

Welcome to django-polymorphic’s documentation!

Django-polymorphic builds on top of the standard Django model inheritance.
It makes using inherited models easier. When a query is made at the base model,
the inherited model classes are returned.

When we store models that inherit from a Project model…

>>> Project.objects.create(topic="Department Party")
>>> ArtProject.objects.create(topic="Painting with Tim", artist="T. Turner")
>>> ResearchProject.objects.create(topic="Swallow Aerodynamics", supervisor="Dr. Winter")

…and want to retrieve all our projects, the subclassed models are returned!

>>> Project.objects.all()
[<Project: id 1, topic "Department Party">,
 <ArtProject: id 2, topic "Painting with Tim", artist "T. Turner">,
 <ResearchProject: id 3, topic "Swallow Aerodynamics", supervisor "Dr. Winter">]

Using vanilla Django, we get the base class objects, which is rarely what we wanted:

>>> Project.objects.all()
[<Project: id 1, topic "Department Party">,
 <Project: id 2, topic "Painting with Tim">,
 <Project: id 3, topic "Swallow Aerodynamics">]

Features

	Full admin integration.

	ORM integration:

	Support for ForeignKey, ManyToManyField, OneToOneField descriptors.

	Support for proxy models.

	Filtering/ordering of inherited models (ArtProject___artist).

	Filtering model types: instance_of(...) and not_instance_of(...)

	Combining querysets of different models (qs3 = qs1 | qs2)

	Support for custom user-defined managers.

	Formset support.

	Uses the minimum amount of queries needed to fetch the inherited models.

	Disabling polymorphic behavior when needed.

Getting started

	Quickstart
	Making Your Models Polymorphic

	Using Polymorphic Models

	Django admin integration
	Setup

	Example

	Filtering child types

	Inline models

	Internal details

	Performance Considerations
	ContentType retrieval

	Database notes

	Third-party applications support
	django-guardian support

	django-rest-framework support

	django-extra-views

	django-mptt support

	django-reversion support

	django-reversion-compare support

Advanced topics

	Formsets

	Migrating existing models to polymorphic
	Filling the content type value

	Custom Managers, Querysets & Manager Inheritance
	Using a Custom Manager

	Manager Inheritance

	Using a Custom Queryset Class

	Advanced features
	Filtering for classes (equivalent to python’s isinstance()):

	Polymorphic filtering (for fields in inherited classes)

	Combining Querysets

	ManyToManyField, ForeignKey, OneToOneField

	Using Third Party Models (without modifying them)

	Non-Polymorphic Queries

	About Queryset Methods

	Using enhanced Q-objects in any Places

	Nicely Displaying Polymorphic Querysets

	Restrictions & Caveats

	Changelog
	Changes in 2.0.3 (2018-08-24)

	Changes in 2.0.2 (2018-02-05)

	Changes in 2.0.1 (2018-02-05)

	Changes in 2.0 (2018-01-22)

	Version 1.3.1 (2018-04-16)

	Version 1.3 (2017-08-01)

	Version 1.2 (2017-05-01)

	Version 1.1 (2017-02-03)

	Version 1.0.2 (2016-10-14)

	Version 1.0.1 (2016-09-11)

	Version 1.0 (2016-09-02)

	Version 0.9.2 (2016-05-04)

	Version 0.9.1 (2016-02-18)

	Version 0.9 (2016-02-17)

	Version 0.8.1 (2015-12-29)

	Version 0.8 (2015-12-28)

	Version 0.7.2 (2015-10-01)

	Version 0.7.1 (2015-04-30)

	Version 0.7 (2015-04-08)

	Version 0.6.1 (2014-12-30)

	Version 0.6 (2014-10-14)

	Version 0.5.6 (2014-07-21)

	Version 0.5.5 (2014-04-29)

	Version 0.5.4 (2014-04-09)

	Version 0.5.3 (2013-09-17)

	Version 0.5.2 (2013-09-05)

	Version 0.5.1 (2013-07-05)

	Version 0.5 (2013-04-20)

	Version 0.4.2 (2013-04-10)

	Version 0.4.1 (2013-04-10)

	Version 0.4 (2013-03-25)

	Version 0.3.1 (2013-02-28)

	Version 0.3 (2013-02-28)

	Version 0.2 (2011-04-27)

	Contributing
	Running tests

	Example project

	Supported Django versions

	API Documentation
	polymorphic.admin

	polymorphic.contrib.extra_views

	polymorphic.contrib.guardian

	polymorphic.formsets

	polymorphic.managers

	polymorphic.models

	polymorphic.templatetags.polymorphic_admin_tags

	polymorphic.utils

Indices and tables

	Index

	Module Index

	Search Page

Quickstart

Install the project using:

pip install django-polymorphic

Update the settings file:

INSTALLED_APPS += (
 'polymorphic',
 'django.contrib.contenttypes',
)

The current release of django-polymorphic supports Django 1.11, 2.0 and Python 2.7 and 3.4+ is supported.
For older Django versions, use django-polymorphic==1.3.

Making Your Models Polymorphic

Use PolymorphicModel instead of Django’s models.Model, like so:

from polymorphic.models import PolymorphicModel

class Project(PolymorphicModel):
 topic = models.CharField(max_length=30)

class ArtProject(Project):
 artist = models.CharField(max_length=30)

class ResearchProject(Project):
 supervisor = models.CharField(max_length=30)

All models inheriting from your polymorphic models will be polymorphic as well.

Using Polymorphic Models

Create some objects:

>>> Project.objects.create(topic="Department Party")
>>> ArtProject.objects.create(topic="Painting with Tim", artist="T. Turner")
>>> ResearchProject.objects.create(topic="Swallow Aerodynamics", supervisor="Dr. Winter")

Get polymorphic query results:

>>> Project.objects.all()
[<Project: id 1, topic "Department Party">,
 <ArtProject: id 2, topic "Painting with Tim", artist "T. Turner">,
 <ResearchProject: id 3, topic "Swallow Aerodynamics", supervisor "Dr. Winter">]

Use instance_of or not_instance_of for narrowing the result to specific subtypes:

>>> Project.objects.instance_of(ArtProject)
[<ArtProject: id 2, topic "Painting with Tim", artist "T. Turner">]

>>> Project.objects.instance_of(ArtProject) | Project.objects.instance_of(ResearchProject)
[<ArtProject: id 2, topic "Painting with Tim", artist "T. Turner">,
 <ResearchProject: id 3, topic "Swallow Aerodynamics", supervisor "Dr. Winter">]

Polymorphic filtering: Get all projects where Mr. Turner is involved as an artist
or supervisor (note the three underscores):

>>> Project.objects.filter(Q(ArtProject___artist='T. Turner') | Q(ResearchProject___supervisor='T. Turner'))
[<ArtProject: id 2, topic "Painting with Tim", artist "T. Turner">,
 <ResearchProject: id 4, topic "Color Use in Late Cubism", supervisor "T. Turner">]

This is basically all you need to know, as django-polymorphic mostly
works fully automatic and just delivers the expected results.

Note: When using the dumpdata management command on polymorphic tables
(or any table that has a reference to ContentType [https://docs.djangoproject.com/en/2.1/_objects/ref/contrib/contenttypes/#django.contrib.contenttypes.models.ContentType]),
include the --natural flag in the arguments. This makes sure the
ContentType [https://docs.djangoproject.com/en/2.1/_objects/ref/contrib/contenttypes/#django.contrib.contenttypes.models.ContentType] models will be referenced by name
instead of their primary key as that changes between Django instances.

Note

While django-polymorphic makes subclassed models easy to use in Django,
we still encourage to use them with caution. Each subclassed model will require
Django to perform an INNER JOIN to fetch the model fields from the database.
While taking this in mind, there are valid reasons for using subclassed models.
That’s what this library is designed for!

Django admin integration

Off course, it’s possible to register individual polymorphic models in the Django admin interface.
However, to use these models in a single cohesive interface, some extra base classes are available.

Setup

Both the parent model and child model need to have a ModelAdmin class.

The shared base model should use the PolymorphicParentModelAdmin as base class.

	base_model should be set

	child_models or
get_child_models() should return an iterable of Model classes.

The admin class for every child model should inherit from PolymorphicChildModelAdmin

	base_model should be set.

Although the child models are registered too, they won’t be shown in the admin index page.
This only happens when show_in_index is set to True.

Fieldset configuration

The parent admin is only used for the list display of models,
and for the edit/delete view of non-subclassed models.

All other model types are redirected to the edit/delete/history view of the child model admin.
Hence, the fieldset configuration should be placed on the child admin.

Tip

When the child admin is used as base class for various derived classes, avoid using
the standard ModelAdmin attributes form and fieldsets.
Instead, use the base_form and base_fieldsets attributes.
This allows the PolymorphicChildModelAdmin class
to detect any additional fields in case the child model is overwritten.

Changed in version 1.0: It’s now needed to register the child model classes too.

In django-polymorphic 0.9 and below, the child_models was a tuple of a (Model, ChildModelAdmin).
The admin classes were registered in an internal class, and kept away from the main admin site.
This caused various subtle problems with the ManyToManyField and related field wrappers,
which are fixed by registering the child admin classes too. Note that they are hidden from
the main view, unless show_in_index is set.

Example

The models are taken from Advanced features.

from django.contrib import admin
from polymorphic.admin import PolymorphicParentModelAdmin, PolymorphicChildModelAdmin, PolymorphicChildModelFilter
from .models import ModelA, ModelB, ModelC, StandardModel

class ModelAChildAdmin(PolymorphicChildModelAdmin):
 """ Base admin class for all child models """
 base_model = ModelA # Optional, explicitly set here.

 # By using these `base_...` attributes instead of the regular ModelAdmin `form` and `fieldsets`,
 # the additional fields of the child models are automatically added to the admin form.
 base_form = ...
 base_fieldsets = (
 ...
)

@admin.register(ModelB)
class ModelBAdmin(ModelAChildAdmin):
 base_model = ModelB # Explicitly set here!
 # define custom features here

@admin.register(ModelC)
class ModelCAdmin(ModelBAdmin):
 base_model = ModelC # Explicitly set here!
 show_in_index = True # makes child model admin visible in main admin site
 # define custom features here

@admin.register(ModelA)
class ModelAParentAdmin(PolymorphicParentModelAdmin):
 """ The parent model admin """
 base_model = ModelA # Optional, explicitly set here.
 child_models = (ModelB, ModelC)
 list_filter = (PolymorphicChildModelFilter,) # This is optional.

Filtering child types

Child model types can be filtered by adding a PolymorphicChildModelFilter
to the list_filter attribute. See the example above.

Inline models

New in version 1.0.

Inline models are handled via a special StackedPolymorphicInline class.

For models with a generic foreign key, there is a GenericStackedPolymorphicInline class available.

When the inline is included to a normal ModelAdmin [https://docs.djangoproject.com/en/2.1/_objects/ref/contrib/admin/#django.contrib.admin.ModelAdmin],
make sure the PolymorphicInlineSupportMixin is included.
This is not needed when the admin inherits from the
PolymorphicParentModelAdmin /
PolymorphicChildModelAdmin classes.

In the following example, the PaymentInline supports several types.
These are defined as separate inline classes.
The child classes can be nested for clarity, but this is not a requirement.

from django.contrib import admin

from polymorphic.admin import PolymorphicInlineSupportMixin, StackedPolymorphicInline
from .models import Order, Payment, CreditCardPayment, BankPayment, SepaPayment

class PaymentInline(StackedPolymorphicInline):
 """
 An inline for a polymorphic model.
 The actual form appearance of each row is determined by
 the child inline that corresponds with the actual model type.
 """
 class CreditCardPaymentInline(StackedPolymorphicInline.Child):
 model = CreditCardPayment

 class BankPaymentInline(StackedPolymorphicInline.Child):
 model = BankPayment

 class SepaPaymentInline(StackedPolymorphicInline.Child):
 model = SepaPayment

 model = Payment
 child_inlines = (
 CreditCardPaymentInline,
 BankPaymentInline,
 SepaPaymentInline,
)

@admin.register(Order)
class OrderAdmin(PolymorphicInlineSupportMixin, admin.ModelAdmin):
 """
 Admin for orders.
 The inline is polymorphic.
 To make sure the inlines are properly handled,
 the ``PolymorphicInlineSupportMixin`` is needed to
 """
 inlines = (PaymentInline,)

Using polymorphic models in standard inlines

To add a polymorphic child model as an Inline for another model, add a field to the inline’s readonly_fields list
formed by the lowercased name of the polymorphic parent model with the string _ptr appended to it.
Otherwise, trying to save that model in the admin will raise an AttributeError with the message “can’t set attribute”.

from django.contrib import admin
from .models import StandardModel

class ModelBInline(admin.StackedInline):
 model = ModelB
 fk_name = 'modelb'
 readonly_fields = ['modela_ptr']

@admin.register(StandardModel)
class StandardModelAdmin(admin.ModelAdmin):
 inlines = [ModelBInline]

Internal details

The polymorphic admin interface works in a simple way:

	The add screen gains an additional step where the desired child model is selected.

