
django-private-files Documentation
Release 1.0

Vasil Vangelovski (Atomidata)

Mar 12, 2018

Contents

1 Installation 3

2 Usage 5
2.1 Limiting Access to Static Files . 5
2.2 Monitoring Access to Static Files . 6

3 Server configurations 7
3.1 Apache . 7
3.2 Nginx . 8

4 Indices and tables 11

i

ii

django-private-files Documentation, Release 1.0

This application provides utilities for controlling access to static files based on conditions you can specify within your
Django application. It provides a PrivatedFileField model field and appropriate signals for monitoring access
to static content. The basic goal is that you should be able to specify permissions for each PrivateFileField
instance in one method (or callable) and leave the rest to django-private-files. Additionally you should be able to switch
server (eg. from nginx to lighttpd) without hassle and remove this application from your project without changes to
your database.

It supports the following methods for limiting access to files:

• Basic - files are served with Python (not recommended for production if you have another choice)

• Nginx (X-Accel-Redirect) - you can specify protected locations within your nginx configuration file

• xsendfile - Apache (with mod_xsendfile), lighttpd and cherokee (not tested yet)

It’s currently been tested with Django (1.9, 1.10, 1.11 and 2.0), Apache and Nginx. It should work with older versions
of django. Cherokee and lighttpd use the same mechanism as Apache mod_xsendfile, so it should work, but it’s not
been tested or documented.

Contents:

Contents 1

django-private-files Documentation, Release 1.0

2 Contents

CHAPTER 1

Installation

Install from PyPI with easy_install or pip:

pip install django-private-files

or download the source and do:

python setup.py install

or if you want to hack on the code symlink to it in your site-packages:

python setup.py develop

In your settings.py INSTALLED_APPS add private_files.

In your urls.py add the private_files application urls:

from django.conf.urls.defaults import patterns, include, url

Uncomment the next two lines to enable the admin:
from django.contrib import admin
admin.autodiscover()

urlpatterns = patterns('',
Examples:
url(r'^private_files/', include('private_files.urls')),

Uncomment the admin/doc line below to enable admin documentation:
url(r'^admin/doc/', include('django.contrib.admindocs.urls')),

Uncomment the next line to enable the admin:
url(r'^admin/', include(admin.site.urls)),

)

3

django-private-files Documentation, Release 1.0

4 Chapter 1. Installation

CHAPTER 2

Usage

2.1 Limiting Access to Static Files

To protect a static file that you have reference to in the database you need to use the PrivateFileField model
field. For example:

from django.db import models
from private_files import PrivateFileField

class FileSubmission(models.Model):
description = models.CharField("description", max_length = 200)
uploaded_file = PrivateFileField("file", upload_to = 'uploads')

By default it will check if the user is authenticated and let them download the file as an attachment.

If you want to do more complex checks for the permission to download the file you need to pass your own callable to
the condition parameter:

from django.db import models
from django.contrib.auth.models import User
from private_files import PrivateFileField

def is_owner(request, instance):
return (not request.user.is_anonymous()) and request.user.is_authenticated and

instance.owner.pk == request.user.pk

class FileSubmission(models.Model):
description = models.CharField("description", max_length = 200)

owner = models.ForeignKey(User)
uploaded_file = PrivateFileField("file", upload_to = 'uploads', condition = is_

→˓owner)

This would check if the user requesting the file is the same user referenced in the owner field and serve the file if it’s
true, otherwise it will throw PermissionDenied. condition should return True if the request user should
be able to download the file and False otherwise.

5

django-private-files Documentation, Release 1.0

Another optional parameter is attachment. It allows you to control wether the content-disposition header
is sent or not. By default it is True, meaning the user will always be prompted to download the file by the browser.

