

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	django-party-pack 0.2.0 documentation

Why django-party-pack?

Because these are great patterns and tools that beginners should be exposed to right away. I’ve learned them from the various Contributors, who are people I admire as Django and Python developers.

Basic Stuff

	Installation
	Before you start

	The Basics

	Settings setup

	Running standard Django Commands

	Running django-coverage

	Building these sphinx docs

	Setting up a test runner
	Step 1 - environment prep

	Step 2 - create testrunner.py

	Step 3 - settings customization

	Step 4 - run it!

	JavaScript
	Coding Standard for JavaScript

	Coding Conventions
	Philosophy

	Code Bits

	Contributors

API/Reference Docs

	Reference for Polls App
	polls.models

	polls.views

	polls.tests

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2011, Daniel Greenfeld.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-party-pack 0.2.0 documentation

Installation

Note

For things with the following it means type it at the command line and hit enter:

$ ls -al

Before you start

Do you have pip, virtualenv, virtualenvwrapper, and git-scm installed? If not, you’ll need to get those on your machine before proceeding.

If you need to install pip:

$ curl -O https://raw.github.com/pypa/pip/master/contrib/get-pip.py
$ python get-pip.py

If you need to install virtualenv:

$ pip install virtualenv

If you need to install virtualenvwrapper:

$ pip install virtualenvwrapper

If you need to install git:

	http://git-scm.com

The Basics

Create a virtualenv for this project. We do this so we isolate all our work from the rest of Python on our computer:

$ mkvirtualenv dpkenv

Now we clone django-party-pack and go into django-party-pack:

$ git clone https://pydanny@github.com/pydanny/django-party-pack.git
$ cd django-party-pack

Now let’s install our dependencies:

$ pip install -r requirements.txt

This may take a few minutes. Feel free to go get some coffee. :)

Settings setup

We’re going to follow what Django BDFL Jacob Kaplan-Moss advocates as best practices for dealing with settings [http://www.slideshare.net/jacobian/the-best-and-worst-of-django/51]. That means we’re going to ignore the manage.py file in the root of our Django project and use the django-admin.py script. In order to do that, we need to take a few more steps.

First, we add some virtualenv bits to allow us to access the settings properly:

$ echo "export DJANGO_SETTINGS_MODULE=settings.dev" >> $VIRTUAL_ENV/bin/postactivate
$ echo "unset DJANGO_SETTINGS_MODULE" >> $VIRTUAL_ENV/bin/postdeactivate

This will allow you to eschew passing in –settings= into management commands.

Now we add to the virtualenv paths our pollaxe project:

add2virtualenv <<path to django-party-pack repo>>/pollaxe

Running standard Django Commands

Try out the project:

$ django-admin.py syncdb
$ django-admin.py runserver

Running django-coverage

Simply run this command:

$ django-admin.py test

Now open the pollaxe/coverage/index.html file in your favorite browser.

Building these sphinx docs

Want to have a local copy of these documents? Easy! Change to our docs directory:

$ cd docs

Now we generate the sphinx docs in html format:

$ make html

 Copyright 2011, Daniel Greenfeld.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-party-pack 0.2.0 documentation

Setting up a test runner

Ned Batchelder’s coverage.py is an invaluable tool for any Python project. django_coverage makes coverage.py run inside of Django, and this is my preferred way of using that tool.

Step 1 - environment prep

In your virtualenv install the necessary requirements:

$ pip install -r requirements.txt

Make a coverage directory in your project directory:

This is done for you in django-party-pack
but you'll need to remember it for future projects
$ mkdir coverage

Step 2 - create testrunner.py

Create a testrunner.py file into your project root and paste in the following code:

Make our own testrunner that by default only tests our own apps

from django.conf import settings
from django.test.simple import DjangoTestSuiteRunner
from django_coverage.coverage_runner import CoverageRunner

class OurTestRunner(DjangoTestSuiteRunner):
 def build_suite(self, test_labels, *args, **kwargs):
 return super(OurTestRunner, self).build_suite(test_labels or settings.PROJECT_APPS, *args, **kwargs)

class OurCoverageRunner(OurTestRunner, CoverageRunner):
 pass

Step 3 - settings customization

The first thing you’ll notice about dpp is that apps installment is broken up into three variables:

	PREREQ_APPS - These are either built-in Django apps or third-party apps you don’t want to test.

