

Django-pymess’s documentation

Django-pymess is a library for sending various type of messages like: SMS, Push notifications or e-mails

Project Home

https://github.com/druids/django-pymess

Documentation

https://django-pymess.readthedocs.org/en/latest

Content

	Installation
	Using PIP

	Configuration
	Required Settings

	Setup

	SMS
	Models

	Backends

	Commands

	E-mails
	Models

	Backends

	Commands

Installation

Using PIP

Django can use pip for installation:

$ pip install django-pymess

Configuration

After installation you must go through these steps:

Required Settings

The following variables have to be added to or edited in the project’s settings.py:

For using pymess you just add pymess to INSTALLED_APPS variable:

INSTALLED_APPS = (
 ...
 'pymess',
 ...
)

Setup

SMS

	
PYMESS_SMS_TEMPLATE_MODEL

	If you want to use your own SMS template model you must set this setting with your custom SMS template model that extends pymess.models.sms.AbstractSMSTemplate otherwise pymess.models.sms.SMSTemplate is used.

	
PYMESS_SMS_USE_ACCENT

	Setting that sets if SMS will be sent with accent or not. Default value is False.

	
PYMESS_SMS_LOG_IDLE_MESSAGES

	Setting that sets whether the delivery time is checked for messages. Default value is True.

	
SMS_SET_ERROR_TO_IDLE_MESSAGES

	Setting that sets if idle messages will be moved to the error state after defined time. Default value is True.

	
PYMESS_SMS_IDLE_MESSAGES_TIMEOUT_MINUTES

	If setting PYMESS_SMS_LOG_IDLE_MESSAGES is set to True, PYMESS_SMS_IDLE_SENDING_MESSAGES_TIMEOUT_MINUTES defines the number of minutes to send a warning that sms has not been sent. Default value is 10.

	
PYMESS_SMS_DEFAULT_PHONE_CODE

	Country code that is set to the recipient if phone number doesn’t contain another one.

	
PYMESS_SMS_SENDER_BACKEND

	Path to the SMS backend that will be used for sending SMS messages. Default value is 'pymess.backend.sms.dummy.DummySMSBackend'.

	
PYMESS_SMS_ATS_CONFIG

	Configuration of pymess.backend.sms.ats_sms_operator.ATSSMSBackend.

	
PYMESS_SMS_OPERATOR_CONFIG

	Configuration of pymess.backend.sms.sms_operator.SMSOperatorBackend.

	
PYMESS_SMS_SNS_CONFIG

	Configuration of pymess.backend.sms.sns.SNSSMSBackend.

E-MAIL

	
PYMESS_EMAIL_TEMPLATE_MODEL

	If you want to use your own E-MAIL template model you must set this setting with your custom e-mail template model that extends pymess.models.email.AbstractEmailTemplate otherwise is used pymess.models.email.EmailTemplate.

	
PYMESS_EMAIL_SENDER_BACKEND

	Path to the E-mail backend that will be used for sending e-mail messages. Default value is 'pymess.backend.emails.dummy.DummyEmailBackend'.

	
PYMESS_EMAIL_BATCH_SENDING

	If you use standard SMTP service you should send e-mails in batches otherwise other SMTP providers could add your SMTP server to the black-list. With this setting you configure e-mail backend not to send e-mails directly but messages are only created in state “waiting”. Finally e-mails should be sent with Django command send_emails_batch. Default value is False.

	
PYMESS_EMAIL_BATCH_SIZE

	Defines maximum number of e-mails that are sent with command send_emails_batch.

	
PYMESS_EMAIL_MANDRILL

	Configuration of pymess.backend.email.mandrill.MandrillEmailBackend.

