
django-pymess Documentation
Release 1.4

Luboš Mátl

Jul 13, 2018

Contents

1 Project Home 3

2 Documentation 5
2.1 Content . 5

i

ii

django-pymess Documentation, Release 1.4

Django-pymess is a library for sending various type of messages like: SMS, Push notifications or e-mails

Contents 1

django-pymess Documentation, Release 1.4

2 Contents

CHAPTER 1

Project Home

https://github.com/druids/django-pymess

3

https://github.com/druids/django-pymess

django-pymess Documentation, Release 1.4

4 Chapter 1. Project Home

CHAPTER 2

Documentation

https://django-pymess.readthedocs.org/en/latest

2.1 Content

2.1.1 Installation

Using PIP

Django can use pip for installation:

$ pip install django-pymess

2.1.2 Configuration

After installation you must go through these steps:

Required Settings

The following variables have to be added to or edited in the project’s settings.py:

For using pymess you just add pymess to INSTALLED_APPS variable:

INSTALLED_APPS = (
...
'pymess',
...

)

5

https://django-pymess.readthedocs.org/en/latest

django-pymess Documentation, Release 1.4

Setup

SMS

PYMESS_SMS_TEMPLATE_MODEL
If you want to use your own SMS template model you must set this setting with your custom SMS template
model that extends pymess.models.sms.AbstractSMSTemplate otherwise pymess.models.
sms.SMSTemplate is used.

PYMESS_SMS_USE_ACCENT
Setting that sets if SMS will be sent with accent or not. Default value is False.

PYMESS_SMS_LOG_IDLE_MESSAGES
Setting that sets whether the delivery time is checked for messages. Default value is True.

SMS_SET_ERROR_TO_IDLE_MESSAGES
Setting that sets if idle messages will be moved to the error state after defined time. Default value is True.

PYMESS_SMS_IDLE_MESSAGES_TIMEOUT_MINUTES
If setting PYMESS_SMS_LOG_IDLE_MESSAGES is set to True, PYMESS_SMS_IDLE_SENDING_MESSAGES_TIMEOUT_MINUTES
defines the number of minutes to send a warning that sms has not been sent. Default value is 10.

PYMESS_SMS_DEFAULT_PHONE_CODE
Country code that is set to the recipient if phone number doesn’t contain another one.

PYMESS_SMS_SENDER_BACKEND
Path to the SMS backend that will be used for sending SMS messages. Default value is 'pymess.backend.
sms.dummy.DummySMSBackend'.

PYMESS_SMS_ATS_CONFIG
Configuration of pymess.backend.sms.ats_sms_operator.ATSSMSBackend.

PYMESS_SMS_OPERATOR_CONFIG
Configuration of pymess.backend.sms.sms_operator.SMSOperatorBackend.

PYMESS_SMS_SNS_CONFIG
Configuration of pymess.backend.sms.sns.SNSSMSBackend.

E-MAIL

PYMESS_EMAIL_TEMPLATE_MODEL
If you want to use your own E-MAIL template model you must set this setting with your custom e-mail template
model that extends pymess.models.email.AbstractEmailTemplate otherwise is used pymess.
models.email.EmailTemplate.

PYMESS_EMAIL_SENDER_BACKEND
Path to the E-mail backend that will be used for sending e-mail messages. Default value is 'pymess.
backend.emails.dummy.DummyEmailBackend'.

PYMESS_EMAIL_BATCH_SENDING
If you use standard SMTP service you should send e-mails in batches otherwise other SMTP providers could
add your SMTP server to the black-list. With this setting you configure e-mail backend not to send e-mails
directly but messages are only created in state “waiting”. Finally e-mails should be sent with Django command
send_emails_batch. Default value is False.

PYMESS_EMAIL_BATCH_SIZE
Defines maximum number of e-mails that are sent with command send_emails_batch.

6 Chapter 2. Documentation

django-pymess Documentation, Release 1.4

PYMESS_EMAIL_MANDRILL
Configuration of pymess.backend.email.mandrill.MandrillEmailBackend.