	The edit screen displays the admin interface of the child model.

	The list screen still displays all objects of the base class.

The polymorphic admin is implemented via a parent admin that redirects the edit and delete views
to the ModelAdmin of the derived child model. The list page is still implemented by the parent model admin.

The parent model

The parent model needs to inherit PolymorphicParentModelAdmin, and implement the following:

	base_model should be set

	child_models or
get_child_models() should return an iterable of Model classes.

The exact implementation can depend on the way your module is structured.
For simple inheritance situations, child_models is the best solution.
For large applications, get_child_models() can be used to query a plugin registration system.

By default, the non_polymorphic() method will be called on the queryset, so
only the Parent model will be provided to the list template. This is to avoid
the performance hit of retrieving child models.

This can be controlled by setting the polymorphic_list property on the
parent admin. Setting it to True will provide child models to the list template.

If you use other applications such as django-reversion [https://github.com/etianen/django-reversion] or django-mptt [https://github.com/django-mptt/django-mptt], please check +:ref:third-party.

Note: If you are using non-integer primary keys in your model, you have to edit pk_regex,
for example pk_regex = '([\w-]+)' if you use UUIDs. Otherwise you cannot change model entries.

The child models

The admin interface of the derived models should inherit from PolymorphicChildModelAdmin.
Again, base_model should be set in this class as well.
This class implements the following features:

	It corrects the breadcrumbs in the admin pages.

	It extends the template lookup paths, to look for both the parent model and child model in the admin/app/model/change_form.html path.

	It allows to set base_form so the derived class will automatically include other fields in the form.

	It allows to set base_fieldsets so the derived class will automatically display any extra fields.

	Although it must be registered with admin site, by default it’s hidden from admin site index page.
This can be overriden by adding show_in_index = True in admin class.

Performance Considerations

Usually, when Django users create their own polymorphic ad-hoc solution
without a tool like django-polymorphic, this usually results in a variation of

result_objects = [o.get_real_instance() for o in BaseModel.objects.filter(...)]

which has very bad performance, as it introduces one additional
SQL query for every object in the result which is not of class BaseModel.
Compared to these solutions, django-polymorphic has the advantage
that it only needs 1 SQL query per object type, and not per object.

The current implementation does not use any custom SQL or Django DB layer
internals - it is purely based on the standard Django ORM. Specifically, the query:

result_objects = list(ModelA.objects.filter(...))

performs one SQL query to retrieve ModelA objects and one additional
query for each unique derived class occurring in result_objects.
The best case for retrieving 100 objects is 1 SQL query if all are
class ModelA. If 50 objects are ModelA and 50 are ModelB, then
two queries are executed. The pathological worst case is 101 db queries if
result_objects contains 100 different object types (with all of them
subclasses of ModelA).

ContentType retrieval

When fetching the ContentType [https://docs.djangoproject.com/en/2.1/_objects/ref/contrib/contenttypes/#django.contrib.contenttypes.models.ContentType] class,
it’s tempting to read the object.polymorphic_ctype field directly.
However, this performs an additional query via the ForeignKey [https://docs.djangoproject.com/en/2.1/_objects/ref/models/fields/#django.db.models.ForeignKey] object
to fetch the ContentType [https://docs.djangoproject.com/en/2.1/_objects/ref/contrib/contenttypes/#django.contrib.contenttypes.models.ContentType].
Instead, use:

from django.contrib.contenttypes.models import ContentType

ctype = ContentType.objects.get_for_id(object.polymorphic_ctype_id)

This uses the get_for_id() [https://docs.djangoproject.com/en/2.1/_objects/ref/contrib/contenttypes/#django.contrib.contenttypes.models.ContentTypeManager.get_for_id] function
which caches the results internally.

Database notes

Current relational DBM systems seem to have general problems with
the SQL queries produced by object relational mappers like the Django
ORM, if these use multi-table inheritance like Django’s ORM does.
The “inner joins” in these queries can perform very badly.
This is independent of django_polymorphic and affects all uses of
multi table Model inheritance.

Please also see this post (and comments) from Jacob Kaplan-Moss [http://jacobian.org/writing/concrete-inheritance/].

Third-party applications support

django-guardian support

New in version 1.0.2.

You can configure django-guardian [https://github.com/django-guardian/django-guardian] to use the base model for object level permissions.
Add this option to your settings:

GUARDIAN_GET_CONTENT_TYPE = 'polymorphic.contrib.guardian.get_polymorphic_base_content_type'

This option requires django-guardian [https://github.com/django-guardian/django-guardian] >= 1.4.6. Details about how this option works are available in the
django-guardian documentation [https://django-guardian.readthedocs.io/en/latest/configuration.html#guardian-get-content-type].

django-rest-framework support

The django-rest-polymorphic [https://github.com/apirobot/django-rest-polymorphic] package provides polymorphic serializers that help you integrate your polymorphic models with django-rest-framework.

Example

Define serializers:

from rest_framework import serializers
from rest_polymorphic.serializers import PolymorphicSerializer
from .models import Project, ArtProject, ResearchProject

class ProjectSerializer(serializers.ModelSerializer):
 class Meta:
 model = Project
 fields = ('topic',)

class ArtProjectSerializer(serializers.ModelSerializer):
 class Meta:
 model = ArtProject
 fields = ('topic', 'artist')

class ResearchProjectSerializer(serializers.ModelSerializer):
 class Meta:
 model = ResearchProject
 fields = ('topic', 'supervisor')

class ProjectPolymorphicSerializer(PolymorphicSerializer):
 model_serializer_mapping = {
 Project: ProjectSerializer,
 ArtProject: ArtProjectSerializer,
 ResearchProject: ResearchProjectSerializer
 }

Create viewset with serializer_class equals to your polymorphic serializer:

from rest_framework import viewsets
from .models import Project
from .serializers import ProjectPolymorphicSerializer

class ProjectViewSet(viewsets.ModelViewSet):
 queryset = Project.objects.all()
 serializer_class = ProjectPolymorphicSerializer

django-extra-views

New in version 1.1.

The polymorphic.contrib.extra_views package provides classes to display polymorphic formsets
using the classes from django-extra-views [https://github.com/AndrewIngram/django-extra-views]. See the documentation of:

	PolymorphicFormSetView

	PolymorphicInlineFormSetView

	PolymorphicInlineFormSet

django-mptt support

Combining polymorphic with django-mptt [https://github.com/django-mptt/django-mptt] is certainly possible, but not straightforward.
It involves combining both managers, querysets, models, meta-classes and admin classes
using multiple inheritance.

The django-polymorphic-tree [https://github.com/django-polymorphic/django-polymorphic-tree] package provides this out of the box.

django-reversion support

Support for django-reversion [https://github.com/etianen/django-reversion] works as expected with polymorphic models.
However, they require more setup than standard models. That’s become:

	Manually register the child models with django-reversion [https://github.com/etianen/django-reversion], so their follow parameter can be set.

	Polymorphic models use multi-table inheritance [https://docs.djangoproject.com/en/dev/topics/db/models/#multi-table-inheritance].
See the reversion documentation [https://django-reversion.readthedocs.io/en/latest/api.html#multi-table-inheritance]
how to deal with this by adding a follow field for the primary key.

	Both admin classes redefine object_history_template.

Example

The admin admin example becomes:

from django.contrib import admin
from polymorphic.admin import PolymorphicParentModelAdmin, PolymorphicChildModelAdmin
from reversion.admin import VersionAdmin
from reversion import revisions
from .models import ModelA, ModelB, ModelC

class ModelAChildAdmin(PolymorphicChildModelAdmin, VersionAdmin):
 base_model = ModelA # optional, explicitly set here.
 base_form = ...
 base_fieldsets = (
 ...
)

class ModelBAdmin(ModelAChildAdmin, VersionAdmin):
 # define custom features here

class ModelCAdmin(ModelBAdmin):
 # define custom features here

class ModelAParentAdmin(VersionAdmin, PolymorphicParentModelAdmin):
 base_model = ModelA # optional, explicitly set here.
 child_models = (
 (ModelB, ModelBAdmin),
 (ModelC, ModelCAdmin),
)

revisions.register(ModelB, follow=['modela_ptr'])
revisions.register(ModelC, follow=['modelb_ptr'])
admin.site.register(ModelA, ModelAParentAdmin)

Redefine a admin/polymorphic/object_history.html template, so it combines both worlds:

{% extends 'reversion/object_history.html' %}
{% load polymorphic_admin_tags %}

{% block breadcrumbs %}
 {% breadcrumb_scope base_opts %}{{ block.super }}{% endbreadcrumb_scope %}
{% endblock %}

This makes sure both the reversion template is used, and the breadcrumb is corrected for the polymorphic model.

django-reversion-compare support

The django-reversion-compare [https://github.com/jedie/django-reversion-compare] views work as expected, the admin requires a little tweak.
In your parent admin, include the following method:

def compare_view(self, request, object_id, extra_context=None):
 """Redirect the reversion-compare view to the child admin."""
 real_admin = self._get_real_admin(object_id)
 return real_admin.compare_view(request, object_id, extra_context=extra_context)

As the compare view resolves the the parent admin, it uses it’s base model to find revisions.
This doesn’t work, since it needs to look for revisions of the child model. Using this tweak,
the view of the actual child model is used, similar to the way the regular change and delete views are redirected.

Formsets

New in version 1.0.

Polymorphic models can be used in formsets.

The implementation is almost identical to the regular Django formsets.
As extra parameter, the factory needs to know how to display the child models.
Provide a list of PolymorphicFormSetChild objects for this.

from polymorphic.formsets import polymorphic_modelformset_factory, PolymorphicFormSetChild

ModelAFormSet = polymorphic_modelformset_factory(ModelA, formset_children=(
 PolymorphicFormSetChild(ModelB),
 PolymorphicFormSetChild(ModelC),
))

The formset can be used just like all other formsets:

if request.method == "POST":
 formset = ModelAFormSet(request.POST, request.FILES, queryset=ModelA.objects.all())
 if formset.is_valid():
 formset.save()
else:
 formset = ModelAFormSet(queryset=ModelA.objects.all())

Like standard Django formsets, there are 3 factory methods available:

	polymorphic_modelformset_factory() - create a regular model formset.

	polymorphic_inlineformset_factory() - create a inline model formset.

	generic_polymorphic_inlineformset_factory() - create an inline formset for a generic foreign key.

Each one uses a different base class:

	BasePolymorphicModelFormSet

	BasePolymorphicInlineFormSet

	BaseGenericPolymorphicInlineFormSet

When needed, the base class can be overwritten and provided to the factory via the formset parameter.

Migrating existing models to polymorphic

Existing models can be migrated to become polymorphic models.
During the migrating, the polymorphic_ctype field needs to be filled in.

This can be done in the following steps:

	Inherit your model from PolymorphicModel.

	Create a Django migration file to create the polymorphic_ctype_id database column.

	Make sure the proper ContentType [https://docs.djangoproject.com/en/2.1/_objects/ref/contrib/contenttypes/#django.contrib.contenttypes.models.ContentType] value is filled in.

Filling the content type value

The following Python code can be used to fill the value of a model:

from django.contrib.contenttypes.models import ContentType
from myapp.models import MyModel

new_ct = ContentType.objects.get_for_model(MyModel)
MyModel.objects.filter(polymorphic_ctype__isnull=True).update(polymorphic_ctype=new_ct)

The creation and update of the polymorphic_ctype_id column
can be included in a single Django migration. For example:

-*- coding: utf-8 -*-
from __future__ import unicode_literals
from django.db import migrations, models

def forwards_func(apps, schema_editor):
 MyModel = apps.get_model('myapp', 'MyModel')
 ContentType = apps.get_model('contenttypes', 'ContentType')

 new_ct = ContentType.objects.get_for_model(MyModel)
 MyModel.objects.filter(polymorphic_ctype__isnull=True).update(polymorphic_ctype=new_ct)

class Migration(migrations.Migration):

 dependencies = [
 ('contenttypes', '0001_initial'),
 ('myapp', '0001_initial'),
]

 operations = [
 migrations.AddField(
 model_name='mymodel',
 name='polymorphic_ctype',
 field=models.ForeignKey(related_name='polymorphic_myapp.mymodel_set+', editable=False, to='contenttypes.ContentType', null=True),
),
 migrations.RunPython(forwards_func, migrations.RunPython.noop),
]

It’s recommended to let makemigrations create the migration file,
and include the RunPython manually before running the migration.

New in version 1.1.

