

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Django OAuth Toolkit 0.11.0 documentation

Welcome to Django OAuth Toolkit Documentation

Django OAuth Toolkit can help you providing out of the box all the endpoints, data and logic needed to add OAuth2
capabilities to your Django projects. Django OAuth Toolkit makes extensive use of the excellent
OAuthLib [https://github.com/idan/oauthlib], so that everything is
rfc-compliant [http://tools.ietf.org/html/rfc6749].

See our Changelog for information on updates.

Support

If you need support please send a message to the Django OAuth Toolkit Google Group [http://groups.google.com/group/django-oauth-toolkit]

Requirements

	Python 2.7, 3.2, 3.3, 3.4, 3.5

	Django 1.7, 1.8, 1.9

Index

	Installation
	Sync your database

	Tutorials
	Part 1 - Make a Provider in a Minute

	Part 2 - protect your APIs

	Part 3 - OAuth2 token authentication

	Part 4 - Revoking an OAuth2 Token

	Django Rest Framework
	Getting started

	Permissions

	Using the views
	Function-based views

	Class-based Views

	Application Views

	Granted Tokens Views

	Mixins for Class Based Views

	Views code and details
	Generic

	Mixins

	Base

	Models

	Advanced topics
	Extending the Application model

	Skip authorization form

	Settings
	List of available settings

	Management commands
	cleartokens

	Glossary

	Contributing

	Changelog

Indices and tables

	Index

	Module Index

 Copyright 2013, Evonove.
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django OAuth Toolkit 0.11.0 documentation

Installation

Install with pip

pip install django-oauth-toolkit

Add oauth2_provider to your INSTALLED_APPS

INSTALLED_APPS = (
 ...
 'oauth2_provider',
)

If you need an OAuth2 provider you’ll want to add the following to your urls.py

urlpatterns = [
 ...
 url(r'^o/', include('oauth2_provider.urls', namespace='oauth2_provider')),
]

Sync your database

$ python manage.py migrate oauth2_provider

Next step is our first tutorial.

 Copyright 2013, Evonove.
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django OAuth Toolkit 0.11.0 documentation

Tutorials

	Part 1 - Make a Provider in a Minute
	Scenario

	Start Your App

	Create an OAuth2 Client Application

	Test Your Authorization Server

	Part 2 - protect your APIs
	Scenario

	Make your API

	Testing your API

	Part 3 - OAuth2 token authentication
	Scenario

	Setup a provider

	Protect your view

	Part 4 - Revoking an OAuth2 Token
	Scenario

	Revoking a Token

	Setup a Request

 Copyright 2013, Evonove.
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django OAuth Toolkit 0.11.0 documentation

 	Tutorials

Part 1 - Make a Provider in a Minute

Scenario

You want to make your own Authorization Server to issue access tokens to client applications for a certain API.

Start Your App

During this tutorial you will make an XHR POST from a Heroku deployed app to your localhost instance.
Since the domain that will originate the request (the app on Heroku) is different from the destination domain (your local instance),
you will need to install the django-cors-middleware [https://github.com/zestedesavoir/django-cors-middleware] app.
These “cross-domain” requests are by default forbidden by web browsers unless you use CORS [http://en.wikipedia.org/wiki/Cross-origin_resource_sharing].

Create a virtualenv and install django-oauth-toolkit and django-cors-middleware:

pip install django-oauth-toolkit django-cors-middleware

Start a Django project, add oauth2_provider and corsheaders to the installed apps, and enable admin:

INSTALLED_APPS = {
 'django.contrib.admin',
 # ...
 'oauth2_provider',
 'corsheaders',
}

Include the Django OAuth Toolkit urls in your urls.py, choosing the urlspace you prefer. For example:

urlpatterns = [
 url(r'^admin/', include(admin.site.urls)),
 url(r'^o/', include('oauth2_provider.urls', namespace='oauth2_provider')),
 # ...
]

Include the CORS middleware in your settings.py:

MIDDLEWARE_CLASSES = (
 # ...
 'corsheaders.middleware.CorsMiddleware',
 # ...
)

Allow CORS requests from all domains (just for the scope of this tutorial):

CORS_ORIGIN_ALLOW_ALL = True

Include the required hidden input in your login template, registration/login.html.
The {{ next }} template context variable will be populated with the correct
redirect value. See the Django documentation [https://docs.djangoproject.com/en/dev/topics/auth/default/#django.contrib.auth.views.login]
for details on using login templates.

<input type="hidden" name="next" value="{{ next }}" />

As a final step, execute the migrate command, start the internal server, and login with your credentials.

Create an OAuth2 Client Application

Before your Application can use the Authorization Server for user login,
you must first register the app (also known as the Client.) Once registered, your app will be granted access to
the API, subject to approval by its users.

Let’s register your application.

Point your browser to http://localhost:8000/o/applications/ and add an Application instance.
Client id and Client Secret are automatically generated; you have to provide the rest of the informations:

	User: the owner of the Application (e.g. a developer, or the currently logged in user.)

	Redirect uris: Applications must register at least one redirection endpoint before using the
authorization endpoint. The Authorization Server will deliver the access token to the client only if the client
specifies one of the verified redirection uris. For this tutorial, paste verbatim the value
http://django-oauth-toolkit.herokuapp.com/consumer/exchange/

	Client type: this value affects the security level at which some communications between the client application and
the authorization server are performed. For this tutorial choose Confidential.

	Authorization grant type: choose Authorization code

	Name: this is the name of the client application on the server, and will be displayed on the authorization request
page, where users can allow/deny access to their data.

Take note of the Client id and the Client Secret then logout (this is needed only for testing the authorization
process we’ll explain shortly)

Test Your Authorization Server

Your authorization server is ready and can begin issuing access tokens. To test the process you need an OAuth2
consumer; if you are familiar enough with OAuth2, you can use curl, requests, or anything that speaks http. For the rest
of us, there is a consumer service [http://django-oauth-toolkit.herokuapp.com/consumer/] deployed on Heroku to test
your provider.

Build an Authorization Link for Your Users

Authorizing an application to access OAuth2 protected data in an Authorization Code flow is always initiated
by the user. Your application can prompt users to click a special link to start the process. Go to the
Consumer [http://django-oauth-toolkit.herokuapp.com/consumer/] page and complete the form by filling in your
application’s details obtained from the steps in this tutorial. Submit the form, and you’ll receive a link your users can
use to access the authorization page.

Authorize the Application

When a user clicks the link, she is redirected to your (possibly local) Authorization Server.
If you’re not logged in, you will be prompted for username and password. This is because the authorization
page is login protected by django-oauth-toolkit. Login, then you should see the (not so cute) form a user can use to give
her authorization to the client application. Flag the Allow checkbox and click Authorize, you will be redirected
again to the consumer service.

If you are not redirected to the correct page after logging in successfully,
you probably need to setup your login template correctly.

Exchange the token

At this point your authorization server redirected the user to a special page on the consumer passing in an
Authorization Code, a special token the consumer will use to obtain the final access token.
This operation is usually done automatically by the client application during the request/response cycle, but we cannot
make a POST request from Heroku to your localhost, so we proceed manually with this step. Fill the form with the
missing data and click Submit.
If everything is ok, you will be routed to another page showing your access token, the token type, its lifetime and
the Refresh Token.

Refresh the token

The page showing the access token retrieved from the Authorization Server also let you make a POST request to
the server itself to swap the refresh token for another, brand new access token.
Just fill in the missing form fields and click the Refresh button: if everything goes smoothly you will see the access and
refresh token change their values, otherwise you will likely see an error message.
When you have finished playing with your authorization server, take note of both the access and refresh tokens, we will use them
for the next part of the tutorial.

So let’s make an API and protect it with your OAuth2 tokens in the part 2 of the tutorial.

 Copyright 2013, Evonove.
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django OAuth Toolkit 0.11.0 documentation

 	Tutorials

Part 2 - protect your APIs

Scenario

It’s very common for an Authorization Server being also the Resource Server, usually exposing an API to
let others access its own resources. Django OAuth Toolkit implements an easy way to protect the views of a Django
application with OAuth2, in this tutorial we will see how to do it.

Make your API

We start where we left the part 1 of the tutorial: you have an authorization server and we want it
to provide an API to access some kind of resources. We don’t need an actual resource, so we will simply expose an
endpoint protected with OAuth2: let’s do it in a class based view fashion!