2.1.3 SMS

SMS messages that are stored inside Django model class defined later, are sent via SMS backend. There are imple-
mented several SMS backends, every backed uses differend SMS service like twillio or AWS SNS. For sending SMS
message you can use function pymess.backend.sms.send or pymwess.backend.sms.send_template.

pymess.backend.sms.send(recipient, content, related_objects=None, tag=None, **sms_attrs)
Function has two required parameters recipient which is a phone number of the receiver and
content. Attribute content is a text message that will be sent inside the SMS body. If setting
PYMESS_SMS_USE_ACCENT is set to False, accent in the content will be replaced by appropriate ascii
characters. Attribute related_objects should contain a list of objects that you want to connect with the
sent message (with generic relation). tag is string mark which is stored with the sent SMS message . The last
non required parameter **sms_kwargs is extra data that will be stored inside SMS message model in field
extra_data.

pymess.backend.sms.send_template(recipient, slug, context_data, related_objects=None,
tag=None)

The second function is used for sending prepared templates that are stored inside template model (class that
extends pymess.models.sms.AbstractSMSTemplate). The first parameter recipient is phone
number of the receiver, slug is key of the template, context_data is a dictionary that contains context data
for rendering SMS content from the template, related_objects should contains list of objects that you
want to connect with the sent message and tag is string mark which is stored with the sent SMS message.

Models

class pymess.models.sms.OutputSMSMessage
The model contains data of already sent SMS messages.

created_at
Django DateTimeField, contains date and time of creation.

changed_at
Django DateTimeField, contains date and time the of last change.

sent_at
Django DateTimeField, contains date and time of sending the SMS message.

recipient
CharField that contains phone number of the receiver.

sender
CharField that contains phone number of the sender. Field can be empty if backend doesn’t provide
sender number.

content
TextField, contains content of the SMS message.

template_slug
If SMS was sent from the template, this attribute cointains key of the template.

template
If SMS was sent from the template, this attribute contains foreign key of the template. The reason why
there is template_slug and template fields is that a template instance can be removed and it is good
to keep at least the key of the template.

2.1. Content 7

django-pymess Documentation, Release 1.4

state
Field contains the current state of the message. Allowed states are:

• WAITING - SMS was not sent to the external service

• UNKNOWN - SMS was sent to the external service but its state is unknown

• SENDING - SMS was sent to the external service

• SENT - SMS was sent to the receiver

• ERROR - error was raised during sending of the SMS message

• DEBUG - SMS was not sent because system is in debug mode

• DELIVERED - SMS was delivered to the receiver

backend
Field contains path to the SMS backend that was used for sending of the SMS message.

error
If error was raised during sending of the SMS message this field contains text description of the error.

extra_data
Extra data stored with JSONField.

extra_sender_data
Extra data related to the SMS backend stored with JSONField. Every SMS backend can have different
extra data.

tag
String tag that you can define during sending SMS message.

failed
Returns True if SMS ended in ERROR state.

related_objects
Returns DB manager of pymess.models.sms.OutputSMSRelatedObjectmodel that are related
to the concrete SMS message.

class pymess.models.sms.OutputSMSRelatedObject
Model for storing related objects that you can connect with the SMS message.

created_at
Django DateTimeField, contains date and time of creation.

changed_at
Django DateTimeField, contains date and time the of last change.

output_sms_message
Foreign key to the SMS message.

content_type
Content type of the stored model (generic relation)

object_id_int
If a related objects has primary key in integer format the key is stored here. This field uses db index
therefore filtering is much faster.

object_id
Primary key of a related object stored in django TextField.

class pymess.models.sms.AbstractSMSTemplate
Abstract class of SMS template which you can use to define your own SMS template model. Your model that
extends this class is set inside setting PYMESS_SMS_TEMPLATE_MODEL:

8 Chapter 2. Documentation

django-pymess Documentation, Release 1.4

PYMESS_SMS_TEMPLATE_MODEL = 'your_application.YourSMSTemplateModel'

created_at
Django DateTimeField, contains date and time of creation.

changed_at
Django DateTimeField, contains date and time the of last change.

slug
Key of the SMS template in the string format (Django slug).

body
Body of the SMS message. Final SMS content is rendered with Django template system by default.

get_body()
Returns body of the model message. You can use it to update SMS body before rendering.