When the model is created elsewhere, you can also use
the polymorphic.utils.reset_polymorphic_ctype() function:

from polymorphic.utils import reset_polymorphic_ctype
from myapp.models import Base, Sub1, Sub2

reset_polymorphic_ctype(Base, Sub1, Sub2)

reset_polymorphic_ctype(Base, Sub1, Sub2, ignore_existing=True)

Custom Managers, Querysets & Manager Inheritance

Using a Custom Manager

A nice feature of Django is the possibility to define one’s own custom object managers.
This is fully supported with django_polymorphic: For creating a custom polymorphic
manager class, just derive your manager from PolymorphicManager instead of
models.Manager. As with vanilla Django, in your model class, you should
explicitly add the default manager first, and then your custom manager:

from polymorphic.models import PolymorphicModel
from polymorphic.managers import PolymorphicManager

class TimeOrderedManager(PolymorphicManager):
 def get_queryset(self):
 qs = super(TimeOrderedManager,self).get_queryset()
 return qs.order_by('-start_date') # order the queryset

 def most_recent(self):
 qs = self.get_queryset() # get my ordered queryset
 return qs[:10] # limit => get ten most recent entries

class Project(PolymorphicModel):
 objects = PolymorphicManager() # add the default polymorphic manager first
 objects_ordered = TimeOrderedManager() # then add your own manager
 start_date = DateTimeField() # project start is this date/time

The first manager defined (‘objects’ in the example) is used by
Django as automatic manager for several purposes, including accessing
related objects. It must not filter objects and it’s safest to use
the plain PolymorphicManager here.

Manager Inheritance

Polymorphic models inherit/propagate all managers from their
base models, as long as these are polymorphic. This means that all
managers defined in polymorphic base models continue to work as
expected in models inheriting from this base model:

from polymorphic.models import PolymorphicModel
from polymorphic.managers import PolymorphicManager

class TimeOrderedManager(PolymorphicManager):
 def get_queryset(self):
 qs = super(TimeOrderedManager,self).get_queryset()
 return qs.order_by('-start_date') # order the queryset

 def most_recent(self):
 qs = self.get_queryset() # get my ordered queryset
 return qs[:10] # limit => get ten most recent entries

class Project(PolymorphicModel):
 objects = PolymorphicManager() # add the default polymorphic manager first
 objects_ordered = TimeOrderedManager() # then add your own manager
 start_date = DateTimeField() # project start is this date/time

class ArtProject(Project): # inherit from Project, inheriting its fields and managers
 artist = models.CharField(max_length=30)

ArtProject inherited the managers objects and objects_ordered from Project.

ArtProject.objects_ordered.all() will return all art projects ordered
regarding their start time and ArtProject.objects_ordered.most_recent()
will return the ten most recent art projects.

Using a Custom Queryset Class

The PolymorphicManager class accepts one initialization argument,
which is the queryset class the manager should use. Just as with vanilla Django,
you may define your own custom queryset classes. Just use PolymorphicQuerySet
instead of Django’s QuerySet as the base class:

from polymorphic.models import PolymorphicModel
from polymorphic.managers import PolymorphicManager
from polymorphic.query import PolymorphicQuerySet

class MyQuerySet(PolymorphicQuerySet):
 def my_queryset_method(self):
 ...

class MyModel(PolymorphicModel):
 my_objects = PolymorphicManager.from_queryset(MyQuerySet)()
 ...

Advanced features

In the examples below, these models are being used:

from django.db import models
from polymorphic.models import PolymorphicModel

class ModelA(PolymorphicModel):
 field1 = models.CharField(max_length=10)

class ModelB(ModelA):
 field2 = models.CharField(max_length=10)

class ModelC(ModelB):
 field3 = models.CharField(max_length=10)

Filtering for classes (equivalent to python’s isinstance()):

>>> ModelA.objects.instance_of(ModelB)
.
[<ModelB: id 2, field1 (CharField), field2 (CharField)>,
 <ModelC: id 3, field1 (CharField), field2 (CharField), field3 (CharField)>]

In general, including or excluding parts of the inheritance tree:

ModelA.objects.instance_of(ModelB [, ModelC ...])
ModelA.objects.not_instance_of(ModelB [, ModelC ...])

You can also use this feature in Q-objects (with the same result as above):

>>> ModelA.objects.filter(Q(instance_of=ModelB))

Polymorphic filtering (for fields in inherited classes)

For example, cherrypicking objects from multiple derived classes
anywhere in the inheritance tree, using Q objects (with the
syntax: exact model name + three _ + field name):

>>> ModelA.objects.filter(Q(ModelB___field2 = 'B2') | Q(ModelC___field3 = 'C3'))
.
[<ModelB: id 2, field1 (CharField), field2 (CharField)>,
 <ModelC: id 3, field1 (CharField), field2 (CharField), field3 (CharField)>]

Combining Querysets

Querysets could now be regarded as object containers that allow the
aggregation of different object types, very similar to python
lists - as long as the objects are accessed through the manager of
a common base class:

>>> Base.objects.instance_of(ModelX) | Base.objects.instance_of(ModelY)
.
[<ModelX: id 1, field_x (CharField)>,
 <ModelY: id 2, field_y (CharField)>]

ManyToManyField, ForeignKey, OneToOneField

Relationship fields referring to polymorphic models work as
expected: like polymorphic querysets they now always return the
referred objects with the same type/class these were created and
saved as.

E.g., if in your model you define:

field1 = OneToOneField(ModelA)

then field1 may now also refer to objects of type ModelB or ModelC.

A ManyToManyField example:

The model holding the relation may be any kind of model, polymorphic or not
class RelatingModel(models.Model):
 many2many = models.ManyToManyField('ModelA') # ManyToMany relation to a polymorphic model

>>> o=RelatingModel.objects.create()
>>> o.many2many.add(ModelA.objects.get(id=1))
>>> o.many2many.add(ModelB.objects.get(id=2))
>>> o.many2many.add(ModelC.objects.get(id=3))

>>> o.many2many.all()
[<ModelA: id 1, field1 (CharField)>,
 <ModelB: id 2, field1 (CharField), field2 (CharField)>,
 <ModelC: id 3, field1 (CharField), field2 (CharField), field3 (CharField)>]

Using Third Party Models (without modifying them)

Third party models can be used as polymorphic models without
restrictions by subclassing them. E.g. using a third party
model as the root of a polymorphic inheritance tree:

from thirdparty import ThirdPartyModel

class MyThirdPartyBaseModel(PolymorphicModel, ThirdPartyModel):
 pass # or add fields

Or instead integrating the third party model anywhere into an
existing polymorphic inheritance tree:

class MyBaseModel(SomePolymorphicModel):
 my_field = models.CharField(max_length=10)

class MyModelWithThirdParty(MyBaseModel, ThirdPartyModel):
 pass # or add fields

Non-Polymorphic Queries

If you insert .non_polymorphic() anywhere into the query chain, then
django_polymorphic will simply leave out the final step of retrieving the
real objects, and the manager/queryset will return objects of the type of
the base class you used for the query, like vanilla Django would
(ModelA in this example).

>>> qs=ModelA.objects.non_polymorphic().all()
>>> qs
[<ModelA: id 1, field1 (CharField)>,
 <ModelA: id 2, field1 (CharField)>,
 <ModelA: id 3, field1 (CharField)>]

There are no other changes in the behaviour of the queryset. For example,
enhancements for filter() or instance_of() etc. still work as expected.
If you do the final step yourself, you get the usual polymorphic result:

>>> ModelA.objects.get_real_instances(qs)
[<ModelA: id 1, field1 (CharField)>,
 <ModelB: id 2, field1 (CharField), field2 (CharField)>,
 <ModelC: id 3, field1 (CharField), field2 (CharField), field3 (CharField)>]

About Queryset Methods

	annotate() and aggregate() work just as usual, with the
addition that the ModelX___field syntax can be used for the
keyword arguments (but not for the non-keyword arguments).

	order_by() similarly supports the ModelX___field syntax
for specifying ordering through a field in a submodel.

	distinct() works as expected. It only regards the fields of
the base class, but this should never make a difference.

	select_related() works just as usual, but it can not (yet) be used
to select relations in inherited models
(like ModelA.objects.select_related('ModelC___fieldxy'))

	extra() works as expected (it returns polymorphic results) but
currently has one restriction: The resulting objects are required to have
a unique primary key within the result set - otherwise an error is thrown
(this case could be made to work, however it may be mostly unneeded)..
The keyword-argument “polymorphic” is no longer supported.
You can get back the old non-polymorphic behaviour
by using ModelA.objects.non_polymorphic().extra(...).

	get_real_instances() allows you to turn a
queryset or list of base model objects efficiently into the real objects.
For example, you could do base_objects_queryset=ModelA.extra(...).non_polymorphic()
and then call real_objects=base_objects_queryset.get_real_instances(). Or alternatively
.``real_objects=ModelA.objects.get_real_instances(base_objects_queryset_or_object_list)``

	values() & values_list() currently do not return polymorphic
results. This may change in the future however. If you want to use these
methods now, it’s best if you use Model.base_objects.values... as
this is guaranteed to not change.

	defer() and only() work as expected. On Django 1.5+ they support
the ModelX___field syntax, but on Django 1.4 it is only possible to
pass fields on the base model into these methods.

Using enhanced Q-objects in any Places

The queryset enhancements (e.g. instance_of) only work as arguments
to the member functions of a polymorphic queryset. Occasionally it may
be useful to be able to use Q objects with these enhancements in other places.
As Django doesn’t understand these enhanced Q objects, you need to
transform them manually into normal Q objects before you can feed them
to a Django queryset or function:

normal_q_object = ModelA.translate_polymorphic_Q_object(Q(instance_of=Model2B))

This function cannot be used at model creation time however (in models.py),
as it may need to access the ContentTypes database table.

Nicely Displaying Polymorphic Querysets

In order to get the output as seen in all examples here, you need to use the
ShowFieldType class mixin:

from polymorphic.models import PolymorphicModel
from polymorphic.showfields import ShowFieldType

class ModelA(ShowFieldType, PolymorphicModel):
 field1 = models.CharField(max_length=10)

You may also use ShowFieldContent
or ShowFieldTypeAndContent to display
additional information when printing querysets (or converting them to text).

When showing field contents, they will be truncated to 20 characters. You can
modify this behaviour by setting a class variable in your model like this:

class ModelA(ShowFieldType, PolymorphicModel):
 polymorphic_showfield_max_field_width = 20
 ...

Similarly, pre-V1.0 output formatting can be re-estated by using
polymorphic_showfield_old_format = True.

Restrictions & Caveats

	Database Performance regarding concrete Model inheritance in general.
Please see the Performance Considerations.

	Queryset methods values(), values_list(), and select_related()
are not yet fully supported (see above). extra() has one restriction:
the resulting objects are required to have a unique primary key within
the result set.

	Diamond shaped inheritance: There seems to be a general problem
with diamond shaped multiple model inheritance with Django models
(tested with V1.1 - V1.3).
An example is here: http://code.djangoproject.com/ticket/10808.
This problem is aggravated when trying to enhance models.Model
by subclassing it instead of modifying Django core (as we do here
with PolymorphicModel).

	The enhanced filter-definitions/Q-objects only work as arguments
for the methods of the polymorphic querysets. Please see above
for translate_polymorphic_Q_object.

	When using the dumpdata management command on polymorphic tables
(or any table that has a reference to
ContentType [https://docs.djangoproject.com/en/2.1/_objects/ref/contrib/contenttypes/#django.contrib.contenttypes.models.ContentType]),
include the --natural flag in the arguments.

Changelog

Changes in 2.0.3 (2018-08-24)

	Fixed admin crash for Django 2.1 with missing use_required_attribute.

Changes in 2.0.2 (2018-02-05)

	Fixed manager inheritance behavior for Django 1.11, by automatically enabling Meta.manager_inheritance_from_future if it’s not defined.
This restores the manager inheritance behavior that django-polymorphic 1.3 provided for Django 1.x projects.

	Fixed internal base_objects usage.

Changes in 2.0.1 (2018-02-05)

	Fixed manager inheritance detection for Django 1.11.

It’s recommended to use Meta.manager_inheritance_from_future so Django 1.x code also inherit
the PolymorphicManager in all subclasses. Django 2.0 already does this by default.

	Deprecated the base_objects manager. Use objects.non_polymorphic() instead.

	Optimized detection for dumpdata behavior, avoiding the performance hit of __getattribute__().

	Fixed test management commands

Changes in 2.0 (2018-01-22)

	BACKWARDS INCOMPATIBILITY: Dropped Django 1.8 and 1.10 support.

	BACKWARDS INCOMPATIBILITY: Removed old deprecated code from 1.0, thus:

	Import managers from polymorphic.managers (plural), not polymorphic.manager.

	Register child models to the admin as well using @admin.register() or admin.site.register(),
as this is no longer done automatically.

	Added Django 2.0 support.

