

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	django-oscar-mws 0.1.0 documentation

Welcome to django-oscar-mws’s documentation!

django-oscar-mws is still under heavy development and things are changing
quickly. That means the few pieces of documentation currently available are
likely to change or might even be obsolete. It also explains why the docs are
pretty much non-existent. Stay tune, I’ll try and improve them as I go along.

Contents:

	Concepts
	Merchant Account

	Stock Records with MWS

	Getting Started
	Setting Up The Sandbox

	Setting Up MWS

	Settings
	MWS_ENFORCE_PARTNER_SKU

	MWS_ORDER_ADAPTER

	MWS_ORDER_LINE_ADAPTER

	MWS_FULFILLMENT_MERCHANT_FINDER

	MWS_DEFAULT_SHIPPING_SPEED

	Recipes For Commmon Problems

	Notes
	Fulfillment

	API Reference
	Models and Mixins

	Feeds

	Fulfillment

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Sebastian Vetter.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar-mws 0.1.0 documentation

Concepts

django-oscar-mws (OMWS) provides a few models that represent data retrieved
from or sent to Amazon’s MWS API.

Merchant Account

	The merchant account represents the overall account for a region such as EU,
US.

	A merchant account has to be linked to a stock record to be able to store
stock for a given product in the right place. A merchant has a 1-to-1
relationship to the partner.Partner model.

	When saving a merchant account without a partner, a partner with name
Amazon (<MWS_REGION>) is looked up or created with the merchant’s
region corresponding to MWS_REGION. E.g. for a US merchant account this
would be Amazon (US).

Stock Records with MWS

Using MWS for fulfillment implies that we are handling physical stock that
requires shipping and the tracking of stock. Oscar’s StockRecord model
provides all the necessary functionality for this. However, there is a couple
of assumptions that we have to make based on the way MWS works.

	Stock in MWS is available on the merchant account level which can be
mapped to a fulfillment region, e.g. Europe. As a result, we have to handle
one stock record per region/seller account which is done by tying a
MerchantAccount directly to a Partner. This is automatically taken
care of when saving a new merchant account.

	Oscar, by default, tracks stock and uses a 2-stage approach for it. The
amount of stock is stored in num_in_stock. Whenever a customer
successfully places an order for an item, the num_allocated on its stock
record is incremented. The actual amount that is available to buy is
calculated by subtracting the allocated stock from the number in stock:

available = stockrecord.num_in_stock - stockrecord.num_allocated

This makes tracking stock from MWS a little tricky because we can’t just
set the num_in_stock value to the supply quantity retrieved from MWS.
This would ignore the allocated stock number and result in a wrong number of
items available to buy. Resetting num_allocated to zero when updating
inventory will cause issues by itself because marking an item as shipped
will result in decrementing num_in_stock and num_allocated by the
shipped quantity which would also result in wrong stock numbers.
We decided for a combined solution by resetting num_allocated to zero
when updating stock from MWS and then preventing decrementing stock when it
is marked as shipped if the stock record is tracking MWS stock. This
functionality is encapsulated in AmazonStockRecordMixin which you should
add to your projects StockRecord.

 Copyright 2013, Sebastian Vetter.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar-mws 0.1.0 documentation

Getting Started

Setting Up The Sandbox

django-oscar-mws comes with a sandbox site that shows how MWS can be
integrated with Oscar. It resembles a basic set up of Oscar with an
out-of-the-box integration of MWS. This section will walk you through setting
the sandbox up locally and how to make it interact with the MWS API.

Note

Oscar itself has quite a few dependencies and settings that might
cause some problems when you are setting up the MWS sandbox. In addition to
this documentation you might also want to check out the Oscar docs on
setting up a project [http://django-oscar.readthedocs.org/en/latest/internals/sandbox.html#sample-oscar-projects].

The first thing to do is cloning the repository and installing it’s
requirements which will includes setting up Oscar. It also creates a new
database (if it doesn’t exist) creates the required tables:

$ git clone git@github.com:tangentlabs/django-oscar-mws.git
$ cd django-oscar-mws
$ mkvirtualenv mws # requires virtualenvwrapper to be installed
$ make sandbox

By default, the sandbox is using Oscar’s precompiled CSS files by setting
USE_LESS = False. If you want to use LESS to generate the CSS yourself,
take a look at the documentation on how to use LESS with Oscar [http://django-oscar.readthedocs.org/en/latest/howto/how_to_handle_statics.html?highlight=less#less-css].