render_body(context_data)
Renders template stored inside body field to the message content. Standard Django template system is
used by default.

can_send(recipient, context_data)
Returns by default True value. If you need to restrict sending SMS template for some reasons, you can
override this method.

send(recipient, context_data, related_objects=None, tag=None)
Checks if message can be sent, renders message content and sends it via defined backend. Finally, the sent
message is returned. If message cannot be sent, None is returned.

class pymess.models.sms.SMSTemplate
Default template model class that only inherits from pymess.models.sms.AbstractSMSTemplate

Backends

Backend is a class that is used for sending messages. Every backend must provide API defined by pymess.
backends.sms.SMSBackend class. SMS backend is configured via PYMESS_SMS_SENDER_BACKEND (ex.
PYMESS_SMS_SENDER_BACKEND = 'pymess.backend.sms.sns.SNSSMSBackend'). There are cur-
rently implemented following SMS backends:

class pymess.backend.sms.dummy.DummySMSBackend
Backend that can be used for testing. SMS is not sent, but is automatically set to the DEBUG state.

class pymess.backend.sms.sns.SNSSMSBackend
Backend that uses amazon SNS for sending messages (https://aws.amazon.com/sns/)

class pymess.backend.sms.twilio.TwilioSMSBackend
Backend that uses twilio service for sending SMS messages (https://www.twilio.com/)

class pymess.backend.sms.ats_sms_operator.ATSSMSBackend
Czech ATS SMS service is used for sending SMS messages. Service and backend supports checking if SMS
was actually delivered. (https://www.atspraha.cz/)

Configuration of attributes according to ATS operator documentation:

PYMESS_ATS_SMS_CONFIG = {
'URL': 'http://fik.atspraha.cz/gwfcgi/XMLServerWrapper.fcgi', # If you use

→˓default URL param, this doesn't need to be set
'UNIQ_PREFIX': 'unique-id-prefix', # If you use SMS service for more

→˓applications you can define this prefix and it will be added to the message ID

(continues on next page)

2.1. Content 9

https://aws.amazon.com/sns/
https://www.twilio.com/
https://www.atspraha.cz/

django-pymess Documentation, Release 1.4

(continued from previous page)

'USERNAME': 'username',
'PASSWORD': 'password',
'UNIQ_PREFIX': '',
'VALIDITY': 60,
'TEXTID': None,
'OPTID': '',

}

class pymess.backend.sms.sms_operator.SMSOperatorBackend
Czech SMS operator service is used for sending SMS messages. Service and backend supports checking if SMS
was actually delivered. (https://www.sms-operator.cz/)

Configuration of attributes according to SMS operator documentation:

PYMESS_SMS_OPERATOR_CONFIG = {
'URL': 'https://www.sms-operator.cz/webservices/webservice.aspx', # If you

→˓use default URL param, this doesn't need to be set
'UNIQ_PREFIX': 'unique-id-prefix', # If you uses SMS service for more

→˓applications you can define this prefix and it will be added to the message ID
'USERNAME': 'username',
'PASSWORD': 'password',

}

Custom backend

If you want to write your own Pymess SMS backend, you must create class that inherits from pymess.backends.
sms.SMSBackend:

.. class pymess.backends.sms.SMSBackend

publish_message(message)
This method should send SMS message (obtained from the input argument) and update its state.
This method must be overridden in the custom backend.

publish_messages(messages)
If your service that provides sending messages in batch, you can override the
publish_messages method. Input argument is a list of messages. By default,
publish_message method is used for sending and messages are send one by one.

bulk_check_sms_states()
If your service provides checking SMS state you can override this method and implement code that
check if SMS messages were delivered.

Commands

Because some services provide checking if SMS messages were delivered, Pymess provides a command that calls
backend method bulk_check_sms_state. You can use this command inside cron and periodically call it. But
SMS backend and service must provide it (must have implemented method bulk_check_sms_states).