Django OAuth Toolkit provides a set of generic class based view you can use to add OAuth behaviour to your views. Open
your views.py module and import the view:

from oauth2_provider.views.generic import ProtectedResourceView
from django.http import HttpResponse

Then create the view which will respond to the API endpoint:

class ApiEndpoint(ProtectedResourceView):
 def get(self, request, *args, **kwargs):
 return HttpResponse('Hello, OAuth2!')

That’s it, our API will expose only one method, responding to GET requests. Now open your urls.py and specify the
URL this view will respond to:

from django.conf.urls import url
import oauth2_provider.views as oauth2_views
from django.conf import settings
from .views import ApiEndpoint

OAuth2 provider endpoints
oauth2_endpoint_views = [
 url(r'^authorize/$', oauth2_views.AuthorizationView.as_view(), name="authorize"),
 url(r'^token/$', oauth2_views.TokenView.as_view(), name="token"),
 url(r'^revoke-token/$', oauth2_views.RevokeTokenView.as_view(), name="revoke-token"),
]

if settings.DEBUG:
 # OAuth2 Application Management endpoints
 oauth2_endpoint_views += [
 url(r'^applications/$', oauth2_views.ApplicationList.as_view(), name="list"),
 url(r'^applications/register/$', oauth2_views.ApplicationRegistration.as_view(), name="register"),
 url(r'^applications/(?P<pk>\d+)/$', oauth2_views.ApplicationDetail.as_view(), name="detail"),
 url(r'^applications/(?P<pk>\d+)/delete/$', oauth2_views.ApplicationDelete.as_view(), name="delete"),
 url(r'^applications/(?P<pk>\d+)/update/$', oauth2_views.ApplicationUpdate.as_view(), name="update"),
]

 # OAuth2 Token Management endpoints
 oauth2_endpoint_views += [
 url(r'^authorized-tokens/$', oauth2_views.AuthorizedTokensListView.as_view(), name="authorized-token-list"),
 url(r'^authorized-tokens/(?P<pk>\d+)/delete/$', oauth2_views.AuthorizedTokenDeleteView.as_view(),
 name="authorized-token-delete"),
]

urlpatterns = [
 # OAuth 2 endpoints:
 url(r'^o/', include(oauth2_endpoint_views, namespace="oauth2_provider")),

 url(r'^admin/', include(admin.site.urls)),
 url(r'^api/hello', ApiEndpoint.as_view()), # an example resource endpoint
]

You will probably want to write your own application views to deal with permissions and access control but the ones packaged with the library can get you started when developing the app.

Since we inherit from ProtectedResourceView, we’re done and our API is OAuth2 protected - for the sake of the lazy
programmer.

Testing your API

Time to make requests to your API.

For a quick test, try accessing your app at the url /api/hello with your browser
and verify that it responds with a 403 (in fact no HTTP_AUTHORIZATION header was provided).
You can test your API with anything that can perform HTTP requests, but for this tutorial you can use the online
consumer client [http://django-oauth-toolkit.herokuapp.com/consumer/client].
Just fill the form with the URL of the API endpoint (i.e. http://localhost:8000/api/hello if you’re on localhost) and
the access token coming from the part 1 of the tutorial. Going in the Django admin and get the
token from there is not considered cheating, so it’s an option.

Try performing a request and check that your Resource Server aka Authorization Server correctly responds with
an HTTP 200.

Part 3 of the tutorial will show how to use an access token to authenticate
users.

 Copyright 2013, Evonove.
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django OAuth Toolkit 0.11.0 documentation

 	Tutorials

Part 3 - OAuth2 token authentication

Scenario

You want to use an Access Token to authenticate users against Django’s authentication
system.

Setup a provider

You need a fully-functional OAuth2 provider which is able to release access tokens: just follow
the steps in the part 1 of the tutorial. To enable OAuth2 token authentication
you need a middleware that checks for tokens inside requests and a custom authentication backend
which takes care of token verification. In your settings.py:

AUTHENTICATION_BACKENDS = (
 'oauth2_provider.backends.OAuth2Backend',
 # Uncomment following if you want to access the admin
 #'django.contrib.auth.backends.ModelBackend'
 '...',
)

MIDDLEWARE_CLASSES = (
 '...',
 # If you use SessionAuthenticationMiddleware, be sure it appears before OAuth2TokenMiddleware.
 # SessionAuthenticationMiddleware is NOT required for using django-oauth-toolkit.
 'django.contrib.auth.middleware.SessionAuthenticationMiddleware',
 'oauth2_provider.middleware.OAuth2TokenMiddleware',
 '...',
)

You will likely use the django.contrib.auth.backends.ModelBackend along with the OAuth2 backend
(or you might not be able to log in into the admin), only pay attention to the order in which
Django processes authentication backends.

If you put the OAuth2 backend after the AuthenticationMiddleware and request.user is valid,
the backend will do nothing; if request.user is the Anonymous user it will try to authenticate
the user using the OAuth2 access token.

If you put the OAuth2 backend before AuthenticationMiddleware, or AuthenticationMiddleware is
not used at all, it will try to authenticate user with the OAuth2 access token and set
request.user and request._cached_user fields so that AuthenticationMiddleware (when active)
will not try to get user from the session.

If you use SessionAuthenticationMiddleware, be sure it appears before OAuth2TokenMiddleware.
However SessionAuthenticationMiddleware is NOT required for using django-oauth-toolkit.

Protect your view

The authentication backend will run smoothly with, for example, login_required decorators, so
that you can have a view like this in your views.py module:

from django.contrib.auth.decorators import login_required
from django.http.response import HttpResponse

@login_required()
def secret_page(request, *args, **kwargs):
 return HttpResponse('Secret contents!', status=200)

To check everything works properly, mount the view above to some url:

urlpatterns = [
 url(r'^secret$', 'my.views.secret_page', name='secret'),
 '...',
]

You should have an Application registered at this point, if you don’t, follow the steps in
the previous tutorials to create one. Obtain an Access Token, either following the OAuth2
flow of your application or manually creating in the Django admin.
Now supposing your access token value is 123456 you can try to access your authenticated view:

curl -H "Authorization: Bearer 123456" -X GET http://localhost:8000/secret

 Copyright 2013, Evonove.
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django OAuth Toolkit 0.11.0 documentation

 	Tutorials

Part 4 - Revoking an OAuth2 Token

Scenario

You’ve granted a user an Access Token, following part 1 and now you would like to revoke that token, probably in response to a client request (to logout).

Revoking a Token

Be sure that you’ve granted a valid token. If you’ve hooked in oauth-toolkit into your urls.py as specified in part 1, you’ll have a URL at /o/revoke_token. By submitting the appropriate request to that URL, you can revoke a user’s Access Token.

Oauthlib [https://github.com/idan/oauthlib] is compliant with https://tools.ietf.org/html/rfc7009, so as specified, the revocation request requires:

	token: REQUIRED, this is the Access Token you want to revoke

	token_type_hint: OPTIONAL, designating either ‘access_token’ or ‘refresh_token’.

Note that these revocation-specific parameters are in addition to the authentication parameters already specified by your particular client type.

Setup a Request

Depending on the client type you’re using, the token revocation request you may submit to the authentication server may vary. A Public client, for example, will not have access to your Client Secret. A revoke request from a public client would omit that secret, and take the form:

POST /o/revoke_token/ HTTP/1.1
Content-Type: application/x-www-form-urlencoded
token=XXXX&client_id=XXXX

Where token is Access Token specified above, and client_id is the Client id obtained in
obtained in part 1. If your application type is Confidential , it requires a Client secret, you will have to add it as one of the parameters:

POST /o/revoke_token/ HTTP/1.1
Content-Type: application/x-www-form-urlencoded
token=XXXX&client_id=XXXX&client_secret=XXXX

The server will respond wih a 200 status code on successful revocation. You can use curl to make a revoke request on your server. If you have access to a local installation of your authorization server, you can test revoking a token with a request like that shown below, for a Confidential client.

curl --data "token=XXXX&client_id=XXXX&client_secret=XXXX" http://localhost:8000/o/revoke_token/

 Copyright 2013, Evonove.
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django OAuth Toolkit 0.11.0 documentation

Django Rest Framework

	Getting started
	Step 1: Minimal setup

	Step 2: Create a simple API

	Step 3: Register an application

	Step 4: Get your token and use your API

	Step 5: Testing Restricted Access

	Permissions
	TokenHasScope

	TokenHasReadWriteScope

	TokenHasResourceScope

	IsAuthenticatedOrTokenHasScope

 Copyright 2013, Evonove.
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django OAuth Toolkit 0.11.0 documentation

 	Django Rest Framework

Getting started

Django OAuth Toolkit provide a support layer for Django REST Framework [http://django-rest-framework.org/].
This tutorial is based on the Django REST Framework example and shows you how to easily integrate with it.