Also backported into 1.3.1:

	Added PolymorphicTypeUndefined exception for incomplete imported models.
When a data migration or import creates an polymorphic model,
the polymorphic_ctype_id field should be filled in manually too.
The polymorphic.utils.reset_polymorphic_ctype function can be used for that.

	Added PolymorphicTypeInvalid exception when database was incorrectly imported.

	Added polymorphic.utils.get_base_polymorphic_model() to find the base model for types.

	Using base_model on the polymorphic admins is no longer required, as this can be autodetected.

	Fixed manager errors for swappable models.

	Fixed deleteText of |as_script_options template filter.

	Fixed .filter(applabel__ModelName___field=...) lookups.

	Fixed proxy model support in formsets.

	Fixed error with .defer and child models that use the same parent.

	Fixed error message when polymorphic_ctype_id is null.

	Fixed fieldsets recursion in the admin.

	Improved polymorphic.utils.reset_polymorphic_ctype() to accept models in random ordering.

	Fix fieldsets handling in the admin (declared_fieldsets is removed since Django 1.9)

Version 1.3.1 (2018-04-16)

Backported various fixes from 2.x to support older Django versions:

	Added PolymorphicTypeUndefined exception for incomplete imported models.
When a data migration or import creates an polymorphic model,
the polymorphic_ctype_id field should be filled in manually too.
The polymorphic.utils.reset_polymorphic_ctype function can be used for that.

	Added PolymorphicTypeInvalid exception when database was incorrectly imported.

	Added polymorphic.utils.get_base_polymorphic_model() to find the base model for types.

	Using base_model on the polymorphic admins is no longer required, as this can be autodetected.

	Fixed manager errors for swappable models.

	Fixed deleteText of |as_script_options template filter.

	Fixed .filter(applabel__ModelName___field=...) lookups.

	Fixed proxy model support in formsets.

	Fixed error with .defer and child models that use the same parent.

	Fixed error message when polymorphic_ctype_id is null.

	Fixed fieldsets recursion in the admin.

	Improved polymorphic.utils.reset_polymorphic_ctype() to accept models in random ordering.

	Fix fieldsets handling in the admin (declared_fieldsets is removed since Django 1.9)

Version 1.3 (2017-08-01)

	BACKWARDS INCOMPATIBILITY: Dropped Django 1.4, 1.5, 1.6, 1.7, 1.9 and Python 2.6 support.
Only official Django releases (1.8, 1.10, 1.11) are supported now.

	Allow expressions to pass unchanged in .order_by()

	Fixed Django 1.11 accessor checks (to support subclasses of ForwardManyToOneDescriptor, like ForwardOneToOneDescriptor)

	Fixed polib syntax error messages in translations.

Version 1.2 (2017-05-01)

	Django 1.11 support.

	Fixed PolymorphicInlineModelAdmin to explictly exclude polymorphic_ctype.

	Fixed Python 3 TypeError in the admin when preserving the query string.

	Fixed Python 3 issue due to force_unicode() usage instead of force_text().

	Fixed z-index attribute for admin menu appearance.

Version 1.1 (2017-02-03)

	Added class based formset views in polymorphic/contrib/extra_views.

	Added helper function polymorphic.utils.reset_polymorphic_ctype().
This eases the migration old existing models to polymorphic.

	Fixed Python 2.6 issue.

	Fixed Django 1.6 support.

Version 1.0.2 (2016-10-14)

	Added helper function for django-guardian [https://github.com/django-guardian/django-guardian]; add
GUARDIAN_GET_CONTENT_TYPE = 'polymorphic.contrib.guardian.get_polymorphic_base_content_type'
to the project settings to let guardian handles inherited models properly.

	Fixed polymorphic_modelformset_factory() usage.

	Fixed Python 3 bug for inline formsets.

	Fixed CSS for Grappelli, so model choice menu properly overlaps.

	Fixed ParentAdminNotRegistered exception for models that are registered via a proxy model instead of the real base model.

Version 1.0.1 (2016-09-11)

	Fixed compatibility with manager changes in Django 1.10.1

Version 1.0 (2016-09-02)

	Added Django 1.10 support.

	Added admin inline support for polymorphic models.

	Added formset support for polymorphic models.

	Added support for polymorphic queryset limiting effects on proxy models.

	Added support for multiple databases with the .using() method and using=.. keyword argument.

	Fixed modifying passed Q() objects in place.

Note

This version provides a new method for registering the admin models.
While the old method is still supported, we recommend to upgrade your code.
The new registration style improves the compatibility in the Django admin.

	Register each PolymorphicChildModelAdmin with the admin site too.

	The child_models attribute of the PolymorphicParentModelAdmin should be a flat list of all child models.
The (model, admin) tuple is obsolete.

Also note that proxy models will now limit the queryset too.

Fixed since 1.0b1 (2016-08-10)

	Fix formset empty-form display when there are form errors.

	Fix formset empty-form hiding for Grappelli [http://grappelliproject.com/].

	Fixed packing admin/polymorphic/edit_inline/stacked.html in the wheel format.

Version 0.9.2 (2016-05-04)

	Fix error when using date_hierarchy field in the admin

	Fixed Django 1.10 warning in admin add-type view.

Version 0.9.1 (2016-02-18)

	Fixed support for PolymorphicManager.from_queryset() for custom query sets.

	Fixed Django 1.7 changeform_view() redirection to the child admin site.
This fixes custom admin code that uses these views, such as django-reversion [https://github.com/etianen/django-reversion]’s revision_view() / recover_view().

	Fixed .only('pk') field support.

	Fixed object_history_template breadcrumb.
NOTE: when using django-reversion [https://github.com/etianen/django-reversion] / django-reversion-compare [https://github.com/jedie/django-reversion-compare], make sure to implement
a admin/polymorphic/object_history.html template in your project that extends
from reversion/object_history.html or reversion-compare/object_history.html respectively.

Version 0.9 (2016-02-17)

	Added .only() and .defer() support.

	Added support for Django 1.8 complex expressions in .annotate() / .aggregate().

	Fix Django 1.9 handling of custom URLs.
The new change-URL redirect overlapped any custom URLs defined in the child admin.

	Fix Django 1.9 support in the admin.

	Fix setting an extra custom manager without overriding the _default_manager.

	Fix missing history_view() redirection to the child admin, which is important for django-reversion [https://github.com/etianen/django-reversion] support.
See the documentation for hints for django-reversion-compare support.

Version 0.8.1 (2015-12-29)

	Fixed support for reverse relations for relname___field when the field starts with an _ character.
Otherwise, the query will be interpreted as subclass lookup (ClassName___field).

Version 0.8 (2015-12-28)

	Added Django 1.9 compatibility.

	Renamed polymorphic.manager => polymorphic.managers for consistentcy.

	BACKWARDS INCOMPATIBILITY: The import paths have changed to support Django 1.9.
Instead of from polymorphic import X,
you’ll have to import from the proper package. For example:

from polymorphic.models import PolymorphicModel
from polymorphic.managers import PolymorphicManager, PolymorphicQuerySet
from polymorphic.showfields import ShowFieldContent, ShowFieldType, ShowFieldTypeAndContent

	BACKWARDS INCOMPATIBILITY: Removed __version__.py in favor of a standard __version__ in polymorphic/__init__.py.

	BACKWARDS INCOMPATIBILITY: Removed automatic proxying of method calls to the queryset class.
Use the standard Django methods instead:

In model code:
objects = PolymorphicQuerySet.as_manager()

For manager code:
MyCustomManager = PolymorphicManager.from_queryset(MyCustomQuerySet)

Version 0.7.2 (2015-10-01)

	Added queryset.as_manager() support for Django 1.7/1.8

	Optimize model access for non-dumpdata usage; avoid __getattribute__() call each time to access the manager.

	Fixed 500 error when using invalid PK’s in the admin URL, return 404 instead.

	Fixed possible issues when using an custom AdminSite class for the parent object.

	Fixed Pickle exception when polymorphic model is cached.

Version 0.7.1 (2015-04-30)

	Fixed Django 1.8 support for related field widgets.

Version 0.7 (2015-04-08)

	Added Django 1.8 support

	Added support for custom primary key defined using mybase_ptr = models.OneToOneField(BaseClass, parent_link=True, related_name="...").

	Fixed Python 3 issue in the admin

	Fixed _default_manager to be consistent with Django, it’s now assigned directly instead of using add_to_class()

	Fixed 500 error for admin URLs without a ‘/’, e.g. admin/app/parentmodel/id.

	Fixed preserved filter for Django admin in delete views

	Removed test noise for diamond inheritance problem (which Django 1.7 detects)

Version 0.6.1 (2014-12-30)

	Remove Django 1.7 warnings

	Fix Django 1.4/1.5 queryset calls on related objects for unknown methods.
The RelatedManager code overrides get_query_set() while __getattr__() used the new-style get_queryset().

	Fix validate_model_fields(), caused errors when metaclass raises errors

Version 0.6 (2014-10-14)

	Added Django 1.7 support.

	Added permission check for all child types.

	BACKWARDS INCOMPATIBILITY: the get_child_type_choices() method receives 2 arguments now (request, action).
If you have overwritten this method in your code, make sure the method signature is updated accordingly.

Version 0.5.6 (2014-07-21)

	Added pk_regex to the PolymorphicParentModelAdmin to support non-integer primary keys.

	Fixed passing ?ct_id= to the add view for Django 1.6 (fixes compatibility with django-parler [https://github.com/django-parler/django-parler]).

Version 0.5.5 (2014-04-29)

	Fixed get_real_instance_class() for proxy models (broke in 0.5.4).

Version 0.5.4 (2014-04-09)

	Fix .non_polymorphic() to returns a clone of the queryset, instead of effecting the existing queryset.

	Fix missing alters_data = True annotations on the overwritten save() methods.

	Fix infinite recursion bug in the admin with Django 1.6+

	Added detection of bad ContentType table data.

Version 0.5.3 (2013-09-17)

	Fix TypeError when base_form was not defined.

	Fix passing /admin/app/model/id/XYZ urls to the correct admin backend.
There is no need to include a ?ct_id=.. field, as the ID already provides enough information.

Version 0.5.2 (2013-09-05)

	Fix Grappelli [http://grappelliproject.com/] breadcrumb support in the views.

	Fix unwanted ___ handling in the ORM when a field name starts with an underscore;
this detects you meant relatedfield__ _underscorefield instead of ClassName___field.

	Fix missing permission check in the “add type” view. This was caught however in the next step.

	Fix admin validation errors related to additional non-model form fields.

Version 0.5.1 (2013-07-05)

	Add Django 1.6 support.

	Fix Grappelli [http://grappelliproject.com/] theme support in the “Add type” view.

Version 0.5 (2013-04-20)

	Add Python 3.2 and 3.3 support

	Fix errors with ContentType objects that don’t refer to an existing model.

Version 0.4.2 (2013-04-10)

	Used proper __version__ marker.

Version 0.4.1 (2013-04-10)

	Add Django 1.5 and 1.6 support

	Add proxy model support

	Add default admin list_filter for polymorphic model type.

	Fix queryset support of related objects.

	Performed an overall cleanup of the project

	Deprecated the queryset_class argument of the PolymorphicManager constructor, use the class attribute instead.

	Dropped Django 1.1, 1.2 and 1.3 support

Version 0.4 (2013-03-25)

	Update example project for Django 1.4

	Added tox and Travis configuration

Version 0.3.1 (2013-02-28)

	SQL optimization, avoid query in pre_save_polymorphic()

Version 0.3 (2013-02-28)

Many changes to the codebase happened, but no new version was released to pypi for years.
0.3 contains fixes submitted by many contributors, huge thanks to everyone!

	Added a polymorphic admin interface.

	PEP8 and code cleanups by various authors

Version 0.2 (2011-04-27)

The 0.2 release serves as legacy release.
It supports Django 1.1 up till 1.4 and Python 2.4 up till 2.7.

For a detailed list of it’s changes, see the archived changelog.

Contributing

You can contribute to django-polymorphic to forking the code on GitHub:

https://github.com/django-polymorphic/django-polymorphic

Running tests

We require features to be backed by a unit test.
This way, we can test django-polymorphic against new Django versions.
To run the included test suite, execute:

./runtests.py

To test support for multiple Python and Django versions, run tox from the repository root:

pip install tox
tox

The Python versions need to be installed at your system.
On Linux, download the versions at http://www.python.org/download/releases/.
On MacOS X, use Homebrew [http://mxcl.github.io/homebrew/] to install other Python versions.

We currently support Python 2.6, 2.7, 3.2 and 3.3.

Example project

The repository contains a complete Django project that may be used for tests or experiments,
without any installation needed.

The management command pcmd.py in the app pexp can be used for quick tests
or experiments - modify this file (pexp/management/commands/pcmd.py) to your liking.

Supported Django versions

The current release should be usable with the supported releases of Django;
the current stable release and the previous release. Supporting older Django
versions is a nice-to-have feature, but not mandatory.

