

 Navigation

 	
 index

 	DOAC latest documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a docs/index.rst or docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright .
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	DOAC latest documentation

Index

 Copyright .
 Created using Sphinx 1.3.1.

 _static/down.png

exceptions/invalid_scope.html

 Navigation

 		
 index

 		DOAC latest documentation »

 ========================
Invalid Scope Exceptions
========================

exception oauth2_consumer.exceptions.invalid_scope.ScopeNotProvided

exception oauth2_consumer.exceptions.invalid_scope.ScopeNotValid

 © Copyright .
 Created using Sphinx 1.3.1.

exceptions/index.html

 Navigation

 		
 index

 		DOAC latest documentation »

 ==========
Exceptions
==========

Django OAuth2 Consumer raises multiple exceptions when authorizing users under clients in order to control what errors are returned.

Contents:

		Base Exceptions

		Invalid Client Exceptions

		Invalid Request Exceptions

		Invalid Scope Exceptions

		Unsupported Grant Type Exceptions

 © Copyright .
 Created using Sphinx 1.3.1.

_static/up.png

exceptions/base.html

 Navigation

 		
 index

 		DOAC latest documentation »

 ===============
Base Exceptions
===============

exception oauth2_consumer.exceptions.base.AccessDenied

The AccessDenied exception is raised during the approval step of the authorization process if the user rejects the clients request for permission. The OAuth error for this exception is access_denied.

exception oauth2_consumer.exceptions.base.InvalidClient

The InvalidClient exception is raised if a client was provided but had an error.

exception oauth2_consumer.exceptions.base.InvalidGrant

exception oauth2_consumer.exceptions.base.InvalidRequest

The InvalidRequest exception is raised because a parameter did not pass validation or was not provided. The OAuth error for this exception is invalid_request.

This can be raised during the initial authorization request because:

		A required parameter was not provideed.

		A supplied parameter failed its verification check.

This exception is not intended to be redirected to the client during the authorization stage.

exception oauth2_consumer.exceptions.base.InvalidScope

The InvalidScope exception is raised because the scope that was provided for the request does not pass validation or was not provided. The OAuth error for this exception is invalid_scope.

exception oauth2_consumer.exceptions.base.UnsupportedGrantType

The UnsupportedGrantType exception is raised during the exchanging of tokens if the specified grant type is in the list of suppported grant types, or was not provided.

exception oauth2_consumer.exceptions.base.UnsupportedResponseType

The UnsupportedResponseType exception is raised during the initial authorization step because the requested response_type was not supported. The OAuth error for this exception is unsupported_response_type.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/comment-bright.png

exceptions/invalid_client.html

 Navigation

 		
 index

 		DOAC latest documentation »

 =========================
Invalid Client Exceptions
=========================

exception oauth2_consumer.exceptions.invalid_client.ClientDoesNotExist

exception oauth2_consumer.exceptions.invalid_client.ClientSecretNotValid

 © Copyright .
 Created using Sphinx 1.3.1.

markdown/utilities.html

 Navigation

 		
 index

 		DOAC latest documentation »

DOAC Utilities

DOAC comes with a few utilities which make it easier to use DOAC. All of the utilities are located in the utils.py file.

doac.utils.prune_old_authorization_codes()

Prunes all authorization codes which have expired. The codes may be pruned automatically if enabled within the settings. In this case, the codes will be automatically pruned each time that a user tries to authorize themselves.

doac.utils.get_handler(handler_name)

Returns the class for the handler given the full path. It will automatically import the class from the given file. Note: the handler will only be imported if it is located within the specified list of handlers.

doac.utils.request_error_header(exception)

Generates the WWW-Authenticate header that must be supplied for errors that occur during various parts of the authorization and authentication process.

doac.utils.total_seconds(delta)

Returns the total number of seconds from a timedelta.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/comment.png

markdown/integrations.html

 Navigation

 		
 index

 		DOAC latest documentation »

Integrating DOAC with other applications

DOAC should be compatible with any application that requires the default Django authentication. But in some cases this is too broad, or you just need finer control over how it all works.