SMS

SMS messages that are stored inside Django model class defined later, are sent via SMS backend. There are implemented several SMS backends, every backed uses differend SMS service like twillio or AWS SNS. For sending SMS message you can use function pymess.backend.sms.send or pymwess.backend.sms.send_template.

	
pymess.backend.sms.send(recipient, content, related_objects=None, tag=None, **sms_attrs)

	Function has two required parameters recipient which is a phone number of the receiver and content. Attribute content is a text message that will be sent inside the SMS body. If setting PYMESS_SMS_USE_ACCENT is set to False, accent in the content will be replaced by appropriate ascii characters. Attribute related_objects should contain a list of objects that you want to connect with the sent message (with generic relation). tag is string mark which is stored with the sent SMS message . The last non required parameter **sms_kwargs is extra data that will be stored inside SMS message model in field extra_data.

	
pymess.backend.sms.send_template(recipient, slug, context_data, related_objects=None, tag=None)

	The second function is used for sending prepared templates that are stored inside template model (class that extends pymess.models.sms.AbstractSMSTemplate). The first parameter recipient is phone number of the receiver, slug is key of the template, context_data is a dictionary that contains context data for rendering SMS content from the template, related_objects should contains list of objects that you want to connect with the sent message and tag is string mark which is stored with the sent SMS message.

Models

	
class pymess.models.sms.OutputSMSMessage

	The model contains data of already sent SMS messages.

	
created_at

	Django DateTimeField, contains date and time of creation.

	
changed_at

	Django DateTimeField, contains date and time the of last change.

	
sent_at

	Django DateTimeField, contains date and time of sending the SMS message.

	
recipient

	CharField that contains phone number of the receiver.

	
sender

	CharField that contains phone number of the sender. Field can be empty if backend doesn’t provide sender number.

	
content

	TextField, contains content of the SMS message.

	
template_slug

	If SMS was sent from the template, this attribute cointains key of the template.

	
template

	If SMS was sent from the template, this attribute contains foreign key of the template. The reason why there is template_slug and template fields is that a template instance can be removed and it is good to keep at least the key of the template.

	
state

	Field contains the current state of the message. Allowed states are:

	WAITING - SMS was not sent to the external service

	UNKNOWN - SMS was sent to the external service but its state is unknown

	SENDING - SMS was sent to the external service

	SENT - SMS was sent to the receiver

	ERROR - error was raised during sending of the SMS message

	DEBUG - SMS was not sent because system is in debug mode

	DELIVERED - SMS was delivered to the receiver

	
backend

	Field contains path to the SMS backend that was used for sending of the SMS message.

	
error

	If error was raised during sending of the SMS message this field contains text description of the error.

	
extra_data

	Extra data stored with JSONField.

	
extra_sender_data

	Extra data related to the SMS backend stored with JSONField. Every SMS backend can have different extra data.

	
tag

	String tag that you can define during sending SMS message.

	
failed

	Returns True if SMS ended in ERROR state.

	
related_objects

	Returns DB manager of pymess.models.sms.OutputSMSRelatedObject model that are related to the concrete SMS message.

	
class pymess.models.sms.OutputSMSRelatedObject

	Model for storing related objects that you can connect with the SMS message.

	
created_at

	Django DateTimeField, contains date and time of creation.

	
changed_at

	Django DateTimeField, contains date and time the of last change.

	
output_sms_message

	Foreign key to the SMS message.

	
content_type

	Content type of the stored model (generic relation)

	
object_id_int

	If a related objects has primary key in integer format the key is stored here. This field uses db index therefore filtering is much faster.

	
object_id

	Primary key of a related object stored in django TextField.

	
class pymess.models.sms.AbstractSMSTemplate

	Abstract class of SMS template which you can use to define your own SMS template model. Your model that extends this class is set inside setting PYMESS_SMS_TEMPLATE_MODEL:

PYMESS_SMS_TEMPLATE_MODEL = 'your_application.YourSMSTemplateModel'

	
created_at

	Django DateTimeField, contains date and time of creation.

	
changed_at

	Django DateTimeField, contains date and time the of last change.

	
slug

	Key of the SMS template in the string format (Django slug).

	
body

	Body of the SMS message. Final SMS content is rendered with Django template system by default.

	
get_body()

	Returns body of the model message. You can use it to update SMS body before rendering.

	
render_body(context_data)

	Renders template stored inside body field to the message content. Standard Django template system is used by default.