In case you need to use django-polymorphic with older Django versions,
consider installing a previous version.

API Documentation

	polymorphic.admin
	ModelAdmin classes
	The PolymorphicParentModelAdmin class

	The PolymorphicChildModelAdmin class

	List filtering
	The PolymorphicChildModelFilter class

	Inlines support
	The StackedPolymorphicInline class

	The GenericStackedPolymorphicInline class

	The PolymorphicInlineSupportMixin class

	Low-level classes

	polymorphic.contrib.extra_views

	polymorphic.contrib.guardian

	polymorphic.formsets
	Model formsets

	Inline formsets

	Generic formsets

	Low-level features

	polymorphic.managers
	The PolymorphicManager class

	The PolymorphicQuerySet class

	polymorphic.models

	polymorphic.templatetags.polymorphic_admin_tags
	The polymorphic_formset_tags Library

	The polymorphic_admin_tags Library

	polymorphic.utils

polymorphic.admin

ModelAdmin classes

The PolymorphicParentModelAdmin class

	
class polymorphic.admin.PolymorphicParentModelAdmin(model, admin_site, *args, **kwargs)

	Bases: django.contrib.admin.options.ModelAdmin

A admin interface that can displays different change/delete pages, depending on the polymorphic model.
To use this class, one attribute need to be defined:

	child_models should be a list models.

Alternatively, the following methods can be implemented:

	get_child_models() should return a list of models.

	optionally, get_child_type_choices() can be overwritten to refine the choices for the add dialog.

This class needs to be inherited by the model admin base class that is registered in the site.
The derived models should not register the ModelAdmin, but instead it should be returned by get_child_models().

	
add_type_form

	alias of polymorphic.admin.forms.PolymorphicModelChoiceForm

	
add_type_view(request, form_url='')

	Display a choice form to select which page type to add.

	
add_view(request, form_url='', extra_context=None)

	Redirect the add view to the real admin.

	
change_view(request, object_id, *args, **kwargs)

	Redirect the change view to the real admin.

	
changeform_view(request, object_id=None, *args, **kwargs)

	

	
delete_view(request, object_id, extra_context=None)

	Redirect the delete view to the real admin.

	
get_child_models()

	Return the derived model classes which this admin should handle.
This should return a list of tuples, exactly like child_models is.

The model classes can be retrieved as base_model.__subclasses__(),
a setting in a config file, or a query of a plugin registration system at your option

	
get_child_type_choices(request, action)

	Return a list of polymorphic types for which the user has the permission to perform the given action.

	
get_preserved_filters(request)

	

	
get_queryset(request)

	

	
get_urls()

	Expose the custom URLs for the subclasses and the URL resolver.

	
history_view(request, object_id, extra_context=None)

	Redirect the history view to the real admin.

	
register_child(model, model_admin)

	Register a model with admin to display.

	
render_add_type_form(request, context, form_url='')

	Render the page type choice form.

	
subclass_view(request, path)

	Forward any request to a custom view of the real admin.

	
add_type_template = None

	

	
base_model = None

	The base model that the class uses (auto-detected if not set explicitly)

	
change_list_template

	

	
child_models = None

	The child models that should be displayed

	
media

	

	
pk_regex = '(\\d+|__fk__)'

	The regular expression to filter the primary key in the URL.
This accepts only numbers as defensive measure against catch-all URLs.
If your primary key consists of string values, update this regular expression.

	
polymorphic_list = False

	Whether the list should be polymorphic too, leave to False to optimize

The PolymorphicChildModelAdmin class

	
class polymorphic.admin.PolymorphicChildModelAdmin(model, admin_site, *args, **kwargs)

	Bases: django.contrib.admin.options.ModelAdmin

The optional base class for the admin interface of derived models.

This base class defines some convenience behavior for the admin interface:

	It corrects the breadcrumbs in the admin pages.

	It adds the base model to the template lookup paths.

	It allows to set base_form so the derived class will automatically include other fields in the form.

	It allows to set base_fieldsets so the derived class will automatically display any extra fields.

	
delete_view(request, object_id, context=None)

	

	
get_base_fieldsets(request, obj=None)

	

	
get_fieldsets(request, obj=None)

	

	
get_form(request, obj=None, **kwargs)

	

	
get_model_perms(request)

	

	
get_subclass_fields(request, obj=None)

	

	
history_view(request, object_id, extra_context=None)

	

	
render_change_form(request, context, add=False, change=False, form_url='', obj=None)

	

	
response_post_save_add(request, obj)

	

	
response_post_save_change(request, obj)

	

	
base_fieldsets = None

	By setting base_fieldsets instead of fieldsets,
any subclass fields can be automatically added.
This is useful when your model admin class is inherited by others.

	
base_form = None

	By setting base_form instead of form, any subclass fields are automatically added to the form.
This is useful when your model admin class is inherited by others.

	
base_model = None

	The base model that the class uses (auto-detected if not set explicitly)

	
change_form_template

	

	
delete_confirmation_template

	

	
extra_fieldset_title = u'Contents'

	Default title for extra fieldset

	
media

	

	
object_history_template

	

	
show_in_index = False

	Whether the child admin model should be visible in the admin index page.

List filtering

The PolymorphicChildModelFilter class

	
class polymorphic.admin.PolymorphicChildModelFilter(request, params, model, model_admin)

	Bases: django.contrib.admin.filters.SimpleListFilter

An admin list filter for the PolymorphicParentModelAdmin which enables
filtering by its child models.

This can be used in the parent admin:

list_filter = (PolymorphicChildModelFilter,)

Inlines support

The StackedPolymorphicInline class

	
class polymorphic.admin.StackedPolymorphicInline(parent_model, admin_site)

	Bases: polymorphic.admin.inlines.PolymorphicInlineModelAdmin

Stacked inline for django-polymorphic models.
Since tabular doesn’t make much sense with changed fields, just offer this one.

The GenericStackedPolymorphicInline class

	
class polymorphic.admin.GenericStackedPolymorphicInline(parent_model, admin_site)

	Bases: polymorphic.admin.generic.GenericPolymorphicInlineModelAdmin

The stacked layout for generic inlines.

	
media

	

	
template = 'admin/polymorphic/edit_inline/stacked.html'

	The default template to use.

The PolymorphicInlineSupportMixin class

	
class polymorphic.admin.PolymorphicInlineSupportMixin

	Bases: object

A Mixin to add to the regular admin, so it can work with our polymorphic inlines.

This mixin needs to be included in the admin that hosts the inlines.
It makes sure the generated admin forms have different fieldsets/fields
depending on the polymorphic type of the form instance.

This is achieved by overwriting get_inline_formsets() to return
an PolymorphicInlineAdminFormSet instead of a standard Django
InlineAdminFormSet for the polymorphic formsets.

	
get_inline_formsets(request, formsets, inline_instances, obj=None, *args, **kwargs)

	Overwritten version to produce the proper admin wrapping for the
polymorphic inline formset. This fixes the media and form appearance
of the inline polymorphic models.

Low-level classes

These classes are useful when existing parts of the admin classes.

	
class polymorphic.admin.PolymorphicModelChoiceForm(*args, **kwargs)

	Bases: django.forms.forms.Form

The default form for the add_type_form. Can be overwritten and replaced.

	
base_fields = {'ct_id': <django.forms.fields.ChoiceField object at 0x7efc33142c50>}

	

	
declared_fields = {'ct_id': <django.forms.fields.ChoiceField object at 0x7efc33142c50>}

	

	
media

	

	
type_label = u'Type'

	Define the label for the radiofield

	
class polymorphic.admin.PolymorphicInlineModelAdmin(parent_model, admin_site)

	Bases: django.contrib.admin.options.InlineModelAdmin

A polymorphic inline, where each formset row can be a different form.

Note that:

	Permissions are only checked on the base model.

	The child inlines can’t override the base model fields, only this parent inline can do that.

	
class Child(parent_inline)

	Bases: django.contrib.admin.options.InlineModelAdmin

The child inline; which allows configuring the admin options
for the child appearance.

Note that not all options will be honored by the parent, notably the formset options:
* extra
* min_num
* max_num

The model form options however, will all be read.

	
formset_child

	alias of polymorphic.formsets.models.PolymorphicFormSetChild

	
get_fields(request, obj=None)

	

	
get_formset(request, obj=None, **kwargs)

	

	
get_formset_child(request, obj=None, **kwargs)

	Return the formset child that the parent inline can use to represent us.

	Return type

	PolymorphicFormSetChild

	
extra = 0

	

	
media

	

	
formset

	alias of polymorphic.formsets.models.BasePolymorphicInlineFormSet

	
get_child_inline_instance(model)

	Find the child inline for a given model.

	Return type

	PolymorphicInlineModelAdmin.Child

	
get_child_inline_instances()

	:rtype List[PolymorphicInlineModelAdmin.Child]

	
get_fields(request, obj=None)

	

	
get_fieldsets(request, obj=None)

	Hook for specifying fieldsets.

	
get_formset(request, obj=None, **kwargs)

	Construct the inline formset class.

This passes all class attributes to the formset.

	Return type

	type

	
get_formset_children(request, obj=None)

	The formset ‘children’ provide the details for all child models that are part of this formset.
It provides a stripped version of the modelform/formset factory methods.

	
child_inlines = ()

	Inlines for all model sub types that can be displayed in this inline.
Each row is a PolymorphicInlineModelAdmin.Child

	
extra = 0

	The extra forms to show
By default there are no ‘extra’ forms as the desired type is unknown.
Instead, add each new item using JavaScript that first offers a type-selection.

	
media

	

	
polymorphic_media = <django.forms.widgets.Media object>

	The extra media to add for the polymorphic inlines effect.
This can be redefined for subclasses.

	
class polymorphic.admin.GenericPolymorphicInlineModelAdmin(parent_model, admin_site)

	Bases: polymorphic.admin.inlines.PolymorphicInlineModelAdmin, django.contrib.contenttypes.admin.GenericInlineModelAdmin [https://docs.djangoproject.com/en/2.1/_objects/ref/contrib/contenttypes/#django.contrib.contenttypes.admin.GenericInlineModelAdmin]

Base class for variation of inlines based on generic foreign keys.

	
class Child(parent_inline)

	Bases: polymorphic.admin.inlines.Child

Variation for generic inlines.

	
formset_child

	alias of polymorphic.formsets.generic.GenericPolymorphicFormSetChild

	
get_formset_child(request, obj=None, **kwargs)

	Return the formset child that the parent inline can use to represent us.

	Return type

	PolymorphicFormSetChild

	
content_type

	Expose the ContentType that the child relates to.
This can be used for the polymorphic_ctype field.

	
ct_field = 'content_type'

	

	
ct_fk_field = 'object_id'

	

	
media

	

	
formset

	alias of polymorphic.formsets.generic.BaseGenericPolymorphicInlineFormSet

	
get_formset(request, obj=None, **kwargs)

	Construct the generic inline formset class.

	
media

	

	
class polymorphic.admin.PolymorphicInlineAdminForm(formset, form, fieldsets, prepopulated_fields, original, readonly_fields=None, model_admin=None, view_on_site_url=None)

	Bases: django.contrib.admin.helpers.InlineAdminForm

Expose the admin configuration for a form

	
class polymorphic.admin.PolymorphicInlineAdminFormSet(*args, **kwargs)

	Bases: django.contrib.admin.helpers.InlineAdminFormSet

Internally used class to expose the formset in the template.

polymorphic.contrib.extra_views

The extra_views.formsets provides a simple way to handle formsets.
The extra_views.advanced provides a method to combine that with a create/update form.

This package provides classes that support both options for polymorphic formsets.

	
class polymorphic.contrib.extra_views.PolymorphicFormSetView(**kwargs)

	Bases: polymorphic.contrib.extra_views.PolymorphicFormSetMixin, extra_views.formsets.ModelFormSetView

A view that displays a single polymorphic formset.

from polymorphic.formsets import PolymorphicFormSetChild

class ItemsView(PolymorphicFormSetView):
 model = Item
 formset_children = [
 PolymorphicFormSetChild(ItemSubclass1),
 PolymorphicFormSetChild(ItemSubclass2),
]

	
formset_class

	alias of polymorphic.formsets.models.BasePolymorphicModelFormSet

	
class polymorphic.contrib.extra_views.PolymorphicInlineFormSetView(**kwargs)

	Bases: polymorphic.contrib.extra_views.PolymorphicFormSetMixin, extra_views.formsets.InlineFormSetView

A view that displays a single polymorphic formset - with one parent object.
This is a variation of the extra_views package classes for django-polymorphic.

from polymorphic.formsets import PolymorphicFormSetChild

class OrderItemsView(PolymorphicInlineFormSetView):
 model = Order
 inline_model = Item
 formset_children = [
 PolymorphicFormSetChild(ItemSubclass1),
 PolymorphicFormSetChild(ItemSubclass2),
]

	
formset_class

	alias of polymorphic.formsets.models.BasePolymorphicInlineFormSet

	
class polymorphic.contrib.extra_views.PolymorphicInlineFormSet(parent_model, request, instance, view_kwargs=None, view=None)

	Bases: polymorphic.contrib.extra_views.PolymorphicFormSetMixin, extra_views.advanced.InlineFormSet

An inline to add to the inlines of
the CreateWithInlinesView
and UpdateWithInlinesView class.

from polymorphic.formsets import PolymorphicFormSetChild

class ItemsInline(PolymorphicInlineFormSet):
 model = Item
 formset_children = [
 PolymorphicFormSetChild(ItemSubclass1),
 PolymorphicFormSetChild(ItemSubclass2),
]

class OrderCreateView(CreateWithInlinesView):
 model = Order
 inlines = [ItemsInline]

 def get_success_url(self):
 return self.object.get_absolute_url()

	
formset_class

	alias of polymorphic.formsets.models.BasePolymorphicInlineFormSet

polymorphic.contrib.guardian

	
polymorphic.contrib.guardian.get_polymorphic_base_content_type(obj)

	Helper function to return the base polymorphic content type id. This should used with django-guardian and the
GUARDIAN_GET_CONTENT_TYPE option.

