
Django Pydenticon Documentation
Release 0.2-dev

Branko Majic

May 22, 2017

Contents

1 Support 3

2 License 5
2.1 About Django Pydenticon . 6
2.2 Installation . 6
2.3 Configuring your Django installation . 7
2.4 Where to go next? . 8
2.5 Usage . 8
2.6 Privacy . 10
2.7 Configuration . 11
2.8 API Reference . 13
2.9 Release notes . 13

3 Indices and tables 15

Python Module Index 17

i

ii

Django Pydenticon Documentation, Release 0.2-dev

Django Pydenticon is a Django application that provides an identicon generator. It builds upon Pydenticon, a Python
library for generating deterministic identicons. Pydenticon capabilities are merely exposed via a web interface (through
HTTP).

Contents 1

Django Pydenticon Documentation, Release 0.2-dev

2 Contents

CHAPTER 1

Support

In case of problems with the application, please do not hestitate to contact the author at django-pydenticon (at)
majic.rs. The library itself is hosted on Github, and on author’s own servers:

• https://github.com/azaghal/django-pydenticon

• https://code.majic.rs/django-pydenticon

• https://projects.majic.rs/django-pydenticon

3

https://github.com/azaghal/django-pydenticon
https://code.majic.rs/django-pydenticon
https://projects.majic.rs/django-pydenticon

Django Pydenticon Documentation, Release 0.2-dev

4 Chapter 1. Support

CHAPTER 2

License

Django Pydenticon is released under terms of BSD (3-Clause) License:

Copyright (c) 2014, Branko Majic
All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

Neither the name of Branko Majic nor the names of any other
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Contents:

5

Django Pydenticon Documentation, Release 0.2-dev

About Django Pydenticon

Django Pydenticon is a Django application that provides an identicon generator. The implementation uses Pydenticon
library for generating the identicons:

• https://github.com/azaghal/pydenticon/

• https://projects.majic.rs/pydenticon

Django Pydenticon comes with some pre-defined sane defaults for generating the identicons, but is configurable,
letting the user generate identicons with custom parameters.

Why was this application created?

A number of web-based applications written in Python have a need for visually differentiating between users by using
avatars for each one of them.

This functionality is particularly popular with comment-posting since it increases the readability of threads.

The problem is that lots of those applications need to allow anonymous users to post their comments as well. Since
anonymous users cannot set the avatar for themselves, usually a random avatar is created for them instead.

There is a number of free (as in free beer) services out there that allow web application developers to create such
avatars. Unfortunately, this usually means that the users visiting websites based on those applications are leaking
information about their browsing habits etc to these third-party providers.

Django Pydenticon was written in order to resolve such an issue for one of the applications (Django Blog Zinnia,
in particular), and to allow the author to set up his own avatar/identicon service. It was developed to be used in
combination with Pydenticon library for generating identicons.

Features

Django Pydenticon has the following features:

• Uses Pydentcion library for generating the identicons.

• User data used for generating the identicons is read from URL.

• Passed user data can be pre-hashed in order to avoid leakage of important information.

• All aspects of Pydenticon generator can be configured via project settings.

• Some parameters for generated identicons can be overridden per-request.

• Comes with sane default configuration options. No special configuration is necessary beyond installing and
enabling the application in project.

Installation

Django Pydenticon can be installed through one of the following methods:

• Using pip, which is the easiest and recommended way for production websites.

6 Chapter 2. License

https://github.com/azaghal/pydenticon/
https://projects.majic.rs/pydenticon

Django Pydenticon Documentation, Release 0.2-dev

Requirements

Django Pydenticon depends on the following Python packages:

• Django web framework.

• Pydenticon library, which is used for generating the identicons.

Using pip

In order to install latest stable release of Django Pydenticon using pip, run the following command:

pip install django-pydenticon

In order to install the latest development version of Django Pydenticon from Github, use the following command:

pip install -e git+https://github.com/azaghal/django-pydenticon#egg=django_pydenticon

Warning: You will need to update the pip installation in your virtual environment if you get the following error
while running the above command:

AttributeError: 'NoneType' object has no attribute 'skip_requirements_regex'

You can update pip to latest version with:

pip install -U pip

After this you should proceed to configure your Django installation.

Configuring your Django installation

Once Django Pydenticon has been installed, you need to perform the following steps in order to make it available
inside of your Django project:

1. Edit your project’s settings configuration file (settings.py), and update the INSTALLED_APPS to include
application django_pydenticon.