NOTE

The following code has been tested with django 1.7.7 and Django REST Framework 3.1.1

Step 1: Minimal setup

Create a virtualenv and install following packages using pip...

pip install django-oauth-toolkit djangorestframework

Start a new Django project and add ‘rest_framework’ and ‘oauth2_provider’ to your INSTALLED_APPS setting.

INSTALLED_APPS = (
 'django.contrib.admin',
 ...
 'oauth2_provider',
 'rest_framework',
)

Now we need to tell Django REST Framework to use the new authentication backend.
To do so add the following lines at the end of your settings.py module:

REST_FRAMEWORK = {
 'DEFAULT_AUTHENTICATION_CLASSES': (
 'oauth2_provider.ext.rest_framework.OAuth2Authentication',
)
}

Step 2: Create a simple API

Let’s create a simple API for accessing users and groups.

Here’s our project’s root urls.py module:

from django.conf.urls import url, include
from django.contrib.auth.models import User, Group
from django.contrib import admin
admin.autodiscover()

from rest_framework import permissions, routers, serializers, viewsets

from oauth2_provider.ext.rest_framework import TokenHasReadWriteScope, TokenHasScope

first we define the serializers
class UserSerializer(serializers.ModelSerializer):
 class Meta:
 model = User

class GroupSerializer(serializers.ModelSerializer):
 class Meta:
 model = Group

ViewSets define the view behavior.
class UserViewSet(viewsets.ModelViewSet):
 permission_classes = [permissions.IsAuthenticated, TokenHasReadWriteScope]
 queryset = User.objects.all()
 serializer_class = UserSerializer

class GroupViewSet(viewsets.ModelViewSet):
 permission_classes = [permissions.IsAuthenticated, TokenHasScope]
 required_scopes = ['groups']
 queryset = Group.objects.all()
 serializer_class = GroupSerializer

Routers provide an easy way of automatically determining the URL conf
router = routers.DefaultRouter()
router.register(r'users', UserViewSet)
router.register(r'groups', GroupViewSet)

Wire up our API using automatic URL routing.
Additionally, we include login URLs for the browseable API.
urlpatterns = [
 url(r'^', include(router.urls)),
 url(r'^o/', include('oauth2_provider.urls', namespace='oauth2_provider')),
 url(r'^admin/', include(admin.site.urls)),
]

Also add the following to your settings.py module:

OAUTH2_PROVIDER = {
 # this is the list of available scopes
 'SCOPES': {'read': 'Read scope', 'write': 'Write scope', 'groups': 'Access to your groups'}
}

REST_FRAMEWORK = {
 # ...

 'DEFAULT_PERMISSION_CLASSES': (
 'rest_framework.permissions.IsAuthenticated',
)
}

OAUTH2_PROVIDER.SCOPES setting parameter contains the scopes that the application will be aware of,
so we can use them for permission check.

Now run the following commands:

python manage.py migrate
python manage.py createsuperuser
python manage.py runserver

The first command creates the tables, the second creates the admin user account and the last one
runs the application.

Next thing you should do is to login in the admin at

http://localhost:8000/admin

and create some users and groups that will be queried later through our API.

Step 3: Register an application

To obtain a valid access_token first we must register an application. DOT has a set of customizable
views you can use to CRUD application instances, just point your browser at:

http://localhost:8000/o/applications/

Click on the link to create a new application and fill the form with the following data:

	Name: just a name of your choice

	Client Type: confidential

	Authorization Grant Type: Resource owner password-based

Save your app!

Step 4: Get your token and use your API

At this point we’re ready to request an access_token. Open your shell

curl -X POST -d "grant_type=password&username=<user_name>&password=<password>" -u"<client_id>:<client_secret>" http://localhost:8000/o/token/

The user_name and password are the credential of the users registered in your Authorization Server, like any user created in Step 2.
Response should be something like:

{
 "access_token": "<your_access_token>",
 "token_type": "Bearer",
 "expires_in": 36000,
 "refresh_token": "<your_refresh_token>",
 "scope": "read write groups"
}

Grab your access_token and start using your new OAuth2 API:

Retrieve users
curl -H "Authorization: Bearer <your_access_token>" http://localhost:8000/users/
curl -H "Authorization: Bearer <your_access_token>" http://localhost:8000/users/1/

Retrieve groups
curl -H "Authorization: Bearer <your_access_token>" http://localhost:8000/groups/

Insert a new user
curl -H "Authorization: Bearer <your_access_token>" -X POST -d"username=foo&password=bar" http://localhost:8000/users/

Step 5: Testing Restricted Access

Let’s try to access resources using a token with a restricted scope adding a scope parameter to the token request

curl -X POST -d "grant_type=password&username=<user_name>&password=<password>&scope=read" -u"<client_id>:<client_secret>" http://localhost:8000/o/token/

As you can see the only scope provided is read:

{
 "access_token": "<your_access_token>",
 "token_type": "Bearer",
 "expires_in": 36000,
 "refresh_token": "<your_refresh_token>",
 "scope": "read"
}

We now try to access our resources:

Retrieve users
curl -H "Authorization: Bearer <your_access_token>" http://localhost:8000/users/
curl -H "Authorization: Bearer <your_access_token>" http://localhost:8000/users/1/

Ok, this one works since users read only requires read scope.

'groups' scope needed
curl -H "Authorization: Bearer <your_access_token>" http://localhost:8000/groups/

'write' scope needed
curl -H "Authorization: Bearer <your_access_token>" -X POST -d"username=foo&password=bar" http://localhost:8000/users/

You’ll get a “You do not have permission to perform this action” error because your access_token does not provide the
required scopes groups and write.

 Copyright 2013, Evonove.
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django OAuth Toolkit 0.11.0 documentation

 	Django Rest Framework

Permissions

Django OAuth Toolkit provides a few utility classes to use along with other permissions in Django REST Framework,
so you can easily add scoped-based permission checks to your API views.

More details on how to add custom permissions to your API Endpoints can be found at the official
Django REST Framework documentation [http://www.django-rest-framework.org/api-guide/permissions/]

TokenHasScope

The TokenHasScope permission class allows the access only when the current access token has been
authorized for all the scopes listed in the required_scopes field of the view.

For example:

class SongView(views.APIView):
 authentication_classes = [OAuth2Authentication]
 permission_classes = [TokenHasScope]
 required_scopes = ['music']

The required_scopes attribute is mandatory.

TokenHasReadWriteScope

The TokenHasReadWriteScope permission class allows the access based on the READ_SCOPE and WRITE_SCOPE configured in the settings.

When the current request’s method is one of the “safe” methods GET, HEAD, OPTIONS
the access is allowed only if the access token has been authorized for the READ_SCOPE scope.
When the request’s method is one of POST, PUT, PATCH, DELETE the access is allowed if the access token has been authorized for the WRITE_SCOPE.

The required_scopes attribute is optional and can be used to other scopes needed by the view.

For example:

class SongView(views.APIView):
 authentication_classes = [OAuth2Authentication]
 permission_classes = [TokenHasReadWriteScope]
 required_scopes = ['music']

When a request is performed both the READ_SCOPE \ WRITE_SCOPE and ‘music’ scopes are required to be authorized for the current access token.

TokenHasResourceScope

The TokenHasResourceScope permission class allows the access only when the current access token has been authorized for all the scopes listed in the required_scopes field of the view but according of request’s method.

When the current request’s method is one of the “safe” methods, the access is allowed only if the access token has been authorized for the scope:read scope (for example music:read).
When the request’s method is one of “non safe” methods, the access is allowed only if the access token has been authorizes for the scope:write scope (for example music:write).

class SongView(views.APIView):
 authentication_classes = [OAuth2Authentication]
 permission_classes = [TokenHasResourceScope]
 required_scopes = ['music']

The required_scopes attribute is mandatory (you just need inform the resource scope).

IsAuthenticatedOrTokenHasScope

The TokenHasResourceScope permission class allows the access only when the current access token has been authorized for all the scopes listed in the required_scopes field of the view but according of request’s method.
And also allows access to Authenticated users who are authenticated in django, but were not authenticated trought the OAuth2Authentication class.
This allows for protection of the api using scopes, but still let’s users browse the full browseable API.
To restrict users to only browse the parts of the browseable API they should be allowed to see, you can combine this wwith the DjangoModelPermission or the DjangoObjectPermission.