See the django-guardian documentation for more information:

https://django-guardian.readthedocs.io/en/latest/configuration.html#guardian-get-content-type

polymorphic.formsets

This allows creating formsets where each row can be a different form type.
The logic of the formsets work similar to the standard Django formsets;
there are factory methods to construct the classes with the proper form settings.

The “parent” formset hosts the entire model and their child model.
For every child type, there is an PolymorphicFormSetChild instance
that describes how to display and construct the child.
It’s parameters are very similar to the parent’s factory method.

Model formsets

	
polymorphic.formsets.polymorphic_modelformset_factory(model, formset_children, formset=<class 'polymorphic.formsets.models.BasePolymorphicModelFormSet'>, form=<class 'django.forms.models.ModelForm'>, fields=None, exclude=None, extra=1, can_order=False, can_delete=True, max_num=None, formfield_callback=None, widgets=None, validate_max=False, localized_fields=None, labels=None, help_texts=None, error_messages=None, min_num=None, validate_min=False, field_classes=None, child_form_kwargs=None)

	Construct the class for an polymorphic model formset.

All arguments are identical to :func:’~django.forms.models.modelformset_factory’,
with the exception of the ‘’formset_children’’ argument.

	Parameters

	formset_children (Iterable[PolymorphicFormSetChild]) – A list of all child :class:’PolymorphicFormSetChild’ objects
that tell the inline how to render the child model types.

	Return type

	type

	
class polymorphic.formsets.PolymorphicFormSetChild(model, form=<class 'django.forms.models.ModelForm'>, fields=None, exclude=None, formfield_callback=None, widgets=None, localized_fields=None, labels=None, help_texts=None, error_messages=None)

	Metadata to define the inline of a polymorphic child.
Provide this information in the :func:’polymorphic_inlineformset_factory’ construction.

Inline formsets

	
polymorphic.formsets.polymorphic_inlineformset_factory(parent_model, model, formset_children, formset=<class 'polymorphic.formsets.models.BasePolymorphicInlineFormSet'>, fk_name=None, form=<class 'django.forms.models.ModelForm'>, fields=None, exclude=None, extra=1, can_order=False, can_delete=True, max_num=None, formfield_callback=None, widgets=None, validate_max=False, localized_fields=None, labels=None, help_texts=None, error_messages=None, min_num=None, validate_min=False, field_classes=None, child_form_kwargs=None)

	Construct the class for an inline polymorphic formset.

All arguments are identical to :func:’~django.forms.models.inlineformset_factory’,
with the exception of the ‘’formset_children’’ argument.

	Parameters

	formset_children (Iterable[PolymorphicFormSetChild]) – A list of all child :class:’PolymorphicFormSetChild’ objects
that tell the inline how to render the child model types.

	Return type

	type

Generic formsets

	
polymorphic.formsets.generic_polymorphic_inlineformset_factory(model, formset_children, form=<class 'django.forms.models.ModelForm'>, formset=<class 'polymorphic.formsets.generic.BaseGenericPolymorphicInlineFormSet'>, ct_field='content_type', fk_field='object_id', fields=None, exclude=None, extra=1, can_order=False, can_delete=True, max_num=None, formfield_callback=None, validate_max=False, for_concrete_model=True, min_num=None, validate_min=False, child_form_kwargs=None)

	Construct the class for a generic inline polymorphic formset.

All arguments are identical to generic_inlineformset_factory() [https://docs.djangoproject.com/en/2.1/_objects/ref/contrib/contenttypes/#django.contrib.contenttypes.forms.generic_inlineformset_factory],
with the exception of the formset_children argument.

	Parameters

	formset_children (Iterable[PolymorphicFormSetChild]) – A list of all child PolymorphicFormSetChild objects
that tell the inline how to render the child model types.

	Return type

	type

Low-level features

The internal machinery can be used to extend the formset classes. This includes:

	
polymorphic.formsets.polymorphic_child_forms_factory(formset_children, **kwargs)

	Construct the forms for the formset children.
This is mostly used internally, and rarely needs to be used by external projects.
When using the factory methods (:func:’polymorphic_inlineformset_factory’),
this feature is called already for you.

	
class polymorphic.formsets.BasePolymorphicModelFormSet(*args, **kwargs)

	Bases: django.forms.models.BaseModelFormSet [https://docs.djangoproject.com/en/2.1/_objects/topics/forms/modelforms/#django.forms.models.BaseModelFormSet]

A formset that can produce different forms depending on the object type.

Note that the ‘add’ feature is therefore more complex,
as all variations need ot be exposed somewhere.

When switching existing formsets to the polymorphic formset,
note that the ID field will no longer be named ‘’model_ptr’‘,
but just appear as ‘’id’‘.

	
class polymorphic.formsets.BasePolymorphicInlineFormSet(data=None, files=None, instance=None, save_as_new=False, prefix=None, queryset=None, **kwargs)

	Bases: django.forms.models.BaseInlineFormSet [https://docs.djangoproject.com/en/2.1/_objects/topics/forms/modelforms/#django.forms.models.BaseInlineFormSet], polymorphic.formsets.models.BasePolymorphicModelFormSet

Polymorphic formset variation for inline formsets

	
class polymorphic.formsets.BaseGenericPolymorphicInlineFormSet(data=None, files=None, instance=None, save_as_new=None, prefix=None, queryset=None, **kwargs)

	Bases: django.contrib.contenttypes.forms.BaseGenericInlineFormSet [https://docs.djangoproject.com/en/2.1/_objects/ref/contrib/contenttypes/#django.contrib.contenttypes.forms.BaseGenericInlineFormSet], polymorphic.formsets.models.BasePolymorphicModelFormSet

Polymorphic formset variation for inline generic formsets

polymorphic.managers

The manager class for use in the models.

The PolymorphicManager class

	
class polymorphic.managers.PolymorphicManager

	Bases: django.db.models.manager.Manager

Manager for PolymorphicModel

Usually not explicitly needed, except if a custom manager or
a custom queryset class is to be used.

	
queryset_class

	alias of polymorphic.query.PolymorphicQuerySet

	
get_queryset()

	Returns a new QuerySet object. Subclasses can override this method to
easily customize the behavior of the Manager.

The PolymorphicQuerySet class

	
class polymorphic.managers.PolymorphicQuerySet(*args, **kwargs)

	Bases: django.db.models.query.QuerySet [https://docs.djangoproject.com/en/2.1/_objects/ref/models/querysets/#django.db.models.query.QuerySet]

QuerySet for PolymorphicModel

Contains the core functionality for PolymorphicModel

Usually not explicitly needed, except if a custom queryset class
is to be used.

	
aggregate(*args, **kwargs)

	translate the polymorphic field paths in the kwargs, then call vanilla aggregate.
We need no polymorphic object retrieval for aggregate => switch it off.

	
annotate(*args, **kwargs)

	translate the polymorphic field paths in the kwargs, then call vanilla annotate.
_get_real_instances will do the rest of the job after executing the query.

	
bulk_create(objs, batch_size=None)

	Inserts each of the instances into the database. This does not call
save() on each of the instances, does not send any pre/post save
signals, and does not set the primary key attribute if it is an
autoincrement field (except if features.can_return_ids_from_bulk_insert=True).
Multi-table models are not supported.

	
defer(*fields)

	Translate the field paths in the args, then call vanilla defer.

Also retain a copy of the original fields passed, which we’ll need
when we’re retrieving the real instance (since we’ll need to translate
them again, as the model will have changed).

	
get_real_instances(base_result_objects=None)

	Cast a list of objects to their actual classes.

This does roughly the same as:

return [o.get_real_instance() for o in base_result_objects]

but more efficiently.

	Return type

	PolymorphicQuerySet

	
instance_of(*args)

	Filter the queryset to only include the classes in args (and their subclasses).

	
non_polymorphic()

	switch off polymorphic behaviour for this query.
When the queryset is evaluated, only objects of the type of the
base class used for this query are returned.

	
not_instance_of(*args)

	Filter the queryset to exclude the classes in args (and their subclasses).

	
only(*fields)

	Translate the field paths in the args, then call vanilla only.

Also retain a copy of the original fields passed, which we’ll need
when we’re retrieving the real instance (since we’ll need to translate
them again, as the model will have changed).

	
order_by(*field_names)

	translate the field paths in the args, then call vanilla order_by.

polymorphic.models

Seamless Polymorphic Inheritance for Django Models

	
class polymorphic.models.PolymorphicModel(*args, **kwargs)

	Bases: django.db.models.base.Model

Abstract base class that provides polymorphic behaviour
for any model directly or indirectly derived from it.

PolymorphicModel declares one field for internal use (polymorphic_ctype)
and provides a polymorphic manager as the default manager (and as ‘objects’).

	Parameters

	polymorphic_ctype_id (ForeignKey to ContentType [https://docs.djangoproject.com/en/2.1/_objects/ref/contrib/contenttypes/#django.contrib.contenttypes.models.ContentType]) – Polymorphic ctype

	
get_real_instance()

	Upcast an object to it’s actual type.

If a non-polymorphic manager (like base_objects) has been used to
retrieve objects, then the complete object with it’s real class/type
and all fields may be retrieved with this method.

Note

Each method call executes one db query (if necessary).
Use the get_real_instances()
to upcast a complete list in a single efficient query.

	
get_real_instance_class()

	Return the actual model type of the object.

If a non-polymorphic manager (like base_objects) has been used to
retrieve objects, then the real class/type of these objects may be
determined using this method.

	
pre_save_polymorphic(using='default')

	Make sure the polymorphic_ctype value is correctly set on this model.

	
save(*args, **kwargs)

	Calls pre_save_polymorphic() and saves the model.

	
polymorphic_ctype

	The model field that stores the ContentType [https://docs.djangoproject.com/en/2.1/_objects/ref/contrib/contenttypes/#django.contrib.contenttypes.models.ContentType] reference to the actual class.

polymorphic.templatetags.polymorphic_admin_tags

Template tags for polymorphic

The polymorphic_formset_tags Library

New in version 1.1.

To render formsets in the frontend, the polymorphic_tags provides extra
filters to implement HTML rendering of polymorphic formsets.

The following filters are provided;

	{{ formset|as_script_options }} render the data-options for a JavaScript formset library.

	{{ formset|include_empty_form }} provide the placeholder form for an add button.

	{{ form|as_form_type }} return the model name that the form instance uses.

	{{ model|as_model_name }} performs the same, for a model class or instance.

{% load i18n polymorphic_formset_tags %}

<div class="inline-group" id="{{ formset.prefix }}-group" data-options="{{ formset|as_script_options }}">
 {% block add_button %}
 {% if formset.show_add_button|default_if_none:'1' %}
 {% if formset.empty_forms %}
 {# django-polymorphic formset (e.g. PolymorphicInlineFormSetView) #}
 <div class="btn-group" role="group">
 {% for model in formset.child_forms %}
 {% glyphicon 'plus' %} {{ model|as_verbose_name }}
 {% endfor %}
 </div>
 {% else %}
 {% trans "Add" %}
 {% endif %}
 {% endif %}
 {% endblock %}

 {{ formset.management_form }}

 {% for form in formset|include_empty_form %}
 {% block formset_form_wrapper %}
 <div id="{{ form.prefix }}" data-inline-type="{{ form|as_form_type|lower }}" class="inline-related{% if '__prefix__' in form.prefix %} empty-form{% endif %}">
 {{ form.non_field_errors }}

 {# Add the 'pk' field that is not mentioned in crispy #}
 {% for field in form.hidden_fields %}
 {{ field }}
 {% endfor %}

 {% block formset_form %}
 {% crispy form %}
 {% endblock %}
 </div>
 {% endblock %}
 {% endfor %}
</div>

The polymorphic_admin_tags Library

The {% breadcrumb_scope ... %} tag makes sure the {{ opts }} and {{ app_label }}
values are temporary based on the provided {{ base_opts }}.
This allows fixing the breadcrumb in admin templates:

{% extends "admin/change_form.html" %}
{% load polymorphic_admin_tags %}

{% block breadcrumbs %}
 {% breadcrumb_scope base_opts %}{{ block.super }}{% endbreadcrumb_scope %}
{% endblock %}

polymorphic.utils

	
polymorphic.utils.get_base_polymorphic_model(ChildModel, allow_abstract=False)

	First the first concrete model in the inheritance chain that inherited from the PolymorphicModel.

	
polymorphic.utils.reset_polymorphic_ctype(*models, **filters)

	Set the polymorphic content-type ID field to the proper model
Sort the *models from base class to descending class,
to make sure the content types are properly assigned.