Django Rest Framework

DOAC supports both authentication and permissions checking through Django Rest Framework. This allows you to restrict authentication through access tokens to just the parts of your site which require it.

Requirements

In order to use DOAC with Django Rest Framework, you must install them both first.

pip install doac djangorestframework

Integrating the authentication

You can use the authentication on a per-view basis or on a global level, DOAC works fine wherever you define the authentication for your API.

Globally, through the settings:

REST_FRAMEWORK = {
 'DEFAULT_AUTHENTICATION_CLASSES': (
 'doac.contrib.rest_framework.authentication.DoacAuthentication',
),
}

Locally, using the API:

from rest_framework import viewsets
from doac.contrib.rest_framework import authentication

class ExampleViewSet(viewsets.ModelViewSet):
 authentication_classes = [authentication.DoacAuthentication]
 model = ExampleModel

Integrating the permissions

OAuth2 uses scopes to define what an access token can do with an application. DOAC allows you to specify what scopes are allowed for accessing a viewset.

from rest_framework import viewsets
from doac.contrib.rest_framework import authentication, permissions

class ExampleViewSet(viewsets.ModelViewSet):
 authentication_classes = [authentication.DoacAuthentication]
 permissions_classes = [permissions.TokenHasScope]
 model = ExampleModel

 scopes = ["read", "write", "fun_stuff"]

The scopes are checked in the same way as the scope_required decorator. If no scopes are specified, all access tokens which have a scope are allowed access. Any and all scopes specified will be checked in order to access the view, and any missing scopes will result in the access token being denied.

Insert application name here

Do you have an application that DOAC integrates with? We are accepting pull requests [https://github.com/Rediker-Software/doac] to the documentation, which means you can add your information here.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/down-pressed.png

models/index.html

 Navigation

 		
 index

 		DOAC latest documentation »

 ======
Models
======

Django OAuth2 Consumer comes with multiple models which contain all of the tokens and other information that is used throughout the OAuth2 authorization process.

class oauth2_consumer.models.Client

A single client that can be used when requesting an authorization.

name

The name of the client. This will be used when the user is asked to approve any permissions that the client requests.

secret

The secret that is used to refresh tokens throughout the OAuth process.

access_host

The base URL that all RedirectUri‘s will be validated against.

is_active

A boolean flag indicating whether or not the client can be used at all.

generate_secret()

Generates a secret string that meets the criteria of those which can be used for a client.

save(*args, **kwargs)

Saves the client to the database. A secret is automatically generated for the client and can be retrieved using secret.

class oauth2_consumer.models.RedirectUri

The url that a user can be redirected to during the authorization process.

client

The client that the url is tied to. It must be under the ~Client.access_host of the Client in order to be used.

url

The url that can be used. It must be exactly the same when starting the authorization process.

class oauth2_consumer.models.Scope

A scope that can be requested by a client as a permission.

short_name

The name of the scope that is used when a client is requesting a set of scopes to be authorized for.

full_name

The full name of the scope, it will be used during the approval process when telling a user what the client is requesting.

description

A short description of exactly what the scope will give the client access to.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/file.png

markdown/settings.html

 Navigation

 		
 index

 		DOAC latest documentation »

Settings

We think we set up Django OAuth2 Consumer with reasonable defualts, but there is always the option to change them through your central settings file.

All of these settings are available on the OAUTH_CONFIG dictionary.

HANDLERS

This setting controls which handlers are acceptable for users to authenticate with. It should be specified as a tuple of strings which contain the full Python pathes to the middleware classes. If this is empty, users are not going to be able to authenticate with your project.

Default:

"HANDLERS": (
 "oauth2_consumer.handlers.bearer.BearerHandler",
)

ACCESS_TOKEN

This setting controls the settings for access tokens. It should be a dictionary containing any of the following keys:

EXPIRES

A timedelta object representing the time after the creation of the token when the access token will expire and become invalid.