For example:

class SongView(views.APIView):
 permission_classes = [IsAuthenticatedOrTokenHasScope, DjangoModelPermission]
 required_scopes = ['music']

The required_scopes attribute is mandatory.

 Copyright 2013, Evonove.
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django OAuth Toolkit 0.11.0 documentation

Using the views

Django OAuth Toolkit provides a set of pre-defined views for different purposes:

	Function-based views

	Class-based Views

	Application Views

	Granted Tokens Views

	Mixins for Class Based Views

 Copyright 2013, Evonove.
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django OAuth Toolkit 0.11.0 documentation

 	Using the views

Function-based views

Django OAuth Toolkit provides decorators to help you in protecting your function-based views.

	
protected_resource(scopes=None, validator_cls=OAuth2Validator, server_cls=Server)

	Decorator to protect views by providing OAuth2 authentication out of the box, optionally with
scope handling. Basic usage, without using scopes:

from oauth2_provider.decorators import protected_resource

@protected_resource()
def my_view(request):
 # An access token is required to get here...
 # ...
 pass

If you want to check scopes as well when accessing a view you can pass them along as
decorator’s parameter:

from oauth2_provider.decorators import protected_resource

@protected_resource(scopes=['can_make_it can_break_it'])
def my_view(request):
 # An access token AND the right scopes are required to get here...
 # ...
 pass

The decorator also accept server and validator classes if you want or need to use your own
OAuth2 logic:

from oauth2_provider.decorators import protected_resource
from myapp.oauth2_validators import MyValidator

@protected_resource(validator_cls=MyValidator)
def my_view(request):
 # You have to leverage your own logic to get here...
 # ...
 pass

	
rw_protected_resource(scopes=None, validator_cls=OAuth2Validator, server_cls=Server)

	Decorator to protect views by providing OAuth2 authentication and read/write scopes out of the
box. GET, HEAD, OPTIONS http methods require “read” scope.
Otherwise “write” scope is required:

from oauth2_provider.decorators import rw_protected_resource

@rw_protected_resource()
def my_view(request):
 # If this is a POST, you have to provide 'write' scope to get here...
 # ...
 pass

If you need, you can ask for other scopes over “read” and “write”:

from oauth2_provider.decorators import rw_protected_resource

@rw_protected_resource(scopes=['exotic_scope'])
def my_view(request):
 # If this is a POST, you have to provide 'exotic_scope write' scopes to get here...
 # ...
 pass

 Copyright 2013, Evonove.
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django OAuth Toolkit 0.11.0 documentation

 	Using the views

Class-based Views

Django OAuth Toolkit provides generic classes useful to implement OAuth2 protected endpoints
using the Class Based View approach.

	
ProtectedResourceView(ProtectedResourceMixin, View):

	A view that provides OAuth2 authentication out of the box. To implement a protected
endpoint, just define your CBV as:

class MyEndpoint(ProtectedResourceView):
 """
 A GET endpoint that needs OAuth2 authentication
 """
 def get(self, request, *args, **kwargs):
 return HttpResponse('Hello, World!')

Please notice: OPTION method is not OAuth2 protected to allow preflight requests.

	
ScopedProtectedResourceView(ScopedResourceMixin, ProtectedResourceView):

	A view that provides OAuth2 authentication and scopes handling out of the box. To implement
a protected endpoint, just define your CBV specifying the required_scopes field:

class MyScopedEndpoint(ScopedProtectedResourceView):
 required_scopes = ['can_make_it can_break_it']

 """
 A GET endpoint that needs OAuth2 authentication
 and a set of scopes: 'can_make_it' and 'can_break_it'
 """
 def get(self, request, *args, **kwargs):
 return HttpResponse('Hello, World!')

	
ReadWriteScopedResourceView(ReadWriteScopedResourceMixin, ProtectedResourceView):

	A view that provides OAuth2 authentication and read/write default scopes.
GET, HEAD, OPTIONS http methods require read scope, others methods
need the write scope. If you need, you can always specify an additional list of
scopes in the required_scopes field:

class MyRWEndpoint(ReadWriteScopedResourceView):
 required_scopes = ['has_additional_powers'] # optional

 """
 A GET endpoint that needs OAuth2 authentication
 and the 'read' scope. If required_scopes was specified,
 clients also need those scopes.
 """
 def get(self, request, *args, **kwargs):
 return HttpResponse('Hello, World!')

Generic views in DOT are obtained composing a set of mixins you can find in the views.mixins
module: feel free to use those mixins directly if you want to provide your own class based views.

 Copyright 2013, Evonove.
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django OAuth Toolkit 0.11.0 documentation

 	Using the views

Application Views

A set of views is provided to let users handle application instances without accessing Django Admin
Site. Application views are listed at the url applications/ and you can register a new one at the
url applications/register. You can override default templates located in
templates/oauth2_provider folder and provide a custom layout. Every view provides access only to
data belonging to the logged in user who performs the request.

	
class oauth2_provider.views.application.ApplicationDelete(**kwargs)

	View used to delete an application owned by the request.user

	
class oauth2_provider.views.application.ApplicationDetail(**kwargs)

	Detail view for an application instance owned by the request.user

	
class oauth2_provider.views.application.ApplicationList(**kwargs)

	List view for all the applications owned by the request.user

	
class oauth2_provider.views.application.ApplicationOwnerIsUserMixin

	This mixin is used to provide an Application queryset filtered by the current request.user.

	
class oauth2_provider.views.application.ApplicationRegistration(**kwargs)

	View used to register a new Application for the request.user

	
get_form_class()

	Returns the form class for the application model

	
class oauth2_provider.views.application.ApplicationUpdate(**kwargs)

	View used to update an application owned by the request.user

 Copyright 2013, Evonove.
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django OAuth Toolkit 0.11.0 documentation

 	Using the views

Granted Tokens Views

A set of views is provided to let users handle tokens that have been granted to them, without needing to accessing Django Admin Site.
Every view provides access only to the tokens that have been granted to the user performing the request.

Granted Token views are listed at the url authorized_tokens/.

For each granted token there is a delete view that allows you to delete such token. You can override default templates authorized-tokens.html for the list view and authorized-token-delete.html for the delete view; they are located inside templates/oauth2_provider folder.

	
class oauth2_provider.views.token.AuthorizedTokenDeleteView(**kwargs)

	View for revoking a specific token

	
model

	alias of AccessToken

	
class oauth2_provider.views.token.AuthorizedTokensListView(**kwargs)

	Show a page where the current logged-in user can see his tokens so they can revoke them

	
get_queryset()

	Show only user’s tokens

	
model

	alias of AccessToken

 Copyright 2013, Evonove.
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django OAuth Toolkit 0.11.0 documentation

 	Using the views

Mixins for Class Based Views

	
class oauth2_provider.views.mixins.OAuthLibMixin

	This mixin decouples Django OAuth Toolkit from OAuthLib.

Users can configure the Server, Validator and OAuthlibCore
classes used by this mixin by setting the following class
variables:

	server_class

	validator_class

	oauthlib_backend_class

	
create_authorization_response(request, scopes, credentials, allow)

	A wrapper method that calls create_authorization_response on server_class
instance.

	Parameters:	
	request – The current django.http.HttpRequest object

	scopes – A space-separated string of provided scopes

	credentials – Authorization credentials dictionary containing
client_id, state, redirect_uri, response_type

	allow – True if the user authorize the client, otherwise False

	
create_revocation_response(request)

	A wrapper method that calls create_revocation_response on the
server_class instance.

	Parameters:	request – The current django.http.HttpRequest object

	
create_token_response(request)

	A wrapper method that calls create_token_response on server_class instance.

	Parameters:	request – The current django.http.HttpRequest object

	
error_response(error, **kwargs)

	Return an error to be displayed to the resource owner if anything goes awry.

	Parameters:	error – OAuthToolkitError

	
classmethod get_oauthlib_backend_class()

	Return the OAuthLibCore implementation class to use

	
classmethod get_oauthlib_core()

	Cache and return OAuthlibCore instance so it will be created only on first request

	
get_scopes()

	This should return the list of scopes required to access the resources. By default it returns an empty list

	
classmethod get_server()

	Return an instance of server_class initialized with a validator_class
object

	
classmethod get_server_class()

	Return the OAuthlib server class to use

	
classmethod get_validator_class()

	Return the RequestValidator implementation class to use

	
validate_authorization_request(request)

	A wrapper method that calls validate_authorization_request on server_class instance.

	Parameters:	request – The current django.http.HttpRequest object

	
verify_request(request)

	A wrapper method that calls verify_request on server_class instance.