2.2 Monitoring Access to Static Files

By using django-private-files you can monitor when a file is requested for download. By hooking to the
pre_download signal. This fires when a user is granted access to a file and right before the server starts streaming
the file to the user. The following is a simple example of using the signal to provide a download counter:

from django.db import models
from django.contrib.auth.models import User
from private_files import PrivateFileField, pre_download

class CountedDownloads(models.Model):
description = models.CharField("description", max_length = 200)
downloadable = PrivateFileField("file", upload_to = 'downloadables')
downloads = models.PositiveIntegerField("downloads total", default = 0)

def handle_pre_download(instance, field_name, request, **kwargs):
instance.downloads += 1
instance.save()

pre_download.connect(handle_pre_download, sender = CountedDownloads)

6 Chapter 2. Usage

CHAPTER 3

Server configurations

All of the bellow examples assume that:

• MEDIA_ROOT is set to /media/psf/Home/Projects/django-private-files/testproject/
static/

• MEDIA_URL is set to /media/

• Protected files are stored in two subfolders uploads and downloadables

• Other static files stored in MEDIA_ROOT should be freely downloadable

3.1 Apache

If you serve your static content with Apache and have mod_xsendfile you can set PRIVATE_DOWNLOAD_HANDLER
to 'private_files.handlers.x_sendfile'. Turn XSendFile on and deny access to the directory where
you store your protected files (the value of upload_to appended to MEDIA_ROOT). Here’s an exmple of a vhost
configuration with mod_xsendfile and mod_wsgi:

<VirtualHost *:80>
ServerName django.test
XSendFile on
alias /adminmedia/ /media/psf/Home/Projects/django-private-files/testproject/

→˓static/
alias /media/ /home/vasil/src/django-trunk/django/contrib/admin/media/
WSGIDaemonProcess django-test user=vasil group=users threads=1 processes=5
WSGIProcessGroup django-test
WSGIScriptAlias / /media/psf/Home/Projects/django-private-files/testproject/

→˓django.wsgi

<Directory /media/psf/Home/Projects/django-private-files/testproject>
Order deny,allow
Allow from all

</Directory>

7

django-private-files Documentation, Release 1.0

<Directory /media/psf/Home/Projects/django-private-files/testproject/static/
→˓uploads>

Order deny,allow
Deny from all

</Directory>

<Directory /media/psf/Home/Projects/django-private-files/testproject/static/
→˓downloadables>

Order deny,allow
Deny from all

</Directory>

<Directory /home/vasil/src/django-trunk/django/contrib/admin>
Order deny,allow
Allow from all

</Directory>

ErrorLog /var/log/httpd/test.err.log
</VirtualHost>

3.2 Nginx

When using Nginx PRIVATE_DOWNLOAD_HANDLER needs to be set to 'private_files.handlers.
x_accel_redirect'. Use the internal directive like in this example:

http {
include mime.types;
default_type application/octet-stream;
sendfile on;
keepalive_timeout 65;

server {

listen 80;
server_name django.test;

location /uploads/{
internal;
root /media/psf/Home/Projects/django-private-files/testproject/static;

}

location /downloadables/{
internal;
root /media/psf/Home/Projects/django-private-files/testproject/static;

}

location /media/{
alias /media/psf/Home/Projects/django-private-files/testproject/static/;

}

location /media/uploads/ {
deny all;

}

location /media/downloadables/ {

8 Chapter 3. Server configurations

django-private-files Documentation, Release 1.0

deny all;
}

location / {
fastcgi_pass localhost:3033;

fastcgi_param PATH_INFO $fastcgi_script_name;

include fastcgi.conf;

fastcgi_param REQUEST_METHOD $request_method;
fastcgi_param CONTENT_TYPE $content_type;
fastcgi_param CONTENT_LENGTH $content_length;

}
}

3.2. Nginx 9

django-private-files Documentation, Release 1.0

10 Chapter 3. Server configurations

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

11

	Installation
	Usage
	Limiting Access to Static Files
	Monitoring Access to Static Files

	Server configurations
	Apache
	Nginx

	Indices and tables