Default:

datetime.timedelta(hours=2)

AUTHORIZATION_CODE

This setting controls the settings for the authorization code which is used during the authorization process. It should be a dictionary containing any of the following keys:

EXPIRES

A timedelta object representing the time after the creation of the code when the authorization code will expire and become invalid.

Default:

datetime.timedelta(minutes=15)

AUTHORIZATION_TOKEN

This setting controls the settings for the authorization token which is used after the authorization process. It should be a dictionary containing any of the following keys:

EXPIRES

A timedelta object representing the time after the creation of the token when the authorization token will expire and become invalid.

Defualt:

datetime.timedelta(minutes=15)

REFRESH_TOKEN

This setting controls the settings for the refresh tokens which are used after the authorization process to retrieve access tokens. It should be a dictionary containing any of the folllwing keys:

EXPIRES

A timedelta object which represents the time after the creation of the token when the refresh token will expire and become invalid.

Default:

datetime.timedelta(days=60)

 © Copyright .
 Created using Sphinx 1.3.1.

_static/plus.png

markdown/index.html

 Navigation

 		
 index

 		DOAC latest documentation »

Welcome to Django OAuth2 Consumer’s documentation!

Django OAuth2 Consumer (DOAC) is a reusable application that can be used to provide an OAuth consumer for your project.

		Installation

		API

		Exceptions

		Models

		Utilities

		Views

		Settings

		Integrations

Requirements

We tried to make it so that this application did not require anything, but that is pretty illogical when you think about it, so we settled with a short list of requirements that should fit your project anyway. This application may work on different setups, but we probably haven’t tested them, so contact us if you find that there is an issue with our list of requirements.

Required

		Django 1.3+

		Django authentication application [https://docs.djangoproject.com/en/1.5/topics/auth/]

		Python 2.6+

This application is directly compatible with other tools and applications, but if you aren’t using them it shouldn’t make a difference. We provide extra functionality by default if it makes sense to do so.

Optional

		Django admin application [https://docs.djangoproject.com/en/1.5/ref/contrib/admin/]

Getting Help

If you find a bug, have an idea for a feature, or just need some guidance, we provide support through our GitHub repository. Just open up a new issue and make sure to include as much information as possible so we can try our best to determine the problem. A working test case or example is always preferred, though we recognize that it is not always possible to provide one.

The issue tracker is available here: https://github.com/kevin-brown/doac/issues

Contributing

Django OAuth2 Consumer is an open-source application which you can contribute to. We will provide instructions for those interested in the future.

 © Copyright .
 Created using Sphinx 1.3.1.

markdown/api.html

 Navigation

 		
 index

 		DOAC latest documentation »

API

DOAC comes prepared with all of the things you need to quickly get an OAuth 2.0 solution for your project.

		Exceptions

		Models

		Utilities

		Views

 © Copyright .
 Created using Sphinx 1.3.1.

installation.html

 Navigation

 		
 index

 		DOAC latest documentation »

Installation

Django OAuth2 Consumer (DOAC) is on PyPi!

Using Pip

pip install doac

Then all you need to do is add doac to your INSTALLED_APPS.

INSTALLED_APPS = (
 ...
 "doac",
)

And set up the tables for everything.

python manage.py syncdb

Doing it manually

You can still manually install DOAC, but it is recommended to install it using pip.

1. Copy DOAC Files

Copy the files from GitHub into your project directory to a folder called doac.

2. Add DOAC to your settings

Add doac to your INSTALLED_APPS.

3. Set up the database

Run python manage.py syncdb to install the tables for DOAC.

 © Copyright .
 Created using Sphinx 1.3.1.

exceptions/invalid_request.html

 Navigation

 		
 index

 		DOAC latest documentation »

 ==========================
Invalid Request Exceptions
==========================

exception oauth2_consumer.exceptions.invalid_request.AuthorizationCodeAlreadyUsed

exception oauth2_consumer.exceptions.invalid_request.AuthorizationCodeNotProvided

exception oauth2_consumer.exceptions.invalid_request.AuthorizationCodeNotValid

exception oauth2_consumer.exceptions.invalid_request.ClientNotProvided

exception oauth2_consumer.exceptions.invalid_request.ClientSecretNotProvided

exception oauth2_consumer.exceptions.invalid_request.RedirectUriNotProvided

exception oauth2_consumer.exceptions.invalid_request.RedirectUriDoesNotValidate

exception oauth2_consumer.exceptions.invalid_request.ResponseTypeNotProvided

 © Copyright .
 Created using Sphinx 1.3.1.

api.html

 Navigation

 		
 index

 		DOAC latest documentation »

API

DOAC comes prepared with all of the things you need to quickly get an OAuth 2.0 solution for your project.