2.1.4 E-mails

Like SMS E-mail messages are stored inside Django model class and sent via backend. Again we provide more
e-mail backends, every backend uses different e-mail service like Mandrill, AWS SNS or standard SMTP. For send-

10 Chapter 2. Documentation

https://www.sms-operator.cz/

django-pymess Documentation, Release 1.4

ing e-mail message you can use function pymess.backend.email.send or pymwess.backend.email.
send_template.

pymess.backend.emails.send(sender, recipient, subject, content, sender_name=None,
related_objects=None, attachments=None, tag=None,
**email_kwargs)

Parameter sender define source e-mail address of the message, you can specify the name of the sender with op-
tional parameter sender_name. recipient is destination e-mail address. Subject and HTML content of the
e-mail message is defined with subject and content parameters. Attribute related_objects should
contain a list of objects that you want to connect with the send message (with generic relation). Optional param-
eter attachments should contains list of files that will be sent with the e-mail in format ({file name},
{output stream with file content}, {content type}). tag is string mark which is stored
with the sent SMS message . The last non required parameter **email_kwargs is extra data that will be
stored inside e-mail message model in field extra_data.

pymess.backend.emails.send_template(recipient, slug, context_data, related_objects=None, at-
tachments=None, tag=None)

The second function is used for sending prepared templates that are stored inside template model (class that
extends pymess.models.sms.AbstractEmailTemplate). The first parameter recipient is e-mail
address of the receiver, slug is key of the template, context_data is a dictionary that contains context data
for rendering e-mail content from the template, related_objects should contains list of objects that you
want to connect with the send message, attachments should contains list of files that will be send with the
e-mail and tag is string mark which is stored with the sent SMS message.

Models

class pymess.models.emails.EmailMessage
The model contains data of already sent e-mail messages.

created_at
Django DateTimeField, contains date and time of creation.

changed_at
Django DateTimeField, contains date and time the of last change.

sent_at
Django DateTimeField, contains date and time of sending the e-mail message.

recipient
EmailField that contains e-mail address of the receiver.

sender
EmailField that contains e-mail address of th sender.

sender_name
CharField that contains readable/friendly sender name.

subject
TextField, contains subject of the e-mail message.

content
TextField, contains content of the e-mail message.

template_slug
If e-mail was sent from the template, this attribute cointains key of the template.

template
If e-mail was sent from the template, this attribute contains foreign key of the template. The reason why
there is template_slug and template fields is that a template instance can be removed and it is good
to keep at least the key of the template.

2.1. Content 11

django-pymess Documentation, Release 1.4

state
Contains the current state of the message. Allowed states are:

• WAITING - e-mail was not sent to the external service

• SENDING - e-mail was sent to the external service

• SENT - e-mail was sent to the receiver

• ERROR - error was raised during sending of the e-mail message

• DEBUG - e-mail was not sent because system is in debug mode

backend
Field contains path to the e-mail backend that was used for sending of the SMS message.

error
If error was raised during sending of the SMS message this field contains text description of the error.

extra_data
Extra data stored with JSONField.

extra_sender_data
Extra data related to the e-mail backend stored with JSONField. Every SMS backend can have different
extra data.

tag
String tag that you can define during sending SMS message.

failed
Returns True if SMS ended in ERROR state.

related_objects
Returns DB manager of pymess.models.emails.EmailRelatedObject model that are related
to the concrete e-mail message.

class pymess.models.emails.EmailRelatedObject
Model for storing related objects that you can connect with the e-mail message.

created_at
Django DateTimeField, contains date and time of creation.

changed_at
Django DateTimeField, contains date and time the of last change.

email_message
Foreign key to the e-mail message.

content_type
Content type of the stored model (generic relation)

object_id_int
If a related objects have primary key in integer format the key is stored here. This field uses db index,
therefore filtering is much faster.

object_id
Primary key of a related object stored in django TextField.

class pymess.models.emails.Attachment
Django model that contains e-mail attachments.

created_at
Django DateTimeField, contains date and time of creation.