Create Admin User

The main interface for MWS lives in Oscar’s dashboard and therefore requires an
admin user to login. Create a new admin account using Django’s
createsuperuser command and follow the instruction:

$./sandbox/manage.py createsuperuser

You should now be able to run the sandbox locally using Django’s builtin
HTTP server:

$./sandbox/manage.py runserver

You now have a sample shop up and running and should be able to navigate to
the dashboard [http://localhost:8000/dashboard/merchants/] to continue the setup of your MWS credentials.

Stock Records and MWS

As described in Concepts, integration Oscar’s stock records with MWS requires
a little additional setup. Oscar assumes that it handles the allocation and
consumption of stock through the stock record(s) for a product. With MWS the
available stock is actually dictated by Amazon and can’t be handled the Oscar
way. Therefore, a few extra methods on the stock record are required which are
encapsulated in the AmazonStockTrackingMixin.

Making these methods available to OMWS requires you to override the partner
app in Oscar. Check the documentation on how to customise Oscar apps [http://django-oscar.readthedocs.org/en/latest/howto/how_to_customise_models.html] to get
a more comprehensive introduction. The short version is, you need to create
a new app in your project called partner and create a models.py module
in it. Import all the models from the core Oscar app and add the
AmazonStockTrackingMixin to the StockRecord model
similar to this:

from oscar.apps.address.abstract_models import AbstractPartnerAddress
from oscar.apps.partner.abstract_models import *

from oscar_mws.mixins import AmazonStockTrackingMixin

class StockRecord(AmazonStockTrackingMixin, AbstractStockRecord):
 pass

class Partner(AbstractPartner):
 pass

class PartnerAddress(AbstractPartnerAddress):
 pass

class StockAlert(AbstractStockAlert):
 pass

And then add the partner app to your INSTALLED_APPS like this:

from oscar.core import get_core_apps

INSTALLED_APPS = [
 ...
] + get_core_apps(['myproject.partner'])

This setup provides you with a default implementation that disables updating
the consumed stock on a MWS-enabled stock record and provides methods to update
stock from MWS when retrieved from Amazon.

Note

The AmazonStockTrackingMixin provides a basic
implementation for MWS-enabled stock. If you are using multiple different
types of fulfillment partners this implementation might not be sufficient
and you’ll have to adjust the implemenation to your specific use cases.

Setting Up MWS

The API endpoints provided by Amazon MWS differ based on the MWS region. The
different regions and endpoints [http://docs.developer.amazonservices.com/en_US/dev_guide/DG_Registering.html] are detailed in the Amazon docs. Each region
requires separate MWS credentials for each account. In OMWS, these accounts are
called merchant accounts and are used to identify the endpoints to use when
communication with MWS.

You have to create a merchant account and provide your MWS credentials to be
able to connect to MWS. Head to the Amazon MWS > Merchants & Marketplaces in
the Oscar dashboard and select ‘Add merchant account’. A corresponding partner
account in Oscar is required for a MWS merchant account, however, if no partner
is selected explicitly, a new one will be created automatically with the same
name as the MWS merchant account.

With your merchant account(s) added, you can update the corresponding
marketplaces in the drop-down menu on the right-hand side. This will pull the
MWS marketplaces that you are able to trade in from MWS. This will also
indicate that communicating with the MWS API is successful.

 Copyright 2013, Sebastian Vetter.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar-mws 0.1.0 documentation

Settings

MWS_ENFORCE_PARTNER_SKU

default: True

The seller SKU for a product used with Amazon to uniquely identify it stored on
the AmazonProfile of that product. Oscar’s stock record in the partner
app also provides a SKU that is used with a Partner corresponding to a
seller/merchant ID with MWS. In most cases, you would want the partner SKU on
the StockRecord kept in sync with the SKU on the AmazonProfile. To
enforce this constraint, you can update the stock records for Amazon-related
partners whenever the Aamzon profile is saved. This is enabled by default. To
switch it off set MWS_ENFORCE_PARTNER_SKU = False in you settings.

MWS_ORDER_ADAPTER

Specify the order adapter class to use to convert an order into a fulfillment
order containing data as expected by Amazon.

MWS_ORDER_LINE_ADAPTER

The mapper class for the order line to convert it into a fulfillment orde line
including data as expected by Amazon.