		Exceptions

		Models

		Utilities

		Views

 © Copyright .
 Created using Sphinx 1.3.1.

exceptions/unsupported.html

 Navigation

 		
 index

 		DOAC latest documentation »

 =================================
Unsupported Grant Type Exceptions
=================================

exception oauth2_consumer.exceptions.unsupported_grant_type.GrantTypeNotProvided

exception oauth2_consumer.exceptions.unsupported_grant_type.GrantTypeNotValid

 © Copyright .
 Created using Sphinx 1.3.1.

_static/minus.png

markdown/installation.html

 Navigation

 		
 index

 		DOAC latest documentation »

Installation

Django OAuth2 Consumer (DOAC) is on PyPi!

Using Pip

pip install doac

Then all you need to do is add doac to your INSTALLED_APPS.

INSTALLED_APPS = (
 ...
 "doac",
)

And set up the tables for everything.

python manage.py syncdb

Doing it manually

You can still manually install DOAC, but it is recommended to install it using pip.

1. Copy DOAC Files

Copy the files from GitHub into your project directory to a folder called doac.

2. Add DOAC to your settings

Add doac to your INSTALLED_APPS.

3. Set up the database

Run python manage.py syncdb to install the tables for DOAC.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		DOAC latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright .
 Created using Sphinx 1.3.1.

markdown/exceptions/base.html

 Navigation

 		
 index

 		DOAC latest documentation »

 ===============
Base Exceptions
===============

exception oauth2_consumer.exceptions.base.AccessDenied

The AccessDenied exception is raised during the approval step of the authorization process if the user rejects the clients request for permission. The OAuth error for this exception is access_denied.

exception oauth2_consumer.exceptions.base.InvalidClient

The InvalidClient exception is raised if a client was provided but had an error.

exception oauth2_consumer.exceptions.base.InvalidGrant

exception oauth2_consumer.exceptions.base.InvalidRequest

The InvalidRequest exception is raised because a parameter did not pass validation or was not provided. The OAuth error for this exception is invalid_request.

This can be raised during the initial authorization request because:

		A required parameter was not provideed.

		A supplied parameter failed its verification check.

This exception is not intended to be redirected to the client during the authorization stage.

exception oauth2_consumer.exceptions.base.InvalidScope

The InvalidScope exception is raised because the scope that was provided for the request does not pass validation or was not provided. The OAuth error for this exception is invalid_scope.

exception oauth2_consumer.exceptions.base.UnsupportedGrantType

The UnsupportedGrantType exception is raised during the exchanging of tokens if the specified grant type is in the list of suppported grant types, or was not provided.

exception oauth2_consumer.exceptions.base.UnsupportedResponseType

The UnsupportedResponseType exception is raised during the initial authorization step because the requested response_type was not supported. The OAuth error for this exception is unsupported_response_type.

 © Copyright .
 Created using Sphinx 1.3.1.

integrations.html

 Navigation

 		
 index

 		DOAC latest documentation »

Integrating DOAC with other applications

DOAC should be compatible with any application that requires the default Django authentication. But in some cases this is too broad, or you just need finer control over how it all works.

Django Rest Framework

DOAC supports both authentication and permissions checking through Django Rest Framework. This allows you to restrict authentication through access tokens to just the parts of your site which require it.

Requirements

In order to use DOAC with Django Rest Framework, you must install them both first.

pip install doac djangorestframework

Integrating the authentication

You can use the authentication on a per-view basis or on a global level, DOAC works fine wherever you define the authentication for your API.