	PROJECT_APPS - These are the custom apps you’ve written for your project. You want to test these.

	INSTALLED_APPS - This is what Django loads into it’s app cache. We generate this iterable by adding PREREQ_APPS to PROJECT_APPS.

Here is the sample code from dpp/pollaxe project settings.py file:

PREREQ_APPS = (
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.sites',
 'django.contrib.messages',
 'django.contrib.admin',
)

PROJECT_APPS = (
 'polls', # or whatever your custom project uses
)

INSTALLED_APPS = PREREQ_APPS + PROJECT_APPS

Also in settings.py, underneath where you have defined the PREREQ_APPS setting, add the following:

TEST_RUNNER = 'testrunner.OurCoverageRunner'
COVERAGE_MODULE_EXCLUDES = [
 'tests$', 'settings$', 'urls$', 'locale$',
 'migrations', 'fixtures', 'admin$',
]
COVERAGE_MODULE_EXCLUDES += PREREQ_APPS
COVERAGE_REPORT_HTML_OUTPUT_DIR = "coverage"

Step 4 - run it!

From the command-line:

$ python manage.py test

Open file:///path-to-your-project/coverage/index.html in a web browser and check out your coverage.

 Copyright 2011, Daniel Greenfeld.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-party-pack 0.2.0 documentation

JavaScript

Some ideas to incorporate JavaScript into your application.

Coding Standard for JavaScript

	https://github.com/jbalogh/zamboni/blob/master/STYLE.rst

 Copyright 2011, Daniel Greenfeld.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-party-pack 0.2.0 documentation

Coding Conventions

So we are all on the same track.

Philosophy

Zen of Python

Try it out at the shell:

import this

My favorite parts:

	Explicit is better than implicit.

	Simple is better than complex.

	Readability counts.

	Errors should never pass silently.

PEP-8 is my friend

No import *! Even in urls.py!

All Docs go on rtfd.org!

No alternative compares to http://rtfd.org. Not github, bitbucket, or google project wikis compare. And even the python.packages.com site is out of the lead of rtfd.org. Stop trying other things and come to the current leader in documentation hosting. Why?

	It takes your repo and makes it look awesome.

	It puts all the Python docs into one place for good searching.

	It plays nice with git, hg, and svn. Wikis generally are through the web.

	You can accept pull requests on docs. This way you can edit/reject bad documentation.

	Makes your project and work much more visible.

	The lead maintainer, Eric Holscher, is incredibly supportive and has both PSF and Revsys support.

Code Bits

Docs

Besides admin.py, all new python files need to be added to the appropriate app_<app_name>.rst or reference_<app_name>.rst file.

Templates

	snippets/_<name>.html is for templates that are added via include or templatetags.

	{# unstyled #} is a flag for designers that the template is still untouched by their hands.

urls.py

Even in urls.py you want clean code, right?

Explicit imports

See how it is done:

See this commented out? 'import *' usually slows things down AND makes it harder to debug
import *

Explicit imports are easier to debug
from polls import views
...

Using the url() function

Pythonistas love explicitly but this is implicit and henceforth not ideal:

Don't do this!
url(
 r'^$',
 views.poll_list,
 'poll_list',
),

Or this!
(
 r'^$',
 views.poll_list,
 'poll_list',
),

And here is the preferred and wonderfully explicit Jacob Kaplan-Moss / Frank Wiles pattern:

url(
 regex=r'^$',
 view=views.poll_list,
 name='poll_list',
),

See how each argument is explicitly named? Wonderful!