2. Edit your project’s URL configuration file (urls.py), and add the following line to top of the file:

import django_pydenticon.urls

3. Edit your project’s URL configuration file (urls.py), and add the following line to the urlpatterns set-
ting:

url(r'^identicon/', include(django_pydenticon.urls.get_patterns())),

Note: It is not mandatory to use identicon/ as prefix. You can use any prefix as with any other Django application.

After this the Django Pydenticon application will be available under the /identicon/ path (relative to your Django
project’s base URL), or under any custom prefix path you have selected for deploying the application.

2.3. Configuring your Django installation 7

https://www.djangoproject.com/
https://github.com/azaghal/pydenticon

Django Pydenticon Documentation, Release 0.2-dev

Where to go next?

After Django Pydenticon has been installed, you should learn how to use the application, and may also be intersted to
change one of default configuration options.

Warning: It is highly recommended to have a look at documentation covering privacy if you have not done
so before. The chapter covers some common privacy issues when using personally-identifiable information for
generating identicons (like e-mails or names).

Usage

Django Pydenticon is targeted at developers who wish to integrate an identicon service in their Django projects.
This chapter covers details on how an identicon image is served, and how to integrate Django Pydenticon with other
applications.

Requesting identicons

Identicon images are served through specially formatted URL. Whenever such URL is submitted to Django Pydenticon
application, an identicon image is created on the fly.

The format of URL is /image/USER_DATA (relative to prefix URL assigned for the application), where
USER_DATA can be either in hashed or raw format. For example, if Django Pydenticon application is reachable
under /identicon/, identicon images can be requested using the following URLs:

• /identicon/image/somedataforhashing (raw data)

• /identicon/image/55d207ea47247b375dc1f495517f1332 (pre-hashed data using md5)

Warning: Keep in mind that if user data is submitted in pre-hashed form, the digest used should match with the
digest configured for Django Pydenticon application. If digest does not match, the user data will be treated as any
other user data, and it will be hashed once again.

URL instance namespaces

When resolving Django Pydenticon URLs, you should always use the URL names in conjunction with application
instance namespace.

Default application instance namespace is django_pydenticon. Alternative instance namespace can be specified
by passing an (optional) argument to django_pydenticons.urls.get_patterns function.

For example, if default namespace is in use, the image URL would be referenced as
django_pydenticon:image in template tag url or function call reverse.

Generating identicon URLs in templates

If the data (whether raw or hashed) is available in template’s context, an identicon URL can be easily generated from
within the template itself. This can be achieved via url tag.

8 Chapter 2. License

Django Pydenticon Documentation, Release 0.2-dev

The URL for serving the identicons is named image. It should always be referenced in conjunction with an appli-
cation instance namespace. The application namespace defaults to django_pydenticon, unless custom instance
namespace is passed when including the application URLs via django_pydenticon.urls.get_patterns.
In case of default namespace, that means the URL would be referenced to as django_pydenticon:image.

For example, let’s say that it’s necessary to show an identicon based on username next to every comment. Related
template snippet could look something similar to the following:

{% for comment in comments %}
{{

→˓comment.text }}
{% endfor %}

Generating identicon URLs programatically

The URLs can be generated programtically, using Python code. Afterwards those URLs can be either passed into
template’s rendering context, or used inside of code for whatever other purposes. This is achieved by using the
reverse URL resolver (from django.core.urlresolvers).

The URL for serving the identicons is named image. It should always be referenced in conjunction with an appli-
cation instance namespace. The application namespace defaults to django_pydenticon, unless custom instance
namespace is passed when including the application URLs via django_pydenticon.urls.get_patterns.
In case of default namespace, that means the URL would be referenced to as django_pydenticon:image.

For example, let’s say that it’s necessary to show an identicon based on username next to every comment. A special
context variable could be passed into template that would contain a list of comments, where each comment consists
out of identicon URL and comment itself. The Python code could look something similar to:

comments_context = []

for comment in comments:
identicon_url = reverse("django_pydenticon:image",

kwargs={"data": comment.user.username})
comments_context.append({"text": comment.text,

"identicon_url": identicon_url})

return render_to_response('myapp/comments.html',
{"comments": comments_context})

With the above context set-up, the myapp/comments.html template could contain a snippet similar to:

{% for comment in comments %}
{{ comment.text }}

{% endfor %}

Overriding identicon parameters

By default, the identicon generator will use parameters from project settings for each request, falling back to appli-
cation defaults if none were defined. In addition to this static configuration, some parameters can be overridden per
request.