Globally, through the settings:

REST_FRAMEWORK = {
 'DEFAULT_AUTHENTICATION_CLASSES': (
 'doac.contrib.rest_framework.authentication.DoacAuthentication',
),
}

Locally, using the API:

from rest_framework import viewsets
from doac.contrib.rest_framework import authentication

class ExampleViewSet(viewsets.ModelViewSet):
 authentication_classes = [authentication.DoacAuthentication]
 model = ExampleModel

Integrating the permissions

OAuth2 uses scopes to define what an access token can do with an application. DOAC allows you to specify what scopes are allowed for accessing a viewset.

from rest_framework import viewsets
from doac.contrib.rest_framework import authentication, permissions

class ExampleViewSet(viewsets.ModelViewSet):
 authentication_classes = [authentication.DoacAuthentication]
 permissions_classes = [permissions.TokenHasScope]
 model = ExampleModel

 scopes = ["read", "write", "fun_stuff"]

The scopes are checked in the same way as the scope_required decorator. If no scopes are specified, all access tokens which have a scope are allowed access. Any and all scopes specified will be checked in order to access the view, and any missing scopes will result in the access token being denied.

Insert application name here

Do you have an application that DOAC integrates with? We are accepting pull requests [https://github.com/Rediker-Software/doac] to the documentation, which means you can add your information here.

 © Copyright .
 Created using Sphinx 1.3.1.

markdown/exceptions/invalid_client.html

 Navigation

 		
 index

 		DOAC latest documentation »

 =========================
Invalid Client Exceptions
=========================

exception oauth2_consumer.exceptions.invalid_client.ClientDoesNotExist

exception oauth2_consumer.exceptions.invalid_client.ClientSecretNotValid

 © Copyright .
 Created using Sphinx 1.3.1.

settings.html

 Navigation

 		
 index

 		DOAC latest documentation »

Settings

We think we set up Django OAuth2 Consumer with reasonable defualts, but there is always the option to change them through your central settings file.

All of these settings are available on the OAUTH_CONFIG dictionary.

HANDLERS

This setting controls which handlers are acceptable for users to authenticate with. It should be specified as a tuple of strings which contain the full Python pathes to the middleware classes. If this is empty, users are not going to be able to authenticate with your project.

Default:

"HANDLERS": (
 "oauth2_consumer.handlers.bearer.BearerHandler",
)

ACCESS_TOKEN

This setting controls the settings for access tokens. It should be a dictionary containing any of the following keys:

EXPIRES

A timedelta object representing the time after the creation of the token when the access token will expire and become invalid.

Default:

datetime.timedelta(hours=2)

AUTHORIZATION_CODE

This setting controls the settings for the authorization code which is used during the authorization process. It should be a dictionary containing any of the following keys:

EXPIRES

A timedelta object representing the time after the creation of the code when the authorization code will expire and become invalid.

Default:

datetime.timedelta(minutes=15)

AUTHORIZATION_TOKEN

This setting controls the settings for the authorization token which is used after the authorization process. It should be a dictionary containing any of the following keys:

EXPIRES

A timedelta object representing the time after the creation of the token when the authorization token will expire and become invalid.

Defualt:

datetime.timedelta(minutes=15)

REFRESH_TOKEN

This setting controls the settings for the refresh tokens which are used after the authorization process to retrieve access tokens. It should be a dictionary containing any of the folllwing keys:

EXPIRES

A timedelta object which represents the time after the creation of the token when the refresh token will expire and become invalid.

