
django-push Documentation
Release 1.1

Bruno Renié

Jun 06, 2018

Contents

1 Installation 3

2 Manual 5
2.1 Being a publisher . 5
2.2 Being a subscriber . 7

3 Changelog 11

i

ii

django-push Documentation, Release 1.1

PuSH is the other name of PubSubHubbub, a publish/subscribe protocol based on HTTP and allowing near-instant
notifications of topic updates.

• Publishers are entities that publish their updates via HTTP resources. When a resource is updated with a new
entry, they ping their hub saying they have some new content. The hub is also declared in the resource.

• Subscribers are feed readers or followers. When they fetch a resource, they notice a hub is declared and subscribe
to the resource’s updates with the hub.

• Hubs fetch the published resource when it gets a ping from the publisher and takes care of notifying all the
subscribers.

This library provides hooks to add PubSubHubbub support to your Django project: you can use it to be a publisher
and/or subscriber.

The PubSubHubbub spec was initially designed for Atom feeds. The 0.3 version of the spec defines resources as
feeds. The 0.4 version allows arbitrary content types. The 0.4 spec is supported since version 0.5 of django-push. We
unfortunately missed the chance of having version numbers match properly.

Contents 1

http://code.google.com/p/pubsubhubbub/
http://pubsubhubbub.googlecode.com/svn/trunk/pubsubhubbub-core-0.3.html
http://superfeedr-misc.s3.amazonaws.com/pubsubhubbub-core-0.4.html
http://superfeedr-misc.s3.amazonaws.com/pubsubhubbub-core-0.4.html

django-push Documentation, Release 1.1

2 Contents

CHAPTER 1

Installation

pip install django-push

3

django-push Documentation, Release 1.1

4 Chapter 1. Installation

CHAPTER 2

Manual

2.1 Being a publisher

2.1.1 Declare your hub

First, you need a hub. You can either use your own or use a public hub. See the hub’s documentation for adding a new
feed and add your hub’s URL as a PUSH_HUB setting (the URL must be a full URL):

PUSH_HUB = 'https://pubsubhubbub.appspot.com'

Finally, use django-push’s base feed to declare your feeds. Instead of importing django.contrib.
syndication.views.Feed, do it this way:

from django_push.publisher.feeds import Feed

class MyFeed(Feed):
title = 'My Feed'
link = '...'

def items(self):
return MyModel.objects.filter(...)

Django-push will take care of adding the hub declaration to the feeds. By default, the hub is set to your PUSH_HUB
setting. If you want to change it, see Use different hubs for each feed.

Django-push’s feed is just a slightly modified version of the Feed class from the contrib.syndication app,
however its type is forced to be an Atom feed. While some hubs may be compatible with RSS and Atom feeds,
the PubSubHubbub specifications encourages the use of Atom feeds. Make sure you use the Atom attributes, like
subtitle instead of description for instance. If you’re already publishing Atom feeds, you’re fine.

Use different hubs for each feed

If you want to use different hubs for different feeds, just set the hub attribute to the URL you want:

5

https://pubsubhubbub.appspot.com

django-push Documentation, Release 1.1

from django_push.publisher.feeds import Feed

class MyFeed(Feed):
title = 'My Feed'
link = '...'
hub = 'http://hub.example.com'

class MyOtherFeed(Feed):
hub = 'http://some-other-hub.com'

By default, the Feed class will use the PUSH_HUB setting.

If you need to compute the hub URL at runtime, override the get_hub method on your feed subclass:

from django_push.publisher.feeds import Feed

class MyFeed(Feed):
def get_hub(self, obj):

return some_dynamic_url

The get_hub method was added in django-push 0.5.

2.1.2 Ping the hub on feed updates

Once your feeds are configured, you need to ping the hub each time a new item/entry is published. Since you may
have your own publishing mechanics, you need to call a ping_hub function when a new entry is made available. For
example, if a model has a publish() method:

from django.contrib.sites.models import get_current_site
from django.core.urlresolvers import reverse
from django.db import models
from django.utils import timezone

from django_push.publisher import ping_hub

class MyModel(models.Model):
def publish(self):

self.published = True
self.timestamp = timezone.now()
self.save()

ping_hub('http://%s%s' % (get_current_site().domain,
reverse('feed_for_mymodel')))

ping_hub has to be called with the full URL of the Atom feed as parameter, using either the Sites framework or
your own mechanism to add the domain name. By default, ping_hub will ping the hub declared in the PUSH_HUB
setting. A different hub can be set using an optional hub_url keyword argument:

from django_push.publisher import ping_hub

ping_hub('http://example.com/feed.atom',
hub_url='http://hub.example.com')

6 Chapter 2. Manual

django-push Documentation, Release 1.1

2.2 Being a subscriber

• Add django_push.subscriber to your INSTALLED_APPS and run manage.py migrate.