12 Chapter 2. Documentation

django-pymess Documentation, Release 1.4

changed_at
Django DateTimeField, contains date and time the of last change.

email_message
Foreign key to the e-mail message.

content_type
Django CharField, contains content type of the attachment.

file
Django FileField, contains file which was send to the recipient.

class pymess.models.emails.AbstractEmailTemplate
Abstract class of e-mail template which you can use to define your own e-mail template model. Your model that
extends this class is set inside setting PYMESS_EMAIL_TEMPLATE_MODEL:

PYMESS_EMAIL_TEMPLATE_MODEL = 'your_application.YourEmailTemplateModel'

created_at
Django DateTimeField, contains date and time of creation.

changed_at
Django DateTimeField, contains date and time the of last change.

slug
Key of the e-mail template in the string format (Django slug).

sender
EmailField that contains e-mail address of the sender.

sender_name
CharField that contains readable/friendly sender name.

subject
TextField, contains subject of the e-mail message. Final e-mail subject is rendered with Django tem-
plate system by default.

body
Body of the e-mail message. Final e-mail content is rendered with Django template system by default.

get_body()
Returns body of the model message. You can use it to update e-mail body before rendering.

render_body(context_data)
Renders template stored inside body field to the message content. Standard Django template system is
used by default.

get_subject()
Returns subject of the model message. You can use it to update e-mail subject before rendering.

render_subject(context_data)
Renders template stored inside subject field to the message content. Standard Django template system
is used by default.

can_send(recipient, context_data)
Returns by default True value. If you need to restrict sending e-mail template for some reasons, you can
override this method.

send(recipient, context_data, related_objects=None, tag=None, attachments=None)
Checks if message can be sent, renders message content and sends it via defined backend. Finally, the sent
message is returned. If message cannot be sent, None is returned.

2.1. Content 13

django-pymess Documentation, Release 1.4

class pymess.models.emails.EmailTemplate
Default template model class that only inherits from pymess.models.emails.
AbstractEmailTemplate

Backends

Backend is a class that is used for sending messages. Every backend must provide API de-
fined by pymess.backends.emails.EmailBackend class. E-mail backend is configured via
PYMESS_EMAIL_SENDER_BACKEND (ex. PYMESS_EMAIL_SENDER_BACKEND = 'pymess.backend.
emails.smtp.SMTPEmailBackend'). There are currently implemented following e-mail backends:

class pymess.backend.emails.dummy.DummyEmailBackend
Backend that can be used for testing. E-mail is not sent, but is automatically set to the DEBUG state.

class pymess.backend.emails.smtp.SMTPEmailBackend
Backend that uses standard SMTP service for sending e-mails. Configuration of SMTP is same as Django
configuration.

class pymess.backend.emails.mandrill.MandrillEmailBackend
Backend that uses mandrill service for sending e-mail messages (https://mandrillapp.com/api/docs/index.
python.html). For this purpose you must have installed mandrill library.

Configuration of attributes according to Mandrill operator documentation (the names of the configuration are
the same):

PYMESS_EMAIL_MANDRILL_CONFIG = {
'KEY': '', # Mandrill notification key
'HEADERS': None,
'TRACK_OPENS': False,
'TRACK_CLICKS': False,
'AUTO_TEXT': False,
'INLINE_CSS': False,
'URL_STRIP_QS': False,
'PRESERVE_RECIPIENTS': False,
'VIEW_CONTENT_LINK': True,
'ASYNC': False,

}

Custom backend

If you want to write your own Pymess e-mail backend, you must create class that inherits from pymess.backends.
emails.EmailBackend:

.. class pymess.backends.sms.EmailBackend

publish_message(message)
This method should send e-mail message (obtained from the input argument) and update its state.
This method must be overridden in the custom backend.

Commands

send_emails_batch

As mentioned e-mails can be sent in a batch with Django command send_emails_batch.

14 Chapter 2. Documentation

https://mandrillapp.com/api/docs/index.python.html
https://mandrillapp.com/api/docs/index.python.html

django-pymess Documentation, Release 1.4

sync_emails

Store e-mail body in a HTML file is better from code readability. Therefore this command updates e-mails body
from HTML files store in directory. You can select the directory with command property directory or you can
set directory with setting PYMESS_EMAIL_HTML_DATA_DIRECTORY. E-mails body in the directory is stored like
HTML file named with e-mail slug and html as a suffix.

dump_emails

E-mail body can be changed in the database therefore reverse operation to sync_emails can be done with this
command. You must select directory where e-mails body in HTML format will be stored.