	Parameters:	request – The current django.http.HttpRequest object

	
class oauth2_provider.views.mixins.ProtectedResourceMixin

	Helper mixin that implements OAuth2 protection on request dispatch,
specially useful for Django Generic Views

	
class oauth2_provider.views.mixins.ReadWriteScopedResourceMixin

	Helper mixin that implements “read and write scopes” behavior

	
class oauth2_provider.views.mixins.ScopedResourceMixin

	Helper mixin that implements “scopes handling” behaviour

	
get_scopes(*args, **kwargs)

	Return the scopes needed to access the resource

	Parameters:	args – Support scopes injections from the outside (not yet implemented)

 Copyright 2013, Evonove.
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django OAuth Toolkit 0.11.0 documentation

Views code and details

Generic

Generic views are intended to use in a “batteries included” fashion to protect own views with OAuth2 authentication and
Scopes handling.

	
class oauth2_provider.views.generic.ProtectedResourceView(**kwargs)

	Generic view protecting resources by providing OAuth2 authentication out of the box

	
oauthlib_backend_class

	alias of OAuthLibCore

	
server_class

	alias of Server

	
class oauth2_provider.views.generic.ReadWriteScopedResourceView(**kwargs)

	Generic view protecting resources with OAuth2 authentication and read/write scopes.
GET, HEAD, OPTIONS http methods require “read” scope. Otherwise “write” scope is required.

	
class oauth2_provider.views.generic.ScopedProtectedResourceView(**kwargs)

	Generic view protecting resources by providing OAuth2 authentication and Scopes handling
out of the box

Mixins

These views are mainly for internal use, but advanced users may use them as basic components to customize OAuth2 logic
inside their Django applications.

	
class oauth2_provider.views.mixins.OAuthLibMixin

	This mixin decouples Django OAuth Toolkit from OAuthLib.

Users can configure the Server, Validator and OAuthlibCore
classes used by this mixin by setting the following class
variables:

	server_class

	validator_class

	oauthlib_backend_class

	
create_authorization_response(request, scopes, credentials, allow)

	A wrapper method that calls create_authorization_response on server_class
instance.

	Parameters:	
	request – The current django.http.HttpRequest object

	scopes – A space-separated string of provided scopes

	credentials – Authorization credentials dictionary containing
client_id, state, redirect_uri, response_type

	allow – True if the user authorize the client, otherwise False

	
create_revocation_response(request)

	A wrapper method that calls create_revocation_response on the
server_class instance.

	Parameters:	request – The current django.http.HttpRequest object

	
create_token_response(request)

	A wrapper method that calls create_token_response on server_class instance.

	Parameters:	request – The current django.http.HttpRequest object

	
error_response(error, **kwargs)

	Return an error to be displayed to the resource owner if anything goes awry.

	Parameters:	error – OAuthToolkitError

	
classmethod get_oauthlib_backend_class()

	Return the OAuthLibCore implementation class to use

	
classmethod get_oauthlib_core()

	Cache and return OAuthlibCore instance so it will be created only on first request

	
get_scopes()

	This should return the list of scopes required to access the resources. By default it returns an empty list

	
classmethod get_server()

	Return an instance of server_class initialized with a validator_class
object

	
classmethod get_server_class()

	Return the OAuthlib server class to use

	
classmethod get_validator_class()

	Return the RequestValidator implementation class to use

	
validate_authorization_request(request)

	A wrapper method that calls validate_authorization_request on server_class instance.

	Parameters:	request – The current django.http.HttpRequest object

	
verify_request(request)

	A wrapper method that calls verify_request on server_class instance.

	Parameters:	request – The current django.http.HttpRequest object

	
class oauth2_provider.views.mixins.ProtectedResourceMixin

	Helper mixin that implements OAuth2 protection on request dispatch,
specially useful for Django Generic Views

	
class oauth2_provider.views.mixins.ReadWriteScopedResourceMixin

	Helper mixin that implements “read and write scopes” behavior

	
class oauth2_provider.views.mixins.ScopedResourceMixin

	Helper mixin that implements “scopes handling” behaviour

	
get_scopes(*args, **kwargs)

	Return the scopes needed to access the resource

	Parameters:	args – Support scopes injections from the outside (not yet implemented)

Base

Views needed to implement the main OAuth2 authorization flows supported by Django OAuth Toolkit.

	
class oauth2_provider.views.base.AuthorizationView(**kwargs)

	Implements and endpoint to handle Authorization Requests as in RFC6749 Section 4.1.1 [http://tools.ietf.org/html/rfc6749#section-4.1.1] and prompting the
user with a form to determine if she authorizes the client application to access her data.
This endpoint is reached two times during the authorization process:
* first receive a GET request from user asking authorization for a certain client
application, a form is served possibly showing some useful info and prompting for
authorize/do not authorize.

	then receive a POST request possibly after user authorized the access

Some informations contained in the GET request and needed to create a Grant token during
the POST request would be lost between the two steps above, so they are temporary stored in
hidden fields on the form.
A possible alternative could be keeping such informations in the session.

The endpoint is used in the followin flows:
* Authorization code
* Implicit grant

	
oauthlib_backend_class

	alias of OAuthLibCore

	
server_class

	alias of Server

	
class oauth2_provider.views.base.BaseAuthorizationView(**kwargs)

	Implements a generic endpoint to handle Authorization Requests as in RFC6749 Section 4.1.1 [http://tools.ietf.org/html/rfc6749#section-4.1.1]. The view
does not implement any strategy to determine authorize/do not authorize logic.
The endpoint is used in the following flows:

	Authorization code

	Implicit grant

	
error_response(error, **kwargs)

	Handle errors either by redirecting to redirect_uri with a json in the body containing
error details or providing an error response

	
class oauth2_provider.views.base.RevokeTokenView(**kwargs)

	Implements an endpoint to revoke access or refresh tokens

	
oauthlib_backend_class

	alias of OAuthLibCore

	
server_class

	alias of Server

	
class oauth2_provider.views.base.TokenView(**kwargs)

	Implements an endpoint to provide access tokens

The endpoint is used in the following flows:
* Authorization code
* Password
* Client credentials

	
oauthlib_backend_class

	alias of OAuthLibCore

	
server_class

	alias of Server

 Copyright 2013, Evonove.
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django OAuth Toolkit 0.11.0 documentation

Models

	
class oauth2_provider.models.AbstractApplication(*args, **kwargs)

	An Application instance represents a Client on the Authorization server.
Usually an Application is created manually by client’s developers after
logging in on an Authorization Server.

Fields:

	
	client_id The client identifier issued to the client during the

	registration process as described in RFC6749 Section 2.2 [http://tools.ietf.org/html/rfc6749#section-2.2]

	user ref to a Django user

	
	redirect_uris The list of allowed redirect uri. The string

	consists of valid URLs separated by space

	client_type Client type as described in RFC6749 Section 2.1 [http://tools.ietf.org/html/rfc6749#section-2.1]

	
	authorization_grant_type Authorization flows available to the

	Application

	
	client_secret Confidential secret issued to the client during

	the registration process as described in RFC6749 Section 2.2 [http://tools.ietf.org/html/rfc6749#section-2.2]

	name Friendly name for the Application

	
default_redirect_uri

	Returns the default redirect_uri extracting the first item from
the redirect_uris string

	
redirect_uri_allowed(uri)

	Checks if given url is one of the items in redirect_uris string

	Parameters:	uri – Url to check

	
class oauth2_provider.models.AccessToken(*args, **kwargs)

	An AccessToken instance represents the actual access token to
access user’s resources, as in RFC6749 Section 5 [http://tools.ietf.org/html/rfc6749#section-5].

Fields:

	user The Django user representing resources’ owner

	token Access token

	application Application instance

	expires Date and time of token expiration, in DateTime format

	scope Allowed scopes

	
allow_scopes(scopes)

	Check if the token allows the provided scopes

	Parameters:	scopes – An iterable containing the scopes to check

	
is_expired()

	Check token expiration with timezone awareness

	
is_valid(scopes=None)

	Checks if the access token is valid.