• Include django_push.subscriber.urls in your main urlconf:

urlpatterns = [
...
url(r'^subscriber/', include('django_push.subscriber.urls')),

]

• If you have django.contrib.sites installed, make sure it is correctly configured: check that Site.
objects.get_current() actually returns the domain of your publicly accessible website.

• If you don’t use django.contrib.sites, set PUSH_DOMAIN to your site’s domain in your settings.

• Additionally if your site is available via HTTPS, set PUSH_SSL_CALLBACK to True.

2.2.1 Initial subscription

Let’s assume you’re already parsing feeds. Your code may look like this:

import feedparser

parsed = feedparser.parse('http://example.com/feed/')
for entry in parsed.entries:

Do something with the entries: store them, email them...
do_something()

You need to modify this code to check if the feed declares a hub and initiate a subscription for this feed.

parsed = feedparser.parse('http://example.com/feed/')

if 'links' in parsed.feed:
for link in parsed.feed.links:

if link.rel == 'hub':
Hub detected!
hub = link.href

Now that you found a hub, you can create a subscription:

from django_push.subscriber.models import Subscription

subscription = Subscription.objects.subscribe(feed_url, hub=hub,
lease_seconds=12345)

If a subscription for this feed already exists, no new subscription is created but the existing subscription is renewed.

lease_seconds is optional and only a hint for the hub. If the hub has a custom expiration policy it may chose
another value arbitrarily. The value chose by the hub is saved in the subscription object when the subscription gets
verified.

If you want to set a default lease_seconds, you can use the PUSH_LEASE_SECONDS setting.

2.2. Being a subscriber 7

django-push Documentation, Release 1.1

If there’s a danger of hub freezing the connection (it happens in the wild) you can use the PUSH_TIMEOUT setting.
Its value should be the number of seconds (float) to wait for the subscription request to finish. Good number might be
60.

2.2.2 Renewing the leases

As we can see, the hub subscription can be valid for a certain amount of time.

Version 0.3 of the PubSubHubbub spec explains that hub must recheck with subscribers before subscriptions expire to
automatically renew subscriptions. This is not the case in version 0.4 of the spec.

In any case you can renew the leases before the expire to make sure they are not forgotten by the hub. For instance,
this could be run once a day:

import datetime

from django.utils import timezone

from django_push.subscriber.models import Subscription

tomorrow = timezone.now() + datetime.timedelta(days=1)

for subscription in Subscription.objects.filter(
verified=True,
lease_expiration__lte=tomorrow

):
subscription.subscribe()

2.2.3 Unsubscribing

If you want to stop receiving notification for a feed’s updates, you need to unsubscribe. This is as simple as doing:

from django_push.subscriber.models import Subscription

subscription = Subscription.objects.get(topic='http://example.com/feed')
subscription.unsubscribe()

The hub is notified to cancel the subscription and the Subscription object is deleted. You can also specify the hub if a
topic uses several hubs:

subscription = Subscription.objects.get(topic=feed_url, hub=hub_url)
subscription.unsubscribe()

2.2.4 Authentication

Some hubs may require basic auth for subscription requests. Django-PuSH provides a way to supply authentication
information via a callable that takes the hub URL as a parameter and returns None (no authentication required) or a
(username, password) tuple. For instance:

def custom_hub_credentials(hub_url):
if hub_url == 'http://superfeedr.com/hubbub':

return ('my_superfeedr_username', 'password')

8 Chapter 2. Manual

django-push Documentation, Release 1.1

And then, set the PUSH_CREDENTIALS setting to the dotted path to your custom function:

PUSH_CREDENTIALS = 'path.to.custom_hub_credentials'

This way you have full control of the way credentials are stored (database, settings, filesystem. . .)

2.2.5 Using HTTPS Callback URLs

By default, callback URLs will be constructed using HTTP. If you would like to use HTTPS for callback URLs, set
the PUSH_SSL_CALLBACK setting to True:

PUSH_SSL_CALLBACK = True

2.2.6 Listening to Hubs’ notifications

Once subscriptions are setup, the hubs will start to send notifications to your callback URLs. Each time a notification
is received, the django_push.subscriber.signals.updated signal is sent. You can define a receiver
function:

import feedparser

from django_push.subscriber.signals import updated

def listener(notification, **kwargs):
parsed = feedparser.parse(notification)
for entry in parsed.entries:

print entry.title, entry.link

updated.connect(listener)

The notification parameter is the raw payload from the hub. If you expect an RSS/Atom feed you should process
the payload using a library such as the universal feedparser.