2.1. Content 15

django-pymess Documentation, Release 1.4

16 Chapter 2. Documentation

Index

B
backend (pymess.models.emails.EmailMessage at-

tribute), 12
backend (pymess.models.sms.OutputSMSMessage

attribute), 8
body (pymess.models.emails.AbstractEmailTemplate at-

tribute), 13
body (pymess.models.sms.AbstractSMSTemplate at-

tribute), 9
bulk_check_sms_states(), 10

C
can_send() (pymess.models.emails.AbstractEmailTemplate

method), 13
can_send() (pymess.models.sms.AbstractSMSTemplate

method), 9
changed_at (pymess.models.emails.AbstractEmailTemplate

attribute), 13
changed_at (pymess.models.emails.Attachment at-

tribute), 12
changed_at (pymess.models.emails.EmailMessage

attribute), 11
changed_at (pymess.models.emails.EmailRelatedObject

attribute), 12
changed_at (pymess.models.sms.AbstractSMSTemplate

attribute), 9
changed_at (pymess.models.sms.OutputSMSMessage at-

tribute), 7
changed_at (pymess.models.sms.OutputSMSRelatedObject

attribute), 8
content (pymess.models.emails.EmailMessage attribute),

11
content (pymess.models.sms.OutputSMSMessage at-

tribute), 7
content_type (pymess.models.emails.Attachment at-

tribute), 13
content_type (pymess.models.emails.EmailRelatedObject

attribute), 12
content_type (pymess.models.sms.OutputSMSRelatedObject

attribute), 8
created_at (pymess.models.emails.AbstractEmailTemplate

attribute), 13
created_at (pymess.models.emails.Attachment attribute),

12
created_at (pymess.models.emails.EmailMessage at-

tribute), 11
created_at (pymess.models.emails.EmailRelatedObject

attribute), 12
created_at (pymess.models.sms.AbstractSMSTemplate

attribute), 9
created_at (pymess.models.sms.OutputSMSMessage at-

tribute), 7
created_at (pymess.models.sms.OutputSMSRelatedObject

attribute), 8

E
email_message (pymess.models.emails.Attachment at-

tribute), 13
email_message (pymess.models.emails.EmailRelatedObject

attribute), 12
error (pymess.models.emails.EmailMessage attribute), 12
error (pymess.models.sms.OutputSMSMessage at-

tribute), 8
extra_data (pymess.models.emails.EmailMessage at-

tribute), 12
extra_data (pymess.models.sms.OutputSMSMessage at-

tribute), 8
extra_sender_data (pymess.models.emails.EmailMessage

attribute), 12
extra_sender_data (pymess.models.sms.OutputSMSMessage

attribute), 8

F
failed (pymess.models.emails.EmailMessage attribute),

12
failed (pymess.models.sms.OutputSMSMessage at-

tribute), 8
file (pymess.models.emails.Attachment attribute), 13

17

django-pymess Documentation, Release 1.4

G
get_body() (pymess.models.emails.AbstractEmailTemplate

method), 13
get_body() (pymess.models.sms.AbstractSMSTemplate

method), 9
get_subject() (pymess.models.emails.AbstractEmailTemplate

method), 13

O
object_id (pymess.models.emails.EmailRelatedObject at-

tribute), 12
object_id (pymess.models.sms.OutputSMSRelatedObject

attribute), 8
object_id_int (pymess.models.emails.EmailRelatedObject

attribute), 12
object_id_int (pymess.models.sms.OutputSMSRelatedObject

attribute), 8
output_sms_message (pymess.models.sms.OutputSMSRelatedObject

attribute), 8

P
publish_message(), 10, 14
publish_messages(), 10
pymess.backend.emails.dummy.DummyEmailBackend

(built-in class), 14
pymess.backend.emails.mandrill.MandrillEmailBackend

(built-in class), 14
pymess.backend.emails.send() (built-in function), 11
pymess.backend.emails.send_template() (built-in func-

tion), 11
pymess.backend.emails.smtp.SMTPEmailBackend

(built-in class), 14
pymess.backend.sms.ats_sms_operator.ATSSMSBackend

(built-in class), 9
pymess.backend.sms.dummy.DummySMSBackend

(built-in class), 9
pymess.backend.sms.send() (built-in function), 7
pymess.backend.sms.send_template() (built-in function),