Calling specific views

This is hard to debug because Django gets a bit too ‘magical’ and the trace often doesn’t give you as much or is longer:

Don't do this!
url(
 regex=r'^$',
 view='polls.views.standard.poll_list', # this single bit makes it harder to debug on errors
 name='poll_list',
),

Instead we do this:

url(regex=r'^$',
 view=views.poll_list,
 name='poll_list',
),

Generic Exceptions are the DEVIL

This is the DEVIL:

try:
 do_blah()
except:
 pass

Do this instead:

class BlahDoesNotWork(Exception): pass

try:
 do_blah
except ImportError:
 # do something
except AttributeError:
 # do something else
except Exception as e:
 msg = "{0} has failed!".format(str(e))
 logging.error(msg)
 raise BlahDoesNotWork(msg)

 Copyright 2011, Daniel Greenfeld.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-party-pack 0.2.0 documentation

Contributors

I didn’t do this in a vacuum. This is built off of packages and libraries created by a huge number of incredible people. And everything on this was taught to me either on the job or by looking at other people’s examples of how to do things. Here we go:

	Audrey Roy for coming up with this idea and agreeing to marry me.

	Aaron Kavlie, Geoffrey Jost, and Preston Holmes for helping organize things.

	Chris Shenton for showing me that more notes are better - even if they seem stupid to take at the time.

	Eric Holscher for rtfd.org

	Evgany Fadeev for showing me how to work Sphinx autodoc.

	Frank Wiles for general Django code cleanliness and inspiring the Cartwheel way.

	Georg Brandl for Sphinx

	George Song for django-coverage

	Gisle Aas for the way django-coverage is implemented in this project

	Jacob Kaplan-Moss for a culture of documentation plus schooling me personally hard on exceptions and writing better tests.

	James Tauber and Alex Gaynor for settings.PROJECT_ROOT.

	Nate Aune for teaching me that tests should be a story.

	Ned Batchelder for coverage.py

	Steve Holden for teaching me better skills explaining technical things in text.

If I missed anyone I apologize!

 Copyright 2011, Daniel Greenfeld.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	django-party-pack 0.2.0 documentation

Reference for Polls App

The polls app is a copy of the Django tutorial with some mild PEP-8 cleanup.

polls.models

	
class polls.models.Choice(*args, **kwargs)[source]

	Choices on a poll

	
class polls.models.Poll(*args, **kwargs)[source]

	An individual poll to be tested

polls.views

	
polls.views.detail(request, poll_id, template_name='polls/detail.html')[source]

	Show detail on a poll

	
polls.views.index(request, template_name='polls/index.html')[source]

	Show a list of polls

	
polls.views.vote(request, poll_id, template_name='polls/detail.html')[source]

	user votes on a poll

polls.tests

	
class polls.tests.test_models.TestPolls(methodName='runTest')[source]

	
	
test_poll_create()[source]

	Can we create a poll?

	Seems trivial now

	But for complex systems what started out as a simple create can get complex

	Get your test coverage up!

	
test_was_published_today()[source]

	

	
class polls.tests.test_views.TestPollSample(methodName='runTest')[source]

	
	
setUp()[source]

	

	
test_poll_detail()[source]

	Check if the poll detail displays

	
test_poll_index()[source]

	Check if the poll index displays

	
test_poll_vote()[source]

	vote on a poll

 Copyright 2011, Daniel Greenfeld.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	django-party-pack 0.2.0 documentation

 Python Module Index

 p

 			

 		
 p	

 	[image: -]
 	
 polls	

 	
 	
 polls.models	

 	
 	
 polls.tests.test_models	

 	
 	
 polls.tests.test_views	

 	
 	
 polls.views	

 Copyright 2011, Daniel Greenfeld.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	django-party-pack 0.2.0 documentation

Index

 C
 | D
 | I
 | P
 | S
 | T
 | V

C

 	

 	Choice (class in polls.models)

D

 	

 	detail() (in module polls.views)

I

 	

 	index() (in module polls.views)

P

 	