	
can_send(recipient, context_data)

	Returns by default True value. If you need to restrict sending SMS template for some reasons, you can override this method.

	
send(recipient, context_data, related_objects=None, tag=None)

	Checks if message can be sent, renders message content and sends it via defined backend. Finally, the sent message is returned. If message cannot be sent, None is returned.

	
class pymess.models.sms.SMSTemplate

	Default template model class that only inherits from pymess.models.sms.AbstractSMSTemplate

Backends

Backend is a class that is used for sending messages. Every backend must provide API defined by pymess.backends.sms.SMSBackend class. SMS backend is configured via PYMESS_SMS_SENDER_BACKEND (ex. PYMESS_SMS_SENDER_BACKEND = 'pymess.backend.sms.sns.SNSSMSBackend'). There are currently implemented following SMS backends:

	
class pymess.backend.sms.dummy.DummySMSBackend

	Backend that can be used for testing. SMS is not sent, but is automatically set to the DEBUG state.

	
class pymess.backend.sms.sns.SNSSMSBackend

	Backend that uses amazon SNS for sending messages (https://aws.amazon.com/sns/)

	
class pymess.backend.sms.twilio.TwilioSMSBackend

	Backend that uses twilio service for sending SMS messages (https://www.twilio.com/)

	
class pymess.backend.sms.ats_sms_operator.ATSSMSBackend

	Czech ATS SMS service is used for sending SMS messages. Service and backend supports checking if SMS was actually delivered. (https://www.atspraha.cz/)

Configuration of attributes according to ATS operator documentation:

PYMESS_ATS_SMS_CONFIG = {
 'URL': 'http://fik.atspraha.cz/gwfcgi/XMLServerWrapper.fcgi', # If you use default URL param, this doesn't need to be set
 'UNIQ_PREFIX': 'unique-id-prefix', # If you use SMS service for more applications you can define this prefix and it will be added to the message ID
 'USERNAME': 'username',
 'PASSWORD': 'password',
 'UNIQ_PREFIX': '',
 'VALIDITY': 60,
 'TEXTID': None,
 'OPTID': '',
}

	
class pymess.backend.sms.sms_operator.SMSOperatorBackend

	Czech SMS operator service is used for sending SMS messages. Service and backend supports checking if SMS was actually delivered. (https://www.sms-operator.cz/)

Configuration of attributes according to SMS operator documentation:

PYMESS_SMS_OPERATOR_CONFIG = {
 'URL': 'https://www.sms-operator.cz/webservices/webservice.aspx', # If you use default URL param, this doesn't need to be set
 'UNIQ_PREFIX': 'unique-id-prefix', # If you uses SMS service for more applications you can define this prefix and it will be added to the message ID
 'USERNAME': 'username',
 'PASSWORD': 'password',
}

Custom backend

If you want to write your own Pymess SMS backend, you must create class that inherits from pymess.backends.sms.SMSBackend:

.. class pymess.backends.sms.SMSBackend

	
publish_message(message)

	This method should send SMS message (obtained from the input argument) and update its state. This method must be overridden in the custom backend.

	
publish_messages(messages)

	If your service that provides sending messages in batch, you can override the publish_messages method. Input argument is a list of messages. By default, publish_message method is used for sending and messages are send one by one.

	
bulk_check_sms_states()

	If your service provides checking SMS state you can override this method and implement code that check if SMS messages were delivered.

Commands

Because some services provide checking if SMS messages were delivered, Pymess provides a command that calls backend method bulk_check_sms_state. You can use this command inside cron and periodically call it. But SMS backend and service must provide it (must have implemented method bulk_check_sms_states).