2.5. Usage 9

Django Pydenticon Documentation, Release 0.2-dev

Per-request identicon generator parameters are passed via GET parameters. The following GET parameters are avail-
able:

w Specifies the width of generated identicon image in pixels. Overrides the PYDENTICON_WIDTH configuration
option.

h Specifies the height of generated identicon image in pixels. Overrides the PYDENTICON_HEIGHT configuration
option.

f Specifies the format of generated identicon. Overrides the PYDENTICON_FORMAT configuration option.

p Specifies the padding that will be added to the generated identicon image. The value should be provided as 4
comma-separated positive integers.

i Specifies whether the background and foreground colour in generated identicon should be inverted (swapped) or not.
The value passed for this parameter should be true or false.

Passing an invalid parameter value via GET parameter will result in a SuspiciousOperation exception being
raised.

For example, the following request would generate an identicon with width of 320, height of 240, format PNG,
padding (top, bottom, left, right) of 10, 10, 20, 20, and with inverted foreground and background colours:

/identicon/image/somedata?w=320&h=240&f=png&p=10,10,20,20&i=true

Privacy

Generating identicons thorugh Django Pydenticon using raw user data may have undesirable consequences on privacy
if the data used is meant to be ketp as a secret.

This privacy issue can in particular arise if using data like usernames, e-mails, or real names of users for generating
avatars in publicly-accessible websites.

As a rule-of-thumb, you should never, ever pass such data raw into the identicon URL. This approach would leak the
confidential information in plain text to any interested parties. Instead, calculate a digest of the raw data, and pass the
hex digest as part of the URL instead.

Note: In some cases you may opt to pass raw data. For example, if usernames are visible as part of posted comments,
they’re probably already scrapeable, and having them as part of identicon URL won’t hide them anyway.

Additionally, the default digest algorithm (MD5) may not be safe enough for such data. Even in case where a stronger
digest algorithm is used, an attacker might attempt to generate rainbow tables, and scrape the web pages hashed data
contained within identicon URLs.

There’s two feasible approaches to resolve this:

• Always apply salt to user-identifiable data before calculating a hex digest. This can hugely reduce the efficiency
of brute force attacks based on rainbow tables (although it will not mitigate it completely).

• Instead of hashing the user-identifiable data itself, every time you need to do so, create some random data
instead, hash that random data, and store it for future use (cache it), linking it to the original data that it was
generated for. This way the hex digest being put as part of an image link into HTML pages is not derived in any
way from the original data, and can therefore not be used to reveal what the original data was.

Keep in mind that using identicons will inevitably still allow people to track someone’s posts across your website.
Identicons will effectively automatically create pseudonyms for people posting on your website. If that may pose a
problem, it might be better not to use identicons at all.

10 Chapter 2. License

https://en.wikipedia.org/wiki/Rainbow_tables

Django Pydenticon Documentation, Release 0.2-dev

Finally, small summary of the points explained above:

• Always use hex digests in identicon URLs.

• Instead of using privately identifiable data for generating the hex digest, use randmoly generated data, and
associate it with privately identifiable data. This way hex digest cannot be traced back to the original data
through brute force or rainbow tables.

• If unwilling to generate and store random data, at least make sure to use salt when hashing privately identifiable
data.

Configuration

A number of configuration options can be set in Django project that affect the identicon generation. Each configuration
option comes with a default value that’s used if it’s not specified explicitly in project settings.

The application will verify configuration options, and raise an ImproperlyConfigured exception in case of a
problem.

PYDENTICON_ROWS

Specifies how many block rows a generated identicon should have. The value should be a positive integer.

Default value: 5

PYDENTICON_COLUMNS

Specifies how many block columns a generated identicon should have. The value should be a positive integer.

Default value: 5

PYDENTICON_WIDTH

Specifies the width of generated identicon images in pixels (without padding). The value should be a positive integer.

Default value: 200

PYDENTICON_HEIGHT

Specifies the height of generated identicon images in pixels (without padding). The value should be a positive integer.

Default value: 200

PYDENTICON_PADDING

Specifies the padding that will be added to the generated identicon image. The padding is specified as tuple containing
4 elements, where each element is a positive integer.

Each element of the tuple is used for padding the identicon image along one of the edges. The order is: top, bottom,
left, right.

Default value: (20, 20, 20, 20)

2.7. Configuration 11

Django Pydenticon Documentation, Release 0.2-dev

PYDENTICON_FORMAT

Specifies the default format of the generated identicons. The value should be a string. Supported values are:

• "png" (for PNG images)

• "ascii" (for ASCII/textual representation of identicon)

Default value: "png"

PYDENTICON_FOREGROUND

Specifies a list or tuple of foreground colours that should be used when generating the identicons. Each element of
list/tuple should be a string conformant to colour specification from the Pillow library.