Default:

datetime.timedelta(days=60)

 © Copyright .
 Created using Sphinx 1.3.1.

markdown/exceptions/invalid_request.html

 Navigation

 		
 index

 		DOAC latest documentation »

 ==========================
Invalid Request Exceptions
==========================

exception oauth2_consumer.exceptions.invalid_request.AuthorizationCodeAlreadyUsed

exception oauth2_consumer.exceptions.invalid_request.AuthorizationCodeNotProvided

exception oauth2_consumer.exceptions.invalid_request.AuthorizationCodeNotValid

exception oauth2_consumer.exceptions.invalid_request.ClientNotProvided

exception oauth2_consumer.exceptions.invalid_request.ClientSecretNotProvided

exception oauth2_consumer.exceptions.invalid_request.RedirectUriNotProvided

exception oauth2_consumer.exceptions.invalid_request.RedirectUriDoesNotValidate

exception oauth2_consumer.exceptions.invalid_request.ResponseTypeNotProvided

 © Copyright .
 Created using Sphinx 1.3.1.

utilities.html

 Navigation

 		
 index

 		DOAC latest documentation »

DOAC Utilities

DOAC comes with a few utilities which make it easier to use DOAC. All of the utilities are located in the utils.py file.

doac.utils.prune_old_authorization_codes()

Prunes all authorization codes which have expired. The codes may be pruned automatically if enabled within the settings. In this case, the codes will be automatically pruned each time that a user tries to authorize themselves.

doac.utils.get_handler(handler_name)

Returns the class for the handler given the full path. It will automatically import the class from the given file. Note: the handler will only be imported if it is located within the specified list of handlers.

doac.utils.request_error_header(exception)

Generates the WWW-Authenticate header that must be supplied for errors that occur during various parts of the authorization and authentication process.

doac.utils.total_seconds(delta)

Returns the total number of seconds from a timedelta.

 © Copyright .
 Created using Sphinx 1.3.1.

markdown/exceptions/unsupported.html

 Navigation

 		
 index

 		DOAC latest documentation »

 =================================
Unsupported Grant Type Exceptions
=================================

exception oauth2_consumer.exceptions.unsupported_grant_type.GrantTypeNotProvided

exception oauth2_consumer.exceptions.unsupported_grant_type.GrantTypeNotValid

 © Copyright .
 Created using Sphinx 1.3.1.

markdown/models/index.html

 Navigation

 		
 index

 		DOAC latest documentation »

 ======
Models
======

Django OAuth2 Consumer comes with multiple models which contain all of the tokens and other information that is used throughout the OAuth2 authorization process.

class oauth2_consumer.models.Client

A single client that can be used when requesting an authorization.

name

The name of the client. This will be used when the user is asked to approve any permissions that the client requests.

secret

The secret that is used to refresh tokens throughout the OAuth process.

access_host

The base URL that all RedirectUri‘s will be validated against.

is_active

A boolean flag indicating whether or not the client can be used at all.

generate_secret()

Generates a secret string that meets the criteria of those which can be used for a client.

save(*args, **kwargs)

Saves the client to the database. A secret is automatically generated for the client and can be retrieved using secret.

class oauth2_consumer.models.RedirectUri

The url that a user can be redirected to during the authorization process.

client

The client that the url is tied to. It must be under the ~Client.access_host of the Client in order to be used.

url

The url that can be used. It must be exactly the same when starting the authorization process.

class oauth2_consumer.models.Scope

A scope that can be requested by a client as a permission.

short_name

The name of the scope that is used when a client is requesting a set of scopes to be authorized for.

full_name

The full name of the scope, it will be used during the approval process when telling a user what the client is requesting.

description

A short description of exactly what the scope will give the client access to.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/ajax-loader.gif

markdown/exceptions/invalid_scope.html

 Navigation

 		
 index

 		DOAC latest documentation »

 ========================
Invalid Scope Exceptions
========================

exception oauth2_consumer.exceptions.invalid_scope.ScopeNotProvided

exception oauth2_consumer.exceptions.invalid_scope.ScopeNotValid

 © Copyright .
 Created using Sphinx 1.3.1.

markdown/exceptions/index.html

 Navigation

 		
 index

 		DOAC latest documentation »

 ==========
Exceptions
==========

Django OAuth2 Consumer raises multiple exceptions when authorizing users under clients in order to control what errors are returned.

Contents:

		Base Exceptions

		Invalid Client Exceptions

		Invalid Request Exceptions

		Invalid Scope Exceptions

		Unsupported Grant Type Exceptions

 © Copyright .
 Created using Sphinx 1.3.1.

_static/comment-close.png