E-mails

Like SMS E-mail messages are stored inside Django model class and sent via backend. Again we provide more e-mail backends, every backend uses different e-mail service like Mandrill, AWS SNS or standard SMTP. For sending e-mail message you can use function pymess.backend.email.send or pymwess.backend.email.send_template.

	
pymess.backend.emails.send(sender, recipient, subject, content, sender_name=None, related_objects=None, attachments=None, tag=None, **email_kwargs)

	Parameter sender define source e-mail address of the message, you can specify the name of the sender with optional parameter sender_name. recipient is destination e-mail address. Subject and HTML content of the e-mail message is defined with subject and content parameters. Attribute related_objects should contain a list of objects that you want to connect with the send message (with generic relation). Optional parameter attachments should contains list of files that will be sent with the e-mail in format ({file name}, {output stream with file content}, {content type}). tag is string mark which is stored with the sent SMS message . The last non required parameter **email_kwargs is extra data that will be stored inside e-mail message model in field extra_data.

	
pymess.backend.emails.send_template(recipient, slug, context_data, related_objects=None, attachments=None, tag=None)

	The second function is used for sending prepared templates that are stored inside template model (class that extends pymess.models.sms.AbstractEmailTemplate). The first parameter recipient is e-mail address of the receiver, slug is key of the template, context_data is a dictionary that contains context data for rendering e-mail content from the template, related_objects should contains list of objects that you want to connect with the send message, attachments should contains list of files that will be send with the e-mail and tag is string mark which is stored with the sent SMS message.

Models

	
class pymess.models.emails.EmailMessage

	The model contains data of already sent e-mail messages.

	
created_at

	Django DateTimeField, contains date and time of creation.

	
changed_at

	Django DateTimeField, contains date and time the of last change.

	
sent_at

	Django DateTimeField, contains date and time of sending the e-mail message.

	
recipient

	EmailField that contains e-mail address of the receiver.

	
sender

	EmailField that contains e-mail address of th sender.

	
sender_name

	CharField that contains readable/friendly sender name.

	
subject

	TextField, contains subject of the e-mail message.

	
content

	TextField, contains content of the e-mail message.

	
template_slug

	If e-mail was sent from the template, this attribute cointains key of the template.

	
template

	If e-mail was sent from the template, this attribute contains foreign key of the template. The reason why there is template_slug and template fields is that a template instance can be removed and it is good to keep at least the key of the template.

	
state

	Contains the current state of the message. Allowed states are:

	WAITING - e-mail was not sent to the external service

	SENDING - e-mail was sent to the external service

	SENT - e-mail was sent to the receiver

	ERROR - error was raised during sending of the e-mail message

	DEBUG - e-mail was not sent because system is in debug mode

	
backend

	Field contains path to the e-mail backend that was used for sending of the SMS message.

	
error

	If error was raised during sending of the SMS message this field contains text description of the error.

	
extra_data

	Extra data stored with JSONField.

	
extra_sender_data

	Extra data related to the e-mail backend stored with JSONField. Every SMS backend can have different extra data.

	
tag

	String tag that you can define during sending SMS message.

	
failed

	Returns True if SMS ended in ERROR state.

	
related_objects

	Returns DB manager of pymess.models.emails.EmailRelatedObject model that are related to the concrete e-mail message.

	
class pymess.models.emails.EmailRelatedObject

	Model for storing related objects that you can connect with the e-mail message.

	
created_at

	Django DateTimeField, contains date and time of creation.

	
changed_at

	Django DateTimeField, contains date and time the of last change.

	
email_message

	Foreign key to the e-mail message.

	
content_type

	Content type of the stored model (generic relation)

	
object_id_int

	If a related objects have primary key in integer format the key is stored here. This field uses db index, therefore filtering is much faster.

	
object_id

	Primary key of a related object stored in django TextField.

	
class pymess.models.emails.Attachment

	Django model that contains e-mail attachments.

	
created_at

	Django DateTimeField, contains date and time of creation.

	
changed_at

	Django DateTimeField, contains date and time the of last change.

	
email_message

	Foreign key to the e-mail message.

	
content_type

	Django CharField, contains content type of the attachment.

	
file

	Django FileField, contains file which was send to the recipient.

	
class pymess.models.emails.AbstractEmailTemplate

	Abstract class of e-mail template which you can use to define your own e-mail template model. Your model that extends this class is set inside setting PYMESS_EMAIL_TEMPLATE_MODEL:

PYMESS_EMAIL_TEMPLATE_MODEL = 'your_application.YourEmailTemplateModel'

	
created_at

	Django DateTimeField, contains date and time of creation.

	
changed_at

	Django DateTimeField, contains date and time the of last change.

	
slug

	Key of the e-mail template in the string format (Django slug).

	
sender

	EmailField that contains e-mail address of the sender.

	
sender_name

	CharField that contains readable/friendly sender name.

	
subject

	TextField, contains subject of the e-mail message. Final e-mail subject is rendered with Django template system by default.

	
body

	Body of the e-mail message. Final e-mail content is rendered with Django template system by default.

	
get_body()

	Returns body of the model message. You can use it to update e-mail body before rendering.

	
render_body(context_data)

	Renders template stored inside body field to the message content. Standard Django template system is used by default.

	
get_subject()

	Returns subject of the model message. You can use it to update e-mail subject before rendering.

	
render_subject(context_data)

	Renders template stored inside subject field to the message content. Standard Django template system is used by default.

	
can_send(recipient, context_data)

	Returns by default True value. If you need to restrict sending e-mail template for some reasons, you can override this method.

	
send(recipient, context_data, related_objects=None, tag=None, attachments=None)

	Checks if message can be sent, renders message content and sends it via defined backend. Finally, the sent message is returned. If message cannot be sent, None is returned.

	
class pymess.models.emails.EmailTemplate

	Default template model class that only inherits from pymess.models.emails.AbstractEmailTemplate

Backends

Backend is a class that is used for sending messages. Every backend must provide API defined by pymess.backends.emails.EmailBackend class. E-mail backend is configured via PYMESS_EMAIL_SENDER_BACKEND (ex. PYMESS_EMAIL_SENDER_BACKEND = 'pymess.backend.emails.smtp.SMTPEmailBackend'). There are currently implemented following e-mail backends:

	
class pymess.backend.emails.dummy.DummyEmailBackend

	Backend that can be used for testing. E-mail is not sent, but is automatically set to the DEBUG state.

	
class pymess.backend.emails.smtp.SMTPEmailBackend

	Backend that uses standard SMTP service for sending e-mails. Configuration of SMTP is same as Django configuration.

	
class pymess.backend.emails.mandrill.MandrillEmailBackend

	Backend that uses mandrill service for sending e-mail messages (https://mandrillapp.com/api/docs/index.python.html). For this purpose you must have installed mandrill library.

Configuration of attributes according to Mandrill operator documentation (the names of the configuration are the same):

PYMESS_EMAIL_MANDRILL_CONFIG = {
 'KEY': '', # Mandrill notification key
 'HEADERS': None,
 'TRACK_OPENS': False,
 'TRACK_CLICKS': False,
 'AUTO_TEXT': False,
 'INLINE_CSS': False,
 'URL_STRIP_QS': False,
 'PRESERVE_RECIPIENTS': False,
 'VIEW_CONTENT_LINK': True,
 'ASYNC': False,
}

Custom backend

If you want to write your own Pymess e-mail backend, you must create class that inherits from pymess.backends.emails.EmailBackend:

.. class pymess.backends.sms.EmailBackend

	
publish_message(message)

	This method should send e-mail message (obtained from the input argument) and update its state. This method must be overridden in the custom backend.

Commands

send_emails_batch

As mentioned e-mails can be sent in a batch with Django command send_emails_batch.

sync_emails

Store e-mail body in a HTML file is better from code readability. Therefore this command updates e-mails body from HTML files store in directory. You can select the directory with command property directory or you can set directory with setting PYMESS_EMAIL_HTML_DATA_DIRECTORY. E-mails body in the directory is stored like HTML file named with e-mail slug and html as a suffix.

dump_emails

E-mail body can be changed in the database therefore reverse operation to sync_emails can be done with this command. You must select directory where e-mails body in HTML format will be stored.

