 	
 ratelimitbackend.views	

Index

 A
 | C
 | E
 | G
 | K
 | L
 | M
 | R

A

 	
 	authenticate() (ratelimitbackend.backends.RateLimitMixin method)

 	
 	AuthenticationForm (class in ratelimitbackend.forms)

C

 	
 	cache_incr() (ratelimitbackend.backends.RateLimitMixin method)

 	
 	cache_prefix (ratelimitbackend.backends.RateLimitMixin attribute)

 	counts (ratelimitbackend.exceptions.RateLimitException attribute)

E

 	
 	expire_after() (ratelimitbackend.backends.RateLimitMixin method)

G

 	
 	get_cache_key() (ratelimitbackend.backends.RateLimitMixin method)

 	
 	get_counters() (ratelimitbackend.backends.RateLimitMixin method)

 	get_ip() (ratelimitbackend.backends.RateLimitMixin method)

K

 	
 	key() (ratelimitbackend.backends.RateLimitMixin method)

 	
 	keys_to_check() (ratelimitbackend.backends.RateLimitMixin method)

L

 	
 	login() (in module ratelimitbackend.views)

 	(ratelimitbackend.admin.RateLimitAdminSite method)

M

 	
 	minutes (ratelimitbackend.backends.RateLimitMixin attribute)

R

 	
 	RateLimitAdminSite (class in ratelimitbackend.admin)

 	ratelimitbackend.admin (module)

 	ratelimitbackend.backends (module)

 	ratelimitbackend.exceptions (module)

 	ratelimitbackend.forms (module)

 	ratelimitbackend.middleware (module)

 	
 	ratelimitbackend.views (module)

 	RateLimitException (class in ratelimitbackend.exceptions)

 	RateLimitMiddleware (class in ratelimitbackend.middleware)

 	RateLimitMixin (class in ratelimitbackend.backends)

 	RateLimitModelBackend (class in ratelimitbackend.backends)

 	requests (ratelimitbackend.backends.RateLimitMixin attribute)

 nav.xhtml

 Table of Contents

 		
 Django-ratelimit-backend

 		
 Usage

 		
 Installation

 		
 Quickstart

 		
 Customizing rate-limiting criteria

 		
 Using with other backends

 		
 Reference

 		
 Authentication backends

 		
 Exceptions

 		
 Admin

 		
 Middleware

 		
 Views

 		
 Forms

 		
 Logging

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