 	Poll (class in polls.models)

 	polls.models (module)

 	polls.tests.test_models (module)

 	

 	polls.tests.test_views (module)

 	polls.views (module)

S

 	

 	setUp() (polls.tests.test_views.TestPollSample method)

T

 	

 	test_poll_create() (polls.tests.test_models.TestPolls method)

 	test_poll_detail() (polls.tests.test_views.TestPollSample method)

 	test_poll_index() (polls.tests.test_views.TestPollSample method)

 	test_poll_vote() (polls.tests.test_views.TestPollSample method)

 	

 	test_was_published_today() (polls.tests.test_models.TestPolls method)

 	TestPolls (class in polls.tests.test_models)

 	TestPollSample (class in polls.tests.test_views)

V

 	

 	vote() (in module polls.views)

 Copyright 2011, Daniel Greenfeld.
 Created using Sphinx 1.3.1.

 _static/file.png

_static/minus.png

_static/comment-bright.png

_static/plus.png

_static/ajax-loader.gif

_static/comment.png

_static/up.png

search.html

 Navigation

 		
 index

 		
 modules |

 		django-party-pack 0.2.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011, Daniel Greenfeld.
 Created using Sphinx 1.3.1.

_static/down.png

_static/down-pressed.png

_static/comment-close.png

_static/up-pressed.png

_modules/polls/views.html

 Navigation

 		
 index

 		
 modules |

 		django-party-pack 0.2.0 documentation »

 		Module code »

 Source code for polls.views

from django.core.urlresolvers import reverse
from django.http import HttpResponse, HttpResponseRedirect
from django.shortcuts import render_to_response, get_object_or_404
from django.template import Context, loader, RequestContext

from polls.models import Poll, Choice

POLL_DETAIL_TEMPLATE = "polls/detail.html"

We pass the template_name as a variable because it makes the template function easier to
identify AND because it means it can be changed on the fly
[docs]def index(request, template_name="polls/index.html"):
 """ Show a list of polls"""
 latest_poll_list = Poll.objects.all().order_by('-pub_date')[:5]
 return render_to_response(template_name, {'latest_poll_list': latest_poll_list})

[docs]def detail(request, poll_id, template_name=POLL_DETAIL_TEMPLATE):
 """ Show detail on a poll"""

 # I used 'poll' instead of 'p' because the pixel shortage is over.
 # If this is too much typing, then just cut-and-paste, okay?
 poll = get_object_or_404(Poll, pk=poll_id)
 choices = Choice.objects.filter(poll=poll)
 return render_to_response(template_name, {
 'poll': poll,
 'choices': choices},
 context_instance=RequestContext(request))

[docs]def vote(request, poll_id, template_name=POLL_DETAIL_TEMPLATE):
 """ user votes on a poll"""

 poll = get_object_or_404(Poll, pk=poll_id)
 try:
 selected_choice = poll.choice_set.get(pk=request.POST['choice'])
 except (KeyError, Choice.DoesNotExist):
 # Redisplay the poll voting form.
 return render_to_response(template_name, {
 'poll': poll,
 'error_message': "You didn't select a choice.",
 }, context_instance=RequestContext(request))
 else:
 selected_choice.votes += 1
 selected_choice.save()
 # Always return an HttpResponseRedirect after successfully dealing
 # with POST data. This prevents data from being posted twice if a
 # user hits the Back button.
 url = reverse('poll_results', args=(poll.id,))
 return HttpResponseRedirect(url)

def results(request, poll_id, template_name="polls/results.html"):
 poll = get_object_or_404(Poll, pk=poll_id)
 return render_to_response(template_name,
 {'poll': poll},
 context_instance=RequestContext(request)
)

 © Copyright 2011, Daniel Greenfeld.
 Created using Sphinx 1.3.1.