Add preserve_existing=True to skip models which already
have a polymorphic content type.

	
polymorphic.utils.sort_by_subclass(*classes)

	Sort a series of models by their inheritance order.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 polymorphic	

 	
 	
 polymorphic.contrib.extra_views	

 	
 	
 polymorphic.contrib.guardian	

 	
 	
 polymorphic.formsets	

 	
 	
 polymorphic.managers	

 	
 	
 polymorphic.models	

 	
 	
 polymorphic.templatetags	

 	
 	
 polymorphic.utils	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T

A

 	
 	add_type_form (polymorphic.admin.PolymorphicParentModelAdmin attribute)

 	add_type_template (polymorphic.admin.PolymorphicParentModelAdmin attribute)

 	add_type_view() (polymorphic.admin.PolymorphicParentModelAdmin method)

 	
 	add_view() (polymorphic.admin.PolymorphicParentModelAdmin method)

 	aggregate() (polymorphic.managers.PolymorphicQuerySet method)

 	annotate() (polymorphic.managers.PolymorphicQuerySet method)

B

 	
 	base_fields (polymorphic.admin.PolymorphicModelChoiceForm attribute)

 	base_fieldsets (polymorphic.admin.PolymorphicChildModelAdmin attribute)

 	base_form (polymorphic.admin.PolymorphicChildModelAdmin attribute)

 	base_model (polymorphic.admin.PolymorphicChildModelAdmin attribute)

 	(polymorphic.admin.PolymorphicParentModelAdmin attribute)

 	
 	BaseGenericPolymorphicInlineFormSet (class in polymorphic.formsets)

 	BasePolymorphicInlineFormSet (class in polymorphic.formsets)

 	BasePolymorphicModelFormSet (class in polymorphic.formsets)

 	bulk_create() (polymorphic.managers.PolymorphicQuerySet method)

C

 	
 	change_form_template (polymorphic.admin.PolymorphicChildModelAdmin attribute)

 	change_list_template (polymorphic.admin.PolymorphicParentModelAdmin attribute)

 	change_view() (polymorphic.admin.PolymorphicParentModelAdmin method)

 	changeform_view() (polymorphic.admin.PolymorphicParentModelAdmin method)

 	
 	child_inlines (polymorphic.admin.PolymorphicInlineModelAdmin attribute)

 	child_models (polymorphic.admin.PolymorphicParentModelAdmin attribute)

 	content_type (polymorphic.admin.GenericPolymorphicInlineModelAdmin.Child attribute)

 	ct_field (polymorphic.admin.GenericPolymorphicInlineModelAdmin.Child attribute)

 	ct_fk_field (polymorphic.admin.GenericPolymorphicInlineModelAdmin.Child attribute)

D

 	
 	declared_fields (polymorphic.admin.PolymorphicModelChoiceForm attribute)

 	defer() (polymorphic.managers.PolymorphicQuerySet method)

 	
 	delete_confirmation_template (polymorphic.admin.PolymorphicChildModelAdmin attribute)

 	delete_view() (polymorphic.admin.PolymorphicChildModelAdmin method)

 	(polymorphic.admin.PolymorphicParentModelAdmin method)

E

 	
 	extra (polymorphic.admin.PolymorphicInlineModelAdmin attribute)

 	(polymorphic.admin.PolymorphicInlineModelAdmin.Child attribute)

 	
 	extra_fieldset_title (polymorphic.admin.PolymorphicChildModelAdmin attribute)

F

 	
 	formset (polymorphic.admin.GenericPolymorphicInlineModelAdmin attribute)

 	(polymorphic.admin.PolymorphicInlineModelAdmin attribute)

 	formset_child (polymorphic.admin.GenericPolymorphicInlineModelAdmin.Child attribute)

 	(polymorphic.admin.PolymorphicInlineModelAdmin.Child attribute)

 	
 	formset_class (polymorphic.contrib.extra_views.PolymorphicFormSetView attribute)

 	(polymorphic.contrib.extra_views.PolymorphicInlineFormSet attribute)

 	(polymorphic.contrib.extra_views.PolymorphicInlineFormSetView attribute)

G

 	
 	generic_polymorphic_inlineformset_factory() (in module polymorphic.formsets)

 	GenericPolymorphicInlineModelAdmin (class in polymorphic.admin)

 	GenericPolymorphicInlineModelAdmin.Child (class in polymorphic.admin)

 	GenericStackedPolymorphicInline (class in polymorphic.admin)

 	get_base_fieldsets() (polymorphic.admin.PolymorphicChildModelAdmin method)

 	get_base_polymorphic_model() (in module polymorphic.utils)

 	get_child_inline_instance() (polymorphic.admin.PolymorphicInlineModelAdmin method)

 	get_child_inline_instances() (polymorphic.admin.PolymorphicInlineModelAdmin method)

 	get_child_models() (polymorphic.admin.PolymorphicParentModelAdmin method)

 	get_child_type_choices() (polymorphic.admin.PolymorphicParentModelAdmin method)

 	get_fields() (polymorphic.admin.PolymorphicInlineModelAdmin method)

 	(polymorphic.admin.PolymorphicInlineModelAdmin.Child method)

 	get_fieldsets() (polymorphic.admin.PolymorphicChildModelAdmin method)

 	(polymorphic.admin.PolymorphicInlineModelAdmin method)

 	get_form() (polymorphic.admin.PolymorphicChildModelAdmin method)

 	get_formset() (polymorphic.admin.GenericPolymorphicInlineModelAdmin method)

 	(polymorphic.admin.PolymorphicInlineModelAdmin method)

 	(polymorphic.admin.PolymorphicInlineModelAdmin.Child method)

 	
 	get_formset_child() (polymorphic.admin.GenericPolymorphicInlineModelAdmin.Child method)

 	(polymorphic.admin.PolymorphicInlineModelAdmin.Child method)

 	get_formset_children() (polymorphic.admin.PolymorphicInlineModelAdmin method)

 	get_inline_formsets() (polymorphic.admin.PolymorphicInlineSupportMixin method)

 	get_model_perms() (polymorphic.admin.PolymorphicChildModelAdmin method)

 	get_polymorphic_base_content_type() (in module polymorphic.contrib.guardian)

 	get_preserved_filters() (polymorphic.admin.PolymorphicParentModelAdmin method)

 	get_queryset() (polymorphic.admin.PolymorphicParentModelAdmin method)

 	(polymorphic.managers.PolymorphicManager method)

 	get_real_instance() (polymorphic.models.PolymorphicModel method)

 	get_real_instance_class() (polymorphic.models.PolymorphicModel method)

 	get_real_instances() (polymorphic.managers.PolymorphicQuerySet method)

 	get_subclass_fields() (polymorphic.admin.PolymorphicChildModelAdmin method)

 	get_urls() (polymorphic.admin.PolymorphicParentModelAdmin method)

H

 	
 	history_view() (polymorphic.admin.PolymorphicChildModelAdmin method)

 	(polymorphic.admin.PolymorphicParentModelAdmin method)

I

 	
 	instance_of() (polymorphic.managers.PolymorphicQuerySet method)

M

 	
 	media (polymorphic.admin.GenericPolymorphicInlineModelAdmin attribute)

 	(polymorphic.admin.GenericPolymorphicInlineModelAdmin.Child attribute)

 	(polymorphic.admin.GenericStackedPolymorphicInline attribute)

 	(polymorphic.admin.PolymorphicChildModelAdmin attribute)

 	(polymorphic.admin.PolymorphicInlineModelAdmin attribute)

 	(polymorphic.admin.PolymorphicInlineModelAdmin.Child attribute)

 	(polymorphic.admin.PolymorphicModelChoiceForm attribute)

 	(polymorphic.admin.PolymorphicParentModelAdmin attribute)

N

 	
 	non_polymorphic() (polymorphic.managers.PolymorphicQuerySet method)

 	
 	not_instance_of() (polymorphic.managers.PolymorphicQuerySet method)

O

 	
 	object_history_template (polymorphic.admin.PolymorphicChildModelAdmin attribute)

 	
 	only() (polymorphic.managers.PolymorphicQuerySet method)

 	order_by() (polymorphic.managers.PolymorphicQuerySet method)

P

 	
 	pk_regex (polymorphic.admin.PolymorphicParentModelAdmin attribute)

 	polymorphic.contrib.extra_views (module)

 	polymorphic.contrib.guardian (module)

 	polymorphic.formsets (module)

 	polymorphic.managers (module)

 	polymorphic.models (module)

 	polymorphic.templatetags (module)

 	polymorphic.utils (module)

 	polymorphic_child_forms_factory() (in module polymorphic.formsets)

 	polymorphic_ctype (polymorphic.models.PolymorphicModel attribute)

 	polymorphic_inlineformset_factory() (in module polymorphic.formsets)

 	polymorphic_list (polymorphic.admin.PolymorphicParentModelAdmin attribute)

 	polymorphic_media (polymorphic.admin.PolymorphicInlineModelAdmin attribute)

 	polymorphic_modelformset_factory() (in module polymorphic.formsets)

 	PolymorphicChildModelAdmin (class in polymorphic.admin)

 	
 	PolymorphicChildModelFilter (class in polymorphic.admin)

 	PolymorphicFormSetChild (class in polymorphic.formsets)

 	PolymorphicFormSetView (class in polymorphic.contrib.extra_views)

 	PolymorphicInlineAdminForm (class in polymorphic.admin)

 	PolymorphicInlineAdminFormSet (class in polymorphic.admin)

 	PolymorphicInlineFormSet (class in polymorphic.contrib.extra_views)

 	PolymorphicInlineFormSetView (class in polymorphic.contrib.extra_views)

 	PolymorphicInlineModelAdmin (class in polymorphic.admin)

 	PolymorphicInlineModelAdmin.Child (class in polymorphic.admin)

 	PolymorphicInlineSupportMixin (class in polymorphic.admin)

 	PolymorphicManager (class in polymorphic.managers)

 	PolymorphicModel (class in polymorphic.models)

 	PolymorphicModelChoiceForm (class in polymorphic.admin)

 	PolymorphicParentModelAdmin (class in polymorphic.admin)

 	PolymorphicQuerySet (class in polymorphic.managers)

 	pre_save_polymorphic() (polymorphic.models.PolymorphicModel method)

Q

 	
 	queryset_class (polymorphic.managers.PolymorphicManager attribute)

R

 	
 	register_child() (polymorphic.admin.PolymorphicParentModelAdmin method)

 	render_add_type_form() (polymorphic.admin.PolymorphicParentModelAdmin method)

 	render_change_form() (polymorphic.admin.PolymorphicChildModelAdmin method)

 	
 	reset_polymorphic_ctype() (in module polymorphic.utils)

 	response_post_save_add() (polymorphic.admin.PolymorphicChildModelAdmin method)

 	response_post_save_change() (polymorphic.admin.PolymorphicChildModelAdmin method)

S

 	
 	save() (polymorphic.models.PolymorphicModel method)

 	show_in_index (polymorphic.admin.PolymorphicChildModelAdmin attribute)

 	
 	sort_by_subclass() (in module polymorphic.utils)

 	StackedPolymorphicInline (class in polymorphic.admin)

 	subclass_view() (polymorphic.admin.PolymorphicParentModelAdmin method)

T

 	
 	template (polymorphic.admin.GenericStackedPolymorphicInline attribute)

 	
 	type_label (polymorphic.admin.PolymorphicModelChoiceForm attribute)

Archive of old changelog entries

2011-01-24 V1.0 Release Candidate 1

	Fixed GitHub issue 15 (query result incomplete with inheritance).
Thanks to John Debs for reporting and the test case.

2011-12-20 Renaming, refactoring, new maintainer

Since the original author disappeared from the internet, we undertook to
maintain and upgrade this piece of software.

The latest “legacy” tag should be V1.0-RC-1. Anything above that should be
considered experimental and unstable until further notice (there be dragons).

New features, bug fixes and other improvements will be added to trunk from now on.