Index

 B
 | C
 | E
 | F
 | G
 | O
 | P
 | R
 | S
 | T

B

 	
 	backend (pymess.models.emails.EmailMessage attribute)

 	(pymess.models.sms.OutputSMSMessage attribute)

 	
 	body (pymess.models.emails.AbstractEmailTemplate attribute)

 	(pymess.models.sms.AbstractSMSTemplate attribute)

 	bulk_check_sms_states()

C

 	
 	can_send() (pymess.models.emails.AbstractEmailTemplate method)

 	(pymess.models.sms.AbstractSMSTemplate method)

 	changed_at (pymess.models.emails.AbstractEmailTemplate attribute)

 	(pymess.models.emails.Attachment attribute)

 	(pymess.models.emails.EmailMessage attribute)

 	(pymess.models.emails.EmailRelatedObject attribute)

 	(pymess.models.sms.AbstractSMSTemplate attribute)

 	(pymess.models.sms.OutputSMSMessage attribute)

 	(pymess.models.sms.OutputSMSRelatedObject attribute)

 	content (pymess.models.emails.EmailMessage attribute)

 	(pymess.models.sms.OutputSMSMessage attribute)

 	
 	content_type (pymess.models.emails.Attachment attribute)

 	(pymess.models.emails.EmailRelatedObject attribute)

 	(pymess.models.sms.OutputSMSRelatedObject attribute)

 	created_at (pymess.models.emails.AbstractEmailTemplate attribute)

 	(pymess.models.emails.Attachment attribute)

 	(pymess.models.emails.EmailMessage attribute)

 	(pymess.models.emails.EmailRelatedObject attribute)

 	(pymess.models.sms.AbstractSMSTemplate attribute)

 	(pymess.models.sms.OutputSMSMessage attribute)

 	(pymess.models.sms.OutputSMSRelatedObject attribute)

E

 	
 	email_message (pymess.models.emails.Attachment attribute)

 	(pymess.models.emails.EmailRelatedObject attribute)

 	error (pymess.models.emails.EmailMessage attribute)

 	(pymess.models.sms.OutputSMSMessage attribute)

 	
 	extra_data (pymess.models.emails.EmailMessage attribute)

 	(pymess.models.sms.OutputSMSMessage attribute)

 	extra_sender_data (pymess.models.emails.EmailMessage attribute)

 	(pymess.models.sms.OutputSMSMessage attribute)

F

 	
 	failed (pymess.models.emails.EmailMessage attribute)

 	(pymess.models.sms.OutputSMSMessage attribute)

 	
 	file (pymess.models.emails.Attachment attribute)

G

 	
 	get_body() (pymess.models.emails.AbstractEmailTemplate method)

 	(pymess.models.sms.AbstractSMSTemplate method)

 	
 	get_subject() (pymess.models.emails.AbstractEmailTemplate method)

O

 	
 	object_id (pymess.models.emails.EmailRelatedObject attribute)

 	(pymess.models.sms.OutputSMSRelatedObject attribute)

 	
 	object_id_int (pymess.models.emails.EmailRelatedObject attribute)

 	(pymess.models.sms.OutputSMSRelatedObject attribute)

 	output_sms_message (pymess.models.sms.OutputSMSRelatedObject attribute)

P

 	
 	publish_message(), [1]

 	publish_messages()

 	pymess.backend.emails.dummy.DummyEmailBackend (built-in class)

 	pymess.backend.emails.mandrill.MandrillEmailBackend (built-in class)

 	pymess.backend.emails.send() (built-in function)

 	pymess.backend.emails.send_template() (built-in function)

 	pymess.backend.emails.smtp.SMTPEmailBackend (built-in class)

 	pymess.backend.sms.ats_sms_operator.ATSSMSBackend (built-in class)

 	pymess.backend.sms.dummy.DummySMSBackend (built-in class)

 	pymess.backend.sms.send() (built-in function)

 	pymess.backend.sms.send_template() (built-in function)

 	pymess.backend.sms.sms_operator.SMSOperatorBackend (built-in class)

 	pymess.backend.sms.sns.SNSSMSBackend (built-in class)

 	pymess.backend.sms.twilio.TwilioSMSBackend (built-in class)