_modules/polls/tests/test_views.html

 Navigation

 		
 index

 		
 modules |

 		django-party-pack 0.2.0 documentation »

 		Module code »

 Source code for polls.tests.test_views

from datetime import datetime
from django.core.urlresolvers import reverse

from polls.models import Choice, Poll
from polls.tests.utils import BaseTestCase

[docs]class TestPollSample(BaseTestCase):

[docs] def setUp(self):
 super(TestPollSample, self).setUp()
 self.poll = Poll(
 question="What is your favorite number?",
 pub_date=datetime.now()
)
 self.poll.save()
 for i in range(1, 4):
 choice = Choice(
 poll=self.poll,
 choice=str(i),
 votes=0
)
 choice.save()

[docs] def test_poll_index(self):
 """ Check if the poll index displays """

 # Now display me a poll!
 url = reverse("poll_index")
 response = self.client.get(url)

 self.assertContains(response, "What is your favorite number?")

[docs] def test_poll_detail(self):
 """ Check if the poll detail displays """

 # Grab poll again to make sure we get right ID and that
 # any custom save methods have been fully fired
 poll = Poll.objects.get(id=self.poll.id)

 url = reverse("poll_detail", kwargs={"poll_id": poll.id})
 response = self.client.get(url)

 self.assertContains(response, "What is your favorite number?")

[docs] def test_poll_vote(self):
 """ vote on a poll """
 url = reverse("poll_vote", kwargs={"poll_id": self.poll.id})

 # Pick a bad choice out of range
 data = dict(choice=10)
 response = self.client.post(url, data, follow=True)
 self.assertContains(response, "You didn't select a choice.")

 # pick a choice in range
 data = dict(choice=2)
 response = self.client.post(url, data, follow=True)
 self.assertContains(response, "2 -- 1 vote")

 © Copyright 2011, Daniel Greenfeld.
 Created using Sphinx 1.3.1.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		django-party-pack 0.2.0 documentation »

 All modules for which code is available

		polls.models

		polls.tests.test_models

		polls.tests.test_views

		polls.views

 © Copyright 2011, Daniel Greenfeld.
 Created using Sphinx 1.3.1.

_modules/polls/models.html

 Navigation

 		
 index

 		
 modules |

 		django-party-pack 0.2.0 documentation »

 		Module code »

 Source code for polls.models

import datetime
from django.db import models

[docs]class Poll(models.Model):
 """An individual poll to be tested"""
 question = models.CharField(max_length=200)
 pub_date = models.DateTimeField('date published')

 def __unicode__(self):
 return self.question

 def was_published_today(self):
 return self.pub_date.date() == datetime.date.today()

[docs]class Choice(models.Model):
 """Choices on a poll"""
 poll = models.ForeignKey(Poll)
 choice = models.CharField(max_length=200)
 votes = models.IntegerField()

 def __unicode__(self):
 return self.choice

 © Copyright 2011, Daniel Greenfeld.
 Created using Sphinx 1.3.1.

_modules/polls/tests/test_models.html

 Navigation

 		
 index

 		
 modules |

 		django-party-pack 0.2.0 documentation »

 		Module code »

 Source code for polls.tests.test_models

from datetime import datetime, timedelta

from polls.models import Poll
from polls.tests.utils import BaseTestCase

[docs]class TestPolls(BaseTestCase):

[docs] def test_poll_create(self):
 """ Can we create a poll?

 * Seems trivial now
 * But for complex systems what started out as a simple create can get complex
 * Get your test coverage up!
 """

 poll_count = Poll.objects.count()
 poll = Poll(
 question="Why is Python awesome?",
 pub_date=datetime.now()
)
 poll.save()
 self.assertTrue(poll_count < Poll.objects.count())

[docs] def test_was_published_today(self):

 poll = Poll(
 question="Django is for the internets",
 pub_date=datetime.now()
)
 poll.save()
 self.assertTrue(poll.was_published_today())

 poll.pub_date = datetime.now() - timedelta(days=3)
 poll.save()

 self.assertFalse(poll.was_published_today())

 © Copyright 2011, Daniel Greenfeld.
 Created using Sphinx 1.3.1.