2010-11-11 V1.0 Beta 2

Beta 2 accumulated somewhat more changes than intended, and also
has been delayed by DBMS benchmark testing I wanted to do on model
inheritance. These benchmarks show that there are considerable
problems with concrete model inheritance and contemporary DBM systems.
The results will be forthcoming on the google discussion forum.

Please also see: http://www.jacobian.org/writing/concrete-inheritance/

The API should be stable now with Beta 2, so it’s just about potential
bugfixes from now on regarding V1.0.

Beta 2 is still intended for testing and development environments and not
for production. No complaints have been heard regarding Beta 1 however,
and Beta 1 is used on a few production sites by some enterprising users.

There will be a release candidate for V1.0 in the very near future.

New Features and changes

	API CHANGE: .extra() has been re-implemented. Now it’s polymorphic by
default and works (nearly) without restrictions (please see docs). This is a (very)
incompatible API change regarding previous versions of django_polymorphic.
Support for the polymorphic keyword parameter has been removed.
You can get back the non-polymorphic behaviour by using
ModelA.objects.non_polymorphic().extra(...).

	API CHANGE: ShowFieldContent and ShowFieldTypeAndContent now
use a slightly different output format. If this causes too much trouble for
your test cases, you can get the old behaviour back (mostly) by adding
polymorphic_showfield_old_format = True to your model definitions.
ShowField... now also produces more informative output for custom
primary keys.

	.non_polymorphic() queryset member function added. This is preferable to
using .base_objects..., as it just makes the resulting queryset non-polymorphic
and does not change anything else in the behaviour of the manager used (while
.base_objects is just a different manager).

	.get_real_instances(): implementation modified to allow the following
more simple and intuitive use:

>>> qs = ModelA.objects.all().non_polymorphic()
>>> qs.get_real_instances()

which is equivalent to:

>>> ModelA.objects.all()

	added member function:
normal_q_object = ModelA.translate_polymorphic_Q_object(enhanced_q_object)

	misc changes/improvements

Bugfixes

	Custom fields could cause problems when used as the primary key.
In inherited models, Django’s automatic “.pk” field does not always work
correctly for such custom fields: “some_object.pk” and “some_object.id”
return different results (which they shouldn’t, as pk should always be just
an alias for the primary key field). It’s unclear yet if the problem lies in
Django or the affected custom fields. Regardless, the problem resulting
from this has been fixed with a small workaround.
“python manage.py test polymorphic” also tests and reports on this problem now.
Thanks to Mathieu Steele for reporting and the test case.

2010-10-18 V1.0 Beta 1

This release is mostly a cleanup and maintenance release that also
improves a number of minor things and fixes one (non-critical) bug.

Some pending API changes and corrections have been folded into this release
in order to make the upcoming V1.0 API as stable as possible.

This release is also about getting feedback from you in case you don’t
approve of any of these changes or would like to get additional
API fixes into V1.0.

The release contains a considerable amount of changes in some of the more
critical parts of the software. It’s intended for testing and development
environments and not for production environments. For these, it’s best to
wait a few weeks for the proper V1.0 release, to allow some time for any
potential problems to show up (if they exist).

If you encounter any such problems, please post them in the discussion group
or open an issue on GitHub or BitBucket (or send me an email).

There also have been a number of minor API changes.
Please see the README for more information.

New Features

	official Django 1.3 alpha compatibility

	PolymorphicModel.__getattribute__ hack removed.
This improves performance considerably as python’s __getattribute__
generally causes a pretty large processing overhead. It’s gone now.

	the polymorphic_dumpdata management command is not needed anymore
and has been disabled, as the regular Django dumpdata command now automatically
works correctly with polymorphic models (for all supported versions of Django).

	.get_real_instances() has been elevated to an official part of the API:

real_objects = ModelA.objects.get_real_instances(base_objects_list_or_queryset)

allows you to turn a queryset or list of base objects into a list of the real instances.
This is useful if e.g. you use ModelA.base_objects.extra(...) and then want to
transform the result to its polymorphic equivalent.

	translate_polymorphic_Q_object (see DOCS)

	improved testing

	Changelog added: CHANGES.rst/html

Bugfixes

	Removed requirement for primary key to be an IntegerField.
Thanks to Mathieu Steele and Malthe Borch.

API Changes

polymorphic_dumpdata

The management command polymorphic_dumpdata is not needed anymore
and has been disabled, as the regular Django dumpdata command now automatically
works correctly with polymorphic models (for all supported versions of Django).

Output of Queryset or Object Printing

In order to improve compatibility with vanilla Django, printing quersets
(__repr__ and __unicode__) does not use django_polymorphic’s pretty printing
by default anymore. To get the old behaviour when printing querysets,
you need to replace your model definition:

>>> class Project(PolymorphicModel):

by:

>>> class Project(PolymorphicModel, ShowFieldType):

The mixin classes for pretty output have been renamed:

ShowFieldTypes, ShowFields, ShowFieldsAndTypes

are now:

ShowFieldType, ShowFieldContent and ShowFieldTypeAndContent

(the old ones still exist for compatibility)

Running the Test suite with Django 1.3

Django 1.3 requires python manage.py test polymorphic instead of
just python manage.py test.

2010-2-22

IMPORTANT: API Changed (import path changed), and Installation Note

The django_polymorphic source code has been restructured
and as a result needs to be installed like a normal Django App
- either via copying the “polymorphic” directory into your
Django project or by running setup.py. Adding ‘polymorphic’
to INSTALLED_APPS in settings.py is still optional, however.

The file polymorphic.py cannot be used as a standalone
extension module anymore, as is has been split into a number
of smaller files.

Importing works slightly different now: All relevant symbols are
imported directly from ‘polymorphic’ instead from
‘polymorphic.models’:

new way
from polymorphic import PolymorphicModel, ...

old way, doesn't work anymore
from polymorphic.models import PolymorphicModel, ...

	minor API addition: ‘from polymorphic import VERSION, get_version’

New Features

Python 2.4 compatibility, contributed by Charles Leifer. Thanks!

Bugfixes

Fix: The exception “…has no attribute ‘sub_and_superclass_dict’”
could be raised. (This occurred if a subclass defined __init__
and accessed class members before calling the superclass __init__).
Thanks to Mattias Brändström.

Fix: There could be name conflicts if
field_name == model_name.lower() or similar.
Now it is possible to give a field the same name as the class
(like with normal Django models).
(Found through the example provided by Mattias Brändström)

2010-2-4

New features (and documentation)

queryset order_by method added

queryset aggregate() and extra() methods implemented

queryset annotate() method implemented

queryset values(), values_list(), distinct() documented; defer(),
only() allowed (but not yet supported)

setup.py added. Thanks to Andrew Ingram.

More about these additions in the docs:
http://bserve.webhop.org/wiki/django_polymorphic/doc

Bugfixes

	fix remaining potential accessor name clashes (but this only works
with Django 1.2+, for 1.1 no changes). Thanks to Andrew Ingram.

	fix use of ‘id’ model field, replaced with ‘pk’.

	fix select_related bug for objects from derived classes (till now
sel.-r. was just ignored)

“Restrictions & Caveats” updated

	Django 1.1 only - the names of polymorphic models must be unique
in the whole project, even if they are in two different apps.
This results from a restriction in the Django 1.1 “related_name”
option (fixed in Django 1.2).

	Django 1.1 only - when ContentType is used in models, Django’s
seralisation or fixtures cannot be used. This issue seems to be
resolved for Django 1.2 (changeset 11863: Fixed #7052, Added
support for natural keys in serialization).

2010-1-30

Fixed ContentType related field accessor clash (an error emitted
by model validation) by adding related_name to the ContentType
ForeignKey. This happened if your polymorphc model used a ContentType
ForeignKey. Thanks to Andrew Ingram.

2010-1-29

Restructured django_polymorphic into a regular Django add-on
application. This is needed for the management commands, and
also seems to be a generally good idea for future enhancements
as well (and it makes sure the tests are always included).

The poly app - until now being used for test purposes only
- has been renamed to polymorphic. See DOCS.rst
(“installation/testing”) for more info.

2010-1-28

Added the polymorphic_dumpdata management command (github issue 4),
for creating fixtures, this should be used instead of
the normal Django dumpdata command.
Thanks to Charles Leifer.

Important: Using ContentType together with dumpdata generally
needs Django 1.2 (important as any polymorphic model uses
ContentType).

2010-1-26

IMPORTANT - database schema change (more info in change log).
I hope I got this change in early enough before anyone started
to use polymorphic.py in earnest. Sorry for any inconvenience.
This should be the final DB schema now.

Django’s ContentType is now used instead of app-label and model-name
This is a cleaner and more efficient solution
Thanks to Ilya Semenov for the suggestion.

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to django-polymorphic’s documentation!

 		
 Quickstart

 		
 Making Your Models Polymorphic

 		
 Using Polymorphic Models

 		
 Django admin integration

 		
 Setup

 		
 Fieldset configuration

 		
 Example

 		
 Filtering child types

 		
 Inline models

 		
 Using polymorphic models in standard inlines

 		
 Internal details

 		
 The parent model

 		
 The child models

 		
 Performance Considerations

 		
 ContentType retrieval

 		
 Database notes

 		
 Third-party applications support

 		
 django-guardian support

 		
 django-rest-framework support

 		
 Example

 		
 django-extra-views

 		
 django-mptt support

 		
 django-reversion support

 		
 Example

 		
 django-reversion-compare support

 		
 Formsets

 		
 Migrating existing models to polymorphic

 		
 Filling the content type value

 		
 Custom Managers, Querysets & Manager Inheritance

 		
 Using a Custom Manager

 		
 Manager Inheritance

 		
 Using a Custom Queryset Class

 		
 Advanced features

 		
 Filtering for classes (equivalent to python’s isinstance()):

 		
 Polymorphic filtering (for fields in inherited classes)

 		
 Combining Querysets

 		
 ManyToManyField, ForeignKey, OneToOneField

 		
 Using Third Party Models (without modifying them)

 		
 Non-Polymorphic Queries

 		
 About Queryset Methods

 		
 Using enhanced Q-objects in any Places

 		
 Nicely Displaying Polymorphic Querysets

 		
 Restrictions & Caveats

 		
 Changelog

 		
 Changes in 2.0.3 (2018-08-24)

 		
 Changes in 2.0.2 (2018-02-05)

 		
 Changes in 2.0.1 (2018-02-05)

 		
 Changes in 2.0 (2018-01-22)

 		
 Version 1.3.1 (2018-04-16)

 		
 Version 1.3 (2017-08-01)

 		
 Version 1.2 (2017-05-01)

 		
 Version 1.1 (2017-02-03)

 		
 Version 1.0.2 (2016-10-14)

 		
 Version 1.0.1 (2016-09-11)

 		
 Version 1.0 (2016-09-02)

 		
 Fixed since 1.0b1 (2016-08-10)

 		
 Version 0.9.2 (2016-05-04)

 		
 Version 0.9.1 (2016-02-18)

 		
 Version 0.9 (2016-02-17)

 		
 Version 0.8.1 (2015-12-29)

 		
 Version 0.8 (2015-12-28)

 		
 Version 0.7.2 (2015-10-01)

 		
 Version 0.7.1 (2015-04-30)

 		
 Version 0.7 (2015-04-08)

 		
 Version 0.6.1 (2014-12-30)

 		
 Version 0.6 (2014-10-14)

 		
 Version 0.5.6 (2014-07-21)

 		
 Version 0.5.5 (2014-04-29)

 		
 Version 0.5.4 (2014-04-09)

 		
 Version 0.5.3 (2013-09-17)

 		
 Version 0.5.2 (2013-09-05)

 		
 Version 0.5.1 (2013-07-05)

 		
 Version 0.5 (2013-04-20)

 		
 Version 0.4.2 (2013-04-10)

 		
 Version 0.4.1 (2013-04-10)

 		
 Version 0.4 (2013-03-25)

 		
 Version 0.3.1 (2013-02-28)

 		
 Version 0.3 (2013-02-28)

 		
 Version 0.2 (2011-04-27)

 		
 Contributing

 		
 Running tests

 		
 Example project

 		
 Supported Django versions

 		
 API Documentation

 		
 polymorphic.admin

 		
 ModelAdmin classes

 		
 List filtering

 		
 Inlines support

 		
 Low-level classes

 		
 polymorphic.contrib.extra_views

 		
 polymorphic.contrib.guardian

 		
 polymorphic.formsets

 		
 Model formsets

 		
 Inline formsets

 		
 Generic formsets

 		
 Low-level features

 		
 polymorphic.managers

 		
 The PolymorphicManager class

 		
 The PolymorphicQuerySet class

 		
 polymorphic.models

 		
 polymorphic.templatetags.polymorphic_admin_tags

 		
 The polymorphic_formset_tags Library

 		
 The polymorphic_admin_tags Library

 		
 polymorphic.utils

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