In addition to regular RGB, you can also use the RGBA (RGB with alpha channel) scheme to introduce partial or com-
plete transparency when specyfing colour. Alpha channel value ranges between 0 (full transparency) to 255 (no trans-
parency). For example rgba(224,224,224,0) will result in fully transparent background, while rgba(224,
224,244,128) will result in approximatelly 50% transparency.

Default value: ("rgb(45,79,255)", "rgb(254,180,44)", "rgb(226,121,234)", "rgb(30,
179,253)", "rgb(232,77,65)", "rgb(49,203,115)", "rgb(141,69,170)")

PYDENTICON_BACKGROUND

Specifies a (single) background colour that should be used when generating the identicons. This should be a string
conformant to colour specification from the Pillow library. The value should be a string.

In addition to regular RGB, you can also use the RGBA (RGB with alpha channel) scheme to introduce partial or com-
plete transparency when specyfing colour. Alpha channel value ranges between 0 (full transparency) to 255 (no trans-
parency). For example rgba(224,224,224,0) will result in fully transparent foreground, while rgba(224,
224,244,128) will result in approximatelly 50% transparency. Different foreground colours can have different
values for alpha channel.

Default value: "rgb(224,224,224)"

PYDENTICON_DIGEST

Specifies digest class that should be used for generating the identicons. Digest class should support accepting a single
constructor argument for passing the data on which the digest will be run. Instances of the class should also support a
single hexdigest() method that should return a digest of passed data as a hex string. The value should be a callable.

Default value: hashlib.md5

PYDENTICON_INVERT

Specifies whether the background and foreground colour in generated identicons should be inverted (swapped) or not.
The value should be a boolean (True or False).

Default value: False

12 Chapter 2. License

http://pillow.readthedocs.org/en/latest/reference/ImageColor.html
http://pillow.readthedocs.org/en/latest/reference/ImageColor.html

Django Pydenticon Documentation, Release 0.2-dev

API Reference

Views

This section lists documentation for all views available in Django Pydenticon.

django_pydenticon.views.image(request, data)
Generates identicon image based on passed data.

Arguments:

data - Data which should be used for generating an identicon. This data will be used in order to
create a digest which is used for generating the identicon. If the data passed is a hex digest already,
the digest will be used as-is.

Returns:

Identicon image in raw format.

URL

This section lists documentation for all URL-related functions available in Django Pydenticon.

django_pydenticon.urls.get_patterns(instance=’django_pydenticon’)
Generates URL patterns for Django Pydenticon application. The return value of this function can be used
directly by the django.conf.urls.include function.

Arguments:

instance - Instance namespace that should be assigned to generated URL patterns.

Returns:

Tuple consisting out of URL patterns, instance namespace, and application namespace.

Release notes

0.2

Update introduces support for Django 1.8+ and some documentation improvements.

New features:

• DJPYD-7: Update application for use in Django 1.8, 1.9, and Django 1.10

Minimum requirement for Django is now 1.8.x. Fixes are compatible with Django 1.9.x and 1.10.x as well.

Enhancements:

• DJPYD-8: Update Pydenticon requirement to version 0.3

Introduced explicit dependency on Pydenticon 0.3, which also introduces ability to handle transparency in
PNGs.

2.8. API Reference 13

https://projects.majic.rs/django-pydenticon/issues/DJPYD-7
https://projects.majic.rs/django-pydenticon/issues/DJPYD-8

Django Pydenticon Documentation, Release 0.2-dev

0.1

Initial release of Django Pydenticon. Implemented features:

• Serving of identicons through designated URL.

• User data for generating identicons passed via URL.

• Sane configuration defaults for identicon generator for zero-configuration.

• Ability to set parameters of generated identicons.

• Ability to override some of the identicon generation attributes per-request via GET parameters.

• Full documentation covering installation, usage, privacy. API reference included as well.

14 Chapter 2. License

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

15

Django Pydenticon Documentation, Release 0.2-dev

16 Chapter 3. Indices and tables

Python Module Index

d
django_pydenticon.urls, 13
django_pydenticon.views, 13

17

Django Pydenticon Documentation, Release 0.2-dev

18 Python Module Index

Index

D
django_pydenticon.urls (module), 13
django_pydenticon.views (module), 13

G
get_patterns() (in module django_pydenticon.urls), 13

I
image() (in module django_pydenticon.views), 13

19

	Support
	License
	About Django Pydenticon
	Installation
	Configuring your Django installation
	Where to go next?
	Usage
	Privacy
	Configuration
	API Reference
	Release notes

	Indices and tables
	Python Module Index