MWS_FULFILLMENT_MERCHANT_FINDER

default: oscar_mws.fulfillment.finders.default_merchant_finder

MWS_DEFAULT_SHIPPING_SPEED

default: Standard

 Copyright 2013, Sebastian Vetter.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar-mws 0.1.0 documentation

Recipes For Commmon Problems

Sorry but you’ll need to be a little patient. I’ll get to it as soon as
possible.

 Copyright 2013, Sebastian Vetter.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-oscar-mws 0.1.0 documentation

Notes

Warning

For same parts of the API to work, you’ll have to provide tax
information in your MWS Pro account. Otherwise you’ll get a
Seller is not registered for Basic fulfillment. error message back.

For the time being, this is going to be a collection of finding while using the
MWS API. It mainly things that I’ve picked up while working on it through
feedback submitting wrong or incomplete data. It’s not necessarily correct and
I am happy to be corrected where that’s the case.

Fulfillment

	Fulfillment orders are created against a seller account rather than a
marektplace. That means all marketplaces that belong to the same seller
account are submitted against that seller account and do not require a
marketplaces.

Submitting An Order

	The DestinationAddress.CountryCode is validated against the seller
account region and is rejected if outside of it. E.g. a US country code
submitted to a seller acount for Europe is rejected with:

<Error>
 <Type>Sender</Type>
 <Code>InvalidRequestException</Code>
 <Message>Value US for parameter DestinationAddress.CountryCode is invalid. Reason: InvalidValue.</Message>
</Error>

	Submitting an order requires a value for StateOrProvinceCode for the
destination address. As far as I have tested it, there is no validation on
the state for the European marketplaces. The Marketplace for the US (and most
likely Canada as well) is rejecting anything but the official 2-letter code
for the US state.

 Copyright 2013, Sebastian Vetter.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	django-oscar-mws 0.1.0 documentation

API Reference

Models and Mixins

	
class oscar_mws.mixins.AmazonStockTrackingMixin

	A mixin to make stock tracking for Amazon MWS fulfilled products possible.
The way stock tracking works in Oscar doesn’t play nicely with the details
returned from MWS. Basically Amazon provides a single value which is the
amount of items still available to be fulfilled. In Oscar, we track the
number in stock as well as the allocated number of products.
num_in_stock - num_allocated is the number of items actually avaiable
to buy and both number in stock and number allocated are only decremented
whenever an item is marked as shipped.

To handle this properly and be able to synchronise the fulfillable number
of products available from Amazon, we use this mixin to override the

	
consume_allocation(quantity)

	This is used when an item is shipped. We remove the original
allocation and adjust the number in stock accordingly

	Parameters:	quantity (integer) – The quantity to be consumed.

	
is_mws_record

	Checks whether this stock record is associated with an Amazon merchant
account.

	Rtype bool:	True if the stockrecord is Amazon stock,
False otherwise.

	
set_amazon_supply_quantity(quantity, commit=True)

	Convenience method to set the field num_in_stock to quantity and
reset the allocated stock in num_allocated to zero. We don’t care
about allocation for MWS stock and therefore just reset it.

	Parameters:	
	quantity (integer) – The quantity currently available on Amazon for
Fulfillment by Amazon (FBA).

	commit (boolean) – Allows to prevent immediate saving of the
changes to the database. This is useful if you want to save on
database queries when making other changes to the stock record.

Feeds

Fulfillment

 Copyright 2013, Sebastian Vetter.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	django-oscar-mws 0.1.0 documentation

 Python Module Index

 o

 			

 		
 o	

 	[image: -]
 	
 oscar_mws	

 	
 	
 oscar_mws.mixins	

 Copyright 2013, Sebastian Vetter.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	django-oscar-mws 0.1.0 documentation

Index

 A
 | C
 | I
 | O
 | S

A

 	

 	AmazonStockTrackingMixin (class in oscar_mws.mixins)

C

 	

 	consume_allocation() (oscar_mws.mixins.AmazonStockTrackingMixin method)

I

 	

 	is_mws_record (oscar_mws.mixins.AmazonStockTrackingMixin attribute)

O

 	

 	oscar_mws.mixins (module)

S

 	

 	set_amazon_supply_quantity() (oscar_mws.mixins.AmazonStockTrackingMixin method)

 Copyright 2013, Sebastian Vetter.
 Created using Sphinx 1.2.2.

 _static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

search.html

 Navigation

 		
 index

 		
 modules |

 		django-oscar-mws 0.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Sebastian Vetter.
 Created using Sphinx 1.2.2.

_static/up-pressed.png

_static/comment-bright.png