	Parameters:	scopes – An iterable containing the scopes to check or None

	
revoke()

	Convenience method to uniform tokens’ interface, for now
simply remove this token from the database in order to revoke it.

	
scopes

	Returns a dictionary of allowed scope names (as keys) with their descriptions (as values)

	
class oauth2_provider.models.Application(id, client_id, user, redirect_uris, client_type, authorization_grant_type, client_secret, name, skip_authorization)

	

	
class oauth2_provider.models.Grant(*args, **kwargs)

	A Grant instance represents a token with a short lifetime that can
be swapped for an access token, as described in RFC6749 Section 4.1.2 [http://tools.ietf.org/html/rfc6749#section-4.1.2]

Fields:

	user The Django user who requested the grant

	code The authorization code generated by the authorization server

	application Application instance this grant was asked for

	
	expires Expire time in seconds, defaults to

	settings.AUTHORIZATION_CODE_EXPIRE_SECONDS

	redirect_uri Self explained

	scope Required scopes, optional

	
is_expired()

	Check token expiration with timezone awareness

	
class oauth2_provider.models.RefreshToken(*args, **kwargs)

	A RefreshToken instance represents a token that can be swapped for a new
access token when it expires.

Fields:

	user The Django user representing resources’ owner

	token Token value

	application Application instance

	
	access_token AccessToken instance this refresh token is

	bounded to

	
revoke()

	Delete this refresh token along with related access token

	
oauth2_provider.models.get_application_model()

	Return the Application model that is active in this project.

 Copyright 2013, Evonove.
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django OAuth Toolkit 0.11.0 documentation

Advanced topics

Extending the Application model

An Application instance represents a Client on the Authorization server. Usually an Application is
issued to client’s developers after they log in on an Authorization Server and pass in some data
which identify the Application itself (let’s say, the application name). Django OAuth Toolkit
provides a very basic implementation of the Application model containing only the data strictly
required during all the OAuth processes but you will likely need some extra info, like application
logo, acceptance of some user agreement and so on.

	
class AbstractApplication(models.Model)

	This is the base class implementing the bare minimum for Django OAuth Toolkit to work

	client_id The client identifier issued to the client during the registration process as described in RFC6749 Section 2.2 [http://tools.ietf.org/html/rfc6749#section-2.2]

	user ref to a Django user

	redirect_uris The list of allowed redirect uri. The string consists of valid URLs separated by space

	client_type Client type as described in RFC6749 Section 2.1 [http://tools.ietf.org/html/rfc6749#section-2.1]

	authorization_grant_type Authorization flows available to the Application

	client_secret Confidential secret issued to the client during the registration process as described in RFC6749 Section 2.2 [http://tools.ietf.org/html/rfc6749#section-2.2]

	name Friendly name for the Application

Django OAuth Toolkit lets you extend the AbstractApplication model in a fashion like Django’s
custom user models.

If you need, let’s say, application logo and user agreement acceptance field, you can to this in
your Django app (provided that your app is in the list of the INSTALLED_APPS in your settings
module):

from django.db import models
from oauth2_provider.models import AbstractApplication

class MyApplication(AbstractApplication):
 logo = models.ImageField()
 agree = models.BooleanField()

Then you need to tell Django OAuth Toolkit which model you want to use to represent applications.
Write something like this in your settings module:

OAUTH2_PROVIDER_APPLICATION_MODEL='your_app_name.MyApplication'

Be aware that, when you intend to swap the application model, you should create and run the
migration defining the swapped application model prior to setting OAUTH2_PROVIDER_APPLICATION_MODEL.
You’ll run into models.E022 in Core system checks if you don’t get the order right.

That’s all, now Django OAuth Toolkit will use your model wherever an Application instance is needed.

Notice: OAUTH2_PROVIDER_APPLICATION_MODEL is the only setting variable that is not namespaced, this
is because of the way Django currently implements swappable models.
See issue #90 (https://github.com/evonove/django-oauth-toolkit/issues/90) for details

Skip authorization form

Depending on the OAuth2 flow in use and the access token policy, users might be prompted for the
same authorization multiple times: sometimes this is acceptable or even desirable but other times it isn’t.
To control DOT behaviour you can use the approval_prompt parameter when hitting the authorization endpoint.
Possible values are:

	force - users are always prompted for authorization.

	auto - users are prompted only the first time, subsequent authorizations for the same application
and scopes will be automatically accepted.

Skip authorization completely for trusted applications

You might want to completely bypass the authorization form, for instance if your application is an
in-house product or if you already trust the application owner by other means. To this end, you have to
set skip_authorization = True on the Application model, either programmaticaly or within the
Django admin. Users will not be prompted for authorization, even on the first use of the application.

 Copyright 2013, Evonove.
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django OAuth Toolkit 0.11.0 documentation

Settings

Our configurations are all namespaced under the OAUTH2_PROVIDER settings with the solely exception of
OAUTH2_PROVIDER_APPLICATION_MODEL: this is because of the way Django currently implements
swappable models. See issue #90 (https://github.com/evonove/django-oauth-toolkit/issues/90) for details.

For example:

OAUTH2_PROVIDER = {
 'SCOPES': {
 'read': 'Read scope',
 'write': 'Write scope',
 },

 'CLIENT_ID_GENERATOR_CLASS': 'oauth2_provider.generators.ClientIdGenerator',

}

A big thank you to the guys from Django REST Framework for inspiring this.

List of available settings

ACCESS_TOKEN_EXPIRE_SECONDS

The number of seconds an access token remains valid. Requesting a protected
resource after this duration will fail. Keep this value high enough so clients
can cache the token for a reasonable amount of time.

APPLICATION_MODEL

The import string of the class (model) representing your applications. Overwrite
this value if you wrote your own implementation (subclass of
oauth2_provider.models.Application).

AUTHORIZATION_CODE_EXPIRE_SECONDS

The number of seconds an authorization code remains valid. Requesting an access
token after this duration will fail. RFC6749 Section 4.1.2 [http://tools.ietf.org/html/rfc6749#section-4.1.2] recommends a
10 minutes (600 seconds) duration.

CLIENT_ID_GENERATOR_CLASS

The import string of the class responsible for generating client identifiers.
These are usually random strings.

CLIENT_SECRET_GENERATOR_CLASS

The import string of the class responsible for generating client secrets.
These are usually random strings.

CLIENT_SECRET_GENERATOR_LENGTH

The length of the generated secrets, in characters. If this value is too low,
secrets may become subject to bruteforce guessing.

OAUTH2_SERVER_CLASS

The import string for the server_class (or oauthlib.oauth2.Server subclass)
used in the OAuthLibMixin that implements OAuth2 grant types.

OAUTH2_VALIDATOR_CLASS

The import string of the oauthlib.oauth2.RequestValidator subclass that
validates every step of the OAuth2 process.

OAUTH2_BACKEND_CLASS

The import string for the oauthlib_backend_class used in the OAuthLibMixin,
to get a Server instance.

SCOPES

A dictionary mapping each scope name to its human description.

DEFAULT_SCOPES

A list of scopes that should be returned by default.
This is a subset of the keys of the SCOPES setting.
By default this is set to ‘__all__’ meaning that the whole set of SCOPES will be returned.

DEFAULT_SCOPES = ['read', 'write']

READ_SCOPE

The name of the read scope.

WRITE_SCOPE

The name of the write scope.

REFRESH_TOKEN_EXPIRE_SECONDS

The number of seconds before a refresh token gets removed from the database by
the cleartokens management command. Check cleartokens management command for further info.

ROTATE_REFRESH_TOKEN

When is set to True (default) a new refresh token is issued to the client when the client refreshes an access token.

REQUEST_APPROVAL_PROMPT

Can be 'force' or 'auto'.
The strategy used to display the authorization form. Refer to Skip authorization form.

 Copyright 2013, Evonove.
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django OAuth Toolkit 0.11.0 documentation

Management commands

Django OAuth Toolkit exposes some useful management commands that can be run via shell or by other means (eg: cron)

cleartokens

The cleartokens management command allows the user to remove those refresh tokens whose lifetime is greater than the
amount specified by REFRESH_TOKEN_EXPIRE_SECONDS settings. It is important that this command is run regularly
(eg: via cron) to avoid cluttering the database with expired refresh tokens.

If cleartokens runs daily the maximum delay before a refresh token is
removed is REFRESH_TOKEN_EXPIRE_SECONDS + 1 day. This is normally not a
problem since refresh tokens are long lived.

Note: Refresh tokens need to expire before AccessTokens can be removed from the
database. Using cleartokens without REFRESH_TOKEN_EXPIRE_SECONDS has limited effect.

 Copyright 2013, Evonove.
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django OAuth Toolkit 0.11.0 documentation

Glossary

	Authorization Server

	The authorization server asks resource owners for their consensus to let client applications access their data.
It also manages and issues the tokens needed for all the authorization flows supported by OAuth2 spec.
Usually the same application offering resources through an OAuth2-protected API also behaves like an
authorization server.