kwargs also contains the raw HTTP request object and the parsed Link header if it is present. You can take
advantage of them to validate the notification:

def listener(notification, request, links, **kwargs):
if links is not None:

for link in links:
if link['rel'] == 'self':

break
url = link['url'] # This is the topic URL

2.2.7 Listening with a view instead of the updated signal

If Django signals are not your thing, you can inherit from the base subscriber view to listen for notifications:

from django_push.subscriber.views import CallbackView

class MyCallback(CallbackView):
def handle_subscription(self):

payload = self.request.body
parsed = feedparser.parse(payload)

(continues on next page)

2.2. Being a subscriber 9

http://pythonhosted.org/feedparser/

django-push Documentation, Release 1.1

(continued from previous page)

for entry in payload.entries:
do_stuff_with(entry)

callback = MyCallback.as_view()

Then instead of including django_push.subscriber.urls in your urlconf, define a custom URL with
subscriber_callback as a name and a pk named parameter:

from django.conf.urls import patterns, url

from .views import callback

urlpatterns = patterns(
'',
url(r'^subscriber/(?P<pk>\d+)/$', callback, name='subscriber_callback'),

)

In the handle_subscription method of the view, you can access self.request, self.subscription
and self.links.

2.2.8 Logging

You can listen for log messages by configuring the django_push logger:

LOGGING = {
'handlers': {

'console': {
'level': 'DEBUG',
'class': 'logging.StreamHandler',

},
},
'loggers': {

'django_push': {
'handlers': ['console'],
'level': 'DEBUG',

},
},

}

10 Chapter 2. Manual

CHAPTER 3

Changelog

• 1.1 (2018-06-06)

– Remove support for Django < 1.11.

– Add support for Django 2.0 and 2.1.

• 1.0 (2017-04-25):

– Confirm support for Django 1.11 (no code changes required).

• 0.9 (2016-07-13):

– Remove support for Django 1.7.

– Drop support for Python 3.2.

– Confirm support for Django 1.10.

• 0.8 (2015-09-29):

– Remove support for Django < 1.7.

– Use a transaction hook in Subscription.objects.subscribe() when available (Django 1.9+).

• 0.7 (2015-07-10):

– Remove warnings with Django versions up to 1.8.

• 0.6.1 (2014-01-14):

– Added PUSH_TIMEOUT setting for passing timeouts to the subscribe/unsubscribe HTTP calls.

• 0.6 (2013-07-10):

– Removed get_hub().

– Removed the unsubscribe() manager method. Unsubscribing must be done with subscription in-
stances.

– Added request and links keyword arguments to the updated signal. request is the raw HTTP
request object, links is a parsed version of the Link header, if present.

11

django-push Documentation, Release 1.1

• 0.5 (2013-06-24):

– Python 3 support, Django >= 1.4.1 support.

– HTTP handling via requests instead of urllib2.

– Deprecation of Subscription.objects.unsubscribe() in favor of an instance method on the
subscription object. The unsubscribe() manager method will be removed in version 0.6.

– Subscription.objects.subscribe() raises a warning if the hub kwarg is not provided. It will
become mandatory in version 0.6.

– Removed hub.verify_token from subscription requests. It’s optional in the 0.3 spec and absent from
the 0.4 spec.

– Secret generation code uses django.utils.crypto instead of the random module. In addition,
subscriptions over HTTP don’t use a secret anymore (as recommended in the spec).

– The updated signal is sent with the raw payload instead of the result of a feedparser.parse call.
This allows other content types than feeds to be processed, as suggested in version 0.4 of the PubSubHub-
bub spec.

– The callback view is now a class-based view, allowing listening for content distribution via a custom view
if the updated signal is not suitable.

– django.contrib.sites is no longer a hard requirement. You can set PUSH_DOMAIN in your set-
tings to your site’s canonical hostname.

– South migrations support. If you don’t use South, you should. If you’re upgrading from 0.4, just fake the
first migration and apply the others:

./manage.py migrate subscriber 0001_initial --fake

./manage.py migrate

– Tremendously improved admin support. If you were using a custom ModelAdmin for subscriptions, you
might want to try the built-in one.

• 0.4 (2011-06-30):

– Support for hub authentication via PUSH_HUB_CREDENTIALS.

– Support for SSL callback URLs.

• 0.3 (2010-08-18):

– Subscribers can unsubscribe.

• 0.2 (2010-08-12):

– Signature handling of content distribution requests.

• 0.1 (2010-08-11):

– Initial release.

12 Chapter 3. Changelog

	Installation
	Manual
	Being a publisher
	Being a subscriber

	Changelog