7
pymess.backend.sms.sms_operator.SMSOperatorBackend

(built-in class), 10
pymess.backend.sms.sns.SNSSMSBackend (built-in

class), 9
pymess.backend.sms.twilio.TwilioSMSBackend (built-in

class), 9
pymess.models.emails.AbstractEmailTemplate (built-in

class), 13
pymess.models.emails.Attachment (built-in class), 12
pymess.models.emails.EmailMessage (built-in class), 11
pymess.models.emails.EmailRelatedObject (built-in

class), 12
pymess.models.emails.EmailTemplate (built-in class), 13
pymess.models.sms.AbstractSMSTemplate (built-in

class), 8

pymess.models.sms.OutputSMSMessage (built-in class),
7

pymess.models.sms.OutputSMSRelatedObject (built-in
class), 8

pymess.models.sms.SMSTemplate (built-in class), 9
PYMESS_EMAIL_BATCH_SENDING, 6
PYMESS_EMAIL_BATCH_SIZE, 6
PYMESS_EMAIL_MANDRILL, 6
PYMESS_EMAIL_SENDER_BACKEND, 6
PYMESS_EMAIL_TEMPLATE_MODEL, 6
PYMESS_SMS_ATS_CONFIG, 6
PYMESS_SMS_DEFAULT_PHONE_CODE, 6
PYMESS_SMS_IDLE_MESSAGES_TIMEOUT_MINUTES,

6
PYMESS_SMS_LOG_IDLE_MESSAGES, 6
PYMESS_SMS_OPERATOR_CONFIG, 6
PYMESS_SMS_SENDER_BACKEND, 6
PYMESS_SMS_SNS_CONFIG, 6
PYMESS_SMS_TEMPLATE_MODEL, 6
PYMESS_SMS_USE_ACCENT, 6

R
recipient (pymess.models.emails.EmailMessage at-

tribute), 11
recipient (pymess.models.sms.OutputSMSMessage at-

tribute), 7
related_objects (pymess.models.emails.EmailMessage at-

tribute), 12
related_objects (pymess.models.sms.OutputSMSMessage

attribute), 8
render_body() (pymess.models.emails.AbstractEmailTemplate

method), 13
render_body() (pymess.models.sms.AbstractSMSTemplate

method), 9
render_subject() (pymess.models.emails.AbstractEmailTemplate

method), 13

S
send() (pymess.models.emails.AbstractEmailTemplate

method), 13
send() (pymess.models.sms.AbstractSMSTemplate

method), 9
sender (pymess.models.emails.AbstractEmailTemplate

attribute), 13
sender (pymess.models.emails.EmailMessage attribute),

11
sender (pymess.models.sms.OutputSMSMessage at-

tribute), 7
sender_name (pymess.models.emails.AbstractEmailTemplate

attribute), 13
sender_name (pymess.models.emails.EmailMessage at-

tribute), 11
sent_at (pymess.models.emails.EmailMessage attribute),

11

18 Index

django-pymess Documentation, Release 1.4

sent_at (pymess.models.sms.OutputSMSMessage at-
tribute), 7

slug (pymess.models.emails.AbstractEmailTemplate at-
tribute), 13

slug (pymess.models.sms.AbstractSMSTemplate at-
tribute), 9

SMS_SET_ERROR_TO_IDLE_MESSAGES, 6
state (pymess.models.emails.EmailMessage attribute), 12
state (pymess.models.sms.OutputSMSMessage attribute),

8
subject (pymess.models.emails.AbstractEmailTemplate

attribute), 13
subject (pymess.models.emails.EmailMessage attribute),

11

T
tag (pymess.models.emails.EmailMessage attribute), 12
tag (pymess.models.sms.OutputSMSMessage attribute),

8
template (pymess.models.emails.EmailMessage at-

tribute), 11
template (pymess.models.sms.OutputSMSMessage at-

tribute), 7
template_slug (pymess.models.emails.EmailMessage at-

tribute), 11
template_slug (pymess.models.sms.OutputSMSMessage

attribute), 7

Index 19

	Project Home
	Documentation
	Content