	Resource Server

	An application providing access to its own resources through an API protected following the OAuth2 spec.

	Application

	An Application represents a Client on the Authorization server. Usually an Application is
created manually by client’s developers after logging in on an Authorization Server.

	Client

	A client is an application authorized to access OAuth2-protected resources on behalf and with the authorization
of the resource owner.

	Resource Owner

	The user of an application which exposes resources to third party applications through OAuth2. The
resource owner must give her authorization for third party applications to be able to access her data.

	Access Token

	A token needed to access resources protected by OAuth2. It has a lifetime which is usually quite short.

	Authorization Code

	The authorization code is obtained by using an authorization server as an intermediary between the client and
resource owner. It is used to authenticate the client and grant the transmission of the Access Token.

	Authorization Token

	A token the authorization server issues to clients that can be swapped for an access token. It has a very short
lifetime since the swap has to be performed shortly after users provide their authorization.

	Refresh Token

	A token the authorization server may issue to clients and can be swapped for a brand new access token, without
repeating the authorization process. It has no expire time.

 Copyright 2013, Evonove.
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django OAuth Toolkit 0.11.0 documentation

Contributing

Setup

Fork django-oauth-toolkit repository on GitHub [https://github.com/evonove/django-oauth-toolkit] and follow these steps:

	Create a virtualenv and activate it

	Clone your repository locally

	cd into the repository and type pip install -r requirements/optional.txt (this will install both optional and base requirements, useful during development)

Issues

You can find the list of bugs, enhancements and feature requests on the
issue tracker [https://github.com/evonove/django-oauth-toolkit/issues]. If you want to fix an issue, pick up one and
add a comment stating you’re working on it. If the resolution implies a discussion or if you realize the comments on the
issue are growing pretty fast, move the discussion to the Google Group [http://groups.google.com/group/django-oauth-toolkit].

Pull requests

Please avoid providing a pull request from your master and use topic branches instead; you can add as many commits
as you want but please keep them in one branch which aims to solve one single issue. Then submit your pull request. To
create a topic branch, simply do:

git checkout -b fix-that-issue
Switched to a new branch 'fix-that-issue'

When you’re ready to submit your pull request, first push the topic branch to your GitHub repo:

git push origin fix-that-issue

Now you can go to your repository dashboard on GitHub and open a pull request starting from your topic branch. You can
apply your pull request to the master branch of django-oauth-toolkit (this should be the default behaviour of GitHub
user interface).

Next you should add a comment about your branch, and if the pull request refers to a certain issue, insert a link to it.
The repo managers will be notified of your pull request and it will be reviewed, in the meantime you can continue to add
commits to your topic branch (and push them up to GitHub) either if you see something that needs changing, or in
response to a reviewer’s comments. If a reviewer asks for changes, you do not need to close the pull and reissue it
after making changes. Just make the changes locally, push them to GitHub, then add a comment to the discussion section
of the pull request.

Pull upstream changes into your fork regularly

It’s a good practice to pull upstream changes from master into your fork on a regular basis, in fact if you work on
outdated code and your changes diverge too far from master, the pull request has to be rejected.

To pull in upstream changes:

git remote add upstream https://github.com/evonove/django-oauth-toolkit.git
git fetch upstream

Then merge the changes that you fetched:

git merge upstream/master

For more info, see http://help.github.com/fork-a-repo/

Note

Please be sure to rebase your commits on the master when possible, so your commits can be fast-forwarded: we
try to avoid merge commits when they are not necessary.

How to get your pull request accepted

We really want your code, so please follow these simple guidelines to make the process as smooth as possible.

Run the tests!

Django OAuth Toolkit aims to support different Python and Django versions, so we use tox to run tests on multiple
configurations. At any time during the development and at least before submitting the pull request, please run the
testsuite via:

tox

The first thing the core committers will do is run this command. Any pull request that fails this test suite will be
immediately rejected.

Add the tests!

Whenever you add code, you have to add tests as well. We cannot accept untested code, so unless it is a peculiar
situation you previously discussed with the core committers, if your pull request reduces the test coverage it will be
immediately rejected.

Code conventions matter

There are no good nor bad conventions, just follow PEP8 (run some lint tool for this) and nobody will argue.
Try reading our code and grasp the overall philosophy regarding method and variable names, avoid black magics for
the sake of readability, keep in mind that simple is better than complex. If you feel the code is not straightforward,
add a comment. If you think a function is not trivial, add a docstrings.

The contents of this page are heavily based on the docs from django-admin2 [https://github.com/twoscoops/django-admin2]

 Copyright 2013, Evonove.
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Django OAuth Toolkit 0.11.0 documentation

Changelog

0.11.0 [2016-12-1]

	#424: Added a ROTATE_REFRESH_TOKEN setting to control whether refresh tokens are reused or not

	#315: AuthorizationView does not overwrite requests on get

	#425: Added support for Django 1.10

	#396: Added an IsAuthenticatedOrTokenHasScope Permission

	#357: Support multiple-user clients by allowing User to be NULL for Applications

	#389: Reuse refresh tokens if enabled.

0.10.0 [2015-12-14]

	#322: dropping support for python 2.6 and django 1.4, 1.5, 1.6

	#310: Fixed error that could occur sometimes when checking validity of incomplete AccessToken/Grant

	#333: Added possibility to specify the default list of scopes returned when scope parameter is missing

	#325: Added management views of issued tokens

	#249: Added a command to clean expired tokens

	#323: Application registration view uses custom application model in form class

	#299: ‘server_class’ is now pluggable through Django settings

	#309: Add the py35-django19 env to travis

	#308: Use compact syntax for tox envs

	#306: Django 1.9 compatibility

	#288: Put additional information when generating token responses

	#297: Fixed doc about SessionAuthenticationMiddleware

	#273: Generic read write scope by resource

0.9.0 [2015-07-28]

	oauthlib_backend_class is now pluggable through Django settings

	#127: application/json Content-Type is now supported using JSONOAuthLibCore

	#238: Fixed redirect uri handling in case of error

	#229: Invalidate access tokens when getting a new refresh token

	added support for oauthlib 1.0

0.8.2 [2015-06-25]

	Fix the migrations to be two-step and allow upgrade from 0.7.2

0.8.1 [2015-04-27]

	South migrations fixed. Added new django migrations.

0.8.0 [2015-03-27]

	Several docs improvements and minor fixes

	#185: fixed vulnerabilities on Basic authentication

	#173: ProtectResourceMixin now allows OPTIONS requests

	Fixed client_id and client_secret characters set

	#169: hide sensitive informations in error emails

	#161: extend search to all token types when revoking a token

	#160: return empty response on successful token revocation

	#157: skip authorization form with skip_authorization_completely class field

	#155: allow custom uri schemes

	fixed get_application_model on Django 1.7

	fixed non rotating refresh tokens

	#137: fixed base template

	customized client_secret lenght

	#38: create access tokens not bound to a user instance for client credentials flow

0.7.2 [2014-07-02]

	Don’t pin oauthlib

0.7.0 [2014-03-01]

	Created a setting for the default value for approval prompt.

	Improved docs

	Don’t pin django-braces and six versions

Backwards incompatible changes in 0.7.0

	Make Application model truly “swappable” (introduces a new non-namespaced setting OAUTH2_PROVIDER_APPLICATION_MODEL)

0.6.1 [2014-02-05]

	added support for scope query parameter keeping backwards compatibility for the original scopes parameter.

	__str__ method in Application model returns name when available

0.6.0 [2014-01-26]

	oauthlib 0.6.1 support

	Django dev branch support

	Python 2.6 support

	Skip authorization form via approval_prompt parameter

Bugfixes

	Several fixes to the docs

	Issue #71: Fix migrations

	Issue #65: Use OAuth2 password grant with multiple devices

	Issue #84: Add information about login template to tutorial.

	Issue #64: Fix urlencode clientid secret

0.5.0 [2013-09-17]

	oauthlib 0.6.0 support

Backwards incompatible changes in 0.5.0

	backends.py module has been renamed to oauth2_backends.py so you should change your imports whether you’re extending this module

Bugfixes

	Issue #54: Auth backend proposal to address #50

	Issue #61: Fix contributing page

	Issue #55: Add support for authenticating confidential client with request body params

	Issue #53: Quote characters in the url query that are safe for Django but not for oauthlib

0.4.1 [2013-09-06]

	Optimize queries on access token validation

0.4.0 [2013-08-09]

New Features

	Add Application management views, you no more need the admin to register, update and delete your application.