 	pymess.models.emails.AbstractEmailTemplate (built-in class)

 	pymess.models.emails.Attachment (built-in class)

 	pymess.models.emails.EmailMessage (built-in class)

 	pymess.models.emails.EmailRelatedObject (built-in class)

 	
 	pymess.models.emails.EmailTemplate (built-in class)

 	pymess.models.sms.AbstractSMSTemplate (built-in class)

 	pymess.models.sms.OutputSMSMessage (built-in class)

 	pymess.models.sms.OutputSMSRelatedObject (built-in class)

 	pymess.models.sms.SMSTemplate (built-in class)

 	PYMESS_EMAIL_BATCH_SENDING

 	PYMESS_EMAIL_BATCH_SIZE

 	PYMESS_EMAIL_MANDRILL

 	PYMESS_EMAIL_SENDER_BACKEND

 	PYMESS_EMAIL_TEMPLATE_MODEL

 	PYMESS_SMS_ATS_CONFIG

 	PYMESS_SMS_DEFAULT_PHONE_CODE

 	PYMESS_SMS_IDLE_MESSAGES_TIMEOUT_MINUTES

 	PYMESS_SMS_LOG_IDLE_MESSAGES

 	PYMESS_SMS_OPERATOR_CONFIG

 	PYMESS_SMS_SENDER_BACKEND

 	PYMESS_SMS_SNS_CONFIG

 	PYMESS_SMS_TEMPLATE_MODEL

 	PYMESS_SMS_USE_ACCENT

R

 	
 	recipient (pymess.models.emails.EmailMessage attribute)

 	(pymess.models.sms.OutputSMSMessage attribute)

 	related_objects (pymess.models.emails.EmailMessage attribute)

 	(pymess.models.sms.OutputSMSMessage attribute)

 	
 	render_body() (pymess.models.emails.AbstractEmailTemplate method)

 	(pymess.models.sms.AbstractSMSTemplate method)

 	render_subject() (pymess.models.emails.AbstractEmailTemplate method)

S

 	
 	send() (pymess.models.emails.AbstractEmailTemplate method)

 	(pymess.models.sms.AbstractSMSTemplate method)

 	sender (pymess.models.emails.AbstractEmailTemplate attribute)

 	(pymess.models.emails.EmailMessage attribute)

 	(pymess.models.sms.OutputSMSMessage attribute)

 	sender_name (pymess.models.emails.AbstractEmailTemplate attribute)

 	(pymess.models.emails.EmailMessage attribute)

 	sent_at (pymess.models.emails.EmailMessage attribute)

 	(pymess.models.sms.OutputSMSMessage attribute)

 	
 	slug (pymess.models.emails.AbstractEmailTemplate attribute)

 	(pymess.models.sms.AbstractSMSTemplate attribute)

 	SMS_SET_ERROR_TO_IDLE_MESSAGES

 	state (pymess.models.emails.EmailMessage attribute)

 	(pymess.models.sms.OutputSMSMessage attribute)

 	subject (pymess.models.emails.AbstractEmailTemplate attribute)

 	(pymess.models.emails.EmailMessage attribute)

T

 	
 	tag (pymess.models.emails.EmailMessage attribute)

 	(pymess.models.sms.OutputSMSMessage attribute)

 	template (pymess.models.emails.EmailMessage attribute)

 	(pymess.models.sms.OutputSMSMessage attribute)

 	
 	template_slug (pymess.models.emails.EmailMessage attribute)

 	(pymess.models.sms.OutputSMSMessage attribute)

Auth

Push notifications

In the development

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Django-pymess’s documentation

 		
 Installation

 		
 Using PIP

 		
 Configuration

 		
 Required Settings

 		
 Setup

 		
 SMS

 		
 E-MAIL

 		
 SMS

 		
 Models

 		
 Backends

 		
 Custom backend

 		
 Commands

 		
 E-mails

 		
 Models

 		
 Backends

 		
 Custom backend

 		
 Commands

 		
 send_emails_batch

 		
 sync_emails

 		
 dump_emails

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