	Add support to configurable application model

	Add support for function based views

Backwards incompatible changes in 0.4.0

	SCOPE attribute in settings is now a dictionary to store {‘scope_name’: ‘scope_description’}

	Namespace ‘oauth2_provider’ is mandatory in urls. See issue #36

Bugfixes

	Issue #25: Bug in the Basic Auth parsing in Oauth2RequestValidator

	Issue #24: Avoid generation of client_id with ”:” colon char when using HTTP Basic Auth

	Issue #21: IndexError when trying to authorize an application

	Issue #9: Default_redirect_uri is mandatory when grant_type is implicit, authorization_code or all-in-one

	Issue #22: Scopes need a verbose description

	Issue #33: Add django-oauth-toolkit version on example main page

	Issue #36: Add mandatory namespace to urls

	Issue #31: Add docstring to OAuthToolkitError and FatalClientError

	Issue #32: Add docstring to validate_uris

	Issue #34: Documentation tutorial part1 needs corsheaders explanation

	Issue #36: Add mandatory namespace to urls

	Issue #45: Add docs for AbstractApplication

	Issue #47: Add docs for views decorators

0.3.2 [2013-07-10]

	Bugfix #37: Error in migrations with custom user on Django 1.5

0.3.1 [2013-07-10]

	Bugfix #27: OAuthlib refresh token refactoring

0.3.0 [2013-06-14]

	Django REST Framework [http://django-rest-framework.org/] integration layer

	Bugfix #13: Populate request with client and user in validate_bearer_token

	Bugfix #12: Fix paths in documentation

Backwards incompatible changes in 0.3.0

	requested_scopes parameter in ScopedResourceMixin changed to required_scopes

0.2.1 [2013-06-06]

	Core optimizations

0.2.0 [2013-06-05]

	Add support for Django1.4 and Django1.6

	Add support for Python 3.3

	Add a default ReadWriteScoped view

	Add tutorial to docs

0.1.0 [2013-05-31]

	Support OAuth2 Authorization Flows

0.0.0 [2013-05-17]

	Discussion with Daniel Greenfeld at Django Circus

	Ignition

 Copyright 2013, Evonove.
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	Django OAuth Toolkit 0.11.0 documentation

 Python Module Index

 o

 			

 		
 o	

 	[image: -]
 	
 oauth2_provider	

 	
 	
 oauth2_provider.models	

 	
 	
 oauth2_provider.views.application	

 	
 	
 oauth2_provider.views.base	

 	
 	
 oauth2_provider.views.generic	

 	
 	
 oauth2_provider.views.mixins	

 	
 	
 oauth2_provider.views.token	

 Copyright 2013, Evonove.
 Created using Sphinx 1.3.3.

 Navigation

 	
 index

 	
 modules |

 	Django OAuth Toolkit 0.11.0 documentation

Index

 A
 | B
 | C
 | D
 | E
 | G
 | I
 | M
 | O
 | P
 | R
 | S
 | T
 | V

A

 	

 	AbstractApplication (built-in class)

 	

 	(class in oauth2_provider.models)

 	Access Token

 	AccessToken (class in oauth2_provider.models)

 	allow_scopes() (oauth2_provider.models.AccessToken method)

 	Application

 	

 	(class in oauth2_provider.models)

 	ApplicationDelete (class in oauth2_provider.views.application)

 	ApplicationDetail (class in oauth2_provider.views.application)

 	ApplicationList (class in oauth2_provider.views.application)

 	ApplicationOwnerIsUserMixin (class in oauth2_provider.views.application)

 	

 	ApplicationRegistration (class in oauth2_provider.views.application)

 	ApplicationUpdate (class in oauth2_provider.views.application)

 	Authorization Code

 	Authorization Server

 	Authorization Token

 	AuthorizationView (class in oauth2_provider.views.base)

 	AuthorizedTokenDeleteView (class in oauth2_provider.views.token)

 	AuthorizedTokensListView (class in oauth2_provider.views.token)

B

 	

 	BaseAuthorizationView (class in oauth2_provider.views.base)

C

 	

 	Client

 	create_authorization_response() (oauth2_provider.views.mixins.OAuthLibMixin method), [1]

 	

 	create_revocation_response() (oauth2_provider.views.mixins.OAuthLibMixin method), [1]

 	create_token_response() (oauth2_provider.views.mixins.OAuthLibMixin method), [1]

D

 	

 	default_redirect_uri (oauth2_provider.models.AbstractApplication attribute)

E

 	

 	error_response() (oauth2_provider.views.base.BaseAuthorizationView method)

 	

 	(oauth2_provider.views.mixins.OAuthLibMixin method), [1]

G

 	

 	get_application_model() (in module oauth2_provider.models)

 	get_form_class() (oauth2_provider.views.application.ApplicationRegistration method)

 	get_oauthlib_backend_class() (oauth2_provider.views.mixins.OAuthLibMixin class method), [1]

 	get_oauthlib_core() (oauth2_provider.views.mixins.OAuthLibMixin class method), [1]

 	get_queryset() (oauth2_provider.views.token.AuthorizedTokensListView method)

 	

 	get_scopes() (oauth2_provider.views.mixins.OAuthLibMixin method), [1]

 	

 	(oauth2_provider.views.mixins.ScopedResourceMixin method), [1]

 	get_server() (oauth2_provider.views.mixins.OAuthLibMixin class method), [1]

 	get_server_class() (oauth2_provider.views.mixins.OAuthLibMixin class method), [1]

 	get_validator_class() (oauth2_provider.views.mixins.OAuthLibMixin class method), [1]

 	Grant (class in oauth2_provider.models)

I

 	

 	is_expired() (oauth2_provider.models.AccessToken method)

 	

 	(oauth2_provider.models.Grant method)

 	

 	is_valid() (oauth2_provider.models.AccessToken method)

M

 	

 	model (oauth2_provider.views.token.AuthorizedTokenDeleteView attribute)

 	

 	(oauth2_provider.views.token.AuthorizedTokensListView attribute)

O

 	

 	oauth2_provider.models (module)

 	oauth2_provider.views.application (module)

 	oauth2_provider.views.base (module)

 	oauth2_provider.views.generic (module)

 	

 	oauth2_provider.views.mixins (module), [1]

 	oauth2_provider.views.token (module)

 	oauthlib_backend_class (oauth2_provider.views.base.AuthorizationView attribute)

 	

 	(oauth2_provider.views.base.RevokeTokenView attribute)

 	(oauth2_provider.views.base.TokenView attribute)

 	(oauth2_provider.views.generic.ProtectedResourceView attribute)

 	OAuthLibMixin (class in oauth2_provider.views.mixins), [1]

P

 	

 	protected_resource() (built-in function)

 	ProtectedResourceMixin (class in oauth2_provider.views.mixins), [1]

 	

 	ProtectedResourceView (class in oauth2_provider.views.generic)

R

 	

 	ReadWriteScopedResourceMixin (class in oauth2_provider.views.mixins), [1]

 	ReadWriteScopedResourceView (class in oauth2_provider.views.generic)

 	redirect_uri_allowed() (oauth2_provider.models.AbstractApplication method)

 	Refresh Token

 	RefreshToken (class in oauth2_provider.models)

 	

 	Resource Owner

 	Resource Server

 	revoke() (oauth2_provider.models.AccessToken method)

 	

 	(oauth2_provider.models.RefreshToken method)

 	RevokeTokenView (class in oauth2_provider.views.base)

 	rw_protected_resource() (built-in function)

S

 	

 	ScopedProtectedResourceView (class in oauth2_provider.views.generic)

 	ScopedResourceMixin (class in oauth2_provider.views.mixins), [1]

 	

 	scopes (oauth2_provider.models.AccessToken attribute)

 	server_class (oauth2_provider.views.base.AuthorizationView attribute)

 	

 	(oauth2_provider.views.base.RevokeTokenView attribute)

 	(oauth2_provider.views.base.TokenView attribute)

 	(oauth2_provider.views.generic.ProtectedResourceView attribute)

T

 	

 	TokenView (class in oauth2_provider.views.base)

V

 	

 	validate_authorization_request() (oauth2_provider.views.mixins.OAuthLibMixin method), [1]

 	

 	verify_request() (oauth2_provider.views.mixins.OAuthLibMixin method), [1]

 Copyright 2013, Evonove.
 Created using Sphinx 1.3.3.

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Django OAuth Toolkit 0.11.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Evonove.
 Created using Sphinx 1.3.3.

_static/minus.png

_static/comment-close.png

_static/comment-bright.png

_static/comment.png

